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Abstract 


A survival distribution is developed for exponential two-component systems that 

can survive as long as at least one of the two components in the system function. It is 

assumed that the two components are initially independent and non-identical. If one 

of the two components fail (repair is impossible), the surviving component is subject 

to a different failure rate due to the stress caused by the failure of the other. 

In this paper, we consider such an exponential two-component system failure model 

when the observed failure time data are (1) complete, (2) Type-I censored, (3) Type-I 

censored with partial information on component failures, ( 4) Type-II censored and (5) 

Type-II censored with partial information on component failures. In these situations, 

we discuss the maximum likelihood estimates (MLEs) of the parameters by assuming 

the lifetimes to be exponentially distributed. The exact distributions (whenever possi­

ble) of the MLEs of the parameters are then derived by using the conditional moment 

generating function approach. Construction of confidence intervals for the model pa­

rameters are discussed by using the exact conditional distributions (when available), 

asymptotic distributions, and two parametric bootstrap methods. The performance 

of these four confidence intervals, in terms of coverage probabilities are then assessed 

through Monte Carlo simulation studies. Finally, some examples are presented to 
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illustrate all the methods of inference developed here. 

In the case of Type-I and Type-II censored data, since there are no closed-form 

expressions for the MLEs, we present an iterative maximum likelihood estimation 

procedure for the determination of the MLEs of all the model parameters. We also 

carry out a Monte Carlo simulation study to examine the bias and variance of the 

ML Es. 

In the case of Type-II censored data, since the exact distributions of the MLEs de­

pend on the data, we discuss the exact conditional confidence intervals and asymptotic 

confidence intervals for the unknown parameters by conditioning on the data observed. 

Keywords: Two-component system model; maximum likelihood estimation; boot­

strap method; conditional moment generating function; exponential distribution; con­

fidence intervals; coverage probabilities; Type-I censoring; Type-II censoring; Type-I 

censoring with partial information on component failures; Type-II censoring with par­

tial information on component failures. 
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Chapter 1 

Introduction 

1.1 Historical Background 

The reliability analysis of multi-component system models with different failures 

has been discussed in the reliability literature. Interest typically lies in estimating the 

parameters of a survival distribution in a system with several components. Goel and 

Gupta (1983) assumed a system consisting of n independent components arranged in 

a series configuration and the failed component can be identified and replaced by a 

standby one with a constant replacement rate. Sarhan and EI-Bassiouny (2003) dis­

cussed estimations in the case of a parallel system consisting of independent but non­

identical components having complementary exponential lifetime distributions with 

different parameters. Lin, Usher and Guess (1993), Usher (1996) and Sarhan (2003) 

derived the maximum likelihood estimates of the parameters for the case of a 2- or 

3-component series system when the lifetimes of the system components have Weibull 

or exponential distribution in the case of masked system life data. Miyakawa (1984) 
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derived closed-form expressions for the maximum likelihood estimates of the parame­

ters in the two-component series system of exponential components. The model he 

considered involves only the time to first failure. This kind of data and associated 

inferential problems can also be encountered in competing risks data analysis; see 

Crowder (2001). Most of these works deal with the analysis under the assumption 

that the components are independently arranged in a parallel system or the failed 

components are not necessarily identified. 

However, assumption that the components are dependent is more realistic. For 

example, in a multi-component system, the failure of one component may hasten the 

failure of the remaining components in the system; or the failure of one component 

may alter the failure rates of the remaining ones. In the first case, Murthy and Wilson 

(1994) analyzed such failure in two-component as well as multi-component systems, 

and termed it as failure interaction. They classified the interaction into two types 

- natural and induced, with the former being the cause of the latter. In the second 

case, Gross, Clark and Liu (1971) proposed a two-component system model in which 

an individual survives as long as at least one of the two components functions. The 

two components were assumed to be identical with constant failure rate Ao. If one 

component fails, the failure rate of the other one changes to A1 . They then assumed 

a complete sample of observations and discussed the estimation of the parameters Ao 

and A1. 

We also note that, if the failed components can not be identified within an experi­

ment, the inference of the unknown parameters may become difficult if not impossible. 

For example, in a parametric analysis involving masked systems, although it is thought 

to be more economical if one does not have to bother identifying the failed component 
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within a specified system, it is clear that inference will suffer from the amount of un­

certainty in the data. Similarly, for a competing risks model, full information can not 

be obtained for developing inference if the system can not be observed in operation 

after the failure of the first component. 

We consider here a model which assesses the lifetimes of a multi-component sys­

tem assuming that the components are dependent and the failed components can be 

observed within a test. We assume that the system with J components can survive 

until the last failure of its components. The components within a specified system 

are initially independent and non-identical with mean life times ej (j = 1, 2, ... , J). 

However, failure of one component alters the subsequent lifetimes of all others, in a 

way that the mean lifetime of surviving components change from Bj to Bj. The bivari­

ate distribution function corresponding to such failure mechanism in a two-component 

system was proposed by Freund (1961). Some key references in the area of multivari­

ate survival models are Block and Savits (1981), Haugaard (1987), Slud (1984) and 

Gumbel (1960). 

1.2 	 Bivariate Extension of the Exponential Distri­

bution 

For simplicity, let us consider here that there are only two components in the 

individual system. All the methods presented in this thesis can, of course, be extended 

to the case of multi-component systems with J > 2, but the mathematical expressions 
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will be for more complicated. 

We assume that X and Y are random variables representing the lifetimes of Com­

ponents 1 and 2, respectively, in a two-component system. Further, we assume that 

X and Y are initially independent exponential random variables with densities 

fx(x) =_!_exp (-_!_x) , x > 0, el > 0,
el el 

fy(y) =el exp (-e
1 

y)' y > 0, e2 > 0, 
2 2 

respectively, where e1 and e2 represent the mean lifetimes of Components 1 and 2, 

respectively. We assume that a simultaneous failure of both components is not pos­

sible. However, failure of one component alters the subsequent lifetime of the other 

component. Specifically, the mean lifetime of the surviving component changes from 

ej to ej (j = 1, 2). It follows that the joint density of X and Y in such a case is [see 

Freund (1961)] 

1 { (1 1 1) 1 } IM~ exp - lh + ~ - ~ x - ~y ' 0 < x < y, 

(1.1)fx,y(x, y) = 1 { (1 1 1) 1 } 0 < y < x,1'29~ exp - 91 + 92 - 9~ Y - 9~ x ' 

All the studies in this thesis is for such a two-component system having the bivariate 

distribution in (1.1). Some of the basic properties of the bivariate distribution in (1.1) 

are as follows. 

The joint survival function of X and Y is given by 

-( ) _ ( 1 1 1 )-l{1 -('1+'2-lfr-)x--j,-y ( 1 1) -(-/-+-/-)Y}F x y _ - + - - - -e 2 + - - - e i 

' el e2 8~ 81 
2 

82 8~ 
2 

' 
(1.2) 
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for 0 < x < y, assuming that 0\ + i i= i~; correspondingly,
2 

for 0 < y < x, assuming that .J-- + i i= ,,~.
Ul 2 Ul 

Setting x = 0 in (1.2) and y = 0 in (1.3), we obtain the marginal survival functions 

as 

(1.4) 

(1.5) 

These are mixture of two exponentials, rather than a single one. Independence of X 

and Y exists if and only if i 
1 

= i~ and i 
2 

= i~ . 

The expected values and variance of X and Y can be shown to be 

1 + 2 + 1an - & o~ fh02(x) 02 

var = 1(1 1)2'
97 01 + 02 

cov(X, Y) = 

The correlation coefficient (p) of X and Y can be obtained as the ratio of cov(X, Y) 

and Jvar(X)var(Y). It is of interest to note that in general -~ < p < 1. The 

correlation coefficient approaches 1 when 0~ -t oo and tf, -t oo; physically speaking, 
1 2 
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this corresponds to the case when the two-component system cannot function if either 

component fails. The correlation coefficient approaches - ~ when ff; = ~ and k -----+ 0 

and 0~ -----+ O; physically speaking, this corresponds to the case when either component 
2 

becomes "almost infallible" as soon as the other one fails. This would not be a very 

realistic situation. 

1.3 Asymptotic Normality of the Maximum Like­

lihood Estimator 

Let X 1 , ... , Xn be i.i.d. with PDF J(x, B), B E 0. Suppose J(x, B) has common 

support and is differentiable in B. Then the log likelihood is 

n 

l(B) = lnL(B) = Llnf(xi,B), 
i=l 

and the first derivative of the log likelihood is 

l'(B) = OlnL(B) = ~ olnf(xi,B) 
oB f=t oB ' 

which is called the score. The maximum likelihood estimator {} can be found by solving 

l'(B) = 0. That is, 

z'(e) = o. 

We can approximate the left-hand side of this equation in a Taylor series expanding 

about Bo, namely 

l'(e) = l'(Bo) + l"(Bo)(e - Bo)+···= o (1.6) 
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where we are going to ignore the higher-order terms under the regularity conditions: 

(1) For every x E X, the density f(x, 0) is three times differentiable with respect to 

0, the third derivative is continuous in 0, and J f(x, O)dx can be differentiated three 

times under the integral sign; (2) For every 00 E 0, there exists a positive number c 

and a function M(x) ( both of which may depend on 00 ) such that 

for all x EX and Oo - c < 0 < Oo + c with Eo0 [M(X)] < oo. 

The asymptotic of l' (0) and l" (0) are given by the Central Limit Theorem and the 

Law of Large Numbers. Since we can differentiate under the integral sign under the 

assumption, we see that the score l'(O) is the sum of n independent random variables 

each with mean zero, and, consequently, with variance I(O) = E{[ 81n~~x,o)]2}. The 

function I(O) is the Fisher Information based on one observation X. So, based on 

a random sample X 1 , ... , Xn, we will have ~ to have the limiting distribution 
ynl(O) 

N(O, 1) by the Central Limit Theorem. Moreover, -~l"(O) converges in probability to 

its expected value I(O) by the Law of Large Numbers. This implies that - nAo)l"((}) 

converges in probability to 1. 

If we rearrange the expansion (1.6) we get 

1 l'(O)
0-0 ~ 
{I - --1 l"(O)Vnl(O) nl(O) 

which has the limiting distribution N(O, 1) by Slutsky's Theorem. Hence, we can say 

that {J has an approximate normal distribution with mean 0 and variance nAo), i.e., 

The asymptotic of multi-parameter maximum likelihood is like the one parameter 
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case. For large n and under similar regular conditions, {j = (01, ... , On) has an approx­

imate normal distribution with mean 0 = (01 , ... , On) and variance 1;:1 (01 , ... , On)· 

1.4 Types of Data in the Study 

Censoring is frequently encountered in reliability and life-testing experiments be­

cause the experimenter has to terminate the experiment before all items have failed 

due to time or cost considerations. The two most common censoring schemes are as 

Type-I and Type-II censoring schemes. Some key references dealing with inference 

under Type-I and Type-II censoring for different parametric families of distributions 

include Lawless (1982), Nelson (1982), Cohen and Whitten (1988), Cohen (1991), and 

Balakrishnan and Cohen (1991). 

1.4.1 Conventional Type-I and Type-II Censored Data 

Consider a life-testing experiment in which we are testing n (non-repairable) iden­

tical units taken randomly from a population. In the typical test scenario, we have a 

pre-fixed time W to run the units to see if they survive or fail. The observed failure 

data obtained from such an experiment are called Type-I censored data. The termi­

nation point W of the experiment is assumed to be independent of the failure times. 

Another way to test is to decide in advance that you want to see exactly r (r ::; n) 

failure times and then test until they occur. The observed failure data obtained in this 

way are called Type-II censored data. 
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Comparing Type-I and Type-II censoring, there are advantages as well as disad­

vantages with both of them. In the case of Type-I censoring, the advantage is that 

the duration of the experiment can be controlled by the experimenter. However, the 

number of observed failure times is random. If the unknown mean lifetime is not small 

compared to W, few failures (even no failure) may occur before time W. This may 

result in an adverse effect on the efficiency of inferential procedures based on Type-I 

censoring. In the case of Type-II censoring, the advantage is that r failures will be 

observed exactly which result in efficient inferential procedures. However, the termina­

tion time is unknown to the experimenter. If the unknown mean lifetime is not small, 

the experimentation would result in a longer life-test. 

1.4.2 	 Type-I and Type-II Censored Data with Partial Infor­

mation on Component Failures 

Suppose there are n identical systems placed on a life test and that each system 

has two components. Assume that the experiment continues up to a pre-fixed time W. 

Before the time W, there are D observed failed systems. Under the conventional Type­

r censoring, failures that occur after W are not observed. However, at the end of the 

experiment, besides D systems with complete destruction, we may observe additional 

D' (say) systems which have only one failed component. In order to obtain more 

information on lifetimes and get more accurate estimation of the parameters, we need 

to consider those D' failure times as well in the data. We call this type of data as 

"Type-I censored data with partial information on component failures". The number 

of observed failure times before Wis random, and actually equals 2D + D'. 
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Similarly, under the conventional Type-II censoring, the experiment continues until 

a total of (pre-fixed) d (d ~ n) systems fail. Assume that X and Y are random variables 

representing the lifetimes of Components 1 and 2, respectively, in a two-component 

system. If Zi = max(Xi, li) (i = 1, ... , n), the i-th system fails at time Zi, and 

Z1:n < · · · < Zd:n are the corresponding ordered failure times. Failures that occur 

after Zd:n are not observed. However, at time Zd:n, in addition to the d systems with 

complete destruction, we may observe additional d' (say) systems which have only 

one failed component. In order to get more accurate estimation of the parameters, 

we need to consider those d' failure times in the data. We call this type of data as 

"Type-II censored data with partial information on component failures". The number 

of observed failure times before Zd:n is random now, and actually equals 2d + d'. 

1.5 Scope of the Thesis 

A survival distribution is developed for two-component systems that survive as 

long as at least one of the two components functions. The main goal of the thesis is to 

develop inference for such two-component system failure models under the conventional 

Type-I and Type-II censoring schemes and Type-I and Type-II censoring with partial 

information on component failures, respectively. 

In Chapter 2, we discuss the exact inference for a two-component system failure 

model in the case of complete data assuming the lifetimes of the components to be 

exponentially distributed. In Section 2.2, we describe the model and present the MLEs 

of the model parameters. The exact conditional distributions of the MLEs are derived 
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in Section 2.3. Using these exact distributions of the MLEs, we obtain in Section 

2.4 the exact conditional confidence intervals for the unknown parameters. We also 

discuss the asymptotic distributions of the MLEs and the corresponding asymptotic 

confidence intervals, as well as two confidence intervals based on the parametric boot­

strap method. In Section 2.5, we carry out a Monte Carlo simulation study to evaluate 

the performance of these confidence intervals in terms of coverage probabilities. We 

also present an example to illustrate all the methods of inference discussed here. 

In Chapter 3, we discuss the exact inference for a two-component system failure 

model in the case of Type-II censored data assuming the lifetimes of the components 

to be exponentially distributed. In Section 3.2, we first describe the model and then 

discuss the likelihood estimation of the model parameters. Since there are no closed­

form expressions for the MLEs, we present an iterative maximum likelihood estimation 

procedure to determine the MLEs of the parameters. Next, in Section 3.3, we obtain 

the asymptotic distributions of the MLEs and the corresponding asymptotic confidence 

intervals, as well as two confidence intervals based on parametric bootstrap methods. 

In Section 3.4, we carry out a Monte Carlo simulation study to examine the bias and 

variance of the MLEs and also to evaluate the performance of the three confidence 

intervals in terms of coverage probabilities. Numerical examples are also presented in 

this section to illustrate all the methods of inference discussed here. 

In Chapter 4, we discuss the exact inference for a two-component system failure 

model in the case of Type-II censored data assuming the lifetimes of the components 

to be exponentially distributed. The information of the censored systems which have 

only one component failed at the end of the experiment is incorporated as well. In 

Section 4.2, we first describe the model and present the MLEs of the model parameters. 
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Relative risks are discussed in this section as well. The exact conditional distributions 

of the MLEs are derived in Section 4.3. Since the distributions of the MLEs depend on 

the observed data, we obtain in Section 4.4 the exact conditional confidence intervals 

and asymptotic confidence intervals, by conditioning on the data, for the unknown pa­

rameters. We also discuss two confidence intervals based on the parametric bootstrap 

methods. In Section 4.5, we carry out a Monte Carlo simulation study to examine the 

relative risks and also to evaluate the performance of the two parametric bootstrap 

confidence intervals in terms of coverage probabilities. Numerical examples are also 

presented in this section to illustrate all the methods of inference discussed here. 

In Chapter 5, we discuss the exact inference for a two-component system failure 

model in the case of Type-I censored data assuming the lifetimes of the components 

to be exponentially distributed. In Section 5.2, we describe the model and present an 

iterative maximum likelihood estimation procedure to determine the MLEs of the para­

meters. Next, in Section 5.3, we obtain the asymptotic distributions of the MLEs and 

the corresponding asymptotic confidence intervals, as well as two confidence intervals 

based on parametric bootstrap methods. In Section 5.4, we carry out a Monte Carlo 

simulation study to examine the bias and variance of the MLEs and also to evaluate 

the performance of the three confidence intervals in terms of coverage probabilities. 

Numerical examples are also presented in this section to illustrate all the methods of 

inference discussed here. 

In Chapter 6, we discuss the exact inference for a two-component system failure 

model in the case of Type-I censored data assuming the lifetimes of the components 

to be exponentially distributed. The information of the censored systems which have 

only one component failed at the end of the experiment is incorporated as well. In 
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Section 6.2, we describe the model and present the MLEs of the model parameters. 

Relative risks are discussed in this section as well. The exact conditional distributions 

of the MLEs are derived in Section 6.3. Using these exact distributions of the MLEs, 

we obtain in Section 6.4 the exact conditional confidence intervals for the unknown 

parameters. We also discuss the asymptotic distributions of the MLEs and the cor­

responding asymptotic confidence intervals, as well as two confidence intervals based 

on the parametric bootstrap method. In Section 6.5, we carry out a Monte Carlo 

simulation study to evaluate the performance of these confidence intervals in terms 

of coverage probabilities. Numerical examples are also presented in this section to 

illustrate all the methods of inference discussed here. 

Finally, in Chapter 7, we present some concluding remarks based on the work 

carried out in this thesis. Some possible directions for future research are also outlined 

in this chapter. 
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Chapter 2 

Exact Analysis in Complete Data 

2.1 Introduction 

In this chapter, we consider a two-component system failure model in the case 

of complete data. We then derive in Section 2.2 the maximum likelihood estimates 

(MLEs) of the parameters by assuming the lifetimes to be exponentially distributed. 

In Section 2.3, the exact distributions of the MLEs of the parameters are then derived 

by using the conditional moment generating function approach. Construction of con­

fidence intervals for the model parameters are discussed in Section 2.4 by using the 

exact conditional distributions, asymptotic distributions, and two parametric boot­

strap methods. In Section 2.5, the performance of these four confidence intervals, in 

terms of coverage probabilities, are assessed through a Monte Carlo simulation study. 

Examples are also presented in this section to illustrate all the methods of inference 

developed here. 
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2.2 Model Description and MLEs 

Consider the following simple system failure model: n identical systems are placed 

in a life-test and each system has two components. The experiment continues until 

the failure of all n systems are observed. We assume that Xi and Yi (i = 1, ... , n) are 

random variables representing the lifetimes of Components 1 and 2, respectively, in 

the i-th system. Among the n systems, suppose Component 1 fails first n 1 times and 

Component 2 fails first n 2 times, with n 1 +n2 = n. Let Zi = max(Xi, Yi) (i = 1, ... , n). 

Thus, the i-th system fails at time Zi, and Z1,n < · · · < Zn:n are the corresponding 

ordered failure times of the n systems under test. The data arising from such a two­

component system is as follows: 

(2.1) 

where T1 , ... , Tn denote the first observed failure times in the systems, Z1:n < · · · < 

Zn:n denote the final observed failure times of the systems, and J' and J" are indicators 

denoting the component of the first and second observed failures within the system, 

respectively. 

If we let 


Ii= {i E (1, 2, ... , n): Component 1 fails first}, 


h = { i E (1, 2, ... , n) : Component 2 fails first}, 
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the likelihood function of the observed data in (2.1) is 

L(01, 02 ,(J~, 0~) = 

1 ) ni { ( 1 1 1 ) 1 }(2n) ! --, exp - - + - - I L Xi - I L Zi( 0102 01 02 02 . I 02 .
iE 1 iEfi 

{ ( 1 1 1 }x (01O' )n
2 

exp - e + e - 7i1) L Yi - 7i L Zi ' (2.2) 
2 1 1 2 1 iEh 1 iEh 

where 0 <Xi < Zi:n for i E Ii, 0 <Yi< Zi:n for i Eh, and 0 < Z1:n < · · · < Zn:n < 00. 

From the likelihood function in (2.2), it is immediate that, on the condition that 

1 :S: nl :S: n-1, (n1, l::iEli Xi+ l::iEh Yil, l::iEJ2 (zi - Yi)I, l::iEli (zi - xi)I) form a jointly 

complete sufficient statistic for (01 , 02 , O~, O~). It is also evident that the MLE of O~ 

does not exist if n1 = 0 or n 2 = n, and the MLE of O~ does not exist if n1 = n or 

n2 = 0. Therefore, the MLEs of 01 , 02 , O~ and O~ exist only when 1 :S: n 1 :S: n - 1 and 

may be obtained by maximizing the corresponding likelihood function in (2.2). The 

MLEs thus obtained are given by 

O~, _ l::iEh (zi - Yi) 
1 - ' n-n1 

{}~ = l::iEJi (zi - Xi). 

nl 

The estimates 01, 02, O~ and O~ presented above are conditional MLEs of 01, 02, O~ and 

O~, conditional on 1 :S: n 1 :S: n - 1. 
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2.3 Exact Conditional Distribution of the MLEs 

We will now derive the exact marginal (conditional) distribution of the MLEs. The 

derivation will require the inversion of the conditional moment generating function 

(CMGF). To obtain the CMGF, we need to determine the distribution of random 

variables n1, LiEii Xi+ EiEh Yi, EiEh(Zi - Yi) and LiEli (Zi - Xi) separately. 

The distribution of n1 is established and presented in Lemma 2.3.1. 

Theorem 2.3.1. The relative risk that Component 1 fails first within a two-component 

system is 

71'1 = Pr(X < Y) = fo 00 

; exp {-(; + ; ) x} dx = (}i; () , 0 < ()1,()2 < oo. 
1 1 2 2

Proof: The proof follows easily by straight forward integration. 

Lemma 2.3.1. The number of system failures due to Component 1 failing first, viz., 

n 1, is a non-negative random variable with binomial probability mass function 

Pi=Pr(n1=i)= (~) (e1~e2} (e1~e2)n-i' i=0,1, ... ,n. 

Proof: The result follows immediately from Theorem 2.3.1. 

From Lemma 2.3.1, we then have 

(2.3) 

Next, with Si= min(Xi, Yi) (i = 1, ... , n), since the minimum of two independent 

exponential random variables is also distributed as exponential, L:~=l Si = L:iE/i Xi + 

LiEh Yi is readily seen to be distributed as a Gamma(n, 'k + ~) random variable. 
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From Section 2.2, it can be easily seen that EiEh (Zi - Yi) covers the situations 

where Component 2 fails before Component 1, while EiEii (Zi - Xi) covers the situa­

tions where Component 1 fails first. Since Zi - Yi (for i E 12 ) is assumed to have an 

exponential distribution 

and similarly Zi - Xi (for i E 11) is assumed to have an exponential distribution 

we readily have EiEh (zi - Yi) to be distributed as Gamma(n - nl, 11\) and EiEli (zi ­

Xi) to be distributed as Gamma(n1, -;},- ). 
2 

We can then establish the following two theorems. 

Theorem 2.3.2. Conditional on 1 ~ n 1 ~ n - 1, the CMGFs of the MLEs are given 

by 
n-1 . 1 1 -1 

M91 (t) =I: E~l . { 1 - [i (8 + 8 )] t }
~ 

, 
i=l J=l P1 1 2 

}
~ 

n- . 1 1 -1 

Mrh(t) = L
1 

E~1 . 
{ 

1 - [(n - i) ( 8 + 8 )] t , 
i=l J=l P1 1 2 

M0, (t) =I: ~1 {1 - 8.~t}-i
2 ~ p· i

i=l L...j=l J 
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Proof: Let us first consider the CMGF of 01 given by 

n-1 . { [ (1 1)]-1 }-n= L Pi 1 - i - + - t (2.4) 
i=l L.;::::i P] 01 02 

The proofs for the other three cases proceed analogously. 

From Theorem 2.3.2, upon inverting the conditional moment generating functions, 

we readily derive the conditional PDFs of the MLEs, conditioned on 1 :S: n 1 :S: n - 1, 

to be as presented below in Theorem 2.3.3. 

Theorem 2.3.3. Conditional on 1 :S: n 1 :S: n - 1, the conditional PDFs of the MLEs 

are given by 

. n
Jo~ (x) = L n-l . g x; n - i, O' , 

i=l 'L.j=l PJ 1 

n-1 Pi ( ( - i) ) 

n-1 ( . ) f0~ (x) = L L.!:_1 x; i, ;,. g , 
i=l j=l PJ 2 

where, 

>.." a-1 ->.y Y > Q
r(a)Y e ' 

g(y; <>, >.) = { 
0, o.w. 
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is the PDF of a gamma random variable. 

It is of interest to note here that the conditional PDFs of the MLEs are indeed 

mixtures of gamma densities. 

2.3.1 Properties of the MLEs 

From Theorems 2.3.2 and 2.3.3, we can derive some simple distributional properties 

of the MLEs. 

Theorem 2.3.4. The first two moments of the MLEs are given by 

n-1 

E(O ) = n0102 """'Pi 
1 ( ) ~n-1 L......t · ' 

01 + 02 L...tj=l Pj i=l i 

)0292 n-1(E({J2) = n n + 1 1 2 """' Pi 
1 (0 e )2 ~n-1 L......t ·2,

1 + 	2 L...tj=l Pj i=l i 

n-1 

E(e') = """' Pi e' = e'1 	 L....,; ~n-1 . 1 l> 
i=l L...tj=l PJ 

0~2E(fJ'2 ) = ~ (n-i+ 1) . 
1 ~n-1 L......t ( _ .) Pi, 

L...tj=l Pj i=l n i 

n-1 

E(e' ) = """' Pi e' = e'2 	 L....,; ~n-1 . 2 2> 
i=l L...tj=l P1 

E(0'2) = e~2 ~ (i + 1) " 
2 	 ~n-1 L......t . Pi 

L...tj=l Pj i=l i 
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The above expressions for the expected values clearly reveal that both 01 and 02 

are biased estimators, while both O~ and O~ are unbiased estimators. The expressions 

for the second moments can be used to find standard errors of the MLEs. Note 

that, in the expressions above, the quantities within the summation sign denote the 

inverse moments of positive binomial random variables. Since exact expressions are 

not available, we may use the tabulated values of positive binomial random variables 

presented, for example, by Edwin and Savage (1954). Since the estimators 01 and 02 

are clearly biased, tabulated values of the bias given by Kundu and Basu (2000) may 

be used for bias correction, for example. 

We can also obtain expressions for the tail probabilities from Theorem 2.3.3. These 

expressions, presented below in Theorem 2.3.5, will be used to construct exact confi­

dence intervals later in Section 2.4. 

Theorem 2.3.5. The tail probabilities of the MLEs are 

~ n-1 ~ ( . (n-z) )Po~(e1~b)=L n-1 .r n-z, ()' b' 
i=l l:j=l PJ 1 

where f(a, z) = rCa) fz00 
y°'-le-Ydy (0 < Z < oo) is the incomplete gamma ratio. 
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2.4 Confidence Intervals 

In this section, we present different methods of constructing confidence intervals 

( Cls) for the unknown parameters 01 , 02 , O~ and O~. The exact Cis are based on the 

exact conditional distributions of the MLEs presented in Theorems 2.3.3 and 2.3.5. 

Since the exact conditional PDFs of the MLEs are computationally intensive, we may 

use the asymptotic distributions of the MLEs to obtain approximate Cls for 01, 02 , 

e~ and O~ in the case of large sample sizes. Finally, we use the parametric bootstrap 

methods to construct the Cls for the parameters. 

2.4.1 Exact Confidence Intervals 

In order to illustrate how to construct the exact confidence intervals of the para­

meters, we take 01 as an example. Determine two increasing functions of parameter 

01 , say c(01) and d(01 ), such that for each value of 01 we have the probability 

Po1 ( 01 2 d(oi)) = 1 - ~, (2.5) 


Po1 (01 2 c(01)) = ~' (2.6) 


exactly. With c(01) and d(01 ) assumed to be increasing functions, they have single­


valued inverses, say c-1 (01 ) and d-1(01), respectively. Thus, the events 01 2 d(01) and 


01 ~ d-1(01), 01 2 c(01) and 01 ~ c-1(01) are equivalent, respectively, and so we have 


(2.7) 

(2.8) 

Therefore, OIL= c 1 (01 ) is the lower bound and Ow= d- 1 (01 ) is the upper bound for 

the 100(1 - a)% confidence interval for 01. 
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Confidence Interval for (Ji 

Using equations (2.5)-(2.8), a two-sided 100(1-a)% CI for 01, denoted by (OIL, Ow), 

can be obtained as the solutions of the following two non-linear equations: 

(2.9) 

(2.10) 

where 

Confidence Interval for fh 

Similarly, a two-sided 100( 1 - a)% CI for 02 , denoted by ( 02L, Ow), can be obtained 

as the solutions of the following two non-linear equations: 

(2.11) 

(2.12) 

where 

Confidence Interval for e~ 

A two-sided 100(1 - a)% CI for O~, denoted by (O~L' B~u), can be obtained as the 

solutions of the following two non-linear equations: 
n-1 A A 

~ = '°"' Pi(B1, 02) r ( _ . (n - i) e') (2.13)
A2 	 L.....J n-1 A n i, 0' 1 ) 

i=l l.:i=l Pi(B1, 02) 1£ 
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(2.14) 

where 

Confidence Interval for (}~ 

A two-sided 100(1- 0:)% CI for(}~, denoted by ((}~L,(}~u), can be obtained as the 

solutions of the following two non-linear equations: 

(2.15) 

(2.16) 

Lacking a closed-form solution, we have to apply an iterative root-finding technique 

in the determination of (}iL, (}~L' (}iU and (}~u for i = 1, 2; the Newton-Raphson iteration 

method, for instance, can be used. 

It is important to mention here that our construction of the exact confidence inter­

val is based on the assumption that c((Ji), c((}D, d((}i) and d((}~) are increasing functions 

of (Ji, (}~, i = 1, 2. This assumption guarantees the invertibility of the pivotal quan­

tities. Several authors including Chen and Bhattacharyya (1988), Gupta and Kundu 

(1998), Kundu and Basu (2000), and Childs et al. (2003) have all used this approach 

to construct exact Cis in different contexts. This assumption implies, for ()1 < ()1, for 

example, we have 

(2.17) 
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Therefore, P9i (Bi 2'.: b) and P9~ ( e: 2'.: b) are increasing functions of Oi and o:, i = 1, 2, 

respectively. Values of P9i (ei 2'.: b) and P9; (e~ 2'.: b) for various Oi, O~ (i = 1, 2) and b 
are presented in Tables 2.1 - 2.4 which support this monotonicity. As the concerned 

tail probabilities are all mixtures of gamma tail probabilities, their monotonicity can 

also be established using the recent results of Balakrishnan and Iliopoulos (2008). 

2.4.2 Asymptotic Confidence Intervals 

Using the asymptotic normality of the MLEs, we are able to construct asymptotic 

confidence intervals for 81 , 02 , O~ and 8~ based on the Fisher information matrix. 

Let I (01, 02 , O~, O~) = (Iii (01 , 02 , O~, 8~) ), i, j = 1, 2, 3, 4, denote the Fisher informa­

tion matrix for the parameter (01, 02, o~, O~), where 

For large n 1 and n2 and under suitable regularity conditions, the asymptotic distrib­

utions of the pivotal quantities Oi-E(Oi) 62 -E(02 ) 
01-E(O!) and 02-E(02) are all N(O 1).

v'Vi1 ' y'V22 ' v'V33 VV44 ' 

Here, Vii= Ii-;1, i = 1,2,3,4, and E(Oj), E(Oj), j = 1,2 are all as given in Theorem 

2.3.4. Then, the 100(1 - 0:)% approximate Cis for (81, 82 , 8~, 8~) can be obtained from 

the following expressions: 

(2.18) 

(2.19) 

(2.20) 
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e; - E(e;) )
P z~ < ~ < z1-~ = 1 - a, (2.21)( 

respectively, where Zq is the q-th upper percentile of the standard normal distribution. 

From Eq. (2.2), we find 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where 

81 = LXi + LYi, 
iE/1 iE/2 

82 = L(zi - Yi), 
iE/z 

83 = L(Zi - Xi)· 
iE/i 

Thus, the Fisher information matrix is given by 

!!l. 
9~ 

0 0 0 

0 n2 

9~ 
0 0 

0 0 ~ ()'21 
0 

0 0 0 n1 
9~2 
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This implies that the MLEs are asymptotically mutually independent. The as­

ymptotic unconditional variance of 01 , 02 , O~ and O~ can be obtained from the Fisher 

information matrix as 

Then, the 100(1- a)% approximate Cis for 01 , 02 , (}~ and(}~ are obtained accordingly. 

2.4.3 Bootstrap Confidence Intervals 

In this subsection, we present two methods to construct confidence intervals for 01, 

02 , (}~ and (}~, viz., percentile interval and the biased-corrected and accelerated (BC.,) 

interval. See Efron (1982), Hall (1988), and Efron and Tibshirani (1998) for pertinent 

details. To obtain these intervals, we use the following algorithm. 

Percentile Interval 

(1) Determine 01 , 02 , O~ and O~. 

(2) Generate a complete two-component system failure data set using the 01 , 02 , e~ 

and O~. For this data, compute the bootstrap estimates of 01 , 02 , (}~ and (}~, namely, 
" " ,,..., "I 

er,(}~, Oi* and 02*, by using the expressions of the MLEs presented in Section 2.2. 

(3) Repeat Step 2 R times. This gives R estimates for each of the parameters 01, 

(4) Arrange the R or's, ers, O~*'s and e;*'s in ascending order and take the (Ra./2)­

th and R(l - a/2)-th values. Then, a 100(1 - a.)% confidence interval for 01 is given 

by ( o;[Ra/21, o;[R(l-a/2)1). Similarly, a 100(1 - a)% confidence interval for 02 is given 
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(()A*(Ra/2] ()A*[R(l-a/2)]) (eA'*[Ra/2] ()A' *[R(l-a/2)]) f ()' (eA'*[Ra/2] ()A' *[R(l-a/2)]) f ()'bY 2 ' 2 ' 1 ' 1 or 1' 2 , 2 or 2· 

BC0 Percentile Interval 

The BCa interval is similar to the percentile interval except that it is corrected 

for bias and for the rate of change of the SE of MLE {J (say) with respect to the 

true parameter value () (say); see Efron and Tibshirani (1998). The standard normal 

approximation assumes that the SE of fJ is the same for all values of (), but this 

assumption is not correct. The BCa interval corrects for this. 

Repeat the first three steps as described for Percentile Interval. In step 4, arrange 

the R O*'s e*'s 01

*'s and 01

*'s in ascending order A two-sided 100(1 - a)()fo BC~1 ' 2 ' 1 2 . /( ~ 

i = 1, 2, 

here, <I>(·) is the standard normal cumulative distribution function. Za is the lOOath 

percentile point of the standard normal distribution. zoi is the bias-correction and 

can be obtained directly from the proportion of bootstrap replications less than the 

original estimate op' 
A(')* A('))An = <I>_ 1 number of ()i < ()i 

i = 1, 2,Zoi ( R ' 

with <I>- 1 (-) denoting the inverse of the standard normal cumulative distribution func­

tion. .za~) is actually the median bias of eP*, and .za/ = o if exactly half of the efl* 
values are less than or equa1 to eP. 
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We calculate the acceleration value &;'J by using the jackknife approach: 

E?=l (ei?) - ei;;)) 
3 

&(') = ---------~ i = 1, 2, 

' 6 [ L7~1 (9!;\ - rl!Gi)']" 

where ei;;) is the MLE of 8fl based on the original sample with the j-th observation 
A(/) "n r/)

d 1 t d · - 1 2 d 8 - i(j)L...j=le e e , J - , , ... , n, an i(·) - n 

2.5 Illustrations 

2.5.1 Simulation Study 

To compare the performance of all the confidence intervals described in Section 2.4, 

we carried out a Monte Carlo simulation study. We chose the values of the parameters 

to be 81 = 20, 82 = 25, 8~ = 9 and 8~ = 14. We then determined the true coverage 

probabilities of the 903, 953 and 993 confidence intervals for the parameters with 

different sample sizes by all the methods described in Section 2.4. The results for 

n = 4D, 20, 10 are presented in Table 2.7. The values are based on an average over 999 

bootstrap replications. 

From the table, we observe that the exact method of constructing confidence inter­

vals (based on the exact conditional distributions of the MLEs derived in Section 2.3) 

has its coverage probability to be quite close to the pre-fixed nominal level in all cases. 

As expected, the coverage probabilities of the approximate method (based on asymp­

totic normality of the MLEs) are most often smaller than the nominal level. This 
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indicates that the confidence intervals obtained by this method will often be unduly 

narrower. Between the two bootstrap methods of constructing confidence intervals, 

the BCa percentile interval seems to have coverage probabilities closer to the nominal 

level and hence may be used in case of large sample sizes when the computation of the 

exact confidence interval becomes difficult. 

We notice that, when n is small, there are fewer failures observed and so inference 

for the parameters are not quite precise. For the approximate method, as n increases, 

the coverage probability for any parameter gets closer to the nominal value. This is 

because, when n is small, fewer failures occur during the experiment time while as 

n increases, the number of failures increases thus resulting in a better large-sample 

approximation for the distribution of MLEs. It is important to observe that for all 

the nominal levels considered, the coverage probabilities of the approximate method 

are almost always lower for small sample size n. This means that we require a much 

larger sample size to use the asymptotic normality of the MLEs, and in fact even for 

n = 40, the approximate method does not provide close results. 

Thus, based on this simulation study, we recommend the use of the exact method 

for any sample size as it provides coverage probabilities quite close to the nominal 

levels. The use of the parametric BCa bootstrap method can be supported for n at 

least moderately large. The approximate method can be used when n is large for its 

computational ease as well as for having its coverage probability close to the nominal 

level when n is large (preferably over 50). 
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2.5.2 Numerical Examples 

In this subsection, we consider two data sets when n = 35 and n = 15. The 

parameters were chosen to be 01 = 20, 02 = 25, O~ = 9, e~ = 14. The data are as 

follows. 

Data Set 1: n = 35 

(0.76,2; 1.98,1) 

(7.40,2; 8.87,1) 

(7.13,1; 16.42,2) 

(10.19,1; 19.66,2) 

(22.67,1; 27.12,2) 

(0.40,2; 30.89,1) 

(11.18,2; 36.72,1) 

(1.41,1; 2.02,2) 

(10.22,1; 10.99,2) 

(6.76,l; 17.52,2) 

(11.45,2; 20.06,1) 

(24.11,2; 28.35,1) 

(30.78,1; 31.94,2) 

(18.67,1; 38.32,2) 

(1.51,2; 3.38,1) 

(4.37,2; 11.12,1) 

(17.10,2; 18.07,1) 

(2.19,1; 21.78,2) 

(1.15,1; 28.42,2) 

(9.62,1; 33.07,2) 

(34.16,1; 43.46,2) 

(1.69,2; 3.99,1) 

(6.32,1; 13.57,2) 

(6.53,1; 18.26,2) 

(20.92,2; 21.80,1) 

( 4.08,1; 30.03,2) 

(1.30,2; 33.61,1) 

(31.27,1; 43.54,2) 

(5.14,2; 5.20,1) 

(1.56,1; 15.25,2) 

(8.25,2; 18.66,1) 

(14.66,1; 24.79,2) 

(4.34,1; 30.72,2) 

(9.69,1; 33.93,2) 

(34.76,1; 76.11,2) 

Data Set 2: n = 15 

(2.35,2; 5.59,1) 

(5.35,1; 17.82,2) 

(18. 77,2; 29.30,1) 

(0.34,2; 6.76,1) 

(15.39,2; 18.60,1) 

(1.97,1; 37.25,2) 

(0.76,2; 8.93,1) 

(1.87,1; 20.98,2) 

(10.37,1; 41.11,2) 

(4.84,1; 9.60,2) 

(22.74,2; 23.68,1) 

(24.37,1; 60.40,2) 

(4.70,1; 10.40,2) 

(3.55,2; 25.58,1) 

(63.54,1; 64.98,2) 

For the example when n = 35, we have n 1 = 21 and n2 = 14. Using the expressions 

presented in Section 2.2, we find the MLEs of 01 , 02 , O~ and e~ to be 01 = 18.27, 

02 = 27.41, O~ = 9.08 and O~ = 14.70. Similarly, for the example when n = 15, we 

have n 1 = 8 and n2 = 7, and the MLEs to be 01 = 22.61, 02 = 25.84, O~ = 7.79 

and iJ~ = 18.19. We then constructed the 90%, 95% and 99% confidence intervals for 

the four parameters by using the four methods discussed in Section 2.4, and they are 

presented in Tables 2.5 and 2.6, respectively. 
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From these results, it is seen that the exact confidence intervals are wider in general 

than the other intervals. It is also seen that the approximate method always provides 

narrower confidence intervals since, as mentioned earlier, the coverage probability for 

the approximate method is always lower than the nominal level. Furthermore, the two 

bootstrap intervals for the parameters are close to the exact confidence intervals when 

n = 35, while these intervals are not so satisfactory compared to the exact confidence 

intervals when n = 15. 
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Table 2.1: Values of Po1 (01 ~ b) with 82 = 25, 8i = 9 and 8~ = 14 

01 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.1340 0.0000 0.0000 0.0000 

9 0.9825 0.1300 0.0009 0.0000 

13 0.9999 0.7943 0.1383 0.0076 

17 1.0000 0.9819 0.6058 0.1488 

21 1.0000 0.9987 0.8951 0.4911 

25 1.0000 0.9999 0.9779 0.7784 

29 1.0000 1.0000 0.9956 0.9195 

33 1.0000 1.0000 0.9991 0.9730 

Table 2.2: Values of P92 ( 02 ~ b) with 81 = 20, 8i = 9 and 8~ = 14 

02 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.1399 0.0000 0.0000 0.0000 

9 0.9803 0.1394 0.0014 0.0000 

13 0.9999 0.7865 0.1503 0.0108 

17 1.0000 0.9784 0.6024 0.1629 

21 1.0000 0.9982 0.8850 0.4931 

25 1.0000 0.9998 0.9729 0.7674 

29 1.0000 1.0000 0.9939 0.9085 

33 1.0000 1.0000 0.9986 0.9663 
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Table 2.3: Values of P0~ (e~ ~ b) with 01 = 20, 02 = 25 and O~ = 14 

e~ b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.1930 0.0001 0.0000 0.0000 

9 0.9326 0.1715 0.0038 0.0000 

13 0.9965 0.7257 0.1637 0.0130 

17 0.9997 0.9453 0.5680 0.1597 

21 1.0000 0.9895 0.8425 0.4681 

25 1.0000 0.9977 0.9494 0.7352 

29 1.0000 0.9994 0.9838 0.8840 

33 1.0000 0.9998 0.9946 0.9515 

Table 2.4: Values of Po~ (e~ ~ b) with 01 = 20, 02 = 25 and O~ = 9 

e~ b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.1704 0.0000 0.0000 0.0000 

9 0.9552 0.1482 0.0014 0.0000 

13 0.9989 0.7551 0.1403 0.0065 

17 1.0000 0.9653 0.5833 0.1363 

21 1.0000 0.9955 0.8740 0.4716 

25 1.0000 0.9994 0.9685 0.7651 

29 1.0000 0.9999 0.9924 0.9129 

33 1.0000 1.0000 0.9981 0.9701 
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Table 2.5: Interval estimation for 01 , 02 , O~ and O~ in Example (n = 35) 

C.I. for e1 

Method 903 953 993 

Exact C.I. (13.08, 27.01) (12.30, 29.26) (10.93, 34.48) 

Approx C.I. (11.72, 24.83) (10.46, 26.09) (8.00, 28.55) 

Boot-p C.I. (12.53, 25.84) (11.49, 27.42) (10.17, 31.61) 

BC)< C.I. (12.83, 25.90) (11.59, 27.58) (10.17, 31.05) 

C.I. for e2 

Method 903 953 993 

Exact C.I. (18.19, 44.29) (16.90, 49.04) (14.68, 60.56) 

Approx C.I. (15.36, 39.46) (13.05, 41.77) (8.54, 46.28) 

Boot-p C.I. (17.84, 44.20) (16.35, 47.62) (13.52, 66.14) 

BCa C.I. (17.71, 43.61) (16.17, 46.90) (13.46, 62.19) 

C.I. for (}~ 

Method 903 953 993 

Exact C.I. (6.11, 15.23) (5.66, 16.98) (4.87, 21.44) 

Approx C.I. (5.09, 13.07) (4.32, 13.84) (2.83, 15.33) 

Boot-p C.I. (5.48, 13.46) ( 4.94, 14.37) ( 4.09, 16.51) 

BCa C.I. (6.08, 14.31) (5.47, 15.51) (4.66, 17.10) 

C.I. for ei 
Method 903 953 993 

Exact C.I. (10.60, 22.04) (9,96, 23.92) (8.83, 28.32) 

Approx C.I. (9.42, 19.98) (8.41, 20.99) (6.44, 22.96) 

Boot-p C.I. (9.61, 20.18) (8.95, 21.27) (7.89, 23.58) 

BCa C.I. (9,95, 20.84) (9.37, 21.63) (8.28, 23.91) 
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Table 2.6: Interval estimation for 01 , 02 , Oi and O~ in Example (n = 15) 

C.I. for fh 

Method 90% 95% 99% 

Exact C.I. (13.36, 44.05) (12.14, 50.98) (10.13, 69.68) 

Approx C.I. (9.46, 35. 76) (6.94, 38.28) (2.02, 43.21) 

Boot-p C.I. (12.53, 42.99) (11.16, 49.13) (9.42, 67.33) 

BCa C.I. (12.76, 43.51) (11.33, 50.32) (9.69, 71.17) 

C.I. for fh 

Method 90% 95% 99% 

Exact C.I. (14. 71, 52.83) (13.30, 62.00) (10.98, 87.71) 

Approx C.I. (9.78, 41.91) (6.70, 44.99) (0.68, 51.01) 

Boot-p C.I. (13.24, 51.22) (11.07, 61.89) (9.67, 107.24) 

BCa C.I. (14.24, 58.09) (12.90, 71.03) (10.17, 118.59) 

C.I. for Bi 

Method 90% 95% 99% 

Exact C.I. (4.54, 17.37) (4.07, 20.89) (3.29, 32.31) 

Approx C.I. (2.95, 12.63) (2.02, 13.56) (0.21, 15.37) 

Boot-p C.I. (3.43, 13.68) (2. 79, 14.91) (1.58, 18.25) 

BCa C.I. ( 4.25, 15.66) (3.71, 18.06) (2.84, 19. 78) 

C.I. for B~ 

Method 90% 95% 99% 

Exact C.I. (10.95, 37.70) (9.92, 44.29) (8.16, 63.78) 

Approx C.I. (7.61, 28. 78) (5.59, 30.80) (1.62, 34. 76) 

Boot-p C.I. (9.05, 29.97) (7.65, 33.87) (5.17, 40.02) 

BCa C.I. (9. 7 4, 32.08) (8.66, 35.48) (6.20, 42.10) 

36 




Table 2. 7: Estimated coverage probabilities based on 999 simulations with 81 = 20, 82 = 25, 8~ = 9, 8~ = 14 


w 
---J 

n=40 903 C.I. 953 C.I. 993 C.I. 

parameters Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. 

01 90.4 90.8 90.l 91.0 94.7 95.5 94.1 94.5 98.5 98.0 98.6 98.4 

02 89.6 89.9 88.7 90.7 95.5 94.2 94.0 95.4 98.9 97.2 98.6 98.8 

O'1 90.l 88.7 90.5 91.2 96.0 92.7 94.7 95.7 98.9 96.6 98.4 98.3 

O'2 89.3 88.1 88.8 89.0 94.5 92.4 93.0 93.5 99.l 96.9 98.2 98.6 

n = 20 903 C.I. 953 C.I. 993 C.I. 

parameter Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. 

01 90.2 90.6 88.8 90.3 94.3 94.6 93.4 94.7 99.2 97.3 98.5 99.1 

02 91.6 91.4 90.6 91.8 95.5 94.2 94.7 96.2 99.4 97.4 99.3 99.4 

O'1 90.8 84.8 86.4 89.9 96.1 90.6 93.5 94.9 99.3 93.6 97.3 98.4 

O'2 89.0 88.4 89.6 90.2 956 89.5 92.6 94.3 99.6 95.2 97.4 98.3 

n = 10 903 C.I. 953 C.I. 993 C.I. 

parameter Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. Exact Approx Boot-p BCOI. 

01 89.6 88.7 87.8 98.5 94.8 91.3 93.2 95.1 98.8 94.9 96.1 96.3 

02 91.5 88.7 90.1 90.9 94.1 91.1 92.5 93.9 99.0 92.9 96.2 96.8 

O'1 88.9 81.9 83.9 87.8 95.3 82.5 88.3 92.4 98.3 87.1 92.4 95.5 

O'2 89.0 87.8 84.1 86.9 94.5 85.l 88.9 92.4 98.1 89.7 94.1 94.9 



Chapter 3 

Exact Analysis under Type-II 

Censoring 

3.1 Introduction 

In this Chapter, we consider a two-component system failure model in the case of 

Type-II censored data. We then present an iterative maximum likelihood estimation 

procedure to determine the MLEs of the parameters assuming the lifetimes to be 

exponentially distributed. The asymptotic distributions of the MLEs are also obtained. 

Construction of confidence intervals for the model parameters are discussed by using 

the asymptotic distributions and two parametric bootstrap methods. The bias and 

variance of the estimates as well as the performance of the three confidence intervals 

in terms of coverage probabilities are assessed through Monte Carlo simulation studies. 

Finally, examples are presented to illustrate all the methods of inference discussed here. 
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3.2 Model Description and MLEs 

Consider the following simple system failure model: n identical systems are placed 

on a life-test and each system has two components. The experiment continues until a 

total of d (d ::S: n) systems fail. We assume that Xi and Yi (i = 1, ... , n) are random 

variables representing the lifetimes of Components 1 and 2, respectively, in the i­

th system. Among the d observations, suppose Component 1 fails first d1 times and 

Component 2 fails first d2 times, with d1 +d2 = d. Let Zi = max(Xi, li) (i = 1, ... ,n). 

Thus, the i-th system fails at time Zi, and Z 1,n < · · · < Zd:n are the corresponding 

ordered failure times obtained from a Type-II censored sample from the n systems 

under test. The data arising from such a two-component system is as follows: 

(3.1) 

where T1 , ... , Td denote the first observed failure times in the systems, Zi:n < · · · < Zd:n 

denote the final observed failure times of the systems, and J' denotes the component 

of the first observed failure within the system and J" denotes the component of the 

second observed failure within the system. We use "*" to denote the censored data. 

If we let 


11 = { i E (1, 2, ... , d) : Component 1 fails first}, 


12 = { i E (1, 2, ... , d) : Component 2 fails first}, 
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the likelihood function of the observed data in (3.1) is 

L(fJi, e2, e~, e~) 
I d n 

= (n :·d)! Df(xi, Yi) i!t Pr (max(Xi, Yi) ~ Zd:n) 

n! ( 1 ) di { ( 1 1 1 ) 1 }= (n - d) ! x e e' exp - (} + (} - 0' L Xi - (j L Zi 
1 2 1 2 2 iE/i 2 iE/i 

1 )d2 

{ ( 1 1 1) 1 } (3.2)x ( e e' exp - (} + (} - 0' L Yi - e' L Zi x p~~d' 
2 1 1 2 1 iEh 1 iEh 

where 0 <Xi < Zi:n for i E /i, 0 <Yi < Zi:n for i E I2, 0 < Z1:n < · · · < Zd:n < oo, and 

1 1 1 )-l (1 1 1 )-l ­
PZd:n =Pr (max(Xi, Yi) ~ Zd:n) = ( 01 + 02 - e; 01 + 02 - Bi x P, (3.3) 

where 

p = ; ( ; + e~ - ;i) exp ( - ;; Zd:n) + ; ( ; + ; - ;; ) exp ( - ;i Zd:n)
1 1 2 1 2 

1 1 
- ( 01 e; - ete; + 020i) exp {- ( ;1 + :2) zd:n} · (3·4) 

The exact derivation of Pzd,n is presented later in Lemma 3.2.2. 

The maximum likelihood estimate (01, 02, Bi, e~) of (81, 02, Oi, e~) is the value that 

globally maximizes the likelihood function in (3.2). Taking logarithm in Eq. (3.2), we 

obtain the log-likelihood function to be 
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Unfortunately, from (3.5), we observe that no closed-form expressions for the MLEs 

exist. We need to determine the MLEs by numerically maximizing the log-likelihood 

function in (3.5). In the next subsection, an iterative procedure for the computation 

of the MLEs is described. 

3.2.1 Computation of the MLEs 

Most iterative procedures proposed in literature strongly depend on the initial 

value. The well-known linear estimates from ordinary linear regression or the esti­

mation using the method of moments is quite difficult in this context. Fortunately, 

since ()i (i = 1, 2) are the mean times of the first failed Component i (i = 1, 2) and()~ 

(i = 1, 2) are the mean times of the surviving Component i (i = 1, 2) starting from 

the time of the first failure, the initial values for the iterative procedure can be given 

to be 

()(0) - EiEli Xi + EiEh Yi ()(0) - EiEI1 Xi + EiEh Yi 
i - di ' 2 - d2 ' 

()'(o) _ EiEh (zi - Yi) e;(o) = EiEli (zi - Xi). 
i - d2 ' di 

Note that these estimates do not use all the information available in the sample, but 

they do provide good starting values. 

With these initial estimates, we could begin an iterative procedure to obtain the 

A(O) A(O) Ai(O) Ai(O)
MLEs, by the Newton-Raphson method, for example. Let (()i , () 2 , ()1 , ()2 ) be an 

initial estimate; since ln L in Eq. (3.5) is a continuous twice differentiable function, 

A(l) A(l) Ai(l) '1(1)
the Newton-Raphson method updates this estimate to (()1 , ()2 , ()i , ()2 ), then this 

A(2) A(2) A/(2) A/(2)
second one is updated to (()i , ()2 , ()1 , ()2 ), and so on, through the iterative formula 

k = 0, 1, 2, ... ' 
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where 

e(j) = ( ei1) {J~j) {J'(j) {J'(j)) T.
1 2 ' 

U is the score vector and is given by 

8lnL OlnL 8lnL) TU = (8lnL 
801 802 80~ 80~ 

and J is the observed information matrix given by 

i,j = 1, 2, 

where 

This iterative algorithm can be terminated by examining the convergence for each 

parameter separately. The convergence criterion we applied is 

()A(k+l) - OA(k) I < i = 1, 2,max i i E,I 
with E chosen to be 10-6 . 

We know that a continuous twice differentiable function of one variable is convex 

(concave) on an interval if and only if its second derivative is non-negative (non­

positive) there. If its second derivative is positive (negative) then it is strictly convex 

(concave). A strictly convex (concave) function will have at most one global minimum 

(maximum). More generally, a continuous twice differentiable function of several vari­

ables is convex (concave) on a convex (concave) set if and only if its Hessian matrix 

(the square matrix of second-order partial derivatives of a function) is positive (neg­

ative) semidefinite on the interior of the convex (concave) set. If its Hessian matrix 

(H) is positive (negative) definite then the function is strictly convex (concave) and 

will have global minimums (maximums) for variables. 
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For this iterative method, since J = -H, the convergence of the iterative algorithm 

to the MLE is dependent on the positive definiteness of the observed information 

matrix. If the observed information matrix is positive definite, then it is invertible. 

The Newton iterative formula is valid and the iterative algorithm converges to the 

MLE. It is clear that in some of the situations considered here in this thesis, the 

Fisher information matrix turns out to be diagonal (such as on Page 26, 90 and 148) 

in which case positive definiteness is immediately evident. In other cases, there are 

several ways to ensure that the observed information matrix is positive definite; one, 

for example, is by checking that all its eigenvalues are positive. This can be done in 

our cases as we are only dealing with information matrices of dimension 4, and so given 

the observed data, the eigen values of the information matrix can be all computed and 

checked for positivity. 

3.2.2 Relative Risks 

Relative risk is of interest in survival analysis. In this subsection, the relative risk 

is obtained and is presented in Theorem 3.2.1. 

Lemma 3.2.1. We have 

(3.6) 

Proof: The proof is straightforward as the identity is easily checked. 
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Lemma 3.2.2. We have 

1 1 1 )-l (1 1 1 )-l ­Pr (max(X Y) > a) = - + - - - - + - - - x P (3.7)(' - Bl B2 B~ Bl B2 Bi a, 

where 

Proof: We can express 

Pr (max(X, Y) 2: a) 

= 1 - Pr (max(X, Y) ::; a) 

1 - 1 ) x y }= 1 - l a 1y-,exp { - ( 1 + -1 - - 1 dxdy/ 1 
0 0 Bl B2 Bl B2 B2 B2 

tr 1 { (1 1 1) 1 } (3.9)- lo lo B2Bi exp - Bl + B2 - Bi y - Bi x dydx. 

Then, the result follows by carrying out the required integration and then by using 

the identity in Lemma 3.2.1. 

Lemma 3.2.3. The PDF of Zd:n is 

d-1 

fzd,n(a) = L L Ci,j1,j2,)3 XE 
i=O (j1,j2,j3):j1+]2+]3=n-d+i 

x {Iiexp (-;~a) +hexp (-;ia)-hexp [-(; + ; ) a]}, (3.10)
1 2

where 

C. ... _ d(n) (d - 1) (n -d+ i)(-l)i+i3 
i,Ji,J2,J3 - d . . . . ' 

i J1,J2,J3 

Jl J2 . ( 1 1 ) ] }
E = exp { - [B~ + Bi + J3 Bl + B2 a ' 
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Proof: We can express [see Arnold, Balakrishnan and Nagaraja (1992)] 

fzd,Ja) = (d _ l)~~n _ d)! {Fz(a)}d-l {1- Fz(a)}n-d fz(a) 

n.I d-1 i ( d - 1) n-d+i 
= (d _ l)!(n _ d)! ~(-1) i {1 - Fz(a)} fz(a), (3.11) 

where 

and 

8(1-Fz(a)) 1 1 (1 1) (3.13)fz(a) = - oa = 8~ Ai+ 8~ A2 - 81 + 82 A3. 
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Then, we obtain 

' d-1 ( - ) ( - .)= n. ~(-l)i d 1 ~ n d + i 

d-l!n-d!L...,. i L...,. · · · 

( ) ( ) i=O (j1,h,)3):j1+h+ia=n-d+i Ji,J2 ,J3 

Ai1Ai2( )hAia{lA lA (1 l)A}x i 2 -1 3 8~ i + 8~ 2 - 81 + 82 3 . 


(3.14) 

from which the result follows by expanding Eq. (3.14). 

Lemma 3.2.4. We have 

P1 =Pr (X < Y < Zd:n) 

1 ( 1 1 1 ( 1 
1 )-l { [ 1 )-li1 
= 81 81 + 82 - 8~ - 8~ 81 + 82 


(3.15) 

where 

jl + 2 j2 . ( 1 1 ) ]-l 

Mi = Ii [---er- + 8~ + 13 81 + 82 ' 
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I [Jl }2 , ( 1 1 ) ]-l
M3 = ls O~ + O~ + (J3 + 2) 01 + 02 

Proof: We can express 

P1 =Pr (X < Y < Zd:n) = 1= Pr (X < Y <a) fzdJa)da 

r= ru r 1 { ( 1 1 1 ) 1 }=lo fzd,Ja) lo lo 010~ exp - 01 + 02 - O~ x - O~ y 

Then, the result follows by carrying out the required integration. 

dxdyda. (3.16) 

Lemma 3.2.5. We have 

P2 =Pr (max(X, Y) 2:: Zd:n) 

(3.17) 

( 
1 1 1 )-l (1 1 1 )-l ( 1 

K3= 01 + 02 - O~ 01 + 02 - 0~ 01 0~ 

II [Jl + 1 J2 + 1 . ( 1 1 ) ]-l
M1 = 11 -er- + er- + J3 01 + 02 ' 

1 1 ) 
- 0~ 0~ + 02 0~ ' 
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II [jl jz + 1 . ( 1 1 ) ]-l
M3 = I3 ()~ + ---er-+ J3 ()1 + {}z , 

and Mi, Mf, (i = 1, 2, 3) are defined in Lemma 3.2.4. 

Proof: The proof is similar to the one in Lemma 3.2.4. 

Theorem 3.2.1. The relative risk that Component 1 fails first within a two-component 

system on the condition that the system fails at the end of a Type-II censored experiment 

is 

P1 
7r2 = Pr(X < Ylmax(X, Y) :S Zd:n) = l _ Pz 

Proof: The result follows immediately from Lemmas 3.2.4 and 3.2.5. 

Lemma 3.2.6. In a Type-II censored experiment, among the d {d :Sn) systems with 

complete destruction, the number of failures due to Component 1 failing first, viz., di, 

is a non-negative random variable with binomial probability mass function 

(d) ( p ) j ( p ) d-j
Pr(d1=j)= j l-1P2 l-l-1P2 , j=O,l,. . .,d. 

Proof: The result follows immediately from Theorem 3.2.1. 
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3.3 Confidence Intervals 


In this section, we present two different methods of constructing confidence intervals 

(Cis) for the unknown parameters 81 , 82 , 8~ and ()~. First, we use the asymptotic 

distributions of the MLEs to obtain approximate Cis for the parameters in case of 

large sample sizes. Then, we use the parametric bootstrap method to construct Cis 

for the parameters. 

3.3.1 Approximate Confidence Intervals 

In the last section, we noted that closed-form expressions for the MLEs do not exist. 

However, we can use the asymptotic normality of the MLEs to construct approximate 

confidence intervals for the parameters. 

The computation of the approximate confidence intervals is based on the observed 

Fisher information matrix, which is obtained by taking negative of the second deriv­

atives of the log-likelihood function in (3.5) and then evaluating them at the MLEs. 

Specifically, we have 

8 2 lnL 82 1nL 82 lnL 821nL 

89i 8918('2 89189i 89180; 

82 1nL 8 2 lnL 82 lnL 82 1nL 

fobs= -
892891 

82 lnL 

aor 
82 lnL 

89289i 

82 1nL 

89280; 

82 1nL 
(3.18) 

89i 891 89i 892 aw­ 89i89; 

8 2 lnL 82 1nL 82 lnL 821nL 
80;891 89;892 8o;8oi 89;2 

91 =01,02=lh ,oi =Oi ,o;=o;, 

and the inverse of this observed Fisher information matrix in (3.18) gives an estimate 

of the variance-covariance matrix of the MLEs, which in turn can be used to con­

struct approximate confidence intervals for the parameters. We shall make use of the 

asymptotic normality of the MLEs to obtain these confidence intervals. 
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Thus, if 

is the variance-covariance matrix, the 100( 1 - a)3 confidence intervals for 01 , 02 , O~, 

O~ are given by 

(3.19) 

where Zq is the q-th upper percentile of the standard normal distribution. This method 

may work satisfactorily when n is large, but may not be satisfactory for small sample 

sizes. 

3.3.2 Bootstrap Confidence Intervals 

The bootstrap methods of percentile interval and the biased-corrected and acceler­

ated (BCa:) interval are similar to those described in Section 2.4.3, but with a Type-II 

censored two-component system failure sample generated instead. The acceleration 

&fl in the BC0 interval should be changed to 

d (A(') A(') ) 3 
L:j=l oi(·) - oi(j)

&(') = ---~------ i = 1, 2, 

' 6 [ L:~=l ( e;;\ - e;;~i) 2] ~ ' 

where ei~~) is the MLE of ofl based on the original sample with the j-th observation 
d '(') 


. - 1 2 d d o'(') - L:j=l oi(j)
de1eted , J - , , ... , , an i(·) - d 
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3.4 Simulation Study 

In this section, a Monte Carlo simulation study based on 999 replications was carried 

out to examine the bias, variance and relative risks (Section 3.4.1), to evaluate the 

performance of the three confidence intervals in terms of coverage probabilities for 

different sample sizes (Section 3.4.2), and to present numerical examples to illustrate 

all the inferential methods discussed here (Section 3.4.3). 

3.4.1 Bias, Variance and MSE of the MLEs 

It is desirable to examine the bias and variance of the MLEs as they are not explicit 

estimators. For this purpose, we carried out a simulation study to evaluate the bias, 

mean squared error (MSE), mean and variances of the MLEs, and also the average 

of the asymptotic variance of the estimators computed from the observed information 

matrix. These results for different n and dare presented in Tables 3.1 - 3.3. 

From the tables, we observe that, as n increases, the bias of MLEs decrease, as one 

would expect, with the bias tending to zero as n becomes large. Similarly, for the same 

sample size n, as d decreases, the bias increases. The change in d has more effect on 

the bias of the MLEs. The same behavior is also observed in MSE of the MLEs. This 

is so because when dis small, there will be fewer failures observed and so inference for 

81, 82, 8~ and 8~ is not quite precise. 

The means and variances of the estimates of the parameters over 999 were com­

puted as well. We observe that, for large sample sizes, the means of the MLEs of 

the parameters 81 , 82 , 8~ and 8~ are quite close to the true values, viz., 20, 25, 9, 14, 

51 




respectively. However, this is not true for smaller sample sizes. The variances of the 

MLEs can also be compared with the average approximate variance computed from the 

observed information. Once again, the variance and the average approximate variance 

are closer for large values of n and d, but not close for smaller sample sizes. 

The theoretical values of 7r1 and 7r2 , presented in Table 3.4, were computed from the 

formulas in Theorems 2.3.1and3.2.1, respectively. Both 7r1 and 7r2 are the probabilities 

that Component 1 fails first within a system. But, 7r2 is conditional on the complete 

destruction of the system. 7r1 = 0.5556 implies that the first failure of a system is 

more likely due to Component 1. However, 7r2 < 7r1 in all the cases. It reflects that the 

probability that Component 1 fails first within a system is weakened on the condition 

that the system has a complete destruction in a Type-II censoring test. 

From Table 3.4, we observe that 7r2 is more affected by the change of n and d. As n 

or d increases, the relative risk increases. This is because, when n or d is small, fewer 

failures occur during the experiment time. As nor d increases, the number of failures 

increases thus resulting in larger relative risks. 

In order to check whether 7r1 and 7r2 can be estimated by ~ and ~' respectively, 

the results of the average of 999 replications are presented in Table 3.4 as well. We 

observe that the table values get closer to the corresponding theoretical values when 

n or d take different values. This indicates that ~ and ~ are good estimators of 7r1 

and 7r2 , respectively. 
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3.4.2 	 Coverage Probabilities and the Performance of the Con­

fidence Intervals 

To compare the performance of different confidence intervals described in Section 

3.3, we conducted a Monte Carlo simulation study. We once again chose the values 

of the parameters to be 01 = 20, 02 = 25, O~ = 9 and O~ = 14. We then determined 

the true coverage probabilities of the 903, 953 and 993 confidence intervals for the 

parameters for different sample sizes by all three methods described earlier in Section 

3.3. The results for n = 40, 20 are presented in Tables 3.5 and 3.6, and they are based 

on an average over 999 bootstrap replications. 

From the tables, we observe that, among the three methods, the parametric BCa 

bootstrap method of constructing confidence intervals has its coverage probabilities to 

be closer to the nominal level and is therefore recommended for large sample sizes. 

As expected, the coverage probabilities of the approximate method based on as­

ymptotic normality of the MLEs is most often smaller than the nominal level. Even 

for n = 40 and d = 30, the approximate method does not provide close results. This 

indicates that the confidence intervals obtained by this method will often be unduly 

narrower. We do observe that, for all the nominal levels considered, the coverage prob­

abilities of the approximate method are lower for small sample size n or d in almost 

all cases. This is because, when n or d is small, there are fewer failures observed and 

so inference for the parameters is not precise. As n increases, the number of failures 

increases thus resulting in a better large-sample approximation for the distribution of 

MLEs. This means that we need a much larger sample size to use the asymptotic 

normality of the MLEs. We also observe that when n is small, even the parametric 
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BC0 bootstrap method does not have satisfactory coverage probabilities, but is seen 

to be better than the approximate method as well as percentile bootstrap method. 

3.4.3 Numerical Examples 

In this subsection, we consider two data sets with n = 35, d = 15, d = 25, and 

n = 15, d = 7, d = 10. The parameters were chosen to be (Ji = 20, ()2 = 25, ()~ = 9, 

e; = 14. The data are as follows: 

Data Set 1: n = 35 

d = 15 

(1.45,2; 4.73,1) (1.46,1; 6.55,2) (0.48,2; 7.87,1) (0.02,1; 8.31,2) (8.56,2; 9.18,1) 

(2.88,1; 12.21,2) (10.48,2; 12.58,1) (8.66,2; 12.78,1) (2.39,1; 12.99,2) (3.39,1; 13.24,2) 

(3.69,2; 14.06,l) (9.65,1; 14.48,2) (10.40,1; 14.85,2) (13.31,2; 15.68,1) (13.48,1; 16.14,2) 

(*,*) 

d= 25 

(1.45,2; 4.73,1) 

(2.88,1; 12.21,2) 

(3.69,2; 14.06,1) 

(3.59,1; 16.43,2) 

(ll.51,1; 23.02,2) 

(*,*) 

(1.46,1; 6.55,2) 

(10.48,2; 12.58,1) 

(9.65,1; 14.48,2) 

(5.59,2; 17.01,1) 

(21.45,2; 23.84,1) 

(0.48,2; 7.87,1) 

(8.66,2; 12.78,1) 

(10.40,1; 14.85,2) 

(3.44,1; 19.46,2) 

( 7.99,1; 24.83,2) 

(0.02,1; 8.31,2) 

(2.39,l; 12.99,2) 

(13.31,2; 15.68,1) 

(13.14,2; 20.61,1) 

(6.49,2; 27.92,1) 

(8.56,2; 9.18,1) 

(3.39,l; 13.24,2) 

(13.48,1; 16.14,2) 

(7.97,1; 20.83,2) 

(19.92,2; 28.20,1) 

Data Set 2: n = 15 
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d= 10 

(2.55,2; 3.87,1) (0.94,1; 10.06,2) (4.50,2; 11.13,1) (8.71,2; 13.16,1) (14.87,1; 17.89,2) 

(13.64,1; 20.56,2) (i9.41,2; 20.89,1) (7.42,i; 22.47,2) (6.25,2; 28.58,1) (17.18,1; 31.80,2) 

(*,*) 

d=7 

(2.55,2; 3.87,1) (0.94,1; 10.06,2) (4.50,2; 11.13,1) (8.71,2; 13.16,1) (14.87,1; 17.89,2) 

(13.64,1; 20.56,2) (19.41,2; 20.89,1) (*,*) 

In the example when n = 35, d = 15, we have di = 8 and d2 = 7. Using the 

formulas presented in Section 3.2, the MLEs of 8i, 82 , 8~ and 8~ are Oi = 19.9086, 

02 = 33.7003, O~ = 6.8415 and O~ = 15.6537. 

In the example when n = 35, d = 25, we have di= 13 and d2 = 12. The MLEs are 

01 = 19.2071, 02 = 25.5931, O~ = 8.8554 and O~ = 16.6016. 

In the example when n = 15, d = 7, we have di = 3 and d2 = 4. The MLEs are 

01 = 45.4329, {h = 46.2074, O~ = 4.2178 and O~ = 11.3774. 

In the example when n = 15, d = 10, we have di= 5 and d2 = 5. The MLEs are 

Oi = 28.7220, 02 = 34.6628, O~ = 9.6713 and O~ = 16.8839. 

To assess the performance of these estimates, we constructed 903, 953 and 993 

confidence intervals using the methods outlined in Section 3.3. These results are pre­

sented in Tables 3.7-3.10. 

From the results corresponding to the two examples, it is seen that, for the same 

sample size, as d increases, we have more accurate estimates for the parameters. We 

also note that the approximate method always provide narrower confidence intervals 

in most cases. This is because the coverage probability for the approximate method is 

significantly lower than the nominal level. 
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Table 3.1: Bias, MSE, Mean and Variance based on 999 simulations when 01 = 20, 

02 = 25, e~ = 9, e~ = 14 and n = 40 

d Parameters Bias MSE Mean Variance Approximate Variance 

15 B1 9.26 537.41 29.26 452.09 463.99 

B2 5.14 341.30 30.14 315.23 323.73 

e'1 0.57 30.53 9.57 30.42 35.28 

e'2 -3.31 49.58 10.69 38.62 44.95 

20 B1 4.28 137.64 24.28 119.42 129.40 

B2 3.21 175.00 28.21 164.84 171.14 

e'1 0.44 21.14 9.44 21.01 27.38 

e'2 -1.58 31.88 12.42 34.08 40.40 

25 B1 1.94 80.26 21.94 76.58 81.13 

B2 1.14 101.80 26.14 100.59 106.82 

e'1 0.38 20.02 9.38 19.84 24.33 

e'2 -0.14 34.07 13.86 29.42 38.31 

30 B1 1.13 49.73 21.13 48.50 50.60 

B2 0.49 72.24 25.49 72.07 75.13 

e'1 0.38 14.77 9.38 14.45 17.18 

e'2 -0.15 24.29 13.85 24.30 28.59 
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Table 3.2: Bias, MSE, Mean and Variance based on 999 simulations when 01 = 20, 

02 = 25, o~ = 9, o~ = 14 and n = 20 

d Parameters Bias MSE Mean Variance Approximate Variance 

10 01 8.45 465.59 28.45 394.62 552.64 

02 

O'1 

o'2 

6.55 

0.84 

-2.42 

498.91 

39.20 

57.08 

31.55 

9.84 

11.58 

456.43 

38.94 

52.86 

473.19 

51.76 

92.04 

12 01 4.72 297.06 24.72 275.05 360.78 

02 

O'1 

O'2 

3.01 

0.72 

-0.62 

373.38 

35.82 

46.20 

28.01 

9.72 

13.38 

364.69 

35.33 

46.25 

391.43 

46.52 

81.14 

14 01 2.56 137.97 22.56 131.55 186.34 

02 

o'1 

o'2 

2.53 

0.71 

-0.69 

206.46 

28.81 

45.37 

27.53 

9.71 

13.31 

200.24 

28.33 

44.93 

249.19 

42.94 

67.16 

16 01 1.67 87.69 21.67 85.00 103.93 

02 

O'1 

O'2 

1.62 

0.49 

0.19 

144.32 

22.49 

40.35 

26.62 

9.49 

14.19 

141.83 

22.27 

40.36 

188.25 

34.20 

49.77 
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Table 3.3: Bias, MSE, Mean and Variance based on 999 simulations when 81 = 20, 

82 = 25, 8~ = 9, 8~ = 14 and n = 10 

d Parameters Bias MSE Mean Variance Approximate Variance 

5 01 10.11 744.13 30.11 642.53 1151.42 

82 7.86 794.78 32.86 733.76 1435.75 

O'1 1.07 59.28 10.07 57.97 295.65 

O'2 -2.47 97.23 11.53 91.10 173.61 

6 01 7.28 536.14 27.28 483.67 874.53 

02 6.70 705.97 31.70 661.77 1207.96 

O'1 0.79 57.82 9.79 57.30 105.49 

O'2 -0.82 76.68 13.18 76.21 147.62 

7 01 6.09 436.33 26.09 399.67 764.16 

02 6.01 663.56 31.01 628.13 1097.30 

8'1 0.76 51.14 9.76 50.05 103.59 

O'2 -0.72 75.42 13.28 74.98 144.94 

8 01 4.09 347.10 24.09 330.65 535.12 

02 4.70 508.29 29.70 486.67 887.69 

0'1 0.61 44.11 9.61 43.54 73.51 

0'2 -0.37 67.67 13.63 67.60 107.01 
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Table 3.4: Relative risks based on 999 simulations when ()1 = 20, ()2 = 25, ()~ = 9, 

()~ = 14 

n d ni n2 '.!:".1­
n 7r1 di d2 ~ 

d 7r2 

40 30 

25 

20 

15 

22.18 

22.41 

22.19 

21.98 

17.82 

17.59 

17.81 

18.02 

0.55 

0.56 

0.55 

0.55 

0.56 

0.56 

0.56 

0.56 

15.57 

12.93 

9.97 

7.24 

14.43 

12.07 

10.03 

7.76 

0.52 

0.52 

0.50 

0.48 

0.52 

0.51 

0.50 

0.49 

20 16 

14 

12 

10 

11.09 

11.20 

11.10 

11.01 

8.91 

8.80 

8.90 

8.99 

0.55 

0.56 

0.56 

0.55 

0.56 

0.56 

0.56 

0.56 

8.45 

7.32 

6.09 

4.98 

7.55 

6.68 

5.91 

5.02 

0.53 

0.52 

0.51 

0.50 

0.53 

0.52 

0.51 

0.50 

10 8 

7 

6 

5 

5.59 

5.58 

5.53 

5.60 

4.41 

4.42 

4.47 

4.40 

0.56 

0.56 

0.55 

0.56 

0.56 

0.56 

0.56 

0.56 

4.28 

3.69 

3.03 

2.54 

3.72 

3.31 

2.97 

2.46 

0.54 

0.53 

0.51 

0.51 

0.52 

0.51 

0.51 

0.50 
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Table 3.5: Estimated coverage probabilities based on 999 simulations when ()1 = 20, 


()2 = 25, (}~ = 9, (}~ = 14 and n = 40 


C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCo: Approx. Boot-p BCo: Approx. Boot-p BCo: 

15 83.78 89.69 91.89 89.38 92.59 94.29 92.49 98.40 98.90 

20 85.79 88.99 90.59 90.49 93.99 94.89 94.69 99.20 99.30 

25 86.59 88.19 89.59 91.29 93.99 94.69 95.40 98.60 98.80 

30 87.89 90.29 90.99 92.70 93.89 95.00 96.10 99.00 99.40 

C.I. of (h 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCo: Approx. Boot-p BCo: Approx. Boot-p BCo: 

15 83.88 90.09 91.59 90.10 94.49 95.40 92.70 98.50 98.50 

20 86.20 89.59 91.29 90.69 94.39 95.40 94.88 99.30 99.50 

25 86.10 88.29 89.59 91.00 93.79 95.10 95.10 98.20 98.70 

30 87.20 88.59 88.69 92.10 94.29 94.69 96.20 98.20 98.50 

C.I. of (}~ 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCo: Approx. Boot-p BCo: Approx. Boot-p BCo: 

15 82.10 86.89 88.29 87.80 91.79 92.89 89.80 95.10 95.60 

20 84.80 87.59 89.09 88.20 92.19 93.69 90.59 95.50 96.30 

25 85.90 88.99 90.79 90.80 92.79 94.09 93.10 96.50 97.40 

30 86.80 89.89 91.69 91.79 93.99 96.20 94.20 98.90 99.30 

C.I. of e~ 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCo: Approx. Boot-p BCo: Approx. Boot-p BCo: 

15 83.10 89.09 90.49 87.10 91.19 92.30 90.20 96.60 97.30 

20 84.30 88.29 90.09 87.70 90.99 92.89 90.70 95.50 96.20 

25 85.10 88.29 89.89 90.20 92.59 94.29 92.89 96.60 97.50 

30 87.70 88.39 89.89 91.10 92.89 94.19 93.20 97.70 98.20 
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Table 3.6: Estimated coverage probabilities based on 999 simulations when 81 = 20, 


82 = 25, 8~ = 9, 8~ = 14 and n = 20 


C.I. of 01 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 84.89 90.29 90.99 87.19 91.59 91.79 91.89 96.60 96.70 

12 85.10 89.49 90.39 88.69 94.29 95.10 93.30 98.50 98.80 

14 85.90 88.59 90.49 90.29 95.10 96.70 93.70 98.30 98.80 

16 88.10 89.29 90.49 91.10 95.00 96.10 95.10 97.90 98.90 

C.I. of 02 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 84.99 88.99 90.19 88.29 93.89 91.79 90.39 96.50 96.80 

12 85.20 89.19 90.39 88.10 94.89 96.10 92.59 98.40 98.60 

14 85.80 90.49 92.09 89.90 95.10 96.30 92.70 98.00 98.20 

16 86.20 88.59 89.79 90.89 94.69 95.80 94.10 98.50 98.70 

C.I. of Oi 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 76.18 84.28 85.89 80.08 86.19 88.09 85.89 91.49 91.79 

12 78.78 87.59 90.59 83.68 88.49 90.99 87.79 93.19 93.99 

14 77.40 87.29 89.99 82.79 90.49 93.29 88.30 95.80 96.50 

16 80.20 86.89 90.59 86.09 92.89 95.30 90.60 95.90 97.00 

C.I. of O~ 903 C.I. 953 C.I. 993 C.I. 

d Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa. 

10 73.29 84.38 85.69 79.38 89.29 90.39 85.10 91.99 92.69 

12 76.87 86.09 87.59 82.99 89.09 91.09 86.20 93.39 94.09 

14 77.78 85.79 85.99 81.79 90.49 92.99 89.00 94.79 95.20 

16 81.70 86.89 88.89 85.20 91.39 92.89 90.89 95.70 96.80 
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Table 3.7: Confidence intervals for 01 , 02 , O~ and o; in Example when n = 35, d = 15 

C.I. for 01 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa. C.I. 

(2.57, 37.24) 

(6.44, 52.84) 

(7.18, 57.76) 

(O*, 40.56) 

(5.77, 62.17) 

(6.28, 69.25) 

(O*, 47.05) 

(4.75, 85.99) 

( 4.90, 85.99) 

C.I. for 02 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa. C.I. 

(7.49, 59.91) 

(7.73, 66.08) 

(12.73, 86.33) 

(2.47, 64.93) 

(6.63, 78.14) 

(9.61, 92.23) 

(O*, 74.74) 

(5.35, 95.93) 

(6.46, 103.13) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa. C.I. 

(O*, 13.92) 

(2.25, 20.63) 

(2.79, 27.02) 

(O*, 15.28) 

(1.88, 26.06) 

(2.35, 33.64) 

(O*, 17.93) 

(1.27, 39.91) 

(1.71, 45.76) 

C.I. for o; 
Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa. C.I. 

(1.14, 30.17) 

(3.55, 30.72) 

(6. 72, 42.66) 

(O*, 32.95) 

(3.05, 36.61) 

(5.46, 48.66) 

(O*, 38.38) 

(2.11, 45.66) 

(3.63, 55.62) 

O* stands for a non-positive number 
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Table 3.8: Confidence intervals for (Ji, (}2 , (}~ and (}~ in Example when n = 35, d = 25 

C.I. for e1 

Method 903 953 993 

Approx C.I. (7.98, 30.44) (5.82, 32.59) (1.62, 36.79) 

Boot-p C.I. (11.09, 35.59) (9.76, 42.08) (8.29, 49.88) 

BC°' C.I. (11.19, 35.85) (9.84, 42.56) (8.30, 49.56) 

C.I. for (}2 

Method 903 953 993 

Approx C.I. (11.74, 39.44) (9.09, 42.10) (3.91, 47.28) 

Boot-p C.I. (13.88, 43.37) (12.12, 48.63) (10.84, 63.33) 

BC°' C.I. (14.70, 44.86) (12.60, 49.20) (10.84, 61.34) 

C.I. for (}~ 

Method 903 953 993 

Approx C.I. (2.92, 14.79) (1.78, 15.93) (O*, 18.15) 

Boot-p C.I. (4.70, 18.61) ( 4.05, 21.40) (3.12, 29.32) 

BC0 C.I. (4.93, 20.46) (4.51, 23.37) (3.66, 31.71) 

C.I. for (}~ 

Method 903 953 993 

Approx C.I. (6.07, 27.14) ( 4.05, 29.15) (0.10, 33.10) 

Boot-p C.I. (7.26, 27.47) (6.18, 29.84) ( 4.09, 35.24) 

BC°' C.I. (8.32, 29.26) ( 6.84, 31. 76) ( 4.48, 35.24) 

O* stands for a non-positive number 
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Table 3.9: Confidence intervals for 81 , 82 , 8~ and 8~ in Example when n = 15, d = 7 

C.I. for 81 

Method 90% 95% 99% 

Approx C.I. 

Boot-pC.I. 

BC0 C.I. 

(O*, 102.98) 

(9.64, 111.85) 

(9.86, 113.21) 

(O*, 114.00) 

(7.72, 127.39) 

(7.42, 124.69) 

(O*, 135.55) 

(6.08, 145.72) 

(3.71, 138.97) 

C.I. for 82 

Method 90% 95% 99% 

Approx C.I. 

Boot-p C.I. 

BC0 C.I. 

(O*, 86.30) 

(8.78, 104.94) 

(14.91, 134.67) 

(O*, 93.98) 

(6.87, 120.10) 

(11.16, 142.88) 

(O*, 108.99) 

(4.10, 144.94) 

(6.87, 148.41) 

C.I. for 8~ 

Method 90% 95% 99% 

Approx C.I. 

Boot-p C.I. 

BC0 C.I. 

(O*, 8.65) 

(1.09, 13.68) 

(1.55, 18.44) 

(O*, 9.50) 

(0.84, 18.44) 

(1.10, 22.33) 

(O*, 11.16) 

(0.31, 31.14) 

(0.63, 38.85) 

C.I. for 8~ 

Method 90% 95% 99% 

Approx C.I. 

Boot-p C.I. 

BC0 C.I. 

(O*, 29.68) 

(1.45, 34.74) 

(2.71, 47.59) 

(O*, 33.18) 

(0.86, 43.14) 

(1.74, 52.71) 

(O*, 40.03) 

(0.06, 60.83) 

(0.30, 61.81) 

O* stands for a non-positive number 
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Table 3.10: Confidence intervals for (Ji, 02 , O~ and O~ in Example when n = 15, d = 10 

C.I. for 01 

Method 903 953 993 

Approx C.I. (0.39, 57.05) (O*, 62.48) (O*, 73.09) 

Boot-p C.I. (11.16, 72.21) (9.60, 89.40) (7.33, 136.25) 

ECa. C.I. (11.28, 73.02) (9.60, 89.37) (7.02, 126.89) 

C.I. for 02 

Method 903 953 993 

Approx C.I. (5.41, 63.91) (O*, 69.52) (O*, 80.47) 

Boot-p C.I. (12.39, 86.46) (10.80, 108.50) (8.17, 134.05) 

ECa. C.I. (13.94, 95.28) (11.19, 114.15) (8.17, 134.00) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. (O*, 19.95) (O*, 21.92) (O*, 25.77) 

Boot-p C.I. (2.96, 25.79) (2.17, 31.87) (1.14, 44.84) 

ECa. C.I. (3.62, 31.87) (2.97, 39.53) (1.97, 50.52) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. (O*, 36.24) (O*, 39.94) (O*, 47.19) 

Boot-p C.I. (4.41, 36.68) (3.37, 40.92) (1.72, 56.21) 

ECa. C.I. (5.94, 41.03) (4.51, 47.31) (2.29, 57.69) 

O* stands for a non-positive number 
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Chapter 4 

Exact Analysis under Type-II 

Censoring with Partial Information 

on Component Failures 

4.1 Introduction 

In this Chapter, we consider such a two-component system failure model in the 

case of Type-II censored data. The information of the censored systems which have 

only one component failed at the end of the experiment is incorporated as well. We 

then obtain the MLEs of the parameters assuming the lifetimes to be exponentially 

distributed. The exact distributions of the MLEs of the parameters, conditioned on 

the data, are then derived by using the conditional moment generating function ap­

proach. Construction of confidence intervals for the model parameters are discussed by 

using the exact conditional distributions, asymptotic distributions, and two paramet­
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ric bootstrap methods. The performance of the two parametric bootstrap confidence 

intervals in terms of coverage probabilities are assessed through a Monte Carlo simu­

lation study. Finally, examples are presented to illustrate all the methods of inference 

discussed here. 

4.2 Model Description and MLEs 

Consider the following simple system failure model: n identical systems are placed 

on a life-test and each system has two components. The experiment continues until a 

total of d (d :S n) systems fail. We assume that Xi and Yi; (i = 1, ... , n) are random 

variables representing the lifetimes of Components 1 and 2, respectively, in the i-th 

system. Let Zi = max(Xi, Yi;) (i = 1, ... , n). Thus, the i-th system fails at time Zi, 

and Zi:n < · · · < Zd:n are the corresponding ordered failure times. At the end of the 

experiment, we observed systems with complete destruction, d' systems with only one 

failed component and n - d - d' systems with no failed components. Among the d 

systems, there are di systems in which Component 1 failed first and d2 systems in 

which Component 2 failed first, with di + d2 = d. Among the d' systems, there are d~ 

systems of which only Component 1 failed and d; systems in which only Component 

2 failed, with d~ + d; = d'. The data from the two-component system sample under 

Type-II censoring with partial information is then as follows: 

(4.1) 
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where T1, ... , Ta denote the first observed failure times in the systems, Z1:n < · · · < Za:n 

denote the final observed failure times of the systems, and 01 denotes the component 

of the first observed failure within the system and o" denotes the component of the 

second observed failure within the system. We use " * " to denote the censored data. 

If we let 

Ii= {i E (1, 2, ... , d): Component 1 failed first within a failed system}, 

h = {i E (1, 2, ... , d) : Component 2 failed first within a failed system}, 

I~= {i E (1, 2, ... , d'): only Component 1 failed within a system}, 

I~= {i E (1, 2, ... , d') : only Component 2 failed within a system}, 

the likelihood function of the observed data in (4.1) is given by 

I I) (2n) !(L 01, 02, 01JJ2 = (2n - 2d - d')! 

1 ) di { ( 1 1 1 ) 1 }x ( --, exp - - + - - / L xi - / L zi 

0102 01 02 02 iEii 02 iEii 


1 ) d { ( 1 1 1 ) 1 }x ( 0 0' 
2 

exp - e + e - O' L Yi - 0' L Zi 
22 1 l l iEh l iEh 

1 )d~ { ( 1 1 1) 1 }x ( e exp - e + e - (j L Xi - (jd~ Zd:n 
1 1 2 2 iEJ~ 2 

1 )d~ { ( 1 1 1) 1 }x ( e exp - e + e - (j L Yi - O' d;zd:n 
2 1 2 1 iEJ~ 1 

xexp {-(n -d- d') (: + ; ) Za:n}, ( 4.2) 
1 2

where, 
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0 <Xi < Zd:n, for i EI~; 0 <Yi< Zd:n, for i EI~; 0 < Z1:d < · · · < Zd:n < 00. 

Since we need to integrate Eq. (4.2) term by term to obtain the exact conditional 

distribution of the MLEs in Section 4.3, details of the support have to be given. The 

support can be expressed as follows: 

. I' { ·/ ·I }·I(3) for iE 1 = i 11 ,i12 , ... ,i1d',
1 

. I' { •/ ·I }·I(4) for i E B = i211 i22, · · · , i2d' ,
2 

0 < Yi' < Zd·n < Xi' , 0 < Yi' < Zd·n < Xi 1 • • , 0 < Yi' < Zd·n < Xi 1 , • ;
21 . 21 22 . 22 2d2 . 2d2 

(5) 0 < Zl:n < Z2:n < ... < Zd:n < 00. 

The maximum likelihood estimate (B1' B2, g~ l g~) of ( 81 l 82' 8~ 8~) is the valuel 

that globally maximizes the likelihood function in (4.2). After some calculation, the 

corresponding conditional maximum likelihood estimates of the mean life times 81 , 82 , 

8~ 8~ are obtained to bel 
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conditional on 1 S d1 S d - 1, 0 S d~ S d' and 0 S d' Sn - d. 

4.2.1 Relative Risks 

Based on the results of Section 3.2.2, in this subsection, two additional relative 

risks are derived and are presented in Theorems 4.2.1 and 4.2.2. 

Lemma 4.2.1. We have 

P3 = Pr (X < Zd:n < Y) = 

(4.3) 

where Mi and Mf, i = 1, 2, 3, are as defined in Lemma 3.2..4. 

Proof: The proof is similar to that of Lemma 3.2.4. 

Lemma 4.2.2. We have 

d-1 

P4 = Pr(min(X, Y) 2:: Zd:n) = L 
(4.4) 

70 




where Mf, i = 1, 2, 3, are as defined in Lemma 3.2.4. 

Proof: We have 

100 

P4 = Pr(min(X, Y) :2: Zd:n) = Pr(min(X, Y) :2: a)fzd,Ja)da 

00 

= 1 exp {- (; + ; ) a} fzd,Ja)da. (4.5) 
1 2 

Then, the result follows by carrying out the required integration. 

Theorem 4.2.1. The relative risk that Component 1 fails first within a two-component 

system, under the condition that the system has only one failed component at the end 

of a Type-II censored experiment, is 

7r3 = Pr(X < Ylmin(X, Y) ~ Zd:n, max(X, Y) :2: Zd:n) = P. P
3 

P , 
2 - 4 

where P2 is defined in Lemma 3.2.5. 

Proof: The result follows immediately from Lemmas 3.2.5, 4.2.1 and 4.2.2. 

Theorem 4.2.2. The relative risk that only one component fails within a two-component 

system, under the condition that the system does not fail at the end of a Type-II cen­

sored experiment, is 

. ~-~ 
7r4 = Pr(mm(X, Y) ~ Zd:nlmax(X, Y) :2: Zd:n) = p , 

2 

where P2 is defined in Lemma 3. 2. 5. 


Proof: The result follows immediately from Lemmas 3.2.5 and 4.2.2. 
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Lemma 4.2.3. In a Type-II censored experiment with partial information on compo­

nent failures, among the d' (0 :S d' :S n - d) systems with only one failed component 

at the end of experiment, the number of systems due to Component 1 failing first, viz., 

d~, is a non-negative random variable with binomial probability mass function given by 

where P2 is defined in Lemma 3. 2. 5. 

Proof: The result follows immediately from Theorem 4.2.1. 

Lemma 4.2.4. In a Type-II censored experiment with partial information on compo­

nent failures, among the n - d systems which do not fail at the end of experiment, 

the number of systems of which only one component fails, viz., d', is a non-negative 

random variable with binomial probability mass function given by 

d) ( p)j (p )n-d-j
Pr(d' = j) = (n 7 1 - p: p: = 0, 1, ... , n - d., j 

Proof: The result follows immediately from Theorem 4.2.2. 

4.3 Exact Conditional Distributions of the MLEs 

We will now derive the exact marginal (conditional) distribution of the MLEs. The 

derivation will require the inversion of the conditional moment generating function 

(CMGF). To obtain the CMGF, we need to find the joint PDF of Xi's, Y;'s and Z/s 

first. 
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4.3.1 The Joint PDF of Xi's, }i's and Zi's 

The joint PDF of Xi's, }i's and Z/s is proportional to the likelihood function 

L(B1, 02 , B~, B~) and can be obtained by integrating Eq. (4.2). However, the integration 

can not be performed unless we know the exact order of the observed failure times. 

Different order of the observations results in different forms of integration. Therefore, 

in this subsection, we only discuss the joint PDF of X/s, }i's and Zi's in the general 

case. In Section 4.3.4., a Type-II censored sample will be generated to illustrate the 

method discussed here. 

The general process of finding the joint PDF can be done by using the following 

steps: 

(1) Generate a Type-II censored two-component system failure data with partial 

information on component failures. We observe 2d +d' (:S n) component failure times 

at the end of the experiment. 

(2) Rank the 2d + d' observed failure times in descending order: from the largest 

observation (Zd:n) to the smallest one. 

(3) Rewrite the likelihood function ( 4.2) as 



here, C is some constant given in Eq. (4.2). 

(4) Take the integration of Eq. ( 4.6) in the corresponding order as described in 

Step 	(2). This integration results in a product consisting of 2d + d' multipliers, viz., 

IT2d+d'
C x M = C x i=l Mi. 

(5) Step (4) implies that the general form of the joint PDF of X/s, }i's and Z/s 

We find that 	the critical part of this process is to find the general form of Mi 

(j = 1, ... , 2d + d'). Let A= (n - d - d')( 11\ + j ) + 11~ d~ + 11\ d~; then, the form of Mi 
2 

can be expressed as follows: 

(i) When j = 1, M 1 = [A+ 11 , if the largest observation (Zd:n) is the failure\r1 

time of Component 1 within a system; otherwise, M 1 = [A + j~ J-1 
. 

(ii) When j = 2, ... ,2d + d', Mi= [M:_ + (t + 0~ - tJr1

, if Xi (i E Ji or
1 1 

i E ID is the j-th largest observation; Mj = [M:-1 + ( o\ + i2 - o\)r1

' if Yi (i E 12 

or i E !~)is the j-th largest observation; Mj = [M:_ + 11~r
1 

, if Zi (i E Ji) is the j-th
1 

largest observation; Mi= [M:_ + *r1
,if Zi (i Eh) is the j-th largest observation. 

1 

4.3.2 Exact Conditional Distributions of the MLEs 

Based on the joint PDF of X/s, }i's and Z/s, the CMGF of the MLEs are obtained 

in this subsection and are presented in Theorem 4.3.1. Using the inversion theorem 

of the CMGF, the conditional PDFs of the MLEs are computed and are presented in 

Theorem 4.3.2. 
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Lemma 4.3.1. We have 

Pr(D1 = k, D' = m, D~ = qJl:::; D1 :::; d-1, 0:::; D':::; n - d, 0:::; D~:::; d') 

"d-l"n-d"g p ' 
L..... f=l L.....g=O L.....s=O f,g,s 

where 

and P1, P2 , P3 and P4 are as given in Lemmas 3.2.4, 3.2.5, 4.2.1 and 4.2.2, respec­

tively. 

Proof: We can express 

Lemma 4.3.2. The PDF and GDF of the sum of n independent but non-identical 

exponential random variables with failure rates Ai (i= 1, 2, . .. ,n) are 

( ) - ~ IIn Aj ' · ->.;y 0 ' · 0 · - 1 2 f y y - {;:t_ j=l,jf'i (Aj _Ai) "•e , < y < oo, "• > , i - , , ... , n, 

F ( ) - ~ IIn Aj (1 -A;y) Q \ 0 . 1 2 
y y - {;;:_ j=l,Ji'i (>.j _Ai) - e , < y < oo, "i > , i = , , ... , n, 
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respectively, with 

Proof: Suppose that the random variables X 1 , ... , Xn are independent and are expo­

nentially distributed with failure rates Ai (> 0), i = 1, 2, ... , n. Then, the joint density 

function of X1, ... , Xn is 

\ \ - r;n .A·xf X1,. .. ,Xn (X1, ... ,Xn) =Al"''l\ne ,=1 '', 

Let 

Y1 = L
n 

xi, 12 = X2, ... ' Yn = Xn· 
i=l 

The Jacobian of this transformation is 1. So, the joint PDF of Yi, ... , Yn is 

0 < Y2, · · ·, Yn < oo, 0 < Y1 - Y2 - · · · - Yn < oo. 

Integrating the joint PDF of Y1, ... , Yn, we get the marginal density of Yi as 

jy1 (y1) = J···JJ(y1, · · ·, Yn)dyndYn-1 · · · dy2 

{Yl {Yl -y2 {Yl -y2-···-Yn-1=lo lo ... lo Ai ... Ane-[.A1y1+(.Ar.Ai)y2+·+(.An-.A1)Yn] 

dyndYn-1 · · · dy2 

n n 

= ~ IT Aj A·e-.A;y1 (4.8)
L.J (A·-A·) i ' 
i=l j=l,#i J i 

which is the required result. 
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Lemma 4.3.3. The moment generating functions of the random variables 

can be expressed as 

2d+d' 2d+d' 

Ms1 (t) = IT (1 - aitMi)-1
, Ms2 (t) = IT (1 - a~tMi)-1 , 

i=l i=l 

2d+d' 

Ms3 (t) = IT (1 - a~'tMi)- 1 , 
i=l 

respectively. Here, Mi (i = 1, ... , 2d + d') are as defined in Section 4.3.1, and ai, a~ 

and a~' are some coefficients. 

Proof: Let us take S1 as an example. The derivation of the moment-generating 

functions for the other two random variables is quite similar. 

Z/s. Then, we have, 

= J·JetSi f(x1, ... ,xdi+d~,Y1, .. · ,Yd2+d;, z1, · · · ,zd)·· 
dx1 · · · dxd1 +d~ dy1 · · · dyd2+d; dz1 · · · dzd 

2d+d' 2d+d' ( -1 -1 2d+d' 
~ IT (:)i = IT Mi ~-ait) = IT (1- aitMi)-l; (4.9) 

i=l i i=l i i=l 

here, Mt is a product consisting of 2d + d' multipliers and 1s defined as (Mt)i 

Mi-I - ait, i = 1, 2, ... , 2d + d'. 
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Theorem 4.3.1. The conditional moment generating functions of Oi, 02 , O~ and O~, 

conditional on 1 S D1 S d - 1, 0 S D' S n - d and 0 S D~ S D' are given by 

d-i n-d m 

d-i n-d m 
2d+m ( l ) 

M92 (t) =LL L Ck,m,q II 1 - a;(k+q) M·t ' 
k=i m=O q=O i=i (d-k)+(m-q) i 

d-1 n-d m 
2d+m ( l ) 

M9i (t) = LL L Ck,m,q II a; ' 
k=l m=O q=O i=i 1 - d-kMit 
d-i n-d m 

k=i m=O q=O 

where 

C _ Pk,m,q 
k,m,q - ""d-i ""n-d ""g p ' 

wf=i wg=O ws=O f,g,s 

o:i, o:~ and o:~' are some coefficients, and A = (n - d - m) ( 0i + i ) + 0~ + ";,~q.
1 2 

Proof: We can express 

M91 (t) 


= E(etoi ll S D1 S d - 1, 0 SD' Sn - d, 0 SD~ SD') 

d-i n-d m 

= LLLE(et01 ID1 = k,D' = m,D~ = q) 
k=i m=O q=O 

xPr(D1 = k, D' = m, D~ = qll S Dis d- 1, 0 SD' s n - d, 0 s D~ SD') 
d-i n-d m s 

~=LL LE(eDi+D1 IDi = k, D' = m,D~ = q) 
k=i m=O q=O 

xPr(Di = k, D' = m, D~ = qll S Di S d-1, 0 SD' Sn - d, 0 SD~ SD') 

(4.10) 

Then, the result follows immediately by using Lemma 4.3.3, and the derivations of the 

CMGFs for the other three MLEs are quite similar. 
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Theorem 4.3.2. The PDFs of 01, 02 , O~ and O~, conditional on 1 ::; D 1 < d - 1, 

0 ::; D' ::; n - d and 0 ::; D~ ::; D', are given by 

fo;(x) ~ ~};~ck,m,q x +· [1Mf ,2d+m), 

here, g(x, Ai, n) is the PDF of the sum of n independent but non-identical exponential 

random variables with failure rates Ai, and 

\ ) - ~ IIn Aj \ -AiY 0 \ 0 . 1 2 (g x, Ai, n - ~ j=l,#i (Aj _Ai) Aie , < x < oo, /\i > , i = , , ... ,n. 

Proof: The conditional PDFs of the MLEs are computed from the inversion theorem 

of the moment generating functions. The results follow immediately from Theorem 

4.3.1. 

4.3.3 Properties of the MLEs 

From the two theorems in the previous subsection, we can derive some simple 

distributional properties of the MLEs. 

Theorem 4.3.3. The first two moments of the MLEs are 

d-1 n-d m 2d+m 

E(01) = LLL L Ck,m,q X k: Mi, 
k=l m=O q=O i=l q 
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d-1 n-d m 2d+m /1 

E(O~) =LL L L Ck,m,q X i Mi, 
k=l m=O q=O i=l 

The expressions for the expected values reveal that 01 , 02 , O~ and O~ are biased 

estimators of 01 , 02 , O~ and O~, respectively. The expressions for the second moments 

can be used for finding standard errors of the estimates. 

We can also obtain expressions for the tail probabilities by integrating the PDFs in 

Theorem 4.3.2. These expressions will be used to construct exact confidence intervals 

later in Section 4.4.1. 
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Theorem 4.3.4. The tail probabilities of 01, 02 , O~ and O~, conditional on 1 :s; D 1 :s; 

d - 1, 0 :s; D' :s; n - d and 0 :s; D~ :s; D', are given by 

d-1 n-d 	 [ (k ) ]-1m 
A 	 ~~~ D'.i +q-

Prh (82 ~ b) = {=t_ ~~ Ck,m,q x G(b, (d _ k) + (m _ q) Mi , 2d + m), 

/d-1 n-d 	 ]-1m 	 [

Po~(f}~ ~ b) = ?;~~Ck,m,q x G(b, d~kMi ,2d+m), 

/1d-1 n-d 	 ]-1m 	 [

P9~(e; ~ b) = £; ~~ Ck,m,q x G(b, i Mi , 2d + m), 

here, G(b, >..i, n) is the survival function of the sum of n independent but non-identical 

exponential random variables with failure rates >..i, and 

-(b ' 	 ) - ~ IJn >..i ->.,bG ,Ai,n - ~ (>..· ->..·)e . 
i=l j=l,jf.i J i 

4.3.4 	 Exact Conditional Distributions of the MLEs Based on 

the Given Data 

In this subsection, a two-component system failure data is generated under Type-II 

censoring, with parameters 81 = 20, 82 = 25, 8~ = 9 and 8~ = 14. Since the exact 

conditional distributions of the MLEs depend on the data, we will illustrate all the 

methods and properties presented in Section 4.3.1 - 4.3.3 by using this generated data 

and the results are presented in Lemmas 4.3.7-4.3.9. 

Description of the Data: 

81 




There are 10 systems in this sample. Each system has 2 components. The experi­

ment continues until a total of 5 systems fail. The termination time of the experiment 

is Zd:n = Z 5 ,10 = 21.33. Among the 5 failed systems, we have d1 = 3 and d2 = 2. 

Among the 5 non-failed systems, we have d~ = d~ = 2 and 1 system in which both 

components did not fail before Zd:n· 

The data set is as follows: 

(4.15, 1; 7.40, 2), (0.10, 1; 9.14, 2), (13.89, 2; 15.44, 1), (18.47, 1; 20.76, 2), (14.47, 2; 21.33, 1), 

(10.51, 2; * ), (17.80, 1; * ), ( * ; * ), (3.77, 2; * ), (8.86, l; * ) 

If we rank the observed failure times in ascending order, we find that the ist, 2nd 

and 4th observations belong to set Ii; the 3rd and 5th observations belong to set h, 

etc. That is, 

Next, the order of the observations are: 

Integrating the likelihood function Eq. ( 4.6) in the descending way, we have the 

result as C x M, with 
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M1 = I I 
1 

3 2
(91+92)+~+~ 

M4 = I I 
1 

3 I3(91+92 )+~+~ 

M2 = I I 
1 

3 3
(91+92)+~+~ 

Ms= r r 
1 

::i r3(91+92)+9r+~ 

M3 = I I 
1 

3 22(91+92)+~+~ 

M5 = I I 
1 

3 I4(91+92)+~+~ 

M1 = I I 
1 

2 I 
S(91+92 )+~+~ 

Ms= r r 
1 

r r5(91+92)+~+~ 
Mg= I I 

1 
I 25(91+92)+~+~ 

M - 1
10 - 7(_!..+_!..)+ 1 +I 

91 92 or ~ 
M - 1

13-g(_!..+_!..)+I 
91 92 ~ 

M - 1
11 - 7(_!..+i)+ I+ 2 

91 92 ~ ~ 

M - 1
14 - lO(-I-)

91 +92 

M12 = s(i+i~+ r + 1 
91 92 ~ ~ 

Then, based on this given data, the moment generating functions of the random 

variables S1, S2 and S3 are obtained and presented in Lemmas 4.3.4-4.3.6. 

Lemma 4.3.4. The moment generating function of 

conditional on the given data, has the form of I1i~ 1 ( 1 - ~i )-

1

, with 

\ - 1
A3 - 2 

\ - 1
AS - 3 

\ - 1
A7- 5 

\ - 1
Ag - G 

\ - 1
All - 'f 7( 1

01 
+ 1 ) + 1 + 2

02 or 0~ 

\ - 1
A6 - 4 

\ - 1
AS - 6 

\ - 1 
AlQ - 'f 

\ - 1
Al2 - 8 
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Lemma 4.3.5. The moment generating function of 

iEh iEJ~ 

conditional on the given data, has the form of ITi!1 ( 1 - ~;) -l, with 

\/ - 1
/\3 - 3 

\/ 1 
/\5 = 4 

\I 7( 1 1 ) 1 1 
"'10 = 91 + 92 + 7F + 7F 

\I 7( 1 1 ) 1 2 \/ 8( 1 1 ) 1 1 
"'11 = 91 + 92 + 7F + 7F "'12 = 91 + 92 + 7F + 7F 

Lemma 4.3.6. The moment generating function of 

iE!i iEJ~ 

conditional on the given data, has the form of rr;:l (1 - >..!") -l) with 

II 1 ~ 1 1 3 21 II 1 1( 1 1 ) 3 31
Al = 2 (01 + 02) +or+ e; A2 = 3 01 + 02 + or + 0t; 

II 1 1 3 1 
II 1 1 1 1 ) 3 2J A4 = 3 ( 91 + 92 ) + o~ + 02A3 = 2 2( 91 + 92 + o~ + ~ 

II 1 1 3 1II 1 1) 4 1 
A5 = 4(91 + 92) + ~ + ~A5 = 3( 91 + 92 + ~ + ~ 

II 1 1 2 1 II (1 1) 1 1
A1 = S( 91 + 92) + ~ + ~ As = 6 91 + 92 + ~ + ~ 

II 1 1 1 1 
A10 = 7(91 + 02) + o~ + O!;AgII = 21 r6( 911 + 921 ) + or1 + e;2J 

II 1 1 1 1 
II 1 1 1 1 1 2J A12 = 8(01 + 92) +or+ 02A11 = 2 7(91 + 92) + 9~ + 02 

II 1 1 ) 1 
A13 = 9(01 + 92 + 02 
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Lemma 4.3.7. The PDFs of01 , 02 , O~ and O~, conditional on the given data, are given 

by 
14 14 

fo1 (x) = 5"' II Aj A.·e-5>.;x
Li (>..· - >..·) i ' 
i=l j=l,jf.i J i 

14 14 

f ( ) 4 "' II Aj >.. -4.A x 
J92 x = 7=t_ j=l,#i (>..j - Ai) ie , ' 

12 12 x. 
f ( ) 2 "' II J \I -2>.'x 
Joi x = 8_ j=l,#i (Aj - AD "'ie , ' 

here, Ai (i = 1, ... , 14} are as defined in Lemma 4.3.4, A~ (i = 1, ... , 12} are as defined 

in Lemma 4.3.5, and A: (i = 1, ... , 13} are as defined in Lemma 4.3.6. 

Lemma 4.3.8. The tail probability of 01, 02 , O~ and O~, conditional on the given data, 

are given by 
14 14 

D (BA > b) - "' II Aj -5.A;b 
r1Ji 1 _ - 'f=t. j=l,#i (>..j _Ai) e , 

14 14 

D ((}A > b) - "' II Aj -4.A;b 
ro1 2 - - 8_ j=l,#i (Aj - Ai) e ' 

12 12 >.' 
Pei (O~ ~ b) = L II (X. ~ N) e-2>.;b, 

i=l j=l,#i J i 

13 13 \II 

A "' II 
 /\j -3>.'.' bPe~(e~ ~ b) =Li (>.''._A'·') e , 
i=l j=l,jf.i J i 

here, Ai (i = 1, ... , 14) are as defined in Lemma 4.3.4, A~ (i = 1, ... , 12} are as defined 

in Lemma 4.3.5, and A: (i = 1, ... , 13} are as defined in Lemma 4.3.6. 
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Lemma 4.3.9. The first two moments of 01 , 02 , O~ and O~, conditional on the given 

data, are given by 

A 14 14 A• 1 14 1 
E(01) = ~ II J - = ~ ­f:::. j=l,#i (Aj - Ai) 5Ai f:::. 5Ai' 

A2 14 14 Aj 2 14 [ 2 1 14 1 l 
E(B1) = ~ jJI"i (Aj - Ai) (5Ai)2 = ~ (5Ai)2 + 5Ai j=f,1#i 5Aj ' 

A 14 14 A• 1 14 1 
E(02) = ~ II J - = ~-f:::. j=l,#i (Aj - Ai) 4Ai f:::. 4Ai' 

14 14 A. 2 14 [ 2 1 14 1 l 
E(O~)=~ II J =~ -+- ~ ­

~ (A. - A·) (4A·) 2 ~ (4A·) 2 4A· ~ 4A. ' i=l j=l,j,,Ci J i i=l i j=l,j,,Ci Ji i 

A 12 12 x. 1 12 1 

E(O~) = ~ j=TI#i (Aj ~AD 2A~ = ~ 2A~' 
12 12 >.'. 2 12 [ 2 1 12 1 l

E(0'12) = ~ II J ~ + ~ 
~ (X. - >.') (2A')2 = ~ (2>.')2 2>.' ~ 2>.'. ' 
i=l j=l,j,,Ci J i i=l i j=l,j,,Ci Ji i 

A 13 13 A" 1 13 1 

E(B~) = ~ jJ,Li (>.'j ~ >.~') 3>.~' = ~ 3>.t 

13 13 A" 2 13 [ 2 1 13 1 l 
E(B~2 ) = L II (>.'' ~ >.'') (3>.'')2 = L (3>.'')2 + 3>.'' L 3>.'' ' 

i=l j=l,j,,Ci J i i=l i j=l,j,,Ci Ji i 

here, Ai (i = 1, ... , 14} are as defined in Lemma 4.3.4, A~ (i = 1, ... , 12} are as defined 

in Lemma 4.3.5, and A~ (i = 1, ... , 13} are as defined in Lemma 4.3.6. 

4.4 Confidence Intervals 

In this section, we present different methods of constructing confidence intervals 

(Cis) for the unknown parameters 01 , 02 , O~ and O~. The exact Cis are based on the 
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exact conditional distributions of the MLEs presented in Theorems 4.3.2 and 4.3.4. 

Since the exact conditional PDFs of the MLEs are computationally intensive, we may 

use the asymptotic distributions of the MLEs to obtain approximate Cis for 81 , 82 , 

8~ and 8~ for large sample size. Finally, we use the parametric bootstrap method to 

construct the Cis for the parameters. 

4.4.1 Exact Confidence Intervals 

The same method in Section 2.4.1 is used to construct the exact Cis for parameters 

81 , 82 , 8~ and 8~. To guarantee the invertibility for the parameters, we assume once 

again that the tail probabilities of 01 , fJ2 , O~ and O~ presented in Theorem 4.3.4 are 

increasing functions of 81 , 82 , 8~ and 8~, respectively. Values of the tail probabilities 

Pp (ef> ;::: b) for various 8f> (i = 1, 2) and bare presented in Tables 4.1 - 4.4 to support
0

this monotonicity assumption. Since the tail probabilities depend on the data, the form 

of P p (ef> ;::: b) is taken as in Lemma 4.3.8. 
0

Confidence Interval for ()1 

A two-sided 100(1- a)% CI for 81, denoted by (81L,8w), can be obtained as the 

solutions of the following two non-linear equations: 

(4.11) 

(4.12) 

where Ck,m,q(81L(U)) can be obtained from the expression Ck,m,q given in Theorem 4.3.1 
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and Mi(OlL(U)) can be obtained from the expression Mi given in Section 4.3.1. But, in 

both cases, we replace (01, 02, O~, O~) by (01L(U), fJ2, fJ~, fJ~). 

Confidence Interval for fh 

A two-sided 100(1- 0:)% CI for 02, denoted by (02L,Ow), can be obtained as the 

solutions of the following two non-linear equations: 

where Ck,m,q(02L(u)) can be obtained from the expression Ck,m,q given in Theorem 4.3.1 

and Mi(02L(u)) can be obtained from the expression Mi given in Section 4.3.1. But, in 

both cases, we replace (01, 02, O~, O~) by (fJ1, 02L(U), fJ~, fJ~). 

Confidence Interval for Bi 

A two-sided 100(1 - 0:)% CI for O~, denoted by (O~L' O~u), can be obtained as the 

solutions of the following two non-linear equations: 

(4.15) 

(4.16) 

where Ck,m,q(O~L(u)) can be obtained from the expression Ck,m,q given in Theorem 4.3.1 
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and Mi(O~L(u)) can be obtained from the expression Mi given in Section 4.3.1. But, in 

both cases, we replace (01, ()2, ()~, e;) by (01, 02, ()~L(U)> O;). 

Confidence Interval for e~ 

A two-sided 100 ( 1 - a)3 CI for e;, denoted by ( o;L, o;u), can be obtained as the 

solutions of the following two non-linear equations: 

(4.17) 

(4.18) 

where Ck,m,q(O;L(u)) can be obtained from the expression Ck,m,q given in Theorem 4.3.1 

and Mi(e;L(U)) can be obtained from the expression Mi given in Section 4.3.1. But, in 

both cases, We replace (()1, ()2, ()~, e;) by (01, fh 0~, O~L(U)). 

Lacking a closed-form solution, we have to apply an iterative root-finding technique 

in the determination of ()iL, ()~L' ()iU and ()~u' for i = 1, 2; the Newton-Raphson iteration 

method, for instance, was used here for this purpose. 

4.4.2 Approximate Confidence Intervals 

Using the asymptotic normality of the MLEs, we are able to construct approximate 

confidence intervals for 01 , 02 , ()~ and e; using the Fisher information matrix. 

Let J(e1 ,e2 ,0~,o;) = (Ii1 (e1 ,e2 ,e~,e;)), i,j = 1,2,3,4, denote the Fisher informa­
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tion matrix for the parameter (01 , 02 , O~, O~). From Eq. (4.2), we have 

di+ d~ 
(4.19)

02
1 

d2 + d~ 
022 

d2 
= 012' 

1 

di 
012'2 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

where S1, S2 and S3 are as defined in Lemma 4.3.3. Thus, the Fisher information 

matrix is given by 
di+d) 

·2
111 

0 0 0 

0 d2+d;
-.2­ 0 0 

112 

0 0 d2 
9? 0 

0 0 0 di 
0;2 

This implies that the MLEs are asymptotically mutually independent. The as­

ymptotic unconditional variance of 01 , 02 , O~ and O~ can be obtained from the Fisher 

information matrix as 

Then, the 100(1- a)% approximate Cis for 01 , 02 , O~ and O~ are obtained by using the 

same method as described in Section 2.4.2. 
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4.4.3 Bootstrap Confidence Intervals 

The bootstrap methods of percentile interval and the biased-corrected and acceler­

ated (BCa) interval are similar to those described in Section 2.4.3, but with a Type-II 

censored two-component system failure sample instead. The acceleration &fl in the 

i = 1, 2, 

where e;;}) is the MLE of BP based on the original sample with the j-th observation 
d '(') 

. - 1 2 d d ()'(') - L:j=l (Ji(j)d 1 t de e e , J - , , ... , , an i(·) - d 

4. 5 Simulation Study 

In this section, a Monte Carlo simulation study based on 999 replications was 

carried out to examine the relative risks (Section 4.5.1), to evaluate the performance 

of the two bootstrap confidence intervals in terms of coverage probabilities for different 

sample sizes (Section 4.5.2). We also present numerical examples in Section 4.5.3 to 

illustrate all the inferential methods discussed here. 

4.5.1 Relative Risks 

The theoretical values of 7r1 , 7r2 , 7r3 and 7r4 with () 1 = 20, ()2 = 25 ()~ = 9, ()~ = 14 

are presented in Table 4.12 when n and d take on different values. The results were 
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calculated by using the equations presented in Theorems 2.3.1, 3.2.1, 4.2.1 and 4.2.2. 

All 7r1 , 7r2 and 7r3 are the probabilities that Component 1 fails first within a system. 

But 7r2 is conditional on the complete destruction of the systems and 7r3 is conditional 

on the incomplete destruction of the systems. 7r1 = 0.5556 implies that the first failure 

of a system is more likely due to Component 1. However, in most cases, 7r2 < 7r1 < 7r3 . 

It reflects that a system is more likely to survive if its Component 1 fails first in a 

Type-II censoring experiment. 

From Table 4.12, we observe that 7r2 , 7r3 and 7r4 are more affected by the change of 

n and d. As n or d increases, the three relative risks increase. This is because when 

n or dis small, fewer failures occur during the experiment time. As n or d increases, 

the number of failures increases thus resulting in larger relative risks. 

In order to examine whether 7r1 , 7r2 , 7r3 and 7r4 can be estimated by ~' ~, ~~ and 

n~d, respectively, the results of the average of 999 replications are presented in Table 

4.13. We observe that the tabled values get closer to the corresponding theoretical 

values when n or d take on different values. This indicates that ~ , dJ , ~ and n~d are 

good estimators of 7r1 , 7r2 , 7r3 and 7r4 , respectively. 

4.5.2 	 Coverage Probabilities and the Performance of the Con­

fidence Intervals 

Since the exact confidence intervals and asymptotic confidence intervals depend on 

the data, we carry out a Monte Carlo simulation study to compare only the perfor­

mance of the two bootstrap confidence intervals described in Section 4.4.3. We once 

again chose the values of the parameters to be 81 = 20, 82 = 25, 8~ = 9 and 8~ = 14. 
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We then determined the true coverage probabilities of the 903, 953 and 993 confi­

dence intervals for the parameters for different sample size by these two methods. The 

results for n = 40, 20 and 10 are presented in Tables 4.5-4.7, and they are based on 

average over 999 bootstrap replications. 

From Tables 4.5-4. 7, we observe that the parametric BC°' bootstrap method has 

the coverage probability to be comparatively closer to the nominal level for all the 

parameters in most cases. In Tables 4.6 and 4. 7, when the sample size n is small, 

the coverage probabilities of the bootstrap percentile method and the parametric BC°' 

bootstrap method are most often smaller than the nominal level. But, the parametric 

BC°' bootstrap method is seen to be better than the percentile bootstrap method, 

even though it does not have satisfactory coverage probabilities. 

4.5.3 Numerical Examples 

In this subsection, we consider two data sets when n = 35 with d = 15 and d = 25 

and n = 15 with d = 7 and d = 10. The parameters were chosen to be 01 = 20, 

02 = 25, O~ = 9 and O~ = 14. The data are as follows: 

Data Set 1: n = 35 
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d = 15 

(0.54,1; 2.45,2) (1.70,1; 4.08,2) (4.27,2; 4.87,1) (2.62,l; 5.53,2) (4.01,2; 6.32,1) 

(2.78,2; 7.44,1) (5.29,1; 7.56,2) (1.30,2; 7.65,1) (1.32,2; 7.70,1) (6.14,2; 8.12,1) 

(5.29,1; 10.81,2) (11.35,2; 11.79,1) ( 4.07,1; 12.54,2) (10.98,1; 15.24,2) (13.76,1; 16.31,2) 

(3.60,2; *) (2.03,2; *) (7.37,1; * ) ( *; *) (1.29,1; * ) 

( *; *) (5.56,1; * ) (8.55,l; * ) ( * ; * ) ( *; *) 

(0.73,1; *) ( *; *) ( * ; * ) ( * ; *) (1.61, 1; * ) 

(14.09,1; * ) (14.83, 1; * ) ( *; *) ( *; *) ( * ; *) 

d = 25 

(0.54,1; 2.45,2) (1.70,1; 4.08,2) (4.27,2; 4.87,1) (2.62,1; 5.53,2) (4.01,2; 6.32,1) 

(2.78,2; 7.44,1) (5.29,1; 7.56,2) (1.30,2; 7.65,1) (1.32,2; 7.70,1) (6.14,2; 8.12,1) 

(5.29,1; 10.81,2) (11.35,2; 11.79,1) (4.07,1; 12.54,2) (10.98,1; 15.24,2) (13.76,1; 16.31,2) 

(3.60,2; 18.01,1) (2.03,2; 19.61,1) (7.37,1; 19.81,2) (19.00,2; 21.30,1) (1.29,1; 21.57,2) 

(19.91,2; 22.12,1) (5.56,1; 22.70,2) (8.55,1; 25.03,2) (25.39,1; 27.16,2) (22.66,2; 27.74,1) 

(0.73,l; *) (23.22,1; * ) (17.60,2; * ) (27.55,1; *) (1.61, 1; * ) 

(14.09,1; * ) (14.83, 1; * ) ( * ; *) (19.69,1 ; * ) ( * ; * ) 

Data Set 2: n = 15 

d=7 

(1.21,2; 6.16,1) (7.21,1; 9.53,2) (9.06,2; 13.00,1) (7.95,1; 13.98,2) (5.97,1; 14.19,2) 

(8.45,2; 17.90,1) (6. 73,1; 17.94,2) (5.28,1; * ) ( *; *) ( * ; *) 

(0.92,2; * ) (10.24,1; * ) ( *; *) (16.95,1; * ) ( * ; *) 

d = 10 

(1.21,2; 6.16,1) (7.21,1; 9.53,2) (9.06,2; 13.00,1) (7.95,1; 13.98,2) (5.97,1; i4.i9,2) 

(8.45,2; i 7.90,i) (6. 73,i; 17.94,2) (5.28,i; 21.59,2) ( i9.06,2; 24.45,l ) ( 21.43,2; 26.i3,1) 

(0.92,2; * ) (10.24,l; * ) ( * ; *) (i6.95,i; * ) ( * ; * ) 

In the example when n = 35, d = 15, we have di = 8, d2 = 7, d~ = 8 and d; = 2. 

Using the expressions presented in Section 4.2, the MLEs of 8i, 82 , 8~ and 8; are 

Oi = 18.6379, 02 = 33.1340, o~ = 7.1030 and o; = 13.3399. 

In the example when n = 35, d = 25, we have di = 13, d2 = 12, d~ = 7 and d; = 1. 
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The MLEs are 01 = 18.2793, 02 = 28.1220, O~ = 6.2055 and o; = 14.6813. 

In the example when n = 15, d = 7, we have d1 = 4, d2 = 3, d~ = 3 and d; = 1. 

The MLEs are 01 = 21.6739, 02 = 37.9294, O~ = 11.7864 and o; = 12.2768. 

In the example when n = 15, d = 10, we have d1 = 5, d2 = 5, d~ = 2 and d; = 1. 

The MLEs are 01 = 24.6722, 02 = 28.7843, O~ = 10.7288 and o; = 13.8272. 

To assess the performance of these estimates, we constructed 903, 953 and 993 

confidence intervals using the methods outlined in Section 4.4. The results are pre­

sented in Tables 4.8-4.11. 

From these results, it is seen that the exact confidence intervals are wider in general 

than the other three intervals. It is also seen that the approximate method always 

provide narrower confidence intervals. This is because the coverage probabilities for 

the approximate method are significantly lower than the nominal levels. 
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Table 4.1: Values of Po1 (01 ;::: b) with 82 = 25, 8~ = 9 and 8~ = 14 

01 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.8660 0.1502 0.0050 0.0001 

9 0.9850 0.6059 0.1409 0.0158 

13 0.9962 0.8109 0.3535 0.0848 

17 0.9985 0.8935 0.5157 0.1802 

21 0.9992 0.9317 0.6241 0.2715 

25 0.9995 0.9519 0.6968 0.3488 

29 1.0000 0.9997 0.7471 0.4119 

33 0.9998 0.9712 0.7832 0.4630 

Table 4.2: Values of Po2 ( 02 ;::: b) with 81 = 20, 8~ = 9 and 8~ = 14 

02 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.9564 0.3745 0.0382 0.0016 

9 0.9962 0.8029 0.3329 0.0728 

13 0.9991 0.9189 0.5753 0.2212 

17 0.9996 0.9573 0.7107 0.3577 

21 0.9998 0.9734 0.7876 0.4613 

25 0.9999 0.9816 0.8344 0.5374 

29 0.9999 0.9862 0.8648 0.5939 

33 0.9999 0.9891 0.8857 0.6366 
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Table 4.3: Values of P0~ (e~ ;::: b) with 01 = 20, 02 = 25 and O~ = 14 

(}'1 b=6 b = 11 b = 16 b = 21 

1 0.1442 0.0002 0.0000 0.0000 

5 0.9874 0.7123 0.2711 0.0624 

9 0.9981 0.9120 0.6172 0.2986 

13 0.9993 0.9569 0.7617 0.4717 

17 0.9996 0.9730 0.8295 0.5770 

21 0.9997 0.9806 0.8665 0.6437 

25 0.9998 0.9848 0.8891 0.6886 

29 0.9999 0.9874 0.9041 0.7204 

33 0.9999 0.9891 0.9147 0.7440 

Table 4.4: Values of P0~ (e~;::: b) with 01 = 20, 02 = 25 and O~ = 9 

(}~ b=6 b = 11 b = 16 b = 21 

1 0.0012 0.0000 0.0000 0.0000 

5 0.5944 0.0286 0.0004 0.0000 

9 0.7828 0.1129 0.0051 0.0001 

13 0.8445 0.1797 0.0132 0.0006 

17 0.8734 0.2261 0.0214 0.0014 

21 0.8897 0.2590 0.0286 0.0021 

25 0.9002 0.2832 0.0348 0.0029 

29 0.9074 0.3018 0.0400 0.0036 

33 0.9127 0.3163 0.0444 0.0043 
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Table 4.5: Estimated coverage probabilities based on 999 simulations with 01 = 20, 

02 = 25, B~ = 9, e; = 14 and n = 40 

C.I. of 81 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BC"' Boot-p BCa Boot-p BCa 

15 90.49 90.79 94.09 95.39 98.60 99.20 

20 89.69 89.99 95.10 95.99 98.80 99.20 

25 88.19 89.69 93.79 95.19 98.69 98.79 

30 89.29 89.98 94.79 95.20 99.29 99.40 

C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

15 89.89 91.19 94.89 95.99 98.60 99.20 

20 89.99 91.49 94.50 95.50 98.30 98.80 

25 88.69 88.79 93.09 94.09 98.80 99.00 

30 88.69 90.29 95.50 96.69 98.59 99.20 

C.I. of O~ 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

15 89.99 91.69 93.89 94.79 98.60 99.20 

20 87.89 89.09 95.50 96.50 99.50 99.60 

25 89.39 91.91 94.09 96.09 98.39 98.89 

30 90.49 92.49 95.69 96.39 98.39 98.69 

C.I. of B~ 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

15 89.09 89.59 94.19 94.39 98.60 99.20 

20 89.09 89.79 93.99 94.89 98.79 98.70 

25 88.29 88.69 93.69 94.80 98.99 99.30 

30 90.39 91.39 94.89 95.49 97.79 98.89 
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Table 4.6: Estimated coverage probabilities based on 999 simulations with (Ji = 20, 

82 = 25, e~ = 9, e~ = 14 and n = 20 

C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

10 86.49 87.39 92.89 93.79 97.50 97.70 

12 88.49 90.49 94.69 95.99 97.99 98.10 

14 89.19 91.69 94.09 94.69 98.20 98.99 

16 88.29 90.29 94.39 95.80 98.80 99.50 

C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

10 89.89 91.59 93.69 94.79 97.50 97.70 

12 89.80 91.69 94.19 95.60 97.80 98.30 

14 89.79 91.79 94.29 96.40 98.70 99.10 

16 90.19 91.39 93.69 94.69 98.20 99.00 

C.I. of 8~ 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

10 86.99 89.79 90.49 92.99 95.89 96.30 

12 88.09 90.99 93.09 95.20 96.60 96.80 

14 87.39 89.90 93.39 95.20 97.40 98.40 

16 86.89 90.79 93.09 94.79 96.60 97.40 

C.I. of O~ 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCa Boot-p BCa Boot-p BCa 

10 88.89 88.69 92.09 93.19 97.60 97.60 

12 87.79 89.79 92.49 93.39 96.20 96.10 

14 88.89 90.89 93.19 96.20 97.20 97.80 

16 89.69 91.89 92.29 93.89 97.60 98.00 
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Table 4. 7: Estimated coverage probabilities based on 999 simulations with 01 = 20, 

(}2 = 25, (}~ = 9, (}~ = 14 and n = 10 

C.I. of fJi 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BC0t Boot-p BC0t Boot-p BCOt 

5 63.16 62.76 69.37 68.77 65.97 65.67 

6 76.48 76.48 78.38 78.78 83.28 83.18 

7 82.08 81.68 87.09 86.79 88.39 88.29 

8 86.79 86.59 89.99 90.99 92.49 92.49 

C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BC0t Boot-p BC0t Boot-p BCOt 

5 64.86 63.36 69.47 68.87 66.17 65.97 

6 77.68 76.78 79.68 78.88 82.88 82.88 

7 82.08 80.98 86.29 86.69 88.89 88.99 

8 86.89 87.99 90.79 90.89 93.59 93.59 

C.I. of Oi 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BCOt Boot-p BC0t Boot-p BCOt 

5 57.96 60.86 64.36 66.57 63.76 63.56 

6 70.37 73.57 72.37 75.48 80.18 80.78 

7 75.48 80.48 81.48 84.18 84.68 85.59 

8 81.88 85.99 83.78 87.79 89.19 90.39 

C.I. of Oz 903 C.I. 953 C.I. 993 C.I. 

d Boot-p BC0t Boot-p BC0t Boot-p BCOt 

5 57.06 58.56 66.37 67.57 63.86 64.06 

6 70.87 72.77 75.38 77.78 80.38 80.78 

7 76.88 80.28 81.78 83.98 86.89 87.29 

8 82.08 84.28 85.49 87.39 91.69 92.29 
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Table 4.8: Interval estimation for the simulated sample with n = 35, d = 25 

Method 

Exact 

Approx. 

Boot-p 

BC0 

Method 

Exact 

Approx. 

Boot-p 

BC0 

Method 

Exact 

Approx. 

Boot-p 

BC0 

01 

(12.99, 27.49) 

(11.56, 25.00) 

(12.60, 27.09) 

(12.57, 26.98) 

01 

(12.18, 29.53) 

(10.27, 26.29) 

(11.77, 28.63) 

(11.77, 28.62) 

01 

(10.80, 34.74) 

(7.75, 28.81) 

(10.54, 33.42) 

(10.54, 33.00) 

903 C.I. 

02 

(19.16, 53.74) 

(15.29, 40.95) 

(18.02, 47.17) 

(18.95, 52.52) 

953 C.I. 

02 

(17.59, 60.80) 

(12.84, 43.41) 

(16.61, 55.87) 

(17.19, 58.81) 

993 C.I. 

02 

(14.84, 75.66) 

(8.03, 48.21) 

(14.05, 69.44) 

(14.30, 69.44) 

O'1 

(4.03, 11.57) 

(3.26, 9.15) 

(3.43, 9.63) 

(3.84, 10.67) 

()'1 

(3.55, 13.38) 

(2.69, 9.72) 

(3.15, 10.68) 

(3.48, 11.84) 

()'1 

(3.09, 17.59) 

(1.59, 10.82) 

(2.41, 13.29) 

(3.03, 14.11) 

o~ 

(9.56, 23.85) 

(7.98, 21.38) 

(9.11, 22.82) 

(9.34, 23.40) 

()'
2 

(8.46, 26.99) 

(6. 70, 22.66) 

(8.17, 25.66) 

(8.38, 26.02) 

O'2 

(6.16, 30.85) 

(4.19, 25.17) 

(6.37, 29.94) 

(6.37, 29.65) 
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Table 4.9: Interval estimation for the simulated sample with n = 35, d = 15 

Method 

Exact 

Approx. 

Boot-p 

BC°' 

Method 

Exact 

Approx. 

Boot-p 

BC°' 

Method 

Exact 

Approx. 

Boot-p 

BC°' 

01 

(13.01, 29.54) 

(10.97, 26.30) 

( 12.86, 28.61) 

(12.88, 28.61) 

01 

(12.45, 32.13) 

(9.51, 27.77) 

(11.98, 31.10) 

(11.98, 31.01) 

01 

(10.41, 41.09) 

(6.64, 30.64) 

(9.89, 37.42) 

(9.89, 36.53) 

903 C.I. 

02 

(19.73, 59.72) 

(14.97, 51.30) 

(19.73, 59.16) 

(19.63, 58.08) 

953 C.I. 

02 

(18.88, 68.72) 

(11.49, 54.78) 

(18.36, 67.13) 

(18.32, 66.23) 

993 C.I. 

02 

(16.26, 88.59) 

( 4.68, 61.58) 

(15.56, 86.66) 

(15.25, 82.56) 

0'1 

(3.70, 14.74) 

(2.69, 11.52) 

(3.36, 13.65) 

(3.41, 13.72) 

o'1 

(3.17, 17.74) 

(1.84, 12.36) 

(2.81, 15.77) 

(2.81, 15.48) 

0'1 

(2.04, 22.92) 

(0.19, 14.02) 

(2.16, 20.71) 

(1.39, 19.23) 

o'2 

(7.96, 24.40) 

(5.58, 21.10) 

(6.82, 22.63) 

(7.58, 23.60) 

0'2 

(6.88, 27.80) 

(4.10, 22.58) 

(5.85, 24.67) 

(6.61, 26.20) 

0'2 

(5.37, 34.40) 

(1.19, 25.49) 

( 4.24, 31.34) 

(4.81, 31.71) 
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Table 4.10: Interval estimation for the simulated sample with n = 15, d = 10 

903 C.I. 

Method 01 02 O'1 o~ 

Exact (12.28, 48.80) (14.22, 61.37) (4.79, 21.10) (5.72, 26.49) 

Approx. (9.33, 40.01) (9.46, 48.11) (2.84, 18.62) (3.66, 23.99) 

Boot-p (13.24, 50.04) (15.25, 62.23) ( 4.06, 21.17) (5.67, 26.88) 

BCa (12.77, 47.69) (14.90, 59.50) (4.28, 21.79) (5.93, 27.84) 

953 C.I. 

Method 01 02 o'1 O'2 

Exact (10.87, 57.10) (11.60, 70.43) (4.15, 25.50) (4.98, 31.79) 

Approx. (6.40, 42.95) (5.75, 51.82) (1.32, 20.13) (1.71, 25.95) 

Boot-p (11.74, 59.87) (13.79, 74.61) (3.25, 24.27) (4.74, 33.40) 

BCa (11.54, 57.46) (13.06, 69.49) (3.46, 24.51) (4.74, 33.40) 

993 C.I. 

Method 01 02 o'1 0'2 

Exact (8.78, 79.11) (9.25, 95.35) (2.24, 31.26) (3.33, 53.17) 

Approx. (0.65, 48.69) (O*, 59.05) (O*, 23.09) (O*, 29.76) 

Boot-p (10.15, 94.13) (10.88, 113.28) (1.71, 30.85) (3.35, 55.19) 

BC~ (9.89, 80.10) (9.14, 93.85) (1.71, 29.66) (3.13, 50.93) 

O* stands for a non-positive number 
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Table 4.11: Interval estimation for the simulated sample with n = 15, d = 7 

Method 

Exact 

Approx. 

Boot-p 

ECa 

Method 

Exact 

Approx. 

Boot-p 

ECa 

Method 

Exact 

Approx. 

Boot-p 

ECa 

01 

(11.27, 43.69) 

(8.29, 35.15) 

(11.76, 42.47) 

(11.68, 40.87) 

01 

(10.02, 52.34) 

(5.62, 37.73) 

(10.65, 48.68) 

(10.64, 48.13) 

01 

(8.15, 77.45) 

(0.57, 42. 78) 

(8.37, 70.65) 

(8.37, 70.18) 

903 C.I. 

02 

(16.49, 88.11) 

(6.74, 69.12) 

(17. 76, 96.40) 

(17.93, 96.40) 

953 C.I. 

02 

(15.50, 117.23) 

(0.76, 75.09) 

(15.98, 132.89) 

(15.88, 130.29) 

993 C.I. 

02 

(13.71, 168.33) 

(O*, 86.79) 

(13.39, 196.47) 

(13.25, 195.85) 

O'1 

(3.41, 36.40) 

(0.59, 22.98) 

(3.07, 32.58) 

(3.57, 34.43) 

O'1 

(2.67, 43.54) 

(O*, 25.12) 

(2.08, 39.21) 

(2.48, 40.51) 

O'1 

(1.72, 58.17) 

(O*, 29.31) 

(0.31, 62.51) 

(0.27, 54.47) 

O'2 

(3.85, 25.77) 

(2.18, 22.37) 

(5.05, 24.31) 

(5.21, 25.22) 

O'2 

(3.43, 33.21) 

(0.25, 24.31) 

( 4.21, 32.88) 

( 4.20, 32.52) 

O'2 

(2.79, 47.67) 

(O*, 28.09) 

(2.31, 45.95) 

(2.17, 43.98) 

O* stands for a non-positive number 
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Table 4.12: Theoretical values of relative risks with (}i = 20, fh = 25, e~ = 9 and 

e~ = 14 

n d 7r1 7r2 7r3 7r4 

40 30 

25 

20 

15 

0.5556 

0.5556 

0.5556 

0.5556 

0.5215 

0.5097 

0.4992 

0.4894 

0.6939 

0.6661 

0.6445 

0.6256 

0.7412 

0.6871 

0.6312 

0.5672 

20 16 

14 

12 

10 

0.5556 

0.5556 

0.5556 

0.5556 

0.5274 

0.5176 

0.5083 

0.5006 

0.7043 

0.6803 

0.6609 

0.6437 

0.7555 

0.7126 

0.6697 

0.6237 

10 8 

7 

6 

5 

0.5556 

0.5556 

0.5556 

0.5556 

0.5214 

0.5132 

0.5057 

0.4985 

0.6832 

0.6654 

0.6499 

0.6361 

0.7123 

0.6738 

0.6336 

0.5899 
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Table 4.13: Relative risks based on 999 simulations with (Ji = 20, 02 = 25, ()~ = 9 and()~ = 14 

1--' 
0 
0) 

n d n1 n2 ni 

n d1 d2 ~ 
d d'1 d'2 

d'-1. 
d' 

d' 
n-d 

40 30 

25 

20 

15 

22.2242 

22.2643 

22.1331 

22.2593 

17.7758 

17.7358 

17.8669 

17.7407 

0.5556 

0.5566 

0.5533 

0.5565 

15.6016 

12.7397 

9.9199 

7.3193 

14.3984 

12.2603 

10.0801 

7.6807 

0.5201 

0.5096 

0.4960 

0.4880 

5.1762 

6.8759 

8.0571 

8.9159 

2.2793 

3.4394 

4.4735 

5.3133 

0.6943 

0.6666 

0.6430 

0.6266 

0.7455 

0.6877 

0.6265 

0.5692 

20 16 

14 

12 

10 

11.0771 

11.0931 

11.0320 

11.1972 

8.9229 

8.9069 

8.9680 

8.8028 

0.5539 

0.5466 

0.5516 

0.5599 

8.3914 

7.1522 

6.0440 

5.0851 

7.6086 

6.8478 

5.9560 

4.9149 

0.5245 

0.5109 

0.5037 

0.5085 

2.1381 

2.9219 

3.5516 

4.0150 

0.8769 

1.3003 

1.8308 

2.1722 

0.7092 

0.6920 

0.6599 

0.6489 

0.7538 

0.7037 

0.6728 

0.6187 

10 8 

7 

6 

5 

5.5285 

5.6466 

5.5335 

5.5155 

4.4715 

4.3534 

4.4665 

4.4845 

0.5529 

0.5647 

0.5534 

0.5516 

4.1932 

3.6967 

3.0280 

2.5325 

3.8068 

3.3033 

2.9720 

2.4675 

0.5242 

0.5281 

0.5047 

0.5065 

1.0440 

1.4515 

1.7287 

1.8959 

0.4434 

0.6386 

0.8829 

1.1391 

0.7018 

0.6945 

0.6619 

0.6247 

0.7438 

0.6970 

0.6529 

0.6070 



Chapter 5 

Exact Analysis under Type-I 

Censoring 

5.1 Introduction 

In this Chapter, we consider a two-component system failure model in the case of 

Type-I censored data. We then present an iterative maximum likelihood estimation 

procedure to determine MLEs of the parameters assuming the lifetimes to be expo­

nentially distributed. The asymptotic distributions of the MLEs are also obtained. 

Construction of confidence intervals for the model parameters are discussed by using 

the asymptotic distributions and two parametric bootstrap methods. The bias and 

variance of the estimates as well as the performance of the three confidence intervals 

in terms of coverage probabilities are assessed through a Monte Carlo simulation study. 

Finally, examples are presented to illustrate all the methods of inference discussed here. 
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5.2 Model Description and MLEs 

Consider the following simple system failure model: n identical units are placed 

on a life test and each system has two components. Assume that the experiment 

continues up to a pre-fixed time W. Before the time W there are D observed failed 

systems. Failures that occur after W are not observed. The termination point W 

of the experiment is assumed to be independent of the failure times. Among the D 

failed systems, there are Di systems in which Component 1 failed first and Dz systems 

in which Component 2 failed first, with Di + Dz = D. We assume that Xi and Yi 

(i = 1, ... , n) are random variables representing the lifetimes of Components 1 and 2, 

respectively, in the i-th system. Let Zi = max(Xi, Yi) (i = 1, ... , n). Thus, the i-th 

system fails at time Zi, and Zi:n < · · · < ZD:n are the corresponding ordered failure 

times obtained from a Type-I censored sample from the n systems under test. The 

data arising from such a two-component system is as follows: 

(5.1) 

where Ti, ... , TD denote the first observed failure times in the systems, Zi:n < · · · < 

ZD:n denote the final observed failure times of the systems, f/ denotes the component 

of the first observed failure within the system, and 8" denotes the component of the 

second observed failure within the system. We use " * " to denote the censored data. 

If we let 


Ii = { i E (1, 2, ... , D) : Component 1 failed first}, 


fz = {i E (1, 2, ... , D) : Component 2 failed first}, 
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the likelihood function of the observed data in ( 5 .1) is 

L(e1, e2, e~, e~) 
I D n 

= (n :·D)! II f(xi, Yi) II Pr (max(Xi, Yi) ~ W) 
i=l i=D+l 

n! ( 1 ) Di { ( 1 1 1 ) 1 }= (n - D)! x e O' exp - (} + 9- O' Lxi - 0' Lzi
1 2 1 2 2 iEJi 2 iE/i 

)D2 

1 { ( 1 1 1) 1 }x ( eO' exp - e + e - B' L Yi - B' L Zi x pa,-D' (5.2) 
22 1 l 1 iEh l iEI2 

where 0 <Xi < Zi:n for i E Ii, 0 <Yi< Zi:n for i E 12, 0 < Z1:n < · · · < ZD:n < W, and 

1 1 1 )-l (1 1 1 )-l -
Fw = Pr (max(X· Y'.;) > W) = - + - - - - + - - - x P (5.3) 

i' i - ( e1 e2 e~ e1 e2 e~ ' 

where 

The exact derivation of Pw is presented later in Lemma 5.2.2. 

The maximum likelihood estimate (01, 02, o~, O~) of (01, 02, e~, e~) is the value that 

globally maximizes the likelihood function in (5.2). Taking logarithm in Eq. (5.2), we 

obtain the log-likelihood function to be 

ln L = -d1ln 01 - d1ln 02 
I - (1- + -1- -1) ~ x · - -1~ z·e e e' L..,; i e' L..,; i1 2 2 iE!i 2 iE!i 


-d2 ln 02 - d2 ln e - (1- + -1 - -1) ~ y· - -1 ~ z
1 
I 

e e e' L..,; i e' L..,; i 
1 2 1 iEJ2 l iEh 

(1 1 1) (1 1 1) ­-(n - D) ln - + - - 1 - (n - D) ln - + - - 1 + ( n - D) ln P. 
e1 e2 e2 e1 e2 e1 

(5.5) 
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Unfortunately, from (5.5), we observe that no closed-form for the MLEs as a func­

tion of the sample exist. We need to determine the MLEs by numerically maximizing 

the log-likelihood function in (5.5). Once again, an iterative procedure for the com­

putation of the MLEs is needed. This procedure is the same as the one described in 

Section 3.2.1., except for changing the initial values to be as 

(/0) - EiEli Xi + EiEh Yi o(O) - EiEli Xi + EiEI2 Yi 
i - Di , 2 - D2 , 

o'(O) - EiEI2 (zi - Yi) 1(0) _ EiEii (zi - Xi)
0i - D2 , 2 - Di . 

Note that these estimates do not use all the information available in the sample, but 

they do provide good starting values, for the iterative procedure. 

5.2.1 Relative Risks 

Based on the results of Section 3.2.2 and Section 4.2.1, in this subsection, one 

additional relative risk is derived and is presented in Theorem 5.2.1. 

Lemma 5.2.1. We have 

Ps = Pr (X < Y < W) = 


1 ( 1 1 1 )-i [ 1 ( 1 1 )-ii 1 ( 1 1 1 )-i
1
Oi Oi + 02 - o~ - o~ Oi + 02 - Oi Oi + 02 - o~ 

x {exp (-~w) -~ (~ + ~)-i exp [- (~ + ~) w]}. (5.6)
02 02 Oi 02 Oi 02 

Proof: We can express 

{W {y 1 { ( 1 1 1 ) 1 }
P5 = Pr (X < Y < W) = lo lo OiO~ exp - Oi + 02 - 0~ x - O~ y dxdy. 

Then, the result follows by carrying out the required integration. 
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Lemma 5.2.2. 

Proof: We have 

P6 =Pr (max(X, Y) 2: W) = 1 - Pr (max(Xi, Yi) ::; W) 


w 1Y --,1 exp { - ( 1 + 1 - 1 ) -,y1 }
= 1 - - - x - dxdy 
0 0 8182 81 82 82 821

w 1x 
1 

1 { ( 1 1 1 ) 1 }- --,exp - - + - - y - x dydx. (5.8)1 1 o o e2e1 e1 82 81 e1 

Then, the result follows by carrying out the required integration and by using the 

identity in Lemma 3.2.1. 

1

Theorem 5.2.1. The relative risk that Component 1 fails first within a two-component 

system, under the condition that the system fails by time W, is 

Ps
7rs = Pr(X < Yjma:x(X, Y) :S W) = p,

1- 6 

Proof: The proof is straightforward. 

Lemma 5.2.3. In a Type-I censored experiment, there are D (D :S n) systems with 

complete destruction observed before the pre-fixed time. Among the D systems, the 
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number of failures due to Component 1 failing first, viz., D1 , is a non-negative random 

variable with probability mass function given by 

(D) ( p, ) j ( p, ) D-jPr(D1 = j) = j _5p 1 - _5p , j = 0, 1,. .. , D.
1 6 1 6 

Proof: The result follows immediately from Theorem 5.2.1. 

5.3 Confidence Intervals 

In this section, we present two different methods of constructing confidence intervals 

(Cis) for the unknown parameters 01 , 02 , O~ and 0~. First, we use the asymptotic 

distributions of the MLEs to obtain approximate Cis for the parameters in case of 

large sample sizes. Next, we use the parametric bootstrap method to construct Cis 

for the parameters. 

5.3.1 Approximate Confidence Intervals 

In the last section, we noted that closed-form expressions for the MLEs do not exist. 

However, we can use the asymptotic normality of the MLEs to construct approximate 

confidence intervals for the parameters. The computation of the approximate confi­

dence intervals is based on the observed Fisher information matrix, by taking negative 

of the second derivatives of the log-likelihood function in (5.5) and then evaluating 
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them at the MLEs. Specifically, we have 

82 lnL 82 lnL 8 2 lnL 82 lnL 

aor 861862 86186i 86186; 

8 2 lnL 82 lnL 82 lnL 8 2 lnL 

fobs= -
862861 

8 2 lnL 

aor 
82 lnL 

86286i 

82 lnL 

86286; 

8 2 lnL 
(5.9) 

86i861 86i862 aor 86i86; 

8 2 lnL 82 lnL 8 2 lnL 82 lnL 
86;861 86~862 86&86i 86&2 

61=01,62=fh,6i =0i,6~=iJ;, 

and the inverse of this observed Fisher information matrix in (5.9) gives an estimate 

of the variance-covariance matrix of the MLEs, which in turn can be used to con­

struct approximate confidence intervals for the parameters. We shall make use of the 

asymptotic normality of the MLEs to obtain these confidence intervals. 

Thus, if 

is the variance-covariance matrix, the 100( 1 - a)3 confidence intervals for 01 , 02 , O~, 

e~ are given by 

(5.10) 

e~ ±z1-~~' 

0~ ± Z1_!!~
2 1 

where Zq is the q-th upper percentile of the standard normal distribution. This method 

may work satisfactorily when n is large, but may not be satisfactory for small sample 

sizes. 
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5.3.2 Bootstrap Confidence Intervals 

The bootstrap methods of percentile interval and the biased-corrected and acceler­

ated (BCa) interval are similar to those described in Section 2.4.3, but with a Type-I 

censored two-component system failure sample instead. The acceleration &fl in the 

BCcx interval should be changed to 

i = 1, 2, 

where e;~~) is the MLE of e}'> based on the original sample with the j-th observation 
D '(') 

· - 1 2 D d eA(') - L:j=l 0i(j)de e e 1 t d , J - , , ... , , an i(·) - D 

5.4 Simulation Study 

In this section, a Monte Carlo simulation study based on 999 replications was car­

ried out to examine the bias, variance and relative risks (Section 5.4.1), and to evaluate 

the performance of the three confidence intervals in terms of coverage probabilities for 

different sample sizes (Section 5.4.2). We also present numerical examples in Section 

5.4.3 to illustrate all the inferential methods discussed here. 

5.4.1 Bias, Variance and MSE of the MLEs 

It is desirable to examine the bias and variance of the MLEs as they are not explicit 

estimators. For this purpose, we carried out a simulation study to evaluate the bias, 
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mean squared error (MSE), means and variances of the MLEs, and also the average 

of the asymptotic variance of the estimators computed from the observed information 

matrix. These results for n = 40, 20, 10 and W = 40, 35, 30, 25, 20, 15, 10 for each 

choice of n are presented in Tables 5.1-5.3. 

We observe from Tables 5.1-5.3 that, as sample size n increases, the bias of MLEs 

decrease, with the bias tending to zero as n becomes large. Similarly, for the same 

sample size n, as the pre-fixed experimental time W decreases, the bias of MLEs 

increase. Similar behavior is also observed in MSE of the MLEs. As the sample size n 

and pre-fixed experimental time W increase, the MSE of MLEs are nearly identical to 

their corresponding variances. This indicates that MLEs are unbiased estimators for 

large sample with long experimental time. 

The MSE of an estimator is one of many ways to quantify the amount by which 

an estimator differs from the true value of the quantity being estimated. In our case, 

as n or W decreases, big difference occurs between the true value and the estimator. 

The primary reason causing the big difference is the fewer failures that are observed in 

a small sample with short experiment time. This is so because when n or W is small, 

there will be fewer failures observed and so inference for 81, 82, 8~ and 8; is not quite 

precise. 

We observe a negative bias for the parameter 8; for most cases. This implies the 

underestimation of 8;. 

We also determined the means and variances of the estimates of the parameters 

over 999 simulations. We observe that, for large sample sizes, the means of the MLEs 

of the parameters 81, 82, 8~ and 8; are quite close to the true values, viz., 20, 25, 9, 
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14, respectively. However, this is not true for smaller sample sizes. The variances 

of the MLEs can also be compared with the average approximate variance computed 

from the observed information. Once again, the variance and the average approximate 

variance are closer for large values of n and W, but not so for smaller sample sizes. 

The reason for this is the same as the one given earlier for the bias and MSE of the 

ML Es. 

The behaviors of relative risks 1!"1 and 1!"5 are checked through the average of 999 

replications. The results are presented in Table 5.4. The values of 7r1 and 1!"5 are 

computed from the expressions in Theorems 2.3.1 and 5.2.1, respectively. From the 

expression we find that 7r1 is fixed for all sample sizes n and length of experiment time 

W; 1!"5 is only affected by the length of experiment time W. 1!"1 = 0.5556 implies that 

the first failure occurring within a specified system is more likely due to Component 

1, with the true parameters 01 = 20 and 02 = 25. 1!"5 increases as the experiment time 

W becomes longer. 1!"5 = 0.5 when W = 20. This implies, if the pre-fixed termination 

time is 20, Component 1 and Component 2 have the equal chance to fail first within 

a system with complete destruction. However, when the experiment time Wis longer 

than 20, Component 1 is more likely to fail first; otherwise, Component 2 is more 

likely to fail first. 1!"5 < 1!"1 in all the cases. This implies that the probability that 

Component 1 fails first within a system is weakened on the condition that the system 

has a complete destruction in a Type-I censoring test. 

We observe that as W increases, the value of ~ gets closer to 7r1 ; the value of % 
gets closer to 1!"5 • This indicates that ~ and %are good estimators of 1!"1 and 1!"5, 

respectively. 
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5.4.2 	 Coverage Probabilities and the Performance of the Con­

fidence Intervals 

The purpose of this subsection is to carry out a Monte Carlo simulation study 

based on Type-I censored sample to compare the performance of different confidence 

intervals described in Section 5.3. We once again chose the values of the parameters 

to be 91 = 20, 92 = 25, 9~ = 9 and 9~ = 14. We then determined the true coverage 

probabilities of the 90%, 95% and 99% confidence intervals for the parameters for 

different sample sizes by all three methods described earlier in Section 5.3. These 

values, based on 999 Monte Carlo simulations and R = 999 bootstrap replications, are 

presented in Tables 5.5 and 5.6. 

From these tables, we observe that, among the three methods, the parametric BCa 

bootstrap method of constructing confidence intervals has its coverage probabilities to 

be closer to the nominal level and is therefore recommended for large sample sizes. 

As expected, the approximate method based on the asymptotic normality of the 

MLEs has its true coverage probabilities to be always less than the nominal level. 

Though the coverage probability improves for larger sample sizes, we still find it to be 

unsatisfactory even for n as large as 40 particularly when the pre-fixed termination time 

is W = 40. This indicates that the confidence intervals obtained by this method will 

often be unduly narrower. We do observe that for all the nominal levels considered, the 

coverage probabilities of the approximate method are lower for small sample size n or 

short length of pre-fixed experiment time Win almost all cases. This is because, when 

n or W is small, there are fewer failures observed and so inference for the parameters 

is not precise. As n increases, the number of failures increases thus resulting in a 
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better large-sample approximation for the distribution of MLEs. This means that we 

need a much larger sample size to use the asymptotic normality of the MLEs. We also 

observe that when n is small, even the parametric BC0 bootstrap method does not 

have satisfactory coverage probabilities, but is seen to be better than the approximate 

methods as well as percentile bootstrap method. 

5.4.3 Illustrative Examples 

In this subsection, we consider two data sets by using small and moderately large 

sample sizes to illustrate all the methods of inference developed in the preceding sec­

tions. 

Data Set 1: n = 35 

w Failure Times 

15 (2.28,2; 2.49,1) 

(6.41,2; 6.41,1) 

(8. 79, l; 9.40,2) 

(12.98,1; 13.21,2) 

(2.12,2; 2.95,1) 

(2.76,1; 6.50,2) 

(4.68,1; 10.39,2) 

(2.10,2; 13.72,1) 

(2.60,2; 3.12,1) 

(4.81,2; 6.54,1) 

(6.58,2; 11.15,1) 

(13.27,1; 14.76,2) 

(3.08,1; 3.70,2) 

(0.19,1; 7.09,2) 

(8.67,1; 11.49,2) 

(12.91,1; 14.90,2) 

(2.92,1; 4.87,2) 

(4.55,1; 8.49,2) 

(0.64,1; 12.90,2) 

(*, *) 

25 (2.28,2; 2.49,1) 

(6.41,2; 6.41,1) 

(8.79,1; 9.40,2) 

(12.98,1; 13.21,2) 

(10.42,2; 20.67) 

(2.12,2; 2.95,1) 

(2. 76,l; 6.50,2) 

(4.68,1; 10.39,2) 

(2.10,2; 13.72,1) 

(20.19,2; 20.71,1) 

(2.60,2; 3.12,1) 

(4.81,2; 6.54,1) 

(6.58,2; 11.15,1) 

(13.27,1; 14.76,2) 

(3.28,1; 22.45,2) 

(3.08,1; 3.70,2) 

(0.19,1; 7.09,2) 

(8.67,1; 11.49,2) 

(12.91, 1; 14.89,2) 

(19.64,2; 24.45,1) 

(2.92,1; 4.87,2) 

(4.55,1; 8.49,2) 

(0.64,1; 12.90,2) 

(1.83,2; 15.91,1) 

(*, *) 

In the case when n = 35, had we fixed W = 15, we would have D 1 = 12 and 

D2 = 7, and we would obtain the MLEs of 01 , 02 , O~ and O~ by using the methods 

presented in Section 5.2 to be 

01 = 19.6243, 02 = 37. 7553, o~ = 3.5774, o~ = 5.3832. 
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Instead, had we fixed W = 25, we would have D1 = 13 and D2 = 11, and we would 

obtain the MLEs to be 

01 = 25.1019, 02 = 30.4837, o~ = 5.8473, o~ = 6.5068. 

Data Set 2: n = 15 

w Failure Times 

15 (0.11,2; 1.67,1) 

(7.92,2; 12.99,1) 

(3.93,1; 8.89,2) 

(10.25,1; 14.54,2) 

(5.63,2; 9.26,1) 

(*, *) 

(7.28,1; 9.75,2) (4.15,1; 12.19,2) 

25 (0.11,2; 1.67,1) 

(7.92,2; 12.99,1) 

(*, *) 

(3.93,1; 8.89,2) 

(10.25,1; 14.55,2) 

(5.63,2; 9.26,1) 

(7.51,1; 17.70,2) 

(7.28,1; 9.75,2) 

(13.33,1; 18.62,2) 

(4.15,1; 12.19,2) 

(9.94,2; 21.14,1) 

In the case when n = 15, had we fixed W = 15, we would have D1 = 4 and D2 = 3, 

and we would obtain the MLEs of 01 , 02 , O~ and O~ by using the methods presented in 

Section 5.2 to be 

01 = 19.8219, 02 = 35.2041, o~ = 4.8815, o~ = 9.9186. 

Instead, had we fixed W = 25, we would have D1 = 6 and D2 = 4, and we would 

obtain the MLEs to be 

01 = 21.3098, 02 = 34.0602, o~ = 7.5193, o~ = 9.1564. 

To assess the performance of these estimates, we constructed 903, 953 and 993 

confidence intervals using the methods outlined in Section 5.3. The results are pre­

sented in Tables 5.7-5.10. Notice that the approximate method always provide nar­

rower confidence intervals in most cases. This is because the coverage probabilities for 

the approximate method are significantly lower than the nominal levels. 
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Table 5.1: Bias, MSE, Mean and Variance based on 999 simulations when (Ji 20, 


02 = 25, (}~ = 9, (}~ = 14 and n = 40 


Parametersw Bias MSE Mean Variance Approximate Variance 

10 
 7.51 346.14 27.51 289.74 359.7461 


3.22 337.95 28.22 327.59 417.3462 


36.42 10.216'1 
 1.21 34.96 50.00 

6'2 
 -2.69 52.83 11.31 45.60 66.46 

15 
 4.70 192.14 24.70 170.05 198.7761 


2.53 229.73 27.53 223.32 294.9662 


6'1 
 0.92 29.99 9.93 29.15 40.88 

6'2 
 -1.65 41.01 12.35 38.29 58.81 

3.37 107.73 23.3720 
 96.49 109.6161 


2.16 118.65 27.16 114.11 130.2762 


0.71 22.02 9.716' 21.66 25.171 


-0.95 34.416'2 
 13.05 33.52 50.25 

25 
 2.25 89.70 22.25 84.75 92.6561 


1.55 95.18 26.55 92.86 102.0662 


18.026'1 
 0.59 9.59 17.69 19.50 

6'2 
 -0.43 29.79 13.57 29.63 40.06 

65.00 21.42 63.06 69.6630 
 1.4261 


89.54 26.201.20 88.19 91.1562 


16.116' 0.50 9.50 15.92 16.711 


-0.04 27.626'2 
 27.60 13.96 35.59 

0.91 41.91 20.91 41.12 42.8935 
 61 


67.57 26.08 66.24 67.341.0862 


9.46 14.166'1 
 0.46 14.49 15.72 

-0.04 26.38 13.96 26.40 29.026'2 


0.66 35.42 20.66 35.14 37.8840 
 61 


0.62 61.40 25.62 61.30 62.3162 


11.01 9.296'1 
 0.29 10.94 11.70 

0.18 21.04 14.18 21.03 22.206'2 
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Table 5.2: Bias, MSE, Mean and Variance based on 999 simulations when 01 20, 

02 = 25, O~ = 9, O~ = 14 and n = 20 

w Parameters Bias MSE Mean Variance Approximate Variance 

10 91 10.25 713.85 30.25 608.17 793.94 

92 9.62 791.88 34.62 698.65 833.70 

9'1 2.01 53.78 11.01 49.79 71.39 

9'2 -3.24 102.32 10.76 91.84 198.66 

15 91 8.35 547.67 28.35 477.57 615.03 

92 7.29 592.82 32.29 539.51 671.73 

9'1 1.71 43.33 10.71 40.26 59.98 

9'2 -2.27 77.45 11.73 72.35 97.16 

20 91 6.34 396.39 26.34 356.62 498.48 

92 5.02 423.17 30.02 398.65 540.16 

9'1 1.25 35.51 10.25 33.99 45.20 

9'2 -1.35 58.70 12.65 56.92 74.92 

25 91 4.90 264.33 24.90 240.32 359.67 

92 4.23 323.00 29.23 305.53 421.80 

9'1 0.81 32.19 9.81 31.37 40.22 

9'2 -0.58 50.82 13.42 50.52 60.23 

30 91 3.71 164.82 23.71 151.21 267.95 

92 3.27 248.720 28.27 238.24 356.72 

9'1 0.72 31.40 9.72 31.09 34.16 

9'2 -0.48 48.45 13.52 48.26 56.52 

35 91 2.26 115.68 22.26 110.69 145.60 

92 1.92 189.84 26.92 186.26 289.90 

9'1 0.69 29.53 9.69 29.05 30.39 

9'2 -0.24 47.86 14.24 47.85 53.33 

40 91 1.89 104.42 21.69 100.68 114.21 

92 1.80 154.76 26.80 151.75 246.82 

9'1 0.56 21.71 9.56 21.42 26.06 

9'2 0.23 46.60 14.43 46.46 48.28 
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Table 5.3: Bias, MSE, Mean and Variance based on 999 simulations when 01 20, 

02 = 25, O~ = 9, O~ = 14 and n = 10 

w Parameters Bias MSE Mean Variance Approximate Variance 

10 111 13.75 981.41 33.75 792.74 1067.97 

112 11.77 1059.98 36.77 920.71 1261.65 

II'1 2.79 127.94 11.79 119.35 121.25 

II'2 -4.51 154.82 9.49 134.50 179.71 

15 111 10.85 791.62 30.85 673.49 863.33 

112 9.83 917.71 34.83 820.65 1049.24 

II'1 2.16 86.79 11.16 81.81 102.48 

II'2 -3.30 111.90 10.70 101.03 133.08 

20 111 9.54 680.47 29.54 589.17 696.02 

112 8.01 820.25 33.01 756.81 882.81 

II'1 1.73 72.66 10.73 69.19 91.01 

II'2 -1.80 93.32 12.20 90.16 126.41 

25 111 8.80 558.09 28.80 481.12 512.70 

112 7.35 674.07 32.35 620.65 725.00 

II'1 1.07 60.02 10.07 59.15 82.77 

II'2 -1.57 87.23 12.43 84.82 101.30 

30 111 7.85 419.91 27.85 357.88 398.57 

112 5.89 551.34 30.89 517.18 594.81 

II'1 0.97 51.51 9.97 56.57 74.81 

II'2 -0.73 83.90 13.87 82.96 90.05 

35 111 5.04 339.55 25.04 314.59 324.44 

112 4.99 471.92 29.99 446.92 504.21 

II'1 0.76 53.97 9.76 52.79 68.23 

II'2 0.22 80.46 13.78 80.54 84.19 

40 111 4.45 322.34 24.45 302.88 307.92 

112 4.83 423.80 29.83 400.71 430.96 

II'1 0.70 51.10 9.70 50.66 65.04 

II'2 0.04 78.49 14.04 78.49 80.66 
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Table 5.4: Relative risks based on 999 simulations when 01 = 20, 02 = 25, O~ = 9, 

o; = 14 

n w nl n2 !!:J.. 
n 11"1 D1 D2 !2i 

D 11"5 

40 40 22.36 17.64 0.56 0.56 18.55 15.97 0.54 0.53 

35 22.33 17.67 0.56 0.56 17.19 15.25 0.53 0.53 

30 22.10 17.90 0.55 0.56 15.18 14.31 0.51 0.52 

25 22.27 17.73 0.56 0.56 13.26 12.61 0.51 0.51 

20 22.38 17.62 0.56 0.56 10.71 10.44 0.51 0.50 

15 22.36 17.64 0.56 0.56 7.57 7.79 0.49 0.49 

10 22.31 17.69 0.56 0.56 4.34 4.69 0.48 0.48 

20 40 11.13 8.87 0.56 0.56 9.31 8.04 0.54 0.53 

35 11.14 8.86 0.56 0.56 8.53 7.64 0.53 0.53 

30 11.03 8.97 0.55 0.56 7.60 7.19 0.51 0.52 

25 11.06 8.94 0.55 0.56 6.53 6.38 0.51 0.51 

20 11.09 8.91 0.55 0.56 5.33 5.25 0.50 0.50 

15 11.28 8.72 0.56 0.56 3.74 3.84 0.49 0.49 

10 11.16 8.84 0.56 0.56 2.32 2.50 0.48 0.48 

10 40 5.56 4.44 0.56 0.56 4.59 4.02 0.53 0.53 

35 5.47 4.53 0.55 0.56 4.22 3.91 0.52 0.53 

30 5.51 4.49 0.55 0.56 3.85 3.60 0.52 0.52 

25 5.58 4.42 0.56 0.56 3.35 3.17 0.51 0.51 

20 5.55 4.45 0.56 0.56 2.68 2.68 0.50 0.50 

15 5.48 4.52 0.55 0.56 2.09 2.17 0.49 0.49 

10 5.45 4.55 0.55 0.56 1.50 1.60 0.48 0.48 
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Table 5.5: Estimated coverage probabilities based on 999 simulations when 81 = 20, 


82 = 25, 8~ = 9, 8~ = 14 and n = 40 


C.I. of 81 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BC°' Approx. Boot-p BCa Approx. Boot-p BC°' 

10 81.49 89.69 90.20 88.10 94.69 95.89 90.49 98.69 99.20 

20 83.10 88.30 89.50 89.69 94.10 95.40 93.69 98.20 99.30 

30 86.99 89.19 89.69 91.49 93.79 94.89 95.10 98.59 98.80 

40 88.19 90.09 90.19 92.60 94.39 95.00 96.20 98.89 99.10 

C.I. of 82 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BC°' Approx. Boot-p BC°' Approx. Boot-p BC°' 

10 81.88 89.09 91.19 87.80 94.49 95.99 89.70 98.89 99.60 

20 84.09 88.59 90.29 89.20 94.29 95.49 93.10 98.80 99.10 

30 86.20 88.70 89.10 91.10 93.89 94.59 94.80 98.60 99.00 

40 87.39 88.69 89.30 92.09 94.89 95.69 95.90 98.39 98.80 

C.I. of Bi 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BC°' Approx. Boot-p BC°' Approx. Boot-p BC°' 

10 81.20 89.39 91.29 87.40 93.69 94.79 89.80 96.90 97.90 

20 83.89 87.89 89.59 88.10 95.19 96.39 92.89 97.50 98.10 

30 85.99 88.99 90.30 90.79 94.09 95.70 94.20 98.39 98.60 

40 87.20 89.29 91.19 91.89 95.29 96.10 94.39 98.10 98.70 

C.I. of(}~ 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BC°' Approx. Boot-p BCa Approx. Boot-p BC°' 

10 82.19 89.10 90.19 87.90 91.79 93.39 89.80 96.70 97.89 

20 83.30 88.49 90.09 88.70 93.49 94.89 92.70 97.10 98.09 

30 86.70 88.49 89.70 90.89 93.19 94.50 94.30 98.10 99.20 

40 87.89 89.89 90.39 92.10 94.89 95.20 95.89 97.80 98.89 
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Table 5.6: Estimated coverage probabilities based on 999 simulations when 01 = 20, 


02 = 25, O~ = 9, O~ = 14 and n = 20 


C.I. of fh 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 80.89 86.20 87.69 85.19 92.20 92.79 89.89 97.05 97.70 

20 82.30 88.39 90.20 87.10 94.49 95.55 91.10 98.20 98.49 

30 83.10 89.10 90.69 89.29 94.59 95.69 93.20 98.20 98.89 

40 87.10 88.19 90.10 90.89 94.69 95.20 95.10 98.30 99.20 

C.I. of 62 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 78.49 89.40 91.19 84.10 93.29 93.79 88.39 7.10 97.30 

20 80.79 89.40 91.30 86.89 94.59 95.80 90.69 98.10 98.49 

30 81.80 89.79 91.80 89.70 94.69 96.30 92.70 98.30 98.60 

40 85.70 89.19 90.79 90.20 94.19 95.29 94.30 98.50 98.89 

C.I. of (}~ 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 77.39 85.28 86.89 81.39 88.39 90.50 86.49 93.69 94.09 

20 78.89 87.79 90.10 85.10 90.79 93.09 88.70 94.80 95.39 

30 80.19 87.10 89.90 85.79 91.90 94.29 91.30 96.60 97.40 

40 82.30 87.89 90.59 86.19 92.99 95.09 93.60 96.20 97.20 

C.I. of(}~ 903 C.I. 953 C.I. 993 C.I. 

w Approx. Boot-p BCa Approx. Boot-p BCa Approx. Boot-p BCa 

10 79.39 86.69 87.19 82.39 90.69 91.79 85.19 94.79 95.19 

20 79.88 86.99 88.69 84.99 90.79 92.20 87.20 93.79 95.09 

30 81.79 87.39 88.10 86.39 91.79 94.59 90.89 95.89 96.50 

40 84.20 88.29 90.40 88.20 91.80 93.389 92.89 96.60 97.40 
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Table 5.7: Confidence intervals for 01, 02, O~ and O~ when n = 35, W = 15 

C.I. for 01 

Method 903 953 993 

Approx C.I. (8.01, 31.24) (5.78, 33.47) (1.43, 37.82) 

Boot-p C.I. ( 6.32, 32.61) (5.50, 37.60) (4.29, 47.78) 

BC0 C.I. (8.38, 39.49) (6.62, 42.38) ( 4.93, 47.92) 

C.I. for 02 

Method 903 953 993 

Approx C.I. (12.55, 62.96) (7.72, 67.79) (O*, 77.23) 

Boot-p C.I. (10.06, 78.90) (8.64, 95.92) (5.80, 132.60) 

BC0 C.I. (14.81, 99.59) (10.64, 111.90) (7.08, 139.44) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. (0.48, 6.67) (O*, 7.26) (O*, 8.42) 

Boot-p C.I. (1.22, 10.70) (1.02, 15.50) (0.45, 33.03) 

BC0 C.I. (1.71, 21.15) (1.44, 33.03) (1.05, 43.26) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. (1.23, 9.53) (0.44, 10.33) (O*, 11.88) 

Boot-p C.I. (2.29, 12.52) (2.10, 15.78) (1.53, 26.21) 

BC0 C.I. (2.83, 19.97) (2.50, 26.01) (2.10, 31.16) 

O* stands for a non-positive number 
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Table 5.8: Confidence intervals for (}i, ()2 , ()~ and ()~ when n = 35, W = 25 

C.I. for ()1 

Method 903 953 993 

Approx C.I. (11.59, 38.61) (9.00, 41.20) (3.95, 46.26) 

Boot-p C.I. (13.49, 43.09) (11.52, 48.03) (8.35, 66.01) 

BCa. C.I. (15.22, 46.31) (13.06, 51.13) (8.92, 66.01) 

C.I. for () 2 

Method 903 953 993 

Approx C.I. (13.59, 47.38) (10.35, 50.62) ( 4.03, 56.94) 

Boot-p C.I. (16.05, 52.63) (13.59, 61.15) (8.95, 84.38) 

BCa. C.I. (17.12, 55.05) (14.55, 62.74) (8.95, 82.59) 

C.I. for ()~ 

Method 903 953 993 

Approx C.I. (1.55, 10.15) (0.72, 10.97) (O*, 12.58) 

Boot-p C.I. (2.95, 12.97) (2.39, 16.83) (1.96, 26.56) 

BCa. C.I. (3.18, 15.94) (2.84, 19.19) (2.16, 31.55) 

C.I. for ()~ 

Method 903 95% 99% 

Approx C.I. (1.82, 11.20) (0.92, 12.10) (O*, 13.85) 

Boot-p C.I. (3.45, 12.62) (3.19, 15.14) (2.58, 20.62) 

BCa. C.I. (3.94, 15.87) (3.53, 19.50) (3.14, 23.75) 

O* stands for a non-positive number 

127 



Table 5.9: Confidence intervals for (Ji, 02 , O~ and O~ when n = 15, W = 15 

. 

C.I. for 01 

Method 903 953 993 

Approx C.I. 

Boot-pC.I. 

BC0 C.I. 

(O*, 44.08) 

( 4.16, 60. 72) 

(6.49, 87.37) 

(O*, 48.72) 

(3.67, 72.11) 

(5.25, 132.06) 

(O*, 57.81) 

(2.80, 134.65) 

(3.75, 143.93) 

C.I. for 02 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

(O*, 73.93) 

(5.23, 79.81) 

(15.86, 146.44) 

(O*, 81.35) 

( 4.32, 103.05) 

(12.12, 146.44) 

(O*, 95.85) 

(2.70, 138.73) 

(7.52, 146.44) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

(O*, 12.06) 

(0.81, 23.15) 

(1.24, 28.96) 

(O*, 13.44) 

(0.53, 28.96) 

(0.84, 38.68) 

(O*, 16.12) 

(0.19, 64.40) 

(0.28, 71.03) 

C.I. for O~ 

Method 903 953 993 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

(O*, 24.06) 

(1.26, 25.21) 

(3.28, 46.80) 

(O*, 26.77) 

(0.87, 33.52) 

(2.53, 61.58) 

(O*, 32.06) 

(0.25, 47.14) 

(1.33, 81.85) 

O* stands for a non-positive number 
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Table 5.10: Confidence intervals for 01, 02 , O~ and O~ when n = 15, W = 25 

Method 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

Method 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

Method 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

Method 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

C.I. for 01 

903 953 

(2.26, 40.36) (O*, 44.01) 

(7.62, 48.08) (6.42, 62.07) 

(8.95, 61.91) (7.66, 69.76) 

C.I. for 02 

903 953 

(1.16, 66.96) (O*, 73.27) 

(10. 72, 84. 26) (7.99, 97.84) 

(14.30, 103.11) (11.49, 120.44) 

C.I. for O~ 

903 953 

(O*, 17.37) (O*, 19.26) 

(1.67, 24.84) (0.97, 31.50) 

(2.81, 41.66) (2.11, 60.01) 

C.I. for O~ 

903 953 

(O*, 19.54) (O*, 21.53) 

(2.84, 22.17) (2.32, 26.46) 

(3.97, 28.50) (3.32, 36.20) 

993 

(O*, 51.15) 

( 4.23, 102.36) 

(5.07, 105.49) 

993 

(O*, 85.59) 

(5.60, 139.78) 

(6.89, 143.95) 

993 

(O*, 22.95) 

(0.28, 67.70) 

(0.91, 85.88) 

993 

(O*, 25.41) 

(0.96, 39.83) 

(2.25, 49.26) 

O* stands for a non-positive number 
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Chapter 6 

Exact Analysis under Type I 

Censoring with Partial Information 

on Component Failures 

6.1 Introduction 

In this Chapter, we consider a two-component system failure model in the case of 

Type-I censored data. The information of the censored systems which have only one 

component failed at the end of the experiment is incorporated as well. We then obtain 

the MLEs of the parameters assuming the lifetimes to be exponentially distributed. 

The exact distributions of the MLEs of the parameters are derived by using the con­

ditional moment generating function approach. Construction of confidence intervals 

for the model parameters are discussed by using the exact conditional distributions, 

asymptotic distributions, and two parametric bootstrap methods. The performance of 
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these four confidence intervals, in terms of coverage probabilities are assessed through 

Monte Carlo simulation studies. Finally, examples are presented to illustrate all the 

methods of inference discussed here. 

6.2 Model Description and MLEs 

Consider the following simple system failure model: n identical systems are placed 

in a life test and each system has two components. Assume that the experiment 

continues up to a pre-fixed time W. Before the time W, a total of D (D ~ n) systems 

fail. Let Xi and Yi (i = 1, ... , n) represent the lifetimes of Components 1 and 2, 

respectively. If Zi = max(Xi, Yi) (i = 1, ... , n), the system i fails at time Zi. Let 

Zi:n < · · · < Zn:n < W be the corresponding ordered failure times. By time W, 

we observe D systems with complete destruction, D' systems with only one failed 

component and n - D - D' systems which are completely censored. Among the D 

systems, there are D 1 systems in which Component 1 failed first and D2 systems in 

which Component 2 failed first, with Di + D 2 = D. Among the D' systems, there 

are D~ systems in which only Component 1 failed and D; systems in which only 

Component 2 failed, with D~ + D~ = D'. The data from the two-component series 

system sample under Type-I censoring with partial information is as follows: 

(Ti, 6~; Zi:n, 6n, ... , (Tb, 6~; Zn:m 6'J;), (Tn+i, 6~+i; *), ... , (Tn+D', 6~+D'; *), (*, *) 

(6.1) 

where Ti, ... , Tn denote the first observed failure times of the systems, Zi:n < · · · < 

Zn:n denote the second observed failure times of the systems, and 6's are the indicator 
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variables which denote the failed components, 8' stands for the first failed component, 

and 8" stands for the second failed component. We denote the completely censored 

systems with a "* ". 

If we let 

11 = {i E (1, 2, ... , D) : Component 1 failed first within a failed system}, 

fz = {i E (1, 2, ... , D): Component 2 failed first within a failed system}, 

I~= {i E (1, 2, ... , D') : only Component 1 failed within a system}, 

I~= {i E (1, 2, ... , D'): only Component 2 failed within a system}, 

then the likelihood function of the observed data in (6.1) is 

where 

0 < Yi < Zi, for i E fz; 

0 <Xi< W, for i EI~; 0 <Yi< W, for i EI~; 0 < Z1:D < · · · < ZD:n < W. 
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The maximum likelihood estimator ( Oi' 02' o~' o~) of 8i' 82' 8~ and 8~ is the value 

that globally maximizes (6.2), and can be obtained by taking the logarithm of (6.2) 

and equating the partial derivatives to zero. After some calculation, the corresponding 

conditional maximum likelihood estimators of the mean life times 8i, 82, 8~, 8~ are 

found to be as follows 

A LiEli Xi + LiEI2 Yi + LiEI~ xi + LiEI~ Yi + ( n - D - D')W
9i = Di+ D~ ' 

Di+ D~
8

A 

2 - 8
A 

- (D - Di)+ (D' - DD i, 

conditional on 1 S Di SD - 1, 2 SD Sn, 0 SD~ SD', 0 SD' Sn - D. 

6.2.1 The Relative Risks 

Based on the results of Section 3.2.2, in this subsection, three additional relative 

risks are derived and are presented in Theorems 6.2.1, 6.2.2 and 6.2.3. 

Lemma 6.2.1. We have 
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Proof: The proof is similar to that of Lemma 5.2.1. 

Lemma 6.2.2. We have 

P8 = Pr(inin(X, Y) ~ W) =exp {- (; + ; ) W} · (6.4) 
1 2 

Proof: The proof is straightforward. 

Theorem 6.2.1. The relative risk that Component 1 fails first within a two-component 

system, under the condition that the system has only one failed component by time W, 

is given by 

. ?7 
7f6 = Pr(X < Ylmm(X, Y) ::; W, max(X, Y) ~ W) = --­

P6 - Ps 

Proof: The result follows immediately from Lemmas 5.2.2, 6.2.1 and 6.2.2. 

Theorem 6.2.2. The relative risk that only one component fails within a two-component 

system, under the condition that the system does not fail by the time W, is 

. ~-~ 
7f7 = pr(mm(X, Y) ::; Wlmax(X, Y) ~ W) = p . 

6 

Proof: The result follows immediately from Lemmas 5.2.2 and 6.2.2. 

Theorem 6.2.3. The relative risk that the system fails by time W is then 

7rs = Pr(max(X, Y) ::; W) = 1 - P6 . 

Proof: The result follows immediately from Lemma 5.2.2. 
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Lemma 6.2.3. In a Type-I censored experiment, among the D' (0 S D' S n - D) 

systems with only one failed component by W, the number of systems due to Component 

1 Jails first, viz., D~, is a non-negative random variable with probability mass function 

(D') ( p. )j ( )D'-jPr(D~ = j) = j p .:_ Ps 1 - p 
p. 
.:_ Ps , j = 0, 1, ... , D'. 

6 6 

Proof: The proof is simply based on Theorem 6.2.1. 

Lemma 6.2.4. In a Type-I censored experiment, among then - D systems which do 

not fail by W, the number of systems in which only one component failed, viz., D', is 

a non-negative random variable with probability mass function 

D) ( p, )j (p, )n-D-j
Pr(D' = j) = (n ~ 1 - p: p: , j = 0, 1, ... , n - D. 

Proof: The proof is based on Theorem 6.2.2. 

Lemma 6.2.5. In a Type-I censored experiment, the number of systems with complete 

destruction, viz., D, is a non-negative random variable with probability mass function 

j = 0, 1, ... , n. 

Proof: The proof is based on Theorem 6.2.3. 

6.3 Conditional Distribution of the MLEs 

Using the forms of the estimators given earlier in Section 6.2, we now derive the 

exact distribution of 01 , 02 , O~ and O~ conditional on 1 S D1 S D - 1, D ~ 2, 
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0 S D~ s D' and 0 S D' s n - D. These distributions are useful in constructing 

exact confidence intervals. The derivations once again require the inversion of the 

conditional moment generating function (CMGF). 

Lemma 6.3.1. Let X1:n < · · · < Xn:n be the order statistics of a random sample of size 

n from a continuous distribution with PDF f(x) and GDF F(x). Then, the conditional 

distribution of Xi:n, given that X 1,n = x1 for i < j, is the same as the distribution of 

the i-th order statistic in a sample of size j -1 from a population whose distribution is 

obtained by truncating the distribution F(x) on the right at Xj, with PDF h(xi) = ;~::)) 

and GDF H(xi) = :~:;~,for 0 <Xi < Xj. 

Proof: See Arnold, Balakrishnan, and Nagaraja (1992, pp. 23-24). 

Lemma 6.3.2. Let X 1,n < · · · < Xn:n be the order statistics of a random sample of 

size n from a continuous distribution with PDF f(x) and GDF F(x). Let D denote 

the number of Xi:n 's that are less than or equal to some pre-fixed number W. The 

conditional joint PDF of X1:n < · · · < Xn:n, given D = d, is the same as the joint 

PDF of all order statistics of a random sample of size d from the right truncated 

distribution with PDF h(xi) = ;~~)) and GDF H(xi) =:~~~'for 0 <Xi< W, i.e. 

d 

d) - d' IT f(xi)f 1,2,. . .,d:n (X1, ... 'xd ID -- - . . F(W)' 0 S X1:n < ... < Xd:n SW. (6.5) 
i=l 

Proof: The proof is straightforward. 

D d > 2 fXd rx2 ( °"d-1 ) d d _ [1-exp(-axd)]d-lLemma 6 3 3 _ , Jo · · ·Jo exp -a L..i=l Xi X1 · · · Xd-1 - ad-l(d-l)! ·. . . ror 
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Proof: The first two steps immediately yield 

1
x
2 

( ) d [1 - exp(-ax2)]

exp -ax1 X1 = ,

1o ax 1. 

1
3x 1 [1 - exp(-ax2)]2 

- [1 - exp(-ax2)] exp (-ax2) dx2 = ;2 
0 a a x 2.1 

repeating this procedure, we obtain the required expression. 

Lemma 6.3.4. Let X 1 , ... , Xn be a random sample of size n from the exponential dis­

tribution with the mean 0, and Xi:n < · · · < Xn:n be the corresponding order statistics. 

Let D denote the number of Xi:n 's that are less than or equal to some pre-fixed number 

W. Then the moment-generating function {MGF) of Z = 2:~1 Xi, given D = d, is 

tz {1- [exp (-~)J(l-t9)r 
Mz(t) = E(e \D = d) = d" (6.6) 

{[1-exp(-~)J [1-tel} 

Proof: Since Xi:n's are ordered iid exp(O), by Lemma 6.3.2, the conditional joint PDF 

of X1:n < · · · < Xd:ni given D = d, is, 

d! ( 1 d )li,2,... ,d:n (xi, ... ,xd\D = d) = d [ ( w)Jdexp -- LXi ,0e 1 - exp -9 i=l 

0 ~ X1:n < ... < Xd:n ~ W (6.7) 
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Therefore, the MGF of Z = 2:~1 Xi, given D = d, is given by 

Mz(t) = E (e'zlD = d) = E [exp (t t,x.) ID= dl 

= 1w 1xd ···1xz exp (tt xi) fx1,... ,Xv (x1, ... , xdlD = d) dx1 · · · dxd 
0 0 0 i=l 

d! 

()d [1 - exp ( - ~)Jd 

xf t ··t exp [ ( t - ~) ( ~ x, +x,)] dx1 · · dx, 

d 


() [l - exp (- ~)]d (1 - t())d-l 


X1W [1 - exp ( t - ~) Xdr-l [exp ( t - ~) Xd] dxd 

{ 1 - [exp(-*)] (1-tll) r 
(6.8) 

{ [ 1 - exp ( - ~)J [ 1 - tel} d · 

Lemma 6.3.5. We have 

Pr(D' = d' D = d D' = d' D = dlG) = pd~,di,d',d
1 l > 1 1, ' 	 °"'N °"'N-s °"'s-1 °"'g p ' 

ws=2 wg=O wf=l wc=O c,f,g,s 

where 

G = 0 ~ D~ ~ D', 1 ~ D 1 ~ D-1, 0 ~ D' ~ N - D, 2 ~ D ~ N, 

and 

pd~,di,d',d = (d d - d d' d'N_ d' N- d - d')
1, 1, l > l > 

xPt1 (1 - p6 - Ps)d-d1 p;~ (P6 - Ps - P1 )d'-d~pf-d-d'. 
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Proof: We have 

= Pr(D~ = d~IDi =di, D = d, D' = d')Pr(Di =di ID= d, D' = d') 

xPr(D' = d'ID = d)Pr(D = d) 


= (~J7r:i(1- 7r5)d'-di (!)7rg1(1- 7r5)d-d1 


X(N; d)7rf (l - 7r7)N-d-d' (~)7r~(l - 7rs)N-d (6.9) 

from which the result follows immediately. 

Lemma 6.3.6. For the random variable Y with PDF 

>." a-i ->.y 
r(a)Y e ' 

g(y; a,>.) ~ { y>O 

0, otherwise, 

the MGF of Y +A is 

(6.10) 

Proof: The proof follows from the definition of the moment-generating function of 

the gamma distribution. 

Using Lemmas 6.3.4 - 6.3.6, we can derive the CMGF of Oi, 02 , O~ and O~ and these 

results are presented in Lemmas 6.3.7 - 6.3.9. 

Lemma 6.3. 7. The joint CMGF of Oi and 02 , conditional on 1 < Di < D - 1, 
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2 S D S N, 0 S D' S N - D and 0 S D~ S D', is given by 

N r-iN-r m r+m [W(N-r-m+l) W(N-r-m+l) ]
~~~~~Ck,r,q,m,!Xexp (k+q) t1+ (r-k)+(m-q) t2 

e e )-r-m 
x 1- --ti - t2 (6.11)( k+q (r-k)+(m-q) ' 

where 

(-l)lck 1 - -~--,--------,r,q,m, - "\;"'N "\;"'c-1 "\;"'n-c "\;"'9 p 

wc=2 L.-tf=i wg=O L-ts=O c,f,g,s 


(r+ m) ( W) [ ( W) ]-r-mx l exp - 0 z 1 - exp - Pk,r,m,q, (6.12)0 

and e= ( Oi1 + ,;2 )-i. 

Proof: The proof is similar to that of Theorem 2.3.2. 

Lemma 6.3.8. The CMGF of O~, conditional on 1 < Di s D - 1, 2 :S D :S N, 

0 :S D' :S N - D and 0 :S D~ :S D', is given by 

N r-i N-r m r-k - ( Wl ) ( e~ )-(r-k)-(m-q) 
(6.13)~~~~ t; Ck,r,q,m,l X exp (r _ k) t X 1 - r _kt , 

where 

c - (-1)!
k,r,q,m,l - _"\;"'_N__"\;"'_c--i-"\;"'_n___c "\;"'-9--p-­

L-tc=2 L.-tf=i L-tg=O L-ts=O c,f,g,s 


r - k) ( W) [ ( w) ]-(r-k)
x ( l exp - e~ l 1 - exp - e~ Pk,r,m,q· (6.14) 

Proof: The proof is similar to that of Theorem 2.3.2. 

140 




Lemma 6.3.9. The CMGF of O~, conditional on 1 < Di ::; D - 1, 2 ::; D ::; N, 

0 ::; D' ::; N - D and 0 ::; D~ ::; D', is given by 

N r-i N-r m k _ (Wl ) ( (}' )-k-q
~f;~~~Ck,r,q,m,l x exp kt x 1- ;t , (6.15) 

where 

(6.16) 

Proof: The proof once again similar to that of Theorem 2.3.2. 

Theorem 6.3.1. The PDFs of Oi, 02 , O~ and O~, conditional on 1 ::; Di ::; D - 1, 

2::; D::; N, 0::; D'::; N - D and 0::; D~::; D', are given by 

N r- i N-r m r+m k + q 
fo 1 (x) =LL LLL Ck,r,q,m,l X g(x - Tk,r,q,m,l; r + m, -(}-), (6.17) 

r=2 k=i m=O q=O l=O 

N r-i N-r m r+m _ (r _ k) + (m _ q)
fo2 (x) = LLLLLCk,r,q,m,lXg(x-Tk,r,q,m,l;r+m, (} ), (6.18) 

r=2 k=i m=O q=O l=O 

N r- i N-r m r-k k 
fo~ (x) =LL LLL Ck,r,q,m,l X g(x - Tk,r,l; (r - k) + (m - q), r; ), (6.19) 

r=2 k=i m=O q=O l=O i 

N r-i N-r m k :: k 

Jo~ (x) =LL LLL Ck,r,q,m,l X g(x - Tk,l; k + q, (j ), (6.20) 
r=2 k=i m=O q=O l=O 2 

where, 

W(N-r-m+l) _ W(N-r-m+l)
Tk l - ------- Tk l- ------­,r,q,m, - (k + q) ' ,r,q,m, - (r - k) + (m - q) ' 

Wl Wl 
Tkrl, , = --k' Tkt, = -kr- · 
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Proof: From Lemmas 6.3.7-6.3.9, using the inversion theorem of a moment-generating 

function, we obtain the conditional PDFs of 01 , 02 , O~ and O~. 

It is of interest to note here that the conditional PDFs of the MLEs are all mixtures 

of gamma densities. 

6.3.1 Properties of the MLEs 

From Theorem 6.3.1. we can derive some simple distributional properties of the 

MLEs as presented in the following theorems. 

Theorem 6.3.2. The first two moments of 01 , 02 , O~ and O~ are as follows: 

N r-1 N-r m k ( 	 )
E 0 -	 C T r+me( 1) - ~~~~L: k,r,q,m,l k,r,q,m,l + k + q ' 

r-2 k-1 m-0 q-0 l=O 

E(iJ2) = ~~~~~C ((r+m)(r+m+l)e2 
1 	 L-J L-J L-J L-J L-J k,r,q,m,l (k + )2 

r=2 k=l m=O q=O l=O q 

r+m 2 )
+2-k--(}Tk rqm l + Tkrqml ,+q ',' ' ''' ' 

N r-1 N-r m k ( 	 )
E 0 -	 C f r+m (}

( 2) - ~ f; ~~~ k,r,q,m,l k,r,q,m,l + (r _ k) + (m _ q) ' 

A2 N r-lN-r m k ((r+m)(r+m+l) 2 

E(e2 ) = ~f;~~~Ck,r,q,m,z [(r-k)+(m-q)]2e 

+2 r + m e- -2 )(r _ 	k) + (m _ q) Tk,r,q,m,l + Tk,r,q,m,l , 

N r-1 N-r m k ( ( k) + ( ) ) 
E(O~) = ~ [; ~~~ c\,r,q,m,l Tk,r,l + r - r - ;:- q e~ ' 
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E(0'2) = ~~~~~ 6 ([(r - k) + (m- q)][(r - k) + (m - q) + 1] 0,2 
1 	 L.-J L.-J L.-J L.-J L.-J k,r,q,m,l (r _ k )2 1 

r=2 k=l m=O q=O l=O 

(r - k) + (m - q) , 2 )

+2 r - k 01Tk,r,l + Tk,r,l ' 


N r-l N-r m k ( )A' 	 :::: r + q ' 
E(02) = LLLLL Ck,r,q,m,l Tk,l + -k-02 , 

r=2 k=l m=O q=O l=O 

1E(e'2)=~~~~~c ((k+q)(k+q+ )0'2 +2k+qo'T +T2 ).
2 	 L.-J L.-J L.-J L.-J L.-J k,r,q,m,l k2 2 k 2 k,l k,l 

r=2 k=l m=O q=O l=O 

The expressions for the expected values clearly reveal that 01 , 02 , O~ and o; are 

all biased estimators of 01 , 02 , O~ and o;, respectively. The expressions for the second 

moments can be used for finding standard errors of the estimates. 

We can also obtain expressions for the tail probabilities from Theorem 6.3.1. These 

expressions will be used to construct exact confidence intervals for the relevant para­

meters later in Section 6.4. 

Theorem 6.3.3. The tail probability of 01 , 02 , O~ and o; are given by 

A N r-l N-r m r+m ( k + q ) 

Pol (01 2: a) = LLLLL Ck,r,q,m,l x r r + m, -0- < a - Tk,r,q,m,l > ' 


r=2 k=l m=O q=O l=O 

(6.21) 

Po2 ( 02 2: a) = 

N r-l N-r m r+m ( ( k) + ( ) 
~£; ~~~ Ck,r,q,m,1 x r r + m, r - m - q < a - Tk,r,q,m,l >) ,

0 

(6.22) 

N r-l N-r m r+m ( k )

Po~ (e~ 2: a)= ~tr~~~ Ck,r,q,m,zXI' (r - k) + (m - q), r ~ < a-Tk,r,l > , 

(6.23) 
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Po; (0; ~a)~ t,~~t,~ck,,,q,m,l X f (k+q,;, < a-Tk,l >), (6.24) 

where, r(a, z) is the incomplete gamma ratio and < x >= 

max{x, O}. 

6.4 Confidence Intervals 

In this section, we present different methods of constructing confidence intervals 

( Cis) for the unknown parameters 01 , ()2 , ()~ and ()~. The exact Cls are based on the 

exact conditional distributions of the MLEs presented in Theorems 6.3.3. Since the 

exact conditional PDFs of the MLEs are computationally intensive, we may use the 

asymptotic distributions of the MLEs to obtain approximate Cls for ()1 , 02 , ()~ and 

()~ for large sample sizes. Finally, we also use the parametric bootstrap method to 

construct Cls for the parameters. 

6.4.1 Exact Confidence Intervals 

The same method, as described in Section 2.4.1, is used to construct exact Cis for 

the parameters 01 , 02 , ()~ and ()~. To guarantee the invertibility for the parameters, we 

assume once again that the tail probabilities of 01 , 02 , O~ and O~ presented in Theorem 

6.3.3 are increasing functions of 01, 02 , ()~ and ()~, respectively. Values of the tail 

probabilities Pp (of> ~ b) for various efl(i = 1, 2) and bare presented in Tables 6.1 
6
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- 6.4 to support this monotonicity assumption. 

Confidence Interval for 81 

A two-sided 100(1- a)% CI for 01, denoted by (BlL,Bw), can be obtained as the 

solutions of the following two non-linear equations: 

where 

( 
1 )-l1 

(}L(U) = -(}- + ~ , 
lL(U) 82 

and Ck,r,q,m,l((}1L(U), fh, o~, O~) is same as defined in Lemma 6.3.7, but with (81, 82, (}~, 

(}~)replaced by (B1L(U), 02, o~, O~). 

Confidence Interval for 82 

A two-sided 100 ( 1 - a)% CI for 02 , denoted by ( (}2L, Ow), can be obtained as the 

solutions of the following two non-linear equations: 

(6.27) 
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N r-1 N-r m r+m 

1 - i=LL LLL Ck,r,q,m,l(01, Ow, O~, O~) 
r=2 k=l m=O q=O l=O 

(r - k) + (m - q) A _ ) xr r + m, Ou < 02 - Tk,r,q,m,l > ,(6.28)( 

where 

- ( 1 1 )-l(}L(U) = -;;-- + --- ,
01 02L(U) 

and Ck,r,q,m,!(01, ()2L(U), O~, O~) is same as defined in Lemma 6.3.7, but with (01 , 02 , ()~, 

()~) replaced by (01, ()2L(U), 0~, 0~). 

Confidence Interval for e~ 

A two-sided 100(1- a)3 CI for()~, denoted by (O~L,O~u), can be obtained as the 

solutions of the following two non-linear equations: 

N r-1 N-r m r+mi = LLLLL6k,r,q,m,1(01,02,0~L,o~) 
r=2 k=l m=O q=O l=O 

( 
A )r-k

Xf (r - k) + (m - q), (}~L < (}~ - Tk,r,l > , (6.29) 

N r-1 N-r m r+m 

1- i=LL LL L Ck,r,q,m,l(fh, 02, ()~u' O~) 
r=2 k=l m=O q=O l=O 

Xf ( (r - k) + (m - q), r(}~Uk < 0~ - Tk,r,l >) , (6.30) 

where, Ck,r,q,m,1(fh, fJ2, ()~L(U)' fJ~) is same as defined in Lemma 6.3.8, but with (01, 02, 

(}~, (}~) replaced by ( 01, 02, (}~L(U), 0~) · 

Confidence Interval for 82' 
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A two-sided 100 ( 1 - a)3 CI for O~, denoted by ( O~L, O~u), can be obtained as the 

solutions of the following two non-linear equations: 

N r-1 N-r m r+m ( k )
~=LLLL L Ck,r,q,m,l(Oi, 02, o~, o;L) x r k + q, 7T < o; - Tk,l > ' 

r=2 k=l m=O q=O l=O 2L 
(6.31) 

N r-1 N-r m r+m ( k ) 
1- ~ = LLLLLCk,r,q,m,l(01,02,0~,0~u) x r k+q,(jl < o;-Tk,l > ' 

r=2 k=l m=O q=O l=O 2U 

(6.32) 

where Ck,r,q,m,l(01, 02, o~, o;L(U)) is same as defined in Lemma 6.3.9, but with (01, 02, 

o~, O~) replaced by (01, 02, o~, o;L(U)). 

Lacking a closed-form solution, we have to apply an iterative root-finding technique 

in the determination of oiL1 o:L, oiU and o:u, for i = 1, 2; the Newton-Raphson iteration 

method, for instance, was used in our study. 

6.4.2 Asymptotic Confidence Intervals 

Using the asymptotic normality of the MLEs, we can construct approximate con­

fidence intervals for 01 , 02 , O~ and O~, using the Fisher information matrix. 

Let I (01, 02, O~, O~) = (Iii (01, 02, O~, O~)), i, j = 1, 2, 3, 4, denote the Fisher informa­

tion matrix for the parameter (01, 02 , O~, O~). From Eq. (6.2), we have 

(6.33) 

(6.34) 

(6.35) 
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(6.36) 

(6.37) 

where 

Thus, the Fisher information matrix is given by 

Di+D~ er­ 0 0 0 

0 D2+D2 
6~ 

0 0 

0 0 ~ 
912 

1 
0 

0 0 0 Di 
022 

This implies that the MLEs are asymptotically mutually independent. The asymp­

totic unconditional variance of 01 , 02 , O~ and O~ can be obtained readily from the Fisher 

information matrix as 

Then, the 100(1- a)% approximate Cis for (Ji, ()2 , ()~ and()~ are obtained accordingly 

by using the same method as described in Section 2.4.2. 

6.4.3 Bootstrap Confidence Intervals 

The bootstrap methods of percentile interval and the biased-corrected and acceler­

ated (BC:r) interval are similar to those described earlier in Section 2.4.3, but with a 
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Type-I censored two-component system failure sample instead. The acceleration &fl 
in the BCo: Percentile Interval should be changed accordingly to 

D (A(') A(') )3Ej=l ei(·) - oi(j)
~(') = ,; - 1 2 
'-'i 3 , " - , , 

6 [ L:f=l (e;;\ - e;;;) rJ 2 

where e;;;l is the MLE of efl based on the original sample with the j-th observation 
D '(') 

d 1 t d . - 1 2 D d ()A(') - I:j=l 9i(j)e e e , J - , , ... , , an i(·) - D 

6.5 Simulation Study 

In this section, a Monte Carlo simulation study based on 999 replications was 

carried out in order to examine the relative risks (Section 6.5.1), and to evaluate 

the performance of the four confidence intervals in terms of coverage probabilities for 

different sample sizes (Section 6.5.2). We also present numerical examples in Section 

6.5.3 to illustrate all the inferential methods discussed here. 

6.5.1 Relative Risks 

The theoretical values of 7f1 , 7f5 , 7f6 , 7f7 and 7f8 with 01 = 20, 02 = 25 ()~ = 9, ()~ = 14 

are presented in Table 6.5 when n = 40, 20, 10 and W = 40, 35, 30, 25, 20, 15, 10. The 

results were calculated by using the expressions presented in Theorems 2.3.1, 5.2.1, 

6.2.1, 6.2.2 and 6.2.3, respectively. 

7r1 is the probability that Component 1 fails first within a system. 7f1 = 0.5556 

implies that the first failure within a system is more likely due to Component 1. 7f5 
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and 7r6 are also the probabilities that Component 1 fails first within a system, but 7r5 

is conditional on the complete destruction of the system and 7r6 is conditional on the 

incomplete destruction of the system. In most cases, 7r5 < 7r1 < 7r6 . It reflects that 

a system is more likely to survive if its Component 1 fails first in a Type-I censoring 

experiment. 

As expected, 7r1 is fixed for all sample sizes n and length of the experiment time 

W. 7r5 , 7r6 , 7r7 and 7r8 are only affected by the length of the experiment time W; they 

all increase as the experiment time W becomes longer. 7r5 = 0.5 when W = 20. This 

means that if the pre-fixed termination time is 20, Component 1 and Component 2 

have equal chance to fail first within a system with complete destruction. However, 

when the experiment time Wis longer than 20, Component 1 is more likely to fail first 

within a system with complete destruction. 

Di Di 	 D' DWe observe that as W increases, the values of 1;, D' D', n-D and r;: get closer 

to the corresponding theoretical values when n or W take on different values. This 

. d' h !!!. Di Di D' d D d t' t f dm icates t at n, D' D', n-D an r;: are goo es ima ors o 7r1 , 7r5, 7r5, 7r7 an 7rs, 

respectively. 

6.5.2 	 Coverage Probabilities and the Performance of the Con­

fidence Intervals 

The purpose of this subsection is to carry out a Monte Carlo simulation study 

based on Type-I censored sample to compare the performance of different confidence 

intervals described in Section 6.4. We once again chose the values of the parameters 

to be 01 = 20, 02 = 25, 0~ = 9 and O~ = 14. We then determined the true coverage 
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probabilities of the 903, 953 and 993 confidence intervals for all the parameters for 

different sample size (n = 40, 20, W = 10, 20, 30, 40) by all four methods described 

earlier in Section 6.4. These values, based on 999 Monte Carlo simulations and R = 999 

bootstrap replications, are presented in Tables 6.10 and 6.11. 

From these tables, we observe that, among the four methods, the exact method 

of constructing confidence intervals (based on the exact conditional distributions of 

the MLEs derived in Section 6.3) has its coverage probability to be quite close to 

the nominal level in all cases. Between the two bootstrap methods of constructing 

confidence intervals, the parametric BC0 method seems to have coverage probabilities 

to be closer to the nominal level and is therefore recommended for large sample sizes. 

As expected, the approximate method based on the asymptotic normality of the 

MLEs has its true coverage probabilities to be always less than the nominal level. 

Though the coverage probability improves for larger sample sizes, we still find it to be 

unsatisfactory even for n = 40 when the pre-fixed termination time is W = 40. This 

indicates that the confidence intervals obtained by this method will often be unduly 

narrower. We do observe that, for all the nominal levels considered, the coverage 

probabilities of the approximate method are lower for small n or W in almost all 

cases. This is because when n or W is small, there are fewer failures observed and 

so inference for the parameters is not precise. As n increases, the number of failures 

increases thus resulting in a better large-sample approximation for the distribution of 

MLEs. This means that we need a much larger sample size to rely on the asymptotic 

normality of the MLEs. We also observe that when n is small, even the parametric 

BC0 bootstrap method does not have satisfactory coverage probabilities, but is seen 

to be better than the approximate method as well as the percentile bootstrap method. 
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6.5.3 Illustrative Examples 

In this subsection, we consider two data sets with small and moderately large sample 

sizes to illustrate all the methods of inference developed in the preceding sections. 

Data Set 1: n = 35 

w Failure Times 

i5 (0.42,2; 0.58,i) 

(8.22,i; 8.36,2) 

(2.36,2; i2.54, i) 

(9.52,2; * ) 

(3.38,i; * ) 

( *; *) 

( 9.22,i; * ) 

(2.10,2; 2.76,i) 

(3.57,i; 8.56,2) 

(7.8i,2; i3.44,i) 

(i2.02,i; * ) 

(1.36,i; * ) 

(5.4i,i; * ) 

( * ; * ) 

(3.35,2; 3.66,i) 

(6.66,i; 9.25,2) 

(8.48,i; i4.i2,2) 

(5.99,i; * ) 

( *; *) 

( * ; *) 

( * ; *) 

(5.59,i; 5.893,2) 

(3.57,i; 9.37,2) 

(1.12,2; i4.43,i) 

( *; *) 

( * ; * ) 

( * ; * ) 

( *; *) 

(5.09,2; 6.39,i) 

(3.78,2; i2.37,i) 

(9.87,2; * ) 

( *; *) 

(7.76,i; * ) 

(9.52,i; * ) 

( *; *) 

25 (0.42,2; 0.58,i) 

(8.22,i; 8.36,2) 

(2.36,2; i2.54,i) 

(9.52,2; i8.20,i) 

(3.38,i; 23.23,2) 

( * ; *) 

( 9.22,i; * ) 

(2.10,2; 2.76,i) 

(3.57,i; 8.56,2) 

(7.8i,2; i3.44,i) 

(i2.02,i; i9.47,2) 

(1.36,i; 23.86,2) 

(5.4i,i; * ) 

( * ; * ) 

(3.35,2; 3.66,i) 

(6.66,i; 9.25,2) 

(8.48,i; i4.i2,2) 

(5.99,i; 20.4i,2) 

(i6.83,i; 24.06,2) 

( *; *) 

( *; *) 

(5.59,i; 5.89,2) 

(3.57,i; 9.37,2) 

(1.12,2; i4.43, i) 

(i8.71,i; 21.35,2) 

(i7.60,2; 24.i2,i) 

( i 7.32,2; * ) 

( * ; *) 

(5.09,2; 6.39,i) 

(3.78,2; i2.37,i) 

(9.87,2; i5.04,i) 

(21.93,2;22.00,i) 

(7.76,i; 24.27,2) 

(9.52,i; * ) 

( *; *) 

In the case when n = 35, had we fixed W = 15, we would have Di = 6, D2 = 8, 

D~ = 8 and D~ = 2, and we would obtain the MLEs of (}i, 02 , (}~ and e~ by using the 

methods presented in Section 6.2 to be 

ei = 21.5316, e2 = 30.1443, {)~ = 6.3100, {J~ = 14.1301. 

Instead, had we fixed W = 25, we would have Di 13, D2 = 12, D~ = 3 and 

D~ = 1, and we would obtain the MLEs to be 

ei = 23.6774, {}z = 29.1414, {)~ = 5.6654, {J~ = 12.3760. 
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Data Set 2: n = 15 

w Failure Times 

15 (2.73,2; 3.50,1) (2.68,1; 4.00,2) (4.84,1; 8.04,2) (2.32,1; 8.55,2) (1.60,2; 12.48,1) 

(0.02,2; 13.32,1) (10.33,2; 13.67,1) (11.98,2; 14.71,1) ( * ; * ) (1.48,1; * ) 

( *; *) (12.68,1; * ) ( * ; * ) ( * ; * ) (10.17,1; * ) 
25 (2.73,2; 3.50,1) (2.68,l; 4.00,2) (4.84,1; 8.04,2) (2.32,1; 8.55,2) (1.60,2; 12.48,1) 

(0.02,2; 13.32,1) (10.33,2; 13.67,1) (11.98,2; 14.71,1) ( 17.15,1; 18.74,2) (1.48,1; 20.44,2) 

( 20.16,1; *) (12.68,1; * ) ( * ; * ) ( *; *) (10.17,1; *) 

In the case when n = 15, had we fixed W = 15, we would have D1 = 3, D2 = 5, 

D~ = 3 and D~ = 0, and we would obtain the MLEs of 01 , 02 , O~ and O~ by using the 

expressions presented in Section 6.2 to be 

01 = 20.1380, 02 = 24.1656, e~ = 6.2030, e~ = 10.4730. 

Instead, had we fixed W = 25, we would have D1 = 5, D2 = 5, D~ = 3 and D~ = 0, 

and we would obtain the MLEs to be 

01 = 18.5170, 02 = 29.6273, e~ = 6.2030, e~ = 12.6577. 

To assess the performance of these estimates, we constructed 90%, 95% and 99% 

confidence intervals by using the methods described in Section 6.4. These results 

are presented in Tables 6.5-6.9. Notice that the approximate method always provide 

narrower confidence intervals in most cases. This is because the coverage probabilities 

for the approximate method are significantly lower than the nominal levels. 
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Table 6.1: Values of Po1 (01 2: b) with fh = 25, e~ = 9 and O~ = 14 

81 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.2576 0.0028 0.0000 0.0000 

9 0.8997 0.2548 0.0368 0.0059 

13 0.9894 0.6861 0.2690 0.0887 

17 0.9985 0.8914 0.5626 0.2833 

21 0.9997 0.9621 0.7637 0.4964 

25 0.9999 0.9858 0.8749 0.6648 

29 1.0000 0.9942 0.9327 0.7807 

33 1.0000 0.9975 0.9626 0.8561 

Table 6.2: Values of P62 (02 2: b) with 01 = 20, O~ = 9 and O~ = 14 

82 b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.2633 0.0036 0.0001 0.0000 

9 0.8953 0.2625 0.0424 0.0077 

13 0.9880 0.6827 0.2778 0.0980 

17 0.9982 0.8855 0.5633 0.2934 

21 0.9996 0.9581 0.7590 0.5010 

25 0.9999 0.9835 0.8690 0.6641 

29 1.0000 0.9930 0.9275 0.7769 

33 1.0000 0.9968 0.9586 0.8512 
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Table 6.3: Values of Poi (e~ ~ b) with 01 = 20, 02 = 25 and O~ = 14 

o~ b=6 b= 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.3773 0.0477 0.0102 0.0034 

9 0.8257 0.3953 0.1723 0.0846 

13 0.9388 0.6980 0.4599 0.3035 

17 0.9716 0.8451 0.6765 0.5297 

21 0.9840 0.9127 0.8033 0.6914 

25 0.9897 0.9460 0.8744 0.7941 

29 0.9927 0.9639 0.9153 0.8579 

33 0.9945 0.9742 0.9399 0.8982 

Table 6.4: Values of Po; (o~ ~ b) with 01 = 20, 02 = 25 and O~ = 9 

o~ b=6 b = 11 b = 16 b = 21 

1 0.0000 0.0000 0.0000 0.0000 

5 0.3726 0.0327 0.0052 0.0015 

9 0.8610 0.3974 0.1550 0.0681 

13 0.9626 0.7349 0.4755 0.3012 

17 0.9862 0.8841 0.7176 0.5577 

21 0.9935 0.9443 0.8476 0.7355 

25 0.9964 0.9703 0.9141 0.8409 

29 0.9978 0.9825 0.9486 0.9011 

33 0.9985 0.9889 0.9673 0.9360 
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Table 6.5: Relative risks based on 999 simulations when 01 = 20, 02 = 25, O~ = 9, 

o~ = 14 

n w ni ~ 
n 

40 40 22.26 0.56 

35 22.21 0.56 

30 22.25 0.56 

25 22.40 0.56 

20 22.46 0.56 

15 22.14 0.55 

10 22.38 0.56 

20 40 11.04 0.55 

35 11.09 0.55 

30 11.28 0.56 

25 11.27 0.56 

20 11.07 0.55 

15 11.21 0.56 

10 11.01 0.55 

10 40 5.51 0.55 

35 5.55 0.55 

30 5.57 0.56 

25 5.57 0.56 

20 5.53 0.55 

15 5.50 0.55 

10 5.52 0.55 

11"1 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

D1 

18.59 

16.98 

15.36 

13.20 

10.67 

7.53 

4.33 

9.13 

8.53 

7.73 

6.69 

5.22 

3.80 

2.33 

4.57 

4.23 

3.87 

3.32 

2.77 

2.05 

1.57 

Qi. 

D 


0.54 

0.52 

0.52 

0.51 

0.50 

0.49 

0.48 

0.53 

0.53 

0.53 

0.52 

0.50 

0.49 

0.48 

0.53 

0.52 

0.52 

0.51 

0.51 

0.49 

0.50 

11"5 

0.53 

0.53 

0.52 

0.51 

0.50 

0.49 

0.48 

0.53 

0.53 

0.52 

0.51 

0.50 

0.49 

0.48 

0.53 

0.53 

0.52 

0.51 

0.50 

0.49 

0.48 

D'1 

3.13 

4.24 

5.41 

6.85 

8.02 

9.82 

9.06 

1.65 

2.09 

2.77 

3.43 

4.06 

4.50 

4.30 

0.80 

1.06 

1.33 

1.64 

1.85 

2.09 

1.96 

D':'.::'...l 
D' 

0.73 

0.72 

0.70 

0.67 

0.66 

0.63 

0.61 

0.73 

0.71 

0.70 

0.68 

0.66 

0.64 

0.60 

0.74 

0.72 

0.70 

0.68 

0.64 

0.62 

0.59 

11"6 

0.73 

0.71 

0.69 

0.67 

0.65 

0.63 

0.60 

0.73 

0.71 

0.69 

0.67 

0.65 

0.63 

0.60 

0.73 

0.71 

0.69 

0.67 

0.65 

0.63 

0.60 

D' 
n-D 11"7 !2 

n ?rs 

0.81 0.80 0.87 0.86 

0.77 0.78 0.81 0.81 

0.74 0.74 0.74 0.74 

0.71 0.70 0.64 0.65 

0.65 0.65 0.53 0.53 

0.58 0.58 0.39 0.38 

0.48 0.48 0.23 0.22 

0.81 0.80 0.86 0.86 

0.78 0.78 0.81 0.81 

0.74 0.74 0.73 0.74 

0.70 0.70 0.64 0.65 

0.65 0.65 0.53 0.53 

0.58 0.58 0.39 0.38 

0.47 0.48 0.24 0.22 

0.80 0.80 0.87 0.86 

0.77 0.78 0.81 0.81 

0.74 0.74 0.74 0.74 

0.69 0.70 0.65 0.65 

0.64 0.65 0.55 0.53 

0.59 0.58 0.42 0.38 

0.48 0.48 0.32 0.22 
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Table 6.6: Confidence intervals for (}i, 02 , e~ and e~ when n = 35, W = 15 

C.I. for f}i 

Methods 903 953 993 

Exact C.I. (14.82, 35.32) (13.05, 37.89) (11.04, 51.44) 

Approx C.I. (12.07, 31.00) (10.25, 32.81) (6.71, 36.35) 

Boot-p C.1. (14.45, 34.02) (13.17, 35. 78) (11.34, 47.54) 

BC"' C.I. (14.31, 34.63) (12.82, 38.06) (10.89, 49.50) 

C.I. for fh 

Methods 903 953 993 

Exact C.I. (18.63, 56.36) (17.48, 65.23) (14.33, 87.22) 

Approx C.I. (14.46, 45.82) (11.46, 48.83) (5.59, 54. 70) 

Boot-p C.1. (18.84, 54.23) (17.50, 62.12) (14.39, 89.66) 

BC"' C.I. (18.71, 54.89) (17.42, 63.52) (14.39, 91.65) 

C.I. for O~ 

Methods 903 953 993 

Exact C.I. (3.35, 12.88) (2.87, 15.44) (2.43, 41. 72) 

Approx C.I. (2.64, 9.98) (l.94, 10.68) (0.56, 12.06) 

Boot-p C.I. (3.11, 12.29) (2.73, 14.97) (2.00, 26.16) 

BC"' C.I. (3.46, 14.04) (3.06, 16.98) (2.22, 37.59) 

C.I. for O~ 

Methods 903 953 993 

Exact C.I. (8.06, 28.89) (7.03, 29.63) (5.35, 57.33) 

Approx C.I. (4.64, 23.62) (2.82, 25.44) (O*, 28.99) 

Boot-p C.l. (7.78, 30.03) (7.06, 35.97) (5.36, 52.38) 

BC"' C.l. (7.69, 30.78) (6.98, 36.87) ( 4.82, 58.59) 

O* stands for a non-positive number 
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Table 6.7: Confidence intervals for 01 , 02 , O~ and O~ when n = 35, W = 25 

C.I. for 81 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCa C.l. 

(16.78, 35.63) 

(13.94, 33.41) 

(16.51, 35.34) 

(16.52, 35.57) 

(16.31, 39.42) 

(12.08, 35.28) 

(15.45, 37.25) 

(15.52, 38.75) 

(13.21, 48.23) 

(8.43, 38.92) 

(12.71, 41.39) 

(12.71, 43.69) 

C.I. for 82 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

(18.33, 45.36) 

(15.85, 42.44) 

(19.18, 43.89) 

(18.41, 44.13) 

(17.89, 50.43) 

(13.30, 44.98) 

(17.77, 47.31) 

(17.21, 49.93) 

(15.89, 68.35) 

(8.32, 49.96) 

(15.32, 65.30) 

(14.50, 67.92) 

C.I. for B~ 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCa C.l. 

(3.84, 9.11) 

(2.98, 8.36) 

(3.35, 9.07) 

(3.47, 9.26) 

(3.22, 9.88) 

(2.46, 8.87) 

(3.09, 9. 78) 

(3.14, 10.18) 

(2.67, 16.78) 

(1.45, 9.88) 

(2.44, 13.38) 

(2.56, 13.88) 

C.I. for 92 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCa C.I. 

(7.89, 20.54) 

(6. 73, 18.02) 

(7.33, 20.58) 

(7.81, 22.37) 

(6.33, 22.23) 

(5.65, 19.10) 

(6.71, 23.23) 

(7.12, 24.16) 

(5.21, 30.13) 

(3.53, 21.22) 

(5.30, 30.76) 

(5.66, 32.50) 

O* stands for a non-positive number 
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Table 6.8: Confidence intervals for 01 , 02 , O~ and O~ when n = 15, W = 15 

C.I. for 01 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-pC.I. 

BCcx C.I. 

(10.99, 44.13) 

(6.62, 33.66) 

(10.79, 40.05) 

(10.47, 42.48) 

(9.91, 52.82) 

( 4.02, 36.25) 

(9.58, 49. 70) 

(9.28, 51.29) 

(8.16, 77.97) 

(O*, 41.31) 

(8.42, 72.28) 

(7.85, 76.05) 

C.I. for 02 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BC°' C.I. 

(12.44, 57.49) 

(6.39, 41.94) 

(12.56, 56.22) 

(12.56, 56.47) 

(11.13, 70.65) 

(2.98, 45.35) 

(11.19, 67.75) 

(11.19, 69.11) 

(9.05, 111.34 ) 

(O*, 52.00) 

(9.64, 120.37) 

(9.64, 125.37) 

C.I. for O~ 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BC°' C.I. 

(2.78, 15.31) 

(1.64, 10.77) 

(2.08, 15.32) 

(2.85, 19.10) 

(2.42, 20.46) 

(0.77, 11.64) 

(1.61, 19.10) 

(2.18, 26.69) 

(1.82, 51.53) 

(O*, 13.35) 

(0.82, 32.30) 

(1.36, 36.24) 

C.I. for O~ 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BC°' C.I. 

4.48, 21.14) 

(0.53, 20.42) 

(3.78, 27.00) 

(3.90, 28.24) 

(3.94, 26.75) 

(O*, 22.32) 

(3.11, 35.51) 

(3.28, 35.51) 

(3.02, 50.92) 

(O*, 26.05) 

(1.98, 52.14) 

(1.81, 52.90) 

O* stands for a non-positive number 
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Table 6.9: Confidence intervals for 01 , 02 , O~ and O~ when n = 15, W = 25 

C.I. for 01 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCo: C.I. 

(10.98, 35.41) 

(7.75, 29.29) 

(10.28, 35.24) 

(10.11, 35.37) 

(10.01, 40.83) 

(5.69, 31.35) 

(9.02, 39.20) 

(9.06, 39.53) 

(8.41, 55.27) 

(1.65, 35.38) 

(7.55, 46.94) 

(7.55, 47.05) 

C.I. for 02 

Methods 90% 95% 99% 

Exact 

Approx C.I. 

Boot-p C.I. 

BCo: C.I. 

(15.36, 69.37) 

(7.83, 51.42) 

(15.41, 66. 73) 

(14.72, 67.77) 

(13.73, 84.98) 

(3.66, 55.60) 

(13.63, 80.30) 

(12.75, 83.34) 

(11.12, 133.76) 

(O*, 63.76) 

(10.59, 169.98) 

(9.89, 174.06) 

C.I. for O~ 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.I. 

Boot-p C.I. 

BCo: C.I. 

(3.08, 15.63) 

(1.64, 10.77) 

(2.13, 13.72) 

(2.95, 18.09) 

(2. 70, 20.45) 

(0. 77, 11.64) 

(1.45, 17.35) 

(2.35, 22.48) 

(2.06, 44.36) 

(O*, 13.35) 

(0.66, 24.38) 

(1.29, 34.23) 

C.I. for O~ 

Methods 90% 95% 99% 

Exact C.I. 

Approx C.l. 

Boot-p C.I. 

BCo: C.I. 

(6.77, 23.56) 

(3.35, 21.97) 

(5.89, 28.89) 

(6.16, 29.48) 

(6.10, 27.64) 

(1.56, 23. 75) 

(5.01, 32.34) 

(5.30, 33.40) 

(4.97, 39.71) 

(O*, 27.24) 

(3.57, 54.41) 

(3.75, 54.85) 

O* stands for a non-positive number 
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Table 6.10: Estimated coverage probabilities based on 999 simulations when 81 = 20, 82 = 25, 8~ = 9, 8~ 14 and 

n=40 

I-' 
O'l 
I-' 

C.I. of 61 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa 

10 88.10 79.28 84.18 84.68 93.99 84.10 88.09 90.89 97.89 88.10 94.09 95.89 

20 91.20 81.38 91.29 92.59 94.59 88.20 93.29 96.00 98.30 89.09 97.90 98.70 

30 90.69 85.59 89.09 89.69 94.89 89.09 95.50 95.40 98.89 91.00 98.40 99.00 

40 90.59 86.19 89.89 90.29 95.10 90.99 93.79 94.59 99.20 92.09 99.10 99.20 

C.I. of 62 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa 

10 89.10 80.68 84.58 84.98 94.30 86.59 91.49 93.99 98.20 88.59 94.89 95.99 

20 89.99 83.39 88.10 90.99 94.89 90.39 94.89 96.10 98.90 90.90 98.20 99.30 

30 89.90 85.09 88.19 89.39 95.60 90.10 93.39 94.29 99.20 92.00 98.60 98.90 

40 90.39 86.79 88.59 90.79 95.10 91.59 93.39 95.10 99.00 93.70 99.10 99.10 

C.I. of 6~ 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa 

10 88.60 79.58 82.58 83.48 94.40 87.40 92.69 94.79 98.20 87.88 92.29 93.39 

20 89.70 84.79 88.89 91.59 95.60 91.39 93.39 95.60 98.10 91.10 98.80 99.30 

30 90.10 85.79 89.29 92.59 95.79 91.89 93.89 95.70 99.10 93.00 98.70 99.20 

40 89.90 86.09 89.99 90.89 96.00 90.99 93.79 95.20 98.80 94.00 97.60 98.30 

C.I. of 6~ 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa Exact Approx. Boot-p BCa 

10 88.90 80.39 84.38 84.38 94.30 87.90 91.79 93.39 98.80 87.59 90.99 91.79 

20 89.10 85.10 89.99 90.79 96.00 91.29 94.69 95.70 98.79 95.30 98.70 99.10 

30 89.79 86.00 90.09 91.99 95.40 92.79 94.59 95.80 99.20 95.60 99.40 99.70 

40 89.09 87.10 87.99 89.89 95.90 92.69 94.19 95.80 99.00 95.30 98.50 98.90 



Table 6.11: Estimated coverage probabilities based on 999 simulations when (Ji = 20, ()2 = 25, ()~ = 9, ()~ = 14 and 

n=20 

I-' 

°'l'V 

C.I. of Iii 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. 

10 88.10 76.79 81.18 81.69 94.10 82.19 89.10 90.30 98.40 85.59 88.09 90.29 

20 88.79 81.19 86.49 87.59 96.00 89.50 92.79 93.59 98.79 91.29 97.00 97.00 

30 89.99 85.10 90.69 91.99 95.79 90.39 93.89 95.40 99.20 92.70 98.30 98.80 

40 90.89 86.10 89.79 90.99 95.20 91.99 93.49 95.30 99.30 93.59 97.70 98.40 

C.I. of 92 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. 

10 88.30 77.00 82.19 82.79 94.20 83.80 86.49 87.00 98.79 86.59 88.89 89.19 

20 91.20 85.59 87.19 88.69 96.19 89.79 91.69 92.79 99.60 90.09 97.50 97.60 

30 90.30 88.79 89.39 91.59 95.70 91.19 93.89 95.60 99.10 92.10 98.40 98.80 

40 90.10 87.99 88.49 90.59 95.19 91.29 94.29 95.60 99.00 93.60 98.60 99.40 

C.I. of 9~ 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. 

10 88.90 74.59 80.19 81.49 95.19 81.30 86.20 88.10 97.10 83.88 88.29 88.39 

20 91.40 83.78 87.29 89.69 95.90 85.39 89.59 92.49 99.80 91.09 96.40 96.60 

30 90.19 85.29 87.79 91.69 96.20 89.19 93.29 96.10 99.20 93.59 97.10 97.80 

40 90.30 86.09 89.69 91.99 95.10 89.59 93.29 96.40 99.06 94.49 98.10 98.90 

C.I. of 9~ 90% C.I. 95% C.I. 99% C.I. 

w Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. Exact Approx. Boot-p BCo. 

10 88.70 76.20 81.19 82.20 94.79 81.79 87.10 88.79 97.79 84.59 88.79 88.99 

20 91.10 84.49 87.49 89.59 95.30 86.09 92.19 93.49 99.60 90.29 96.20 96.80 

30 90.30 86.49 88.49 91.59 95.70 91.29 93.29 95.39 99.10 93.49 98.50 99.00 

40 89.19 86.09 89.69 91.99 95.40 89.89 92.89 96.20 98.79 94.89 98.10 98.60 



Chapter 7 

Conclusions and Future Work 

In this thesis, we have considered the two-component system failure model when 

the observed failure time data are complete in Chapter 2, Type-II censored in Chapter 

3, Type-II censored with partial information on component failures in Chapter 4, 

Type-I censored in Chapter 5, and finally Type-I censored with partial information on 

component failures in Chapter 6. For each situation, we have obtained the MLEs of the 

model parameters 01, 02, o~, o~, and have derived their exact conditional distributions 

(when possible). Several different procedures for constructing confidence intervals have 

been discussed. Simulation studies and numerical examples have been presented to 

assess the performance of these confidence intervals and also to illustrate the methods 

developed in this thesis. 

From our simulation studies, we have observed that the exact method of construct­

ing confidence intervals (based on the exact conditional distributions of the MLEs 01 , 

02 , O~ and O~) always maintains its coverage probability at the nominal level, even 

in the case of small sample sizes. The approximate method of constructing confi­
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dence intervals (based on the asymptotic normality of the MLEs) are almost always 

unsatisfactory in terms of coverage probabilities. Between the two bootstrap meth­

ods of constructing confidence intervals, the adjusted percentile and biased-corrected 

bootstrap method (BCo: method) seems to have coverage probabilities closer to the 

nominal level in case of larger sample sizes. Hence, we recommend the use of the ex­

act method (when available) whenever possible, especially in the case of small sample 

sizes; the adjusted percentile method is recommended for at least moderately large 

sample sizes when the computation of the exact confidence interval becomes difficult; 

and the approximate method is recommended only for large sample size because of its 

computational ease as well as for having its coverage probability close to the nominal 

level when n is large (preferably over 50). 

7.1 Future Work 

Several problems that are worthy of consideration for further studies are as follows. 

In this thesis, we have considered the two-component system failure model under 

Type-I and Type-II censoring schemes with or without partial information on compo­

nent failures, assuming the lifetimes of the components to be exponentially distributed. 

One possible extension of interest will be the exact analysis of the two-component 

system failure under different censoring schemes such as: (1) progressive Type-I or 

progressive Type-II censoring, and (2) hybrid Type-I or hybrid Type-II censoring. 

Another possible extension of interest will be to consider different lifetime distribu­

tions for the components such as (1) Gamma and (2) Weibull. Therefore, in each of 

these situations, we may develop the corresponding models and discuss the determi­
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nation of MLEs of the unknown parameters. We can also discuss the construction of 

confidence intervals for the parameters and evaluate their performance by means of 

Monte Carlo simulations and illustrative examples. 

We can also extend all the methods presented in this thesis to the case of k-out-of-n 

systems, consisting of n non-identical and dependent components. A system having 

k-out-of-n structure can survive if at least k of its n components are operating; it fails 

if n - k + 1 or more components fail. Two important special cases of this model are: 

(1) k = 1 corresponding to a parallel system, and (2) k = n corresponding to a series 

system. We also need to note that, since all components start working at the same 

time, this approach may lead to a kind of redundancy called active redundancy of n-k 

components. 

In the models considered in this thesis, we only assumed that failure of one com­

ponent forces a change in the surviving component in that the mean lifetime changes 

from (Ji to ej. We do not assume any relationship between (Ji and (Jj. There may, 

however, be some situations where in X and Y, the lifetimes of the two components, 

are independent, i.e., (}1 = B~ and 02 = e~. We could, therefore, develop hypothesis 

tests for H0 : (}1 = B~, 02 = (J~ using the likelihood ratio method. The hypothesis 

H 0 is equivalent to testing whether we have a constant hazard rate if the lifetimes 

have exponential distributions. The development of suitable tests and a study of their 

power properties will certain be of interest. 

165 




Bibliography 

[1] 	 Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992), A First Course in 

Order Statistics, John Wiley & Sons, New York. 

[2] 	 Balakrishnan, N. and Cohen, A. C. (1991), Order Statistics and Inference: Esti­

mation Methods, Academic Press, San Diego. 

[3] 	 Balakrishnan, N. and Iliopoulos, G. (2008), Stochastic monotonicity of the MLE 

of exponential mean under different censoring schemes, Annals of the Institute of 

Statistical Mathematics (to appear). 

[4] 	 Block, H. W. and Savits, T. H. (1981), Multivariate classes of life distributions in 

reliability theory, Mathematics of Operations Research, vol. 6, 453-461. 

[5] 	 Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003), Exact 

likelihood inference based on Type-I and Type-II hybrid censored samples from 

the exponential distribution, Annals of the Institute of Statistical Mathematics, 

vol. 55, 319-330. 

[6] 	 Chen, S.M. and Bhattacharya, G.K. (1988), Exact confidence bound for an expo­

nential parameter under hybrid censoring, Communications in Statistics - Theory 

and Methods, vol. 16, 1857-1870. 

166 




[7] 	 Cohen, A. C. (1991), Truncated and Censored Samples: Theory and Applications, 

Marcel Dekker, New York. 

[8] 	 Cohen, A. C. and Whitten, B. J. (1988), Parameter Estimation in Reliability and 

Life Span Models, Marcel Dekker, New York. 

[9] 	 Crowder, M.J. (2001), Classical Competing Risks, Chapman & Hall, New York. 

[10] 	 Edwin, G.L. and Savage, R.I. (1954), Tables of expected value of 1/X for positive 

Bernoulli and Poisson variables, Journal of the American Statistical Association, 

vol. 49, 169-177. 

[11] 	 Efron, B. (1982), The Jackknife, the Bootstrap and other re-sampling plans, 

CBMS/NSF Regional Conference Series in Applied Mathematics, vol. 38, SIAM, 

Philadephia, PA. 

[12] 	 Efron, B. and Tibshirani, R. (1998), An Introduction to the Bootstrap, Chapman 

& Hall, New York. 

[13] 	 Freund, J.E. (1961), A bivariate extension of the exponential distribution, Journal 

of the American Statistical Association, vol. 56, 971-977. 

[14] 	 Goel, L.R. and Gupta, R. (1983), A multi-standby multi-failure mode system with 

repair and replacement policy, Microelectronics and Reliability, vol. 23, 809-812. 

[15] 	 Gross, A.J., Clark, V. A. and Liu, V. (1971), Estimation of survival parameters 

when one of two organs must function for survival, Biometrics, vol. 27, 369-377. 

[16] 	 Gumbel, E. J. (1960), Bivariate exponential distributions, Journal of the Ameri­

can Statistical Association, vol. 55, 698-707. 

167 




[17] 	 Gupta, R.D. and Kundu, D. (1998), Hybrid censoring schemes with exponential 

failure distribution, Communications in Statistics - Theory and Methods, vol. 27, 

3065-3083. 

[18] 	 Hall, P. (1988), Theoretical comparison of bootstrap confidence intervals, Annals 

of Statistics, vol. 16, 927-953. 

[19] 	 Haugaard, P. (1987), Modeling multivariate survival, Scandinavian Journal of 

Statistics, vol. 14, 291-304. 

[20] 	 Kundu, D. and Basu, S. (2000), Analysis of incomplete data in presence of com­

peting risks, Journal of Statistical Planning and Inference, vol. 87, 221-239. 

[21] 	 Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, John 

Wiley & Sons, New York. 

[22] 	 Lin, D.K., Usher, J.S. and Guess, F.M. (1993), Exact maximum likelihood es­

timation using masked system data, IEEE Transactions on Reliability, vol. 42, 

631-635. 

[23] 	 Miyakawa, M. (1984), Analysis of incomplete data in competing risks model, IEEE 

Transactions on Reliability, vol. 33, 293-296. 

[24] 	 Murthy, D. N. P. and Wilson, R. J. (1994), Parameter estimation in multi­

component systems with failure interaction, Applied Stochastic Models and Data 

Analysis, vol. 10, 47-60. 

[25] 	 Nelson, W. (1982), Applied Life Data Analysis, John Wiley & Sons, New York. 

168 




[26] 	 Sarhan, A.M. (2003), Estimation of system components reliabilities using masked 


data, Applied Mathematics and Computation, vol. 136, 79-92. 


[27] 	 Sarhan, A.M., El-Bassiouny, A.H. (2003), Estimation of components reliability 


in a parallel system using masked system life data, Applied Mathematics and 


Computation, vol. 138, 61-75. 


[28] 	 Slud, E. (1984), Multivariate dependent renewal processes, Advances in Applied 


Probability, vol. 16, 347-362. 


[29] 	 Usher, J.S. (1996), Weibull component reliability-prediction in the presence of 


masked data, IEEE Transactions on Reliability, vol. 45, 229-232. 


169 



	Structure Bookmarks

