Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17619
Title: A Tunneling Investigation of the Mechanisms Determining Superconductivity in Simple Metals and Alloys
Authors: Dynes, Robert Carr
Advisor: Campbell, C.K.
Department: Physics
Keywords: physics;tunneling;superconductivity;metal;alloy
Publication Date: May-1968
Abstract: <p> The present knowledge of lattice dynamics in particular solids is applied to the theory of strongly coupled superconductors. From existing phonon data, the product function α²(ω)F(ω) is determined in various materials, where α²(ω) is the electron-phonon coupling term, and F(ω) is the phonon density of states of that material. The Eliashberg gap equations are solved for these particular materials using this product function and predictions of the superconducting energy gap ∆(∆₀) and tunneling electron density of states N_T(ω) are made. </p> <p> Tunneling experiments are performed on selected Tℓ-Pb-Bi alloys where this phonon information is available and comparisons are made both of the predicted and obtained ∆(∆₀) and the tunneling density of states N_T(ω). </p>
URI: http://hdl.handle.net/11375/17619
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Dynes_Robert_C_1968May_PhD.pdf
Open Access
37.44 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue