Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17403
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalakrishnan, Narayanaswamy-
dc.contributor.authorZhang, Xuan-
dc.date.accessioned2015-05-28T19:43:42Z-
dc.date.available2015-05-28T19:43:42Z-
dc.date.issued2009-01-
dc.identifier.urihttp://hdl.handle.net/11375/17403-
dc.description.abstract<p>A survival distribution is developed for exponential two-component systems that can survive as long as at least one of the two components in the system function. It is assumed that the two components are initially independent and non-identical. If one of the two components fail (repair is impossible), the surviving component is subject to a different failure rate due to the stress caused by the failure of the other.</p> <p>In this paper, we consider such an exponential two-component system failure model when the observed failure time data are (1) complete, (2) Type-I censored, (3) Type-I censored with partial information on component failures, (4) Type-II censored and (5) Type-II censored with partial information on component failures. In these situations, we discuss the maximum likelihood estimates (MLEs) of the parameters by assuming the lifetimes to be exponentially distributed. The exact distributions (whenever possible) of the MLEs of the parameters are then derived by using the conditional moment generating function approach. Construction of confidence intervals for the model parameters are discussed by using the exact conditional distributions (when available), asymptotic distributions, and two parametric bootstrap methods. The performance of these four confidence intervals, in terms of coverage probabilities are then assessed through Monte Carlo simulation studies. Finally, some examples are presented to illustrate all the methods of inference developed here.</p> <p>In the case of Type-I and Type-II censored data, since there are no closed-form expressions for the MLEs, we present an iterative maximum likelihood estimation procedure for the determination of the MLEs of all the model parameters. We also carry out a Monte Carlo simulation study to examine the bias and variance of the MLEs.</p> <p>In the case of Type-II censored data, since the exact distributions of the MLEs depend on the data, we discuss the exact conditional confidence intervals and asymptotic confidence intervals for the unknown parameters by conditioning on the data observed.</p>en_US
dc.language.isoenen_US
dc.subjectmathematicsen_US
dc.subjectTwo-component system model; maximum likelihood estimation; bootstrap method; conditional moment generating function; exponential distribution; confidence intervals; coverage probabilities; Type-I censoring; Type-II censoring; Type-I censoring with partial information on component failures; Type-II censoring with partial information on component failures.en_US
dc.titleExact Analysis of Exponential Two-Component System Failure Dataen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Zhang_Xuan_2009Jan_PhD.pdf
Open Access
7.08 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue