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Abstract

A survival distribution is developed for exponential two-component systems that
can survive as long as at least one of the two components in the system function. It is
assumed that the two components are initially independent and non-identical. If one
of the two components fail (repair is impossible), the surviving component is subject

to a different failure rate due to the stress caused by the failure of the other.

In this paper, we consider such an exponential two-component system failure model
when the observed failure time data are (1) complete, (2) Type-I censored, (3) Type-I
censored with partial information on component failures, (4) Type-II censored and (5)
Type-1I censored with partial information on component failures. In these situations,
we discuss the maximum likelihood estimates (MLEs) of the parameters by assuming
the lifetimes to be exponentially distributed. The exact distributions (whenever possi-
ble) of the MLEs of the parameters are then derived by using the conditional moment
generating function approach. Construction of confidence intervals for the model pa-
rameters are discussed by using the exact conditional distributions (when available),
asymptotic distributions, and two parametric bootstrap methods. The performance
of these four confidence intervals, in terms of coverage probabilities are then assessed

through Monte Carlo simulation studies. Finally, some examples are presented to

v



illustrate all the methods of inference developed here.

In the case of Type-I and Type-II censored data, since there are no closed-form
expressions for the MLEs, we present an iterative maximum likelihood estimation
procedure for the determination of the MLEs of all the model parameters. We also
carry out a Monte Carlo simulation study to examine the bias and variance of the

MLES.

In the case of Type-II censored data, since the exact distributions of the MLEs de-
pend on the data, we discuss the exact conditional confidence intervals and asymptotic

confidence intervals for the unknown parameters by conditioning on the data observed.

Keywords: Two-component system model; maximum likelihood estimation; boot-
strap method; conditional moment generating function; exponential distribution; con-
fidence intervals; coverage probabilities; Type-I censoring; Type-II censoring; Type-I
censoring with partial information on component failures; Type-II censoring with par-

tial information on component failures.
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Chapter 1

Introduction

1.1 Historical Background

The reliability analysis of multi-component system models with different failures
has been discussed in the reliability literature. Interest typically lies in estimating the
parameters of a survival distribution in a system with several components. Goel and
Gupta (1983) assumed a system consisting of n independent components arranged in
a series configuration and the failed component can be identified and replaced by a
standby one with a constant replacement rate. Sarhan and EI-Bassiouny (2003) dis-
cussed estimations in the case of a parallel system consisting of independent but non-
identical components having complementary exponential lifetime distributions with
different parameters. Lin, Usher and Guess (1993), Usher (1996) and Sarhan (2003)
derived the maximum likelihood estimates of the parameters for the case of a 2- or
3-component series system when the lifetimes of the system components have Weibull

or exponential distribution in the case of masked system life data. Miyakawa (1984)



derived closed-form expressions for the maximum likelihood estimates of the parame-
ters in the two-component series system of exponential components. The model he
considered involves only the time to first failure. This kind of data and associated
inferential problems can also be encountered in competing risks data analysis; see
Crowder (2001). Most of these works deal with the analysis under the assumption
that the components are independently arranged in a parallel system or the failed

components are not necessarily identified.

However, assumption that the components are dependent is more realistic. For
example, in a multi-component system, the failure of one component may hasten the
failure of the remaining components in the system; or the failure of one component
may alter the failure rates of the remaining ones. In the first case, Murthy and Wilson
(1994) analyzed such failure in two-component as well as multi-component systems,
and termed it as failure interaction. They classified the interaction into two types
- natural and induced, with the former being the cause of the latter. In the second
case, Gross, Clark and Liu (1971) proposed a two-component system model in which
an individual survives as long as at least one of the two components functions. The
two components were assumed to be identical with constant failure rate Ag. If one
component fails, the failure rate of the other one changes to A;. They then assumed
a complete sample of observations and discussed the estimation of the parameters Aq

and /\1.

We also note that, if the failed components can not be identified within an experi-
ment, the inference of the unknown parameters may become difficult if not impossible.
For example, in a parametric analysis involving masked systems, although it is thought

to be more economical if one does not have to bother identifying the failed component



within a specified system, it is clear that inference will suffer from the amount of un-
certainty in the data. Similarly, for a competing risks model, full information can not
be obtained for developing inference if the system can not be observed in operation

after the failure of the first component.

We consider here a model which assesses the lifetimes of a multi-component sys-
tem assuming that the components are dependent and the failed components can be
observed within a test. We assume that the system with J components can survive
until the last failure of its components. The components within a specified system
are initially independent and non-identical with mean life times 6; (j = 1,2,...,J).
However, failure of one component alters the subsequent lifetimes of all others, in a
way that the mean lifetime of surviving components change from 6; to 6;. The bivari-
ate distribution function corresponding to such failure mechanism in a two-component
system was proposed by Freund (1961). Some key references in the area of multivari-
ate survival models are Block and Savits (1981), Hougaard (1987), Slud (1984) and
Gumbel (1960).

1.2 Bivariate Extension of the Exponential Distri-

bution

For simplicity, let us consider here that there are only two components in the
individual system. All the methods presented in this thesis can, of course, be extended

to the case of multi-component systems with J > 2, but the mathematical expressions



will be for more complicated.

We assume that X and Y are random variables representing the lifetimes of Com-
ponents 1 and 2, respectively, in a two-component system. Further, we assume that

X and Y are initially independent exponential random variables with densities

1 1
fx(z)==—exp| ——z ), >0, 6, >0,
91 61

1 1
fY(y) =5€Xp| —5 , Y > 07 02 > 0)
0, 0,

respectively, where 6; and 6, represent the mean lifetimes of Components 1 and 2,
respectively. We assume that a simultaneous failure of both components is not pos-
sible. However, failure of one component alters the subsequent lifetime of the other
component. Specifically, the mean lifetime of the surviving component changes from
8; to 8, (j = 1,2). It follows that the joint density of X and Y in such a case is [see
Freund (1961)]

ﬁexp{— (%Jré—;}z)x-%y}, 0<z<y,

0 < 6q,6,6, < oo,

frr(ey) =4 AN (1)
mexp{— (ﬁ—l—@—g)y—qm}, O<y<a,

0< 01,92,9’1 < 00.

\

All the studies in this thesis is for such a two-component system having the bivariate
distribution in (1.1). Some of the basic properties of the bivariate distribution in (1.1)

are as follows.

The joint survival function of X and Y is given by

_ 1 1 1\'f1 —(L+L-4)w—+y L 1Y (2+g)
F (L _ = = 61 "9 @ 74 Bl o, 7oy )Y ;
(@9) (91 * eg) {ele * (92 9'2) ¢



for 0 < x < y, assuming that ;—1 + % #* ei,z; correspondingly,
_ 1 1 1\'[1 —(L+L—%)y—%z 1 1\ (L4
Flay ==+~ L) Ll araop)rgs (1 1) -(&+d)-
(z,y) (914—02 9,1> {92e 1 +(91 ; e \o 78 ,

for 0 < y < z, assuming that % + 512— # o
1

Setting z = 0 in (1.2) and y = 0 in (1.3), we obtain the marginal survival functions

_ L1 AN L g (1 1\ _(g44)
F = | — —_—— = —e % —_—— 6; " 62 .
(=) (91 + 62 9'1> {9ze * (91 9'1) ¢ }’ 4

_ 1 1 1\7'f1 -2y (1 1 (k)
F = — _—— — % _—— — 9,78y )Y . 1.
) (91 - 02 ‘95) {916 T (92 9§> ° (L5)

These are mixture of two exponentials, rather than a single one. Independence of X

as

i i 1l 1 1 _ 1
and Y exists if and only if 5= and =

The expected values and variance of X and Y can be shown to be

1 1 141
9, 8, 9, T8
E(X) = : BY)=—7 :
1 (1,1 1 (1,1
07 \ 8 02 0, \ 01 02
1 2 1 1 2 1
Ztanta o7t ae T
var(X) = T\ var(Y) = 2Rt
& (+ %) # (3t %)
S S
9.0, ~ 6.0
cov(X,Y) = —2 =

=12 1=
1 (1,1
E@(E"*E)
The correlation coefficient (p) of X and Y can be obtained as the ratio of cov(X,Y")

and +/var(X)var(Y). It is of interest to note that in general —1 < p < 1. The

3

correlation coefficient approaches 1 when % — o0 and é — 00; physically speaking,

5



this corresponds to the case when the two-component system cannot function if either

component fails. The correlation coefficient approaches —% when % = 51; and % -0
and é — 0; physically speaking, this corresponds to the case when either component
becomes “almost infallible” as soon as the other one fails. This would not be a very

realistic situation.

1.3 Asymptotic Normality of the Maximum Like-

lihood Estimator

Let Xi,..., X, be i.i.d. with PDF f(z,8), 8 € Q. Suppose f(z,6) has common

support and is differentiable in #. Then the log likelihood is

1(0) =InL(6) = > In f(x,6),
i=1
and the first derivative of the log likelihood is

_ Oln L(6) _ z": Oln f(z;,6)

ve 09 00

i=1
which is called the score. The maximum likelihood estimator 6 can be found by solving
I'(8) = 0. That is,
() =o0.
We can approximate the left-hand side of this equation in a Taylor series expanding

about 6y, namely

I'(0) = 1I'(8p) + 1" (6p)(8 — 66) +--- =0 (1.6)



where we are going to ignore the higher-order terms under the regularity conditions:
(1) For every z € X, the density f(z,#) is three times differentiable with respect to
6, the third derivative is continuous in 8, and [ f(z,8)dz can be differentiated three
times under the integral sign; (2) For every 6, € (Q, there exists a positive number c

and a function M(x) ( both of which may depend on 6y ) such that

8 1In f(X, 0)
563

15M(rc)
forall z € X and 6y — ¢ < 0 < 0y + ¢ with Fp,[M(X)] < 0.

The asymptotic of I'(#) and !”(6) are given by the Central Limit Theorem and the
Law of Large Numbers. Since we can differentiate under the integral sign under the
assumption, we see that the score I’(#) is the sum of n independent random variables

, . . dln £(X,6
each with mean zero, and, consequently, with variance I(f) = E{[%P}. The
function I(6) is the Fisher Information based on one observation X. So, based on
a random sample Xi,...,X,, we will have \}% to have the limiting distribution
N(0,1) by the Central Limit Theorem. Moreover, —11”(6) converges in probability to
its expected value I(f) by the Law of Large Numbers. This implies that —771"(6)

converges in probability to 1.

If we rearrange the expansion (1.6) we get

R 1 !
6—-6 ,/nz(e)l )
- 1 /i
nIl(G) —sr@!"(0)

which has the limiting distribution N (0, 1) by Slutsky’s Theorem. Hence, we can say

that § has an approximate normal distribution with mean # and variance —=, i.e.,

ni(8)’
I71(0).
The asymptotic of multi-parameter maximum likelihood is like the one parameter

7



case. For large n and under similar regular conditions, § = (él, RPN én) has an approx-

imate normal distribution with mean 6 = (6, ...,6,) and variance I;! (6,,...,6,).

1.4 Types of Data in the Study

Censoring is frequently encountered in reliability and life-testing experiments be-
cause the experimenter has to terminate the experiment before all items have failed
due to time or cost considerations. The two most common censoring schemes are as
Type-I and Type-II censoring schemes. Some key references dealing with inference

under Type-I and Type-II censoring for different parametric families of distributions
include Lawless (1982), Nelson (1982), Cohen and Whitten (1988), Cohen (1991), and
Balakrishnan and Cohen (1991).

1.4.1 Conventional Type-I and Type-II Censored Data

Consider a life-testing experiment in which we are testing n (non-repairable) iden-
tical units taken randomly from a population. In the typical test scenario, we have a
pre-fixed time W to run the units to see if they survive or fail. The observed failure
data obtained from such an experiment are called Type-I censored data. The termi-
nation point W of the experiment is assumed to be independent of the failure times.
Another way to test is to decide in advance that you want to see exactly r (r < n)
failure times and then test until they occur. The observed failure data obtained in this

way are called Type-II censored data.



Comparing Type-I and Type-II censoring, there are advantages as well as disad-
vantages with both of them. In the case of Type-1 censoring, the advantage is that
the duration of the experiment can be controlled by the experimenter. However, the
number of observed failure times is random. If the unknown mean lifetime is not small
compared to W, few failures (even no failure) may occur before time W. This may
result in an adverse effect on the efficiency of inferential procedures based on Type-I
censoring. In the case of Type-II censoring, the advantage is that r failures will be
observed exactly which result in efficient inferential procedures. However, the termina-
tion time is unknown to the experimenter. If the unknown mean lifetime is not small,

the experimentation would result in a longer life-test.

1.4.2 Type-1 and Type-1I Censored Data with Partial Infor-

mation on Component Failures

Suppose there are n identical systems placed on a life test and that each system
has two components. Assume that the experiment continues up to a pre-fixed time W.
Before the time W, there are D observed failed systems. Under the conventional Type-
I censoring, failures that occur after W are not observed. However, at the end of the
experiment, besides D systems with complete destruction, we may observe additional
D' (say) systems which have only one failed component. In order to obtain more
information on lifetimes and get more accurate estimation of the parameters, we need
to consider those D’ failure times as well in the data. We call this type of data as
“Type-I censored data with partial information on component failures”. The number

of observed failure times before W is random, and actually equals 2D + D',



Similarly, under the conventional Type-II censoring, the experiment continues until
a total of (pre-fixed) d (d < n) systems fail. Assume that X and Y are random variables
representing the lifetimes of Components 1 and 2, respectively, in a two-component
system. If Z; = max(X,,Y;) ( = 1,...,n), the i-th system fails at time Z;, and
Lim < +++ < Zgn are the corresponding ordered failure times. Failures that occur
after Z;., are not observed. However, at time Zy.,, in addition to the d systems with
complete destruction, we may observe additional d' (say) systems which have only
one failed component. In order to get more accurate estimation of the parameters,
we need to consider those d’ failure times in the data. We call this type of data as
“Type-1I censored data with partial information on component failures”. The number

of observed failure times before Z,.,, is random now, and actually equals 2d + d'.

1.5 Scope of the Thesis

A survival distribution is developed for two-component systems that survive as
long as at least one of the two components functions. The main goal of the thesis is to
develop inference for such two-component system failure models under the conventional
Type-1 and Type-II censoring schemes and Type-I and Type-II censoring with partial

information on component failures, respectively.

In Chapter 2, we discuss the exact inference for a two-component system failure
model in the case of complete data assuming the lifetimes of the components to be
exponentially distributed. In Section 2.2, we describe the model and present the MLEs

of the model parameters. The exact conditional distributions of the MLEs are derived

10



in Section 2.3. Using these exact distributions of the MLEs, we obtain in Section
2.4 the exact conditional confidence intervals for the unknown parameters. We also
discuss the asymptotic distributions of the MLEs and the corresponding asymptotic
confidence intervals, as well as two confidence intervals based on the parametric boot-
strap method. In Section 2.5, we carry out a Monte Carlo simulation study to evaluate
the performance of these confidence intervals in terms of coverage probabilities. We

also present an example to illustrate all the methods of inference discussed here.

In Chapter 3, we discuss the exact inference for a two-component system failure
model in the case of Type-II censored data assuming the lifetimes of the components
to be exponentially distributed. In Section 3.2, we first describe the model and then
discuss the likelihood estimation of the model parameters. Since there are no closed-
form expressions for the MLEs, we present an iterative maximum likelihood estimation
procedure to determine the MLEs of the parameters. Next, in Section 3.3, we obtain
the asymptotic distributions of the MLEs and the corresponding asymptotic confidence
intervals, as well as two confidence intervals based on parametric bootstrap methods.
In Section 3.4, we carry out a Monte Carlo simulation study to examine the bias and
variance of the MLEs and also to evaluate the performance of the three confidence
intervals in terms of coverage probabilities. Numerical examples are also presented in

this section to illustrate all the methods of inference discussed here.

In Chapter 4, we discuss the exact inference for a two-component system failure
model in the case of Type-II censored data assuming the lifetimes of the components
to be exponentially distributed. The information of the censored systems which have
only one component failed at the end of the experiment is incorporated as well. In

Section 4.2, we first describe the model and present the MLEs of the model parameters.

11



Relative risks are discussed in this section as well. The exact conditional distributions
of the MLEs are derived in Section 4.3. Since the distributions of the MLEs depend on
the observed data, we obtain in Section 4.4 the exact conditional confidence intervals
and asymptotic confidence intervals, by conditioning on the data, for the unknown pa-
rameters. We also discuss two confidence intervals based on the parametric bootstrap
methods. In Section 4.5, we carry out a Monte Carlo simulation study to examine the
relative risks and also to evaluate the performance of the two parametric bootstrap
confidence intervals in terms of coverage probabilities. Numerical examples are also

presented in this section to illustrate all the methods of inference discussed here.

In Chapter 5, we discuss the exact inference for a two-component system failure
model in the case of Type-I censored data assuming the lifetimes of the components
to be exponentially distributed. In Section 5.2, we describe the model and present an
iterative maximum likelihood estimation procedure to determine the MLEs of the para-
meters. Next, in Section 5.3, we obtain the asymptotic distributions of the MLEs and
the corresponding asymptotic confidence intervals, as well as two confidence intervals
based on parametric bootstrap methods. In Section 5.4, we carry out a Monte Carlo
simulation study to examine the bias and variance of the MLEs and also to evaluate
the performance of the three confidence intervals in terms of coverage probabilities.
Numerical examples are also presented in this section to illustrate all the methods of

inference discussed here.

In Chapter 6, we discuss the exact inference for a two-component system failure
model in the case of Type-I censored data assuming the lifetimes of the components
to be exponentially distributed. The information of the censored systems which have

only one component failed at the end of the experiment is incorporated as well. In

12



Section 6.2, we describe the model and present the MLEs of the model parameters.
Relative risks are discussed in this section as well. The exact conditional distributions
of the MLEs are derived in Section 6.3. Using these exact distributions of the MLEs,
we obtain in Section 6.4 the exact conditional confidence intervals for the unknown
parameters. We also discuss the asymptotic distributions of the MLEs and the cor-
responding asymptotic confidence intervals, as well as two confidence intervals based
on the parametric bootstrap method. In Section 6.5, we carry out a Monte Carlo
simulation study to evaluate the performance of these confidence intervals in terms
of coverage probabilities. Numerical examples are also presented in this section to

illustrate all the methods of inference discussed here.

Finally, in Chapter 7, we present some concluding remarks based on the work
carried out in this thesis. Some possible directions for future research are also outlined

in this chapter.

13



Chapter 2

Exact Analysis in Complete Data

2.1 Introduction

In this chapter, we consider a two-component system failure model in the case
of complete data. We then derive in Section 2.2 the maximum likelihood estimates
(MLEs) of the parameters by assuming the lifetimes to be exponentially distributed.
In Section 2.3, the exact distributions of the MLEs of the parameters are then derived
by using the conditional moment generating function approach. Construction of con-
fidence intervals for the model parameters are discussed in Section 2.4 by using the
exact conditional distributions, asymptotic distributions, and two parametric boot-
strap methods. In Section 2.5, the performance of these four confidence intervals, in
terms of coverage probabilities, are assessed through a Monte Carlo simulation study.
Examples are also presented in this section to illustrate all the methods of inference

developed here.
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2.2 Model Description and MLEs

Consider the following simple system failure model: n identical systems are placed
in a life-test and each system has two components. The experiment continues until
the failure of all n systems are observed. We assume that X; and Y; (i = 1,...,n) are
random variables representing the lifetimes of Components 1 and 2, respectively, in
the i-th system. Among the n systems, suppose Component 1 fails first n; times and
Component 2 fails first ny times, with ny+ns = n. Let Z; = max(X;,Y;) (i =1,...,n).
Thus, the i-th system fails at time Z;, and Z;.,, < --- < Z,., are the corresponding
ordered failure times of the n systems under test. The data arising from such a two-

component system is as follows:

(T1, 815 Zim, 61)s- s (Tny 6.5 Zneny 1), (2.1)
where T3, ...,T, denote the first observed failure times in the systems, Zy.,, < --- <

Zn.n denote the final observed failure times of the systems, and ¢’ and §” are indicators
denoting the component of the first and second observed failures within the system,

respectively.

If we let

I ={ie(1,2,...,n): Component 1 fails first},

Iy={ie(1,2,...,n): Component 2 fails first},

15



the likelihood function of the observed data in (2.1) is

L(01, 92, 9;, 05) ==

1™ 111 1
2n)! Y R D o
@n) (919'2) exp{ (91+92 @)%x %Z%}

iely

1 \™ 1 1 1 1
X(egoi) exp{' (9—1+0—2——971)Zyi——9722i}, (22)

icl 1ier,

where 0 < z; < zzp fori € I1, 0 < y; < zip for i € I, and 0 < 21, < -+ < 2y < 0.

From the likelihood function in (2.2), it is immediate that, on the condition that
1<n Sn—-l, (nl’ Dien Ti+ D ien, Yl 2oien, (2 — Yl Dier, (20 — xz)l) form a jointly
complete sufficient statistic for (0y,80s,61,65). It is also evident that the MLE of 6,
does not exist if ny = 0 or ny = n, and the MLE of 8] does not exist if n; = n or
na = 0. Therefore, the MLEs of 8y, 85, 6| and 6, exist only when 1 <n; <n—1 and
may be obtained by maximizing the corresponding likelihood function in (2.2). The

MLEs thus obtained are given by

5o Zie]l T + Zie]z Yi
- I

01
n
6, — Ziell Ti + Zielz Vi = 0m )
2 — - 1
N9 n—ny
§ _ 2uien(mi =4
1 n—n 3
g _ 2ien (s =)
2 ny .

The estimates s, 6o, 8, and 8, presented above are conditional MLEs of 1, 6, 8, and

65, conditional on 1 <mn; <n — 1.
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2.3 Exact Conditional Distribution of the MLEs

We will now derive the exact marginal (conditional) distribution of the MLEs. The
derivation will require the inversion of the conditional moment generating function
(CMGF). To obtain the CMGF, we need to determine the distribution of random
variables ny, Y icp Xi+ D e, Yis Diep,(Zi — Vi) and D0, (Z; — X;) separately.

The distribution of n; is established and presented in Lemma 2.3.1.

Theorem 2.3.1. The relative risk that Component 1 fails first within a two-component

system 1is

> 1 1 1 0,
m=Pr(X <Y) /0 elexp{ (01 + 02> x} dx 510, 0<6,0, <

Proof: The proof follows easily by straight forward integration.

Lemma 2.3.1. The number of system failures due to Component 1 failing first, viz.,

ny, 18 a non-negative random variable with binomial probability mass function

. n 9\ o \"
p’b Pr(nl Z) (’L) (91_'__92) (01+02) 3 1 O’ 3 )n

Proof: The result follows immediately from Theorem 2.3.1.

From Lemma 2.3.1, we then have

Pr(ng=ill<m <n-1)= np—_ll (2.3)
21 P
Next, with S; = min(X,,Y;) (i = 1,...,n), since the minimum of two independent

exponential random variables is also distributed as exponential, 37", S; = >, Xi+

> icr, Yi is readily seen to be distributed as a Gamma(n, ;- + 3) random variable.

17



From Section 2.2, it can be easily seen that } ., (Z; — Y;) covers the situations

where Component 2 fails before Component 1, while }_._, (Z; — X;) covers the situa-

i€l
tions where Component 1 fails first. Since Z; — Y; (for ¢ € I,) is assumed to have an

exponential distribution

1 1
—expq —=w; ¢, O0<w;, 0<86,
1 A

and similarly Z; — X; (for ¢ € I;) is assumed to have an exponential distribution

1 1
glz—exp {_E’Q_wi} , 0<w;, 0<6y,

we readily have )7, ;. (Z; —Y;) to be distributed as Gamma(n —n;, §1§) and Y., (Z;—

i€l

X;) to be distributed as Gamma(n,, %)

We can then establish the following two theorems.

Theorem 2.3.2. Conditional on 1 <n; < n—1, the CMGFs of the MLEs are given

mo-Sets (LG

My () = nz_l fﬁ%’l—— {1 - _1 Z.)t}_(""') |

by

i=1 2uj=1Pj
n—1 p 12 —1
My (t) = — {1 - —?t} :
’ ; 2 =1 P !
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Proof: Let us first consider the CMGF of 6, given by

M;,(t) = B (etélu <m<n— 1)
tEiEI] TitLicl, Vi
(e " |1§n1§n—1)

n-l1 tZiEII zi+ il Vi
—ZE(@ 1 |n1:i>Pr(n1:i|1§n1§n—1)

-5 ;ulpj{ [i (511*“@15)]_1’5}%‘ .

The proofs for the other three cases proceed analogously.

From Theorem 2.3.2, upon inverting the conditional moment generating functions,
we readily derive the conditional PDFs of the MLESs, conditioned on 1 <n; <n —1,

to be as presented below in Theorem 2.3.3.

Theorem 2.3.3. Conditional on 1 < ny <n — 1, the conditional PDFs of the MLEs

are given by

= 1 1
- zr(oni (3 1d).

i=1 j=1
n—1 D; 1 1
5.(T) = ——glzn,(n=)—+=)]),
~_ (n —1)
fi0) = 3 g (win -0, 250,
a ; Zj:ll Dj 1
n—1
Di
fo’ (1}) - n— g (x7l7 ) y
? zzzl: Z] 11 J 9/
where,
I‘(:)ya 1 —Ay y > 0

g(y; o, ) =
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1s the PDF' of a gamma random variable.

It is of interest to note here that the conditional PDFs of the MLEs are indeed

mixtures of gamma densities.

2.3.1 Properties of the MLEs

From Theorems 2.3.2 and 2.3.3, we can derive some simple distributional properties

of the MLEs.

Theorem 2.3.4. The first two moments of the MLEs are given by

A nf,0, y23
E(f) = s Z

(01 +62) > i=1Pi =y

n(n + 1)0%65 iy s

E é2 == Y
( 1) (01 + 02)2 Z;L:_ll pj i=1 i
A n6’102 = Di
E@,) = _,
)= o) Sy, 2 )

. n{n + 1)6262 — P
E(8) = ——% Z
(01 + 63) Zj:l )4 =y (n




The above expressions for the expected values clearly reveal that both 0, and 6,
are biased estimators, while both é’l and 9’2 are unbiased estimators. The expressions
for the second moments can be used to find standard errors of the MLEs. Note
that, in the expressions above, the quantities within the summation sign denote the
inverse moments of positive binomial random variables. Since exact expressions are
not available, we may use the tabulated values of positive binomial random variables
presented, for example, by Edwin and Savage (1954). Since the estimators 6, and 6,
are clearly biased, tabulated values of the bias given by Kundu and Basu (2000) may

be used for bias correction, for example.

We can also obtain expressions for the tail probabilities from Theorem 2.3.3. These
expressions, presented below in Theorem 2.3.5, will be used to construct exact confi-

dence intervals later in Section 2.4.

Theorem 2.3.5. The tail probabilities of the MLEs are

n—1
Py, (é1 > b) — Z%F (nz (51;+ e%) b) ,

i=1 Zuj=1Fj

P (b20) =5 2 (-0 (54 2)1),

j=1 Pj

n-1 .

im1 2aj=1Pj

n—1 .
Py (20) =" anfilr (z é—b) ,

i=1 j=1 Dj

where (o, 2) = ﬁ [ y*tevdy (0 < z < 00) is the incomplete gamma ratio.
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2.4 Confidence Intervals

In this section, we present different methods of constructing confidence intervals
(CIs) for the unknown parameters 6;, 65, 6] and 6,. The exact CIs are based on the
exact conditional distributions of the MLEs presented in Theorems 2.3.3 and 2.3.5.
Since the exact conditional PDF's of the MLEs are computationally intensive, we may
use the asymptotic distributions of the MLEs to obtain approximate Cls for 6, 85,
67 and 65 in the case of large sample sizes. Finally, we use the parametric bootstrap

methods to construct the Cls for the parameters.

2.4.1 Exact Confidence Intervals

In order to illustrate how to construct the exact confidence intervals of the para~
meters, we take #; as an example. Determine two increasing functions of parameter

61, say c(f;) and d(6), such that for each value of 8; we have the probability

Py, (612 d(0)) =1- 3, (2.5)
Po, (B2 e(0) = 3, (2.6)
exactly. With ¢(6;) and d(;) assumed to be increasing functions, they have single-

valued inverses, say ¢=*(;) and d=1(,), respectively. Thus, the events 6; > d(6;) and

0, < d"l(él), 6, > c(0;) and 6, < c‘l(él) are equivalent, respectively, and so we have
1A o

Py (002 d7(6) = <, (2.7)

a(@gaﬂa0=1-%. (2.8)

Therefore, 6,7, = c‘l(él) is the lower bound and 6, = d‘l(él) is the upper bound for

the 100(1 — a)% confidence interval for 6;.
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Confidence Interval for 6;

Using equations (2.5)-(2.8), a two-sided 100(1—a)% CI for 6,, denoted by (811, 61v),

can be obtained as the solutions of the following two non-linear equations:

n—1 ~
3= 20 (nz (—L + Ai) 91) : (2.9)
2 Zj-—l p;j (011, 02) b1 6,

i=1

_o_ Z pz(ew’e? )r (nz (i + —91—) él) , (2.10)

i=1 ] 1 p] (91U7 02
A n éz i 91L(U) "
pi(Oro@wy, 02) = <> - . .
© v/ \birw) + 62 01wy + 02

Confidence Interval for 65

where

Similarly, a two-sided 100(1 — )% CI for 65, denoted by (62r, f2r7), can be obtained

as the solutions of the following two non-linear equations:

n-1

__Z pi(61, 0ac) )I‘(n, (n—1) (g—+i) é2>, (2.11)

i=1 J 1 py(eh 021

n-—1
o pi(61, 620) ( . (1 1 ) )
1-9= Fin(n—i)| =+ ,—)6), (2.12)
2 ZZJ 1p](91,92U) 6, O

=1
) n 92L(U) i él "
pi(01, Oory) = ( ) - . .
v/ \ b1+ O ) 01 + Oy

Confidence Interval for 6]

where

A two-sided 100(1 — a)% CI for 67, denoted by (8;;,81y), can be obtained as the

solutions of the following two non-linear equations:

& _ Z p’(91’92 )r (n —i %{Lﬁé’l) : (2.13)

i=1 ] 1 PJ(91, 92
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- Z _plinl) (n _, - Z)é’l) : (2.14)
) O

i=1 J 1 p](91a92
o é 7 é n—i
pi(91,92) = <n) = 2 = = ! = .
? 0; + 6, 01 + 05

Confidence Interval for 6,

where

A two-sided 100(1 — a)% CI for 65, denoted by (65;,6%,), can be obtained as the
solutions of the following two non-linear equations:

n—1 AA .
o (01702) < L Al)
- = E ————————1" i, =0, (2.15)
2 i=1 Zj 1201(91,02) 7

0 ,0
———Z Pi0r, 02) I‘( —,-—92> (2.16)
"6
= J 1 p](gla 02) 22U
Lacking a closed-form solution, we have to apply an iterative root-finding technique
in the determination of 6;, 6;;, 8;y and 6, for ¢ = 1, 2; the Newton-Raphson iteration

method, for instance, can be used.

It is important to mention here that our construction of the exact confidence inter-
val is based on the assumption that ¢(6;), c¢(8}), d(6;) and d(6;) are increasing functions
of 8;, 9}, i = 1,2. This assumption guarantees the invertibility of the pivotal quan-
tities. Several authors including Chen and Bhattacharyya (1988), Gupta and Kundu
(1998), Kundu and Basu (2000), and Childs et al. (2003) have all used this approach
to construct exact Cls in different contexts. This assumption implies, for 6; < 51, for

example, we have
- ~ ~ - ~ o
P, (91 > 0(91)) < P, (01 > 0(91)) =P, (91 > 0(91)) -2 (2.17)
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Therefore, Fj, (631 > b) and Fy (é; > b) are increasing functions of 6; and 6, i =1, 2,
respectively. Values of Fy, (6’1 > b) and Py (é; > b) for various 6;, 8} (i = 1,2) and b
are presented in Tables 2.1 - 2.4 which support this monotonicity. As the concerned
tail probabilities are all mixtures of gamma tail probabilities, their monotonicity can

also be established using the recent results of Balakrishnan and Iliopoulos (2008).

2.4.2 Asymptotic Confidence Intervals

Using the asymptotic normality of the MLEs, we are able to construct asymptotic

confidence intervals for 8;, 65, #] and 6, based on the Fisher information matrix.

Let I (64, 62,0,,0,) = (1 (61,04,0},05)), i,j =1,2,3,4, denote the Fisher informa-

tion matrix for the parameter (6, 65, 67, 65), where

2 p ,
I; (61,05,0},65) = —E (3 In (L(01,62,91,92))>

06,96}

01=0,02=0,,0, =0, 0, =6,

For large n; and ny and under suitable regularity conditions, the asymptotic distrib-

utions of the pivotal quantities 01\_/}%?1), 92:/%(-52), 017‘%(:’1) and 2&\—/_%_:_”2_) are all N(0,1).

Here, V;; = I7%, ¢ = 1,2,3,4, and E(éj), E(é;), j = 1,2 are all as given in Theorem

)

2.3.4. Then, the 100(1 — a)% approximate CIs for (61, 8,,87,8;) can be obtained from

the following expressions:

Pz < —1-o, (2.18)

Q
A
N
S
|

|

:

v,
I
N|Q

<zi-e | =1-¢q (2.19)

~
N
wip

<z.e|l=1l-gq (2.20)




8, — E(6)
Plze< 22— <21 a|=1-gq, 2.21
(1 <bpi ) on

respectively, where z, is the g-th upper percentile of the standard normal distribution.

From Eq. (2.2), we find

' pt 1 25; m

I 0,0, ) =—-F T T = = 2.22

11 (61, 62,6y, 65) (0% 01;) 7 (2.22)
Y na 25, n2

I 9,0, ,0 :—E T AL = = 223

22 (61, 62, 61, 6) (05 iz 2 (2:23)
o 252 oy

Iz (61,605,608 = —E [ 22 _ 222} _ 2 2.24

33( 1,2,V 2) (0,12 9,13 0,12 ( )
n 285 n

Inq (61,62,6,,65) = —E | = — == | = —, (2.25)
02 02 92

o =1I3g =1y =Ip=I53=0, (2.26)

—~

Lo=lLs=liu=In=1In=0I=13 =

where

S = ZCENLZ%,

i€l 1€l
Sy = Z(Zi - %),
icly
Sy =Y (2 — ).
i€l

Thus, the Fisher information matrix is given by

—%ooo_
20 0
0 0 2 0
o0 0 ]

26



This implies that the MLEs are asymptotically mutually independent. The as-
ymptotic unconditional variance of ;, 65, é’l and ég can be obtained from the Fisher

information matrix as

éz 92 9”/2 é/2

1 2 1 2

‘/11:_7 ‘/22:_) ‘/33:_; ‘/:14:_-
ny ny N2 n

Then, the 100(1 — )% approximate Cls for 6, 65, 8, and 6, are obtained accordingly.
1 2

2.4.3 Bootstrap Confidence Intervals

In this subsection, we present two methods to construct confidence intervals for 8,
62, 61 and 65, viz., percentile interval and the biased-corrected and accelerated (BCjy)
interval. See Efron (1982), Hall (1988), and Efron and Tibshirani (1998) for pertinent

details. To obtain these intervals, we use the following algorithm.

Percentile Interval
(1) Determine 8, 6o, 8} and é,.

(2) Generate a complete two-component system failure data set using the 6,, 6,, é{
and é’z For this data, compute the bootstrap estimates of 81, 8,, 8] and 65, namely,

é{, 675 , é’l* and é;*, by using the expressions of the MLEs presented in Section 2.2.

(3) Repeat Step 2 R times. This gives R estimates for each of the parameters 6,
8, 8, and 6.

(4) Arrange the R 0%’s, 02s, 6,*’s and g;’s in ascending order and take the (Ra/2)-
th and R(1 — «/2)-th values. Then, a 100(1 — @)% confidence interval for ; is given

by (éf[Ra/ 2 éI[R(l_a/ 2)]). Similarly, a 100(1 — &)% confidence interval for ; is given
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by (é;[ka/z]7 é;[R(l—a/Z)])’ (é’l*[Ra/Z]’ é/l*[Ra_a/Z)]) for 9, (9 [Ra/2) é’*[R(l—a/2)]) for @),

BC, Percentile Interval

The BC, interval is similar to the percentile interval except that it is corrected
for bias and for the rate of change of the SE of MLE 6 (say) with respect to the
true parameter value 6 (say); see Efron and Tibshirani (1998). The standard normal
approximation assumes that the SE of 6 is the same for all values of @, but this

assumption is not correct. The BC, interval corrects for this.

Repeat the first three steps as described for Percentile Interval. In step 4, arrange
the R 8%s, 63’s, 6;*'s and 6;*’s in ascending order. A two-sided 100(1 — )% BC,

bootstrap confidence interval of Gi(/) is then given by

NG» a(’() NG a(l-) .
(6,69 = <9§) (Rall) pOHIR 2,1>7 i=1.2,

where
NG ()
() — @ A() Zo,l: +Za (/) _ @ A() in +Z1_%
T @) T\ T ()
0 2 06 1-%

here, ®(-) is the standard normal cumulative distribution function. z, is the 100ath
percentile point of the standard normal distribution. Zg; is the bias-correction and
can be obtained directly from the proportion of bootstrap replications less than the

original estimate éfl),

ber of §* < 40
2(()1) —-(I)_ (num er ORZ <0 ’ i = 1,2,

with ®~!(.) denoting the inverse of the standard normal cumulative distribution func-
tion. z() is actually the median bias of égl)*, and 73(();-) = 0 if exactly half of the éi(l)*

values are less than or equal to éf).
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We calculate the acceleration value dz(,) by using the jackknife approach:

At acry \ 3
, X (0 -49)
Z(): J ) ) i=12

3
212
n (50 _ G0
6{ =1 (9i(-)_9i<j))]

where éf(;.) is the MLE of Hf/) based on the original sample with the j-th observation

A )
deleted’ .7 = 17 2a sy Ty and 01(()) - EJ::;,oz 2 .

2.5 TIllustrations

2.5.1 Simulation Study

To compare the performance of all the confidence intervals described in Section 2.4,
we carried out a Monte Carlo simulation study. We chose the values of the parameters
to be 6; = 20, 6, = 25, 8; = 9 and @, = 14. We then determined the true coverage
probabilities of the 90%, 95% and 99% confidence intervals for the parameters with
different sample sizes by all the methods described in Section 2.4. The results for
n = 40, 20, 10 are presented in Table 2.7. The values are based on an average over 999

bootstrap replications.

From the table, we observe that the exact method of constructing confidence inter-
vals (based on the exact conditional distributions of the MLEs derived in Section 2.3)
has its coverage probability to be quite close to the pre-fixed nominal level in all cases.
As expected, the coverage probabilities of the approximate method (based on asymp-

totic normality of the MLEs) are most often smaller than the nominal level. This
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indicates that the confidence intervals obtained by this method will often be unduly
narrower. Between the two bootstrap methods of constructing confidence intervals,
the BC, percentile interval seems to have coverage probabilities closer to the nominal
level and hence may be used in case of large sample sizes when the computation of the

exact confidence interval becomes difficult.

We notice that, when n is small, there are fewer failures observed and so inference
for the parameters are not quite precise. For the approximate method, as n increases,
the coverage probability for any parameter gets closer to the nominal value. This is
because, when n is small, fewer failures occur during the experiment time while as
n increases, the number of failures increases thus resulting in a better large-sample
approximation for the distribution of MLEs. It is important to observe that for all
the nominal levels considered, the coverage probabilities of the approximate method
are almost always lower for small sample size n. This means that we require a much
larger sample size to use the asymptotic normality of the MLEs, and in fact even for

n = 40, the approximate method does not provide close results.

Thus, based on this simulation study, we recommend the use of the exact method
for any sample size as it provides coverage probabilities quite close to the nominal
levels. The use of the parametric BC, bootstrap method can be supported for n at
least moderately large. The approximate method can be used when n is large for its
computational ease as well as for having its coverage probability close to the nominal

level when n is large (preferably over 50).
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2.5.2 Numerical Examples

In this subsection, we consider two data sets when n = 35 and n = 15. The

parameters were chosen to be §; = 20, 6, = 25, 6] = 9, 6, = 14. The data are as

follows.

Data Set 1: n =35

(0.76,2; 1.98,1)

(7.40,2; 8.87,1)

(7.13,1; 16.42,2)
(10.19,1; 19.66,2)
(22.67,1; 27.12,2)
(0.40,2; 30.89,1)
(11.18,2; 36.72,1)

(1.41,1; 2.02,2)
(10.22,1; 10.99,2)
(6.76,1; 17.52,2)
(11.45,2; 20.06,1)
(24.11,2; 28.35,1)
(30.78,1; 31.94,2)
(18.67,1; 38.32,2)

(1.51,2; 3.38,1)

(4.37,2; 11.12,1)
(17.10,2; 18.07,1)
(2.19,1; 21.78,2)
(1.15,1; 28.42,2)
(9.62,1; 33.07,2)
(34.16,1; 43.46,2)

(1.69,2; 3.99,1)

(6.32,1; 13.57,2)
(6.53,1; 18.26,2)
(20.92,2; 21.80,1)
(4.08,1; 30.03,2)
(1.30,2; 33.61,1)
(31.27,1; 43.54,2)

(5.14,2; 5.20,1)
(1.56,1; 15.25,2)
(8.25,2; 18.66,1)
(14.66,1; 24.79,2)
(4.34,1; 30.72,2)
(9.69,1; 33.93,2)
(34.76,1; 76.11,2)

Data Set 2: n =15

(2.35,2; 5.59,1)
(5.35,1; 17.82,2)
(18.77,2; 29.30,1)

(0.34,2; 6.76,1)
(15.39,2; 18.60,1)
(1.97,1; 37.25,2)

(0.76,2; 8.93,1)
(1.87,1; 20.98,2)
(10.37,1; 41.11,2)

(4.84,1; 9.60,2)
(22.74,2; 23.68,1)
(24.37,1; 60.40,2)

(4.70,1; 10.40,2)
(3.55,2; 25.58,1)
(63.54,1; 64.98,2)

For the example when n = 35, we have ny = 21 and ny = 14. Using the expressions

presented in Section 2.2, we find the MLEs of 6y, 0, 8] and 8} to be él = 18.27,

6, = 27.41, 63’1 = 9.08 and OAQ = 14.70. Similarly, for the example when n = 15, we

have n; = 8 and ny = 7, and the MLEs to be §; = 22.61, 6, = 25.84, §, = 7.79

and §), = 18.19. We then constructed the 90%, 95% and 99% confidence intervals for

the four parameters by using the four methods discussed in Section 2.4, and they are

presented in Tables 2.5 and 2.6, respectively.
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From these results, it is seen that the exact confidence intervals are wider in general
than the other intervals. It is also seen that the approximate method always provides
narrower confidence intervals since, as mentioned earlier, the coverage probability for
the approximate method is always lower than the nominal level. Furthermore, the two
bootstrap intervals for the parameters are close to the exact confidence intervals when
n = 35, while these intervals are not so satisfactory compared to the exact confidence

intervals when n = 15.
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Table 2.1: Values of P, (é1 > b) with 6, = 25, ¢ = 9 and 6}, = 14

01 b=¢6 b=11 b=16 b=21
1 0.0000 0.0000 0.0000 0.0000
5 0.1340 0.0000 0.0000 0.0000
9 0.9825 0.1300 0.0009 0.0000
13 0.9999 0.7943 0.1383 0.0076
17 1.0000 0.9819 0.6058 0.1488
21 1.0000 0.9987 0.8951 0.4911
25 1.0000 0.9999 0.9779 0.7784
29 1.0000 1.0000 0.9956 0.9195
33 1.0000 1.0000 0.9991 0.9730

Table 2.2: Values of P, (éz > b) with 6, = 20, ¢, = 9 and 8}, = 14

0, b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000

5 0.1399 0.0000 0.0000 0.0000
9 0.9803 0.1394 0.0014 0.0000
13 0.9999 0.7865 0.1503 0.0108
17 1.0000 0.9784 0.6024 0.1629
21 1.0000 0.9982 0.8850 0.4931
25 1.0000 0.9998 0.9729 0.7674
29 1.0000 1.0000 0.9939 0.9085
33 1.0000 1.0000 0.9986 0.9663
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Table 2.3: Values of Py, (ég > b) with §; = 20, 8, = 25 and 6} = 14

6} b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.1930 0.0001 0.0000 0.0000
9 0.9326 0.1715 0.0038 0.0000
13 0.9965 0.7257 0.1637 0.0130
17 0.9997 0.9453 0.5680 0.1597
21 1.0000 0.9895 0.8425 0.4681
25 1.0000 0.9977 0.9494 0.7352
29 1.0000 0.9994 0.9838 0.8840
33 1.0000 0.9998 0.9946 0.9515

Table 2.4; Values of Py, (8, > b) with 6 = 20, 6, = 25 and 8 = 9

A b=6 b=11 b=16 b=21
1 0.0000 0.0000 0.0000 0.0000
5 0.1704 0.0000 0.0000 0.0000
9 0.9552 0.1482 0.0014 0.0000
13 0.9989 0.7551 0.1403 0.0065
17 1.0000 0.9653 0.5833 0.1363
21 1.0000 0.9955 0.8740 0.4716
25 1.0000 0.9994 0.9685 0.7651
29 1.0000 0.9999 0.9924 0.9129
33 1.0000 1.0000 0.9981 0.9701
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Table 2.5: Interval estimation for 61, 62, 8] and ), in Example (n = 35)

C.I for 64

Method 90% 95% 99%
Exact C.I | (13.08, 27.01) | (12.30, 29.26) | (10.93, 34.48)
Approx C.I | (11.72, 24.83) | (10.46, 26.09) | (8.00, 28.55)
Boot-p C.I | (12.53, 25.84) | (11.49, 27.42) | (10.17, 31.61)

BC, CL | (12.83, 25.90) | (11.59, 27.58) | (10.17, 31.05)

C.I. for 6,

Method 90% 95% 99%
Exact C.I | (18.19, 44.29) | (16.90, 49.04) | (14.68, 60.56)
Approx C.I | (15.36, 39.46) | (13.05, 41.77) | (8.54, 46.28)
Boot-p C.I | (17.84, 44.20) | (16.35, 47.62) | (13.52, 66.14)

BC, CL | (17.71, 43.61) | (16.17, 46.90) | (13.46, 62.19)

C.L for 6}

Method 90% 95% 99%
Exact C.I | (6.11,15.23) | (5.66, 16.98) | (4.87, 21.44)
Approx C.L | (5.0, 13.07) | (4.32, 13.84) | (2.83, 15.33)
Boot-p C.L | (5.48, 13.46) | (4.94, 14.37) | (4.09, 16.51)

BC, CL | (6.08,14.31) | (5.47,15.51) | (4.66, 17.10)

C.L for 6,

Method 90% 95% 99%
Exact C.I | (10.60, 22.04) | (9,96, 23.92) | (8.83, 28.32)
Approx C.L | (9.42,19.98) | (8.41, 20.99) | (6.4, 22.96)
Boot-p C.I | (9.61, 20.18) | (8.95, 21.27) | (7.89, 23.58)

BC, C.L | (9,95, 20.84) | (9.37,21.63) | (8.28, 23.91)
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Table 2.6: Interval estimation for 61, 6, 6] and 6, in Example (n = 15)

C.I for 6;
Method 90% 95% 99%
Exact C.I | (13.36, 44.05) | (12.14, 50.98) | (10.13, 69.68)
Approx C.I. | (9.46, 35.76) | (6.94, 38.28) | (2.02, 43.21)
Boot-p C.L | (12.53, 42.99) | (11.16, 49.13) | (9.42, 67.33)
BC, C.L (12.76, 43.51) | (11.33, 50.32) | (9.69, 71.17)
C.I for 6,
Method 90% 95% 99%
Exact CL | (14.71, 52.83) | (13.30, 62.00) | (10.98, 87.71)
Approx C.L | (9.78,41.91) | (6.70, 44.99) | (0.68, 51.01)
Boot-p C.I | (13.24, 51.22) | (11.07, 61.89) | (9.67, 107.24)
BC, C.L (14.24, 58.09) | (12.90, 71.03) | (10.17, 118.59)
C.I for 8}
Method 90% 95% 99%
Exact CL | (4.54,17.37) | (4.07,20.89) | (3.29, 32.31)
Approx CI | (2.95,12.63) | (2.02,13.56) | (0.21, 15.37)
Boot-p C.I | (3.43,13.68) | (279, 14.91) | (1.58, 18.25)
BC, C.L (4.25, 15.66) | (3.71, 18.06) (2.84, 19.78)
C.I for 6}
Method 90% 95% 99%
Exact CI | (10.95, 37.70) | (9.92, 44.20) | (8.16, 63.78)
Approx C.I | (7.61,28.78) | (5.59, 30.80) | (1.62, 34.76)
Boot-p C.I | (9.05,29.97) | (7.65, 33.87) | (5.17, 40.02)
BCy C.L | (9.74,32.08) | (8.66,35.48) | (6.20, 42.10)
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Table 2.7: Estimated coverage probabilities based on 999 simulations with 8; = 20, 8§, = 25, 8] =9, 6, = 14

n =40 90% C.I 95% C.I. 99% C.I
parameters | Exact | Approx | Boot-p | BC, | Exact | Approx | Boot-p | BC, | Exact | Approx | Boot-p | BC,,
61 90.4 90.8 90.1 | 91.0 | 94.7 95.5 94.1 945 | 985 98.0 98.6 | 98.4
02 89.6 89.9 88.7 | 90.7 | 95.5 94.2 94.0 | 954 | 98.9 97.2 98.6 | 98.8
61 90.1 88.7 90.5 | 91.2 | 96.0 92.7 94.7 | 95.7 | 989 96.6 984 | 98.3
05 89.3 88.1 88.8 | 89.0 | 94.5 924 93.0 | 93.5 | 99.1 96.9 98.2 | 98.6
n =20 90% C.I. 95% C.I 99% C.I
parameter | Exact | Approx | Boot-p | BC, | Exact | Approx | Boot-p | BC, | Exact | Approx | Boot-p | BC,
61 90.2 90.6 88.8 | 90.3 | 94.3 94.6 934 | 94.7 | 99.2 97.3 98.5 | 99.1
02 91.6 914 90.6 | 91.8 | 95.5 94.2 94.7 | 96.2 | 99.4 97.4 99.3 | 994
61 90.8 84.8 86.4 | 89.9 | 96.1 90.6 935 | 949 | 99.3 93.6 97.3 | 98.4
0 89.0 88.4 89.6 | 90.2 | 956 89.5 926 | 943 | 99.6 95.2 974 | 98.3
n=10 90% C.I. 95% C.I. 99% C.IL
parameter | Exact | Approx | Boot-p | BC, | Exact | Approx | Boot-p | BCq, Exact Approx | Boot-p | BC,,
1 89.6 88.7 87.8 | 98.5 | 94.8 91.3 93.2 | 95.1 | 98.8 94.9 96.1 96.3
02 91.5 88.7 90.1 | 90.9 [ 94.1 91.1 92.5 | 939 | 99.0 92.9 96.2 | 96.8
A 88.9 81.9 83.9 | 87.8 | 953 82.5 88.3 | 924 | 98.3 87.1 924 | 95.5
o4 89.0 87.8 84.1 | 86.9 | 945 85.1 88.9 | 924 | 98.1 89.7 94.1 | 949




Chapter 3

Exact Analysis under Type-II

Censoring

3.1 Introduction

In this Chapter, we consider a two-component system failure model in the case of
Type-1I censored data. We then present an iterative maximum likelihood estimation
procedure to determine the MLEs of the parameters assuming the lifetimes to be
exponentially distributed. The asymptotic distributions of the ML Es are also obtained.
Construction of confidence intervals for the model parameters are discussed by using
the asymptotic distributions and two parametric bootstrap methods. The bias and
variance of the estimates as well as the performance of the three confidence intervals
in terms of coverage probabilities are assessed through Monte Carlo simulation studies.

Finally, examples are presented to illustrate all the methods of inference discussed here.
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3.2 Model Description and MLEs

Consider the following simple system failure model: n identical systems are placed
on a life-test and each system has two components. The experiment continues until a
total of d (d < n) systems fail. We assume that X; and Y; (: = 1,...,n) are random
variables representing the lifetimes of Components 1 and 2, respectively, in the i-
th system. Among the d observations, suppose Component 1 fails first d; times and
Component 2 fails first dy times, with dy +ds = d. Let Z; = max(X;,Y;) (i =1,...,n).
Thus, the i-th system fails at time Z;, and 7., < -+ < Zg,, are the corresponding
ordered failure times obtained from a Type-II censored sample from the n systems

under test. The data arising from such a two-component system is as follows:

(T, 0% Zimy 67),--s (Tuy 84y Zgm, 03), (%, %), .., (3.1)
where T, . . ., T; denote the first observed failure times in the systems, Z1.,, < -+ < Zgn

denote the final observed failure times of the systems, and ¢’ denotes the component
of the first observed failure within the system and §” denotes the component of the

(14

second observed failure within the system. We use “*” to denote the censored data.

If we let

L ={ie(1,2,...,d): Component 1 fails first},

I,={ie€(1,2,...,d): Component 2 fails first},
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the likelihood function of the observed data in (3.1) is

L(91,02,0'1,0’)

_ ( d)' Hf(x“y’ H Pr(max(X;,Y:) 2 z4n)

i=d+1
n! 1\ 11 1 1
“ian (5) {(e‘*e‘e—)ziz}
1\*® 1 1 1 1
“Ngg) Y \g7s &7 i— =z x PR (32
(929/1) p{ (91 92 0’1> gy 0’1 ;z } din ( )

where 0 < z; < zzp fori € I, 0 < y; < zg for i € I, 0 < 21, < -+ + < 2y < 00, and

1 1 1\*'/1 1 1\7‘' -
PZd:n = Pr (mam(Xu)/z) Z Zd:n) == (9_1 + 0_2 - 0—,2) (01 0—2 — 0—/) X P, (33)

where

P= = —1—+—1— = ex —lz +i i+ = = 1
0.\, "o, 0 )P\ T ) T, \e T, gy ) P\ T e
1 1 1 11
_ _ - . 4
(910; 9195*029'1)“‘){ (01 6)“"} (34)

The exact derivation of P,  is presented later in Lemma 3.2.2.

The maximum likelihood estimate (6;, 65, 8}, 85) of (61, 62, 8}, 85) is the value that
globally maximizes the likelihood function in (3.2). Taking logarithm in Eq. (3.2), we
obtain the log-likelihood function to be

lnL=—d11n01—d11n0§—(0l a al)zxz Z 2

1 2

1611
/1 1 1 1
_d21n92—d21n91—(9+0—2 e—ll)zyz—e—/lzzz
i€ly i€l
1 1 1 1 1 1
—(n — — ) =(n- — = —d)InP.
(n d)ln(01+02 9,) (n d)ln(91+92 9’)+(n d)In P. (3.5)
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Unfortunately, from (3.5), we observe that no closed-form expressions for the MLEs
exist. We need to determine the MLLEs by numerically maximizing the log-likelihood
function in (3.5). In the next subsection, an iterative procedure for the computation

of the MLEs is described.

3.2.1 Computation of the MLEs

Most iterative procedures proposed in literature strongly depend on the initial
value. The well-known linear estimates from ordinary linear regression or the esti-
mation using the method of moments is quite difficult in this context. Fortunately,
since 6; (i = 1,2) are the mean times of the first failed Component i (i = 1,2) and 6,
(i = 1,2) are the mean times of the surviving Component i (i = 1,2) starting from

the time of the first failure, the initial values for the iterative procedure can be given

to be
90 _ Zieh T+ Zielz Yi 90 — Zieh T+ Zie[z Yi
1 dl ) 2 d2 )
9 — > e, (7 — ¥i) g0 _ Yier, (7 — xi).
1 d2 ) 2 d]

Note that these estimates do not use all the information available in the sample, but

they do provide good starting values.

With these initial estimates, we could begin an iterative procedure to obtain the
MLEs, by the Newton-Raphson method, for example. Let (é&o), ééo), éll(o), é;(o)) be an
initial estimate; since In L in Eq. (3.5) is a continuous twice differentiable function,
the Newton-Raphson method updates this estimate to (é?), éél), 9'1(1), é;(l)), then this

second one is updated to (éf), ééz), 9/1(2), é;(Q)), and so on, through the iterative formula
gD = §® 1 71U (W), k=0,1,2,...,
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where
Ny Ao aey s ae\T
@ — (9%1) géj) 9/1(3) 9&(1)) :
U is the score vector and is given by

g_ (9mL 9L 9L Gk T
\ 0% 88, 86, 86y )

and J is the observed information matrix given by
J(0170279§[79/2) = (Ji'(017027911;0,2))a ’L)]: 1727

where

Y 04 L070’9179/
Jij (61, 62, 1,02):_( n (L(6;, 65, 01 2)))

0686
This iterative algorithm can be terminated by examining the convergence for each

parameter separately. The convergence criterion we applied is

max |+ —

< g, max é;(kH) — ég(k)’ < e, i=1,2,

with € chosen to be 1078.

We know that a continuous twice differentiable function of one variable is convex
(concave) on an interval if and only if its second derivative is non-negative (non-
positive) there. If its second derivative is positive (negative) then it is strictly convex
(concave). A strictly convex (concave) function will have at most one global minimum
(maximum). More generally, a continuous twice differentiable function of several vari-
ables is convex (concave) on a convex (concave) set if and only if its Hessian matrix
(the square matrix of second-order partial derivatives of a function) is positive (neg-
ative) semidefinite on the interior of the convex (concave) set. If its Hessian matrix
(H) is positive (negative) definite then the function is strictly convex (concave) and

will have global minimums (maximums) for variables.
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For this iterative method, since J = — H, the convergence of the iterative algorithm
to the MLE is dependent on the positive definiteness of the observed information
matrix. If the observed information matrix is positive definite, then it is invertible.
The Newton iterative formula is valid and the iterative algorithm converges to the
MLE. [t is clear that in some of the situations considered here in this thesis, the
Fisher information matrix turns out to be diagonal (such as on Page 26, 90 and 148)
in which case positive definiteness is immediately evident. In other cases, there are
several ways to ensure that the observed information matrix is positive definite; one,
for example, is by checking that all its eigenvalues are positive. This can be done in
our cases as we are only dealing with information matrices of dimension 4, and so given
the observed data, the eigen values of the information matrix can be all computed and

checked for positivity.

3.2.2 Relative Risks

Relative risk is of interest in survival analysis. In this subsection, the relative risk

is obtained and is presented in Theorem 3.2.1.

Lemma 3.2.1. We have
L1 1 1\ _1/1 17
91 91 92 9’2 0,2 91 92
1 /1 1 1\7! 1 /1 1\
=== 1— ==+ = =1. 3.6
5, (91+92 0'1) [ 7 (el+ez) ] (3:6)

Proof: The proof is straightforward as the identity is easily checked.
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Lemma 3.2.2. We have

1,1 1\ /1 1 1\ 4
PT(IH&X(X,Y)ZCL)—T(G—1+0—2-9—,) (@I—F'é‘;—'é,‘) XPa, (37)
2 1

where

p_i(i+i 1)ex ST NI N 1
T \e e, )P\ T \e e )P\ T
1 1 1 1 1
(o7 ) - (7 3) o) 39

Proof: We can express

Pr(max(X,Y) > a)

=1-Pr (max(X Y) <a)
1 1 1 1
1_/ / 9192 { (91 "5 02 9_'2)06—9_'22/} dudy
1 1 1 1
/ / 5o exp{ (91 + % az) Yy — ax} dydz. (3.9)

Then, the result follows by carrying out the required integration and then by using

the identity in Lemma 3.2.1.

Lemma 3.2.3. The PDF of Zy., is

.

-1

[74.(a) = > Cijrags X E

1=0 (j1,j2.43):J1+j2+js=n—d+i

1 1 1 1
- ——a) - —(=+= 1
X {Ilexp ( 92a) + Lexp ( 9361) Izexp [ (91 + 92) a] } , (3.10)
where

o N\ fd—=1I\/n—d+1i
= -1 z+]3d y
Ci i gangs = (=1) (d) ( 1 ) (j1,j2,j3 )
_ N 1 l
E_exp{ |:0,+0, + 73 (01+02>:| a}a
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1 Ji+1 1 J2 1 1 1 1 J3
L=\ a. n T~ g T /
1 1 1 —(J1+43+1) 1 1 1 —(ja+7a)
X(E*@“@) (E+£_E) B
1\ (1\** (1 1 1 1\*®
L=\ 'R ra Ty /
1 1 1 —(j1+43) 1 1 1 —(j2+73+1)
X(9_1+9_2_9_’2> (9_1+9_2_E) ’
1

1 J1 1 J2 1 1 1 1 J3+1
Iy=1{— — o _
; ( ) (92) (91 * 92) (91% 6,0, + 929’1)
)‘(j2+j3+1)

Proof: We can express [see Arnold, Balakrishnan and Nagaraja (1992)]

(@) = e (F@)* (1= P@))™™ f2(0)

d-1
T d- 1)7!1(!71 Y > (-1 (d; 1) {1-Fz(a)}" " fz(a),  (3.11)

1-Fz(a)=1-Pr(Z<a)=1- Pr(maz(X,Y) <a) = Pr(maz(X,Y) > a)

)
_Jrfr o N gel J11 1 1N g
o, \0. 6, @) °

BRIAVREE
-1 -1 L
- { e az) Graa) (g amtan) e—(q@a}
= Ay + Ag — As, (3.12)
and
fala) = 20 "852(“)) - Hl,zA1 + %Ag (011 512-) As. (3.13)

45



Then, we obtain

o

n! -~

fz4,(a) = = 1)!(.n —d)!

(=1)i (d ; 1) {A] + Ay — A} £(a)

(-1)° (d : 1) Z (njl_,;zijzl)

(J1.J2,33) 1 +j2+ja=n—d+i

LSNENRSY
Fo
(<

n!
T (d=Dln—-d)

1=0

e o 1 1 1 1

(3.14)

from which the result follows by expanding Eq. (3.14).

Lemma 3.2.4. We have

Pi=Pr(X <Y < zgy)

ISR A A A T A
6 \6 6, 6 9 \6, 6,

d—1
- Z Z Ci,jl,jz,js (Ml + M, — M3)
i=0 (j1,42,43):J1 +i2+iz=n—d+i
1 1 1 -1 d-1 , , /
+_/ 9_ + b_ Z Z Ci,jl,jz,js (Ml + M2 - M3) ) (3.15)
2 M 2 =0 (j1,52,43):51+ja+ia=n—d+i
J1,32,33)' 11 +32+73
where
(1+2 jo . . (1 1\17!
M, =1 L2 — :
A Y *0'1“3(91%
. , .
ji+1 jo+1 (1 1
My=1 4 ’
S g <01 g

i+l G, 1 1\
M;=1 22 D=+ — ,
3 3_ 7 +9,1+(33+)(91+9>]

r. . -1
y a+1l 7 . 1
= —_— 1 — —
M, Il_ A +9,1+(33+ )( +02)] ,
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B g2+ 1 1 1\]™"
M= 12{02 7 G (gag)]
My =1 +( +2) 1+i h

s 92 9' I3 0. 6,)|

Proof: We can express

P =Pr(X <Y < zgn) :/ Pr(X <Y <a)fz, (a)da

1 1 1 1
/den //9102eXp{ (91+6’ —@)x—a—}dxdyda.

Then, the result follows by carrying out the required integration.

Lemma 3.2.5. We have

Py = Pr (max(X, Y) > zd:n)
d—-1

=K Z Z Ci,jl,jz,js (Ml + Ms — M3)
=0 (j1,52,43):51+je +is=n—d-+i

d—1

+EK2 Y > Cijrjags (M7 + My — Mj)
1=0 (j1,42,43):d1+j2+js=n—d+i

_K3 Z Z CivjlijajS (M:{ + Mé - Mé) )
=0 (j1,j2.43):j1+j2 +ja=n—d-+i

where
1 1 1\
K= i ,
: (e "% 9'2)

1
6
1
6,

1 1\

K2 = (? 0, 0_'1> ’
( )“1<1+1 1)‘1<1 1+1)
6, 0, 0, 6, 6, 0.6, 0,6, " 0,0, )"

+1 jo+1 (1 1\]
M'=T J1 o4
Lo { 05 * 0 s (91+92)] ’
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' h+2 /1 1\17!
w=n[Be 2 (L )]

9, 9, 0, 6,
i o+ 1 1 1\
M//:I j_l j2 . - )
s 3[65* o P \ete)|

and M;, M!, (i=1,2,3) are defined in Lemma 3.2.4.

Proof: The proof is similar to the one in Lemma 3.2.4.

Theorem 3.2.1. The relative risk that Component 1 fails first within a two-component
system on the condition that the system fails at the end of a Type-II censored experiment

18
Py

e = Pr(X <Y|max(X,Y) < zgn) = .
1- PR

Proof: The result follows immediately from Lemmas 3.2.4 and 3.2.5.

Lemma 3.2.6. In a Type-II censored experiment, among the d (d < n) systems with
complete destruction, the number of failures due to Component 1 failing first, viz., di,

s a non-negative random variable with binomial probability mass function

NN CAYAR RS P\
Prid, = i) = 1-— =0,1,...,d.
T( 1 .7) (_7) (1—P2) ( 1—P2) y J 3 4y 3

Proof: The result follows immediately from Theorem 3.2.1.
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3.3 Confidence Intervals

In this section, we present two different methods of constructing confidence intervals
(Cls) for the unknown parameters 6y, 65, 6] and ;. First, we use the asymptotic
distributions of the MLEs to obtain approximate Cls for the parameters in case of
large sample sizes. Then, we use the parametric bootstrap method to construct CIs

for the parameters.

3.3.1 Approximate Confidence Intervals

In the last section, we noted that closed-form expressions for the MLEs do not exist.
However, we can use the asymptotic normality of the MLEs to construct approximate

confidence intervals for the parameters.

The computation of the approximate confidence intervals is based on the observed
Fisher information matrix, which is obtained by taking negative of the second deriv-
atives of the log-likelihood function in (3.5) and then evaluating them at the MLEs.

Specifically, we have
92InL 8%InL 8*InL 9%InlL
967 00,86, 00,86, 06,96

82InL 2InlL 2InL 2InL
80200 002 80,00, 80,00
Iobs = - 20 2 27 2972 (318)
82In L 92InL 2InlL 8InL
50700, 00,06, 007 06,00,

8InL &InL O*InL 9%InL
/ ! Y / 2 a ~ ~ Py
56,00, 96,96, 06,06, 0L 610105620, 8! 0,0},

and the inverse of this observed Fisher information matrix in (3.18) gives an estimate
of the variance-covariance matrix of the MLEs, which in turn can be used to con-
struct approximate confidence intervals for the parameters. We shall make use of the

asymptotic normality of the MLEs to obtain these confidence intervals.
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Thus, if
V(el; 927 jllv 6;) = I(;)s (Uu(gla 92, 01, 02)) Z’] = ]-a 2’ 3747

is the variance-covariance matrix, the 100(1 — )% confidence intervals for 6y, 8, 6],
6, are given by
é1 x z1-g \/V_ll >
0, + Zi-g V'V,
é’l == 21-2 \/@ )
é’g == 21-2 \/742 )

where z, is the g-th upper percentile of the standard normal distribution. This method

(3.19)

may work satisfactorily when n is large, but may not be satisfactory for small sample

sizes.

3.3.2 Bootstrap Confidence Intervals

The bootstrap methods of percentile interval and the biased-corrected and acceler-
ated (BC,) interval are similar to those described in Section 2.4.3, but with a Type-II
censored two-component system failure sample generated instead. The acceleration
&) in the B(C,, interval should be changed to

K2
> (9< 0 )3
~() i) i)

Oli - 3 7/ - 1, 2,
a (60 _ a0\
6 |:Ej=l (ez'(-) - oi(j)) ]

where 958) is the MLE of 9(,) based on the original sample with the j-th observation

deleted, j =1,2,...,d, and 9() i 1(3)
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3.4 Simulation Study

In this section, a Monte Carlo simulation study based on 999 replications was carried
out to examine the bias, variance and relative risks (Section 3.4.1), to evaluate the
performance of the three confidence intervals in terms of coverage probabilities for
different sample sizes (Section 3.4.2), and to present numerical examples to illustrate

all the inferential methods discussed here (Section 3.4.3).

3.4.1 Bias, Variance and MSE of the MLEs

It is desirable to examine the bias and variance of the MLEs as they are not explicit
estimators. For this purpose, we carried out a simulation study to evaluate the bias,
mean squared error (MSE), mean and variances of the MLEs, and also the average
of the asymptotic variance of the estimators computed from the observed information

matrix. These results for different n and d are presented in Tables 3.1 - 3.3.

From the tables, we observe that, as n increases, the bias of MLEs decrease, as one
would expect, with the bias tending to zero as n becomes large. Similarly, for the same
sample size n, as d decreases, the bias increases. The change in d has more effect on
the bias of the MLEs. The same behavior is also observed in MSE of the MLEs. This
is so because when d is small, there will be fewer failures observed and so inference for

601, 05, 67 and 6, is not quite precise.

The means and variances of the estimates of the parameters over 999 were com-
puted as well. We observe that, for large sample sizes, the means of the MLEs of

the parameters 0y, 62, 9] and 6} are quite close to the true values, viz., 20, 25, 9, 14,
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respectively. However, this is not true for smaller sample sizes. The variances of the
MLESs can also be compared with the average approximate variance computed from the
observed information. Once again, the variance and the average approximate variance

are closer for large values of n and d, but not close for smaller sample sizes.

The theoretical values of 7; and my, presented in Table 3.4, were computed from the
formulas in Theorems 2.3.1 and 3.2.1, respectively. Both 7 and w3 are the probabilities
that Component 1 fails first within a system. But, 7 is conditional on the complete
destruction of the system. m; = 0.5556 implies that the first failure of a system is
more likely due to Component 1. However, m < 7r; in all the cases. It reflects that the
probability that Component 1 fails first within a system is weakened on the condition

that the system has a complete destruction in a Type-II censoring test.

From Table 3.4, we observe that w5 is more affected by the change of n and d. Asn
or d increases, the relative risk increases. This is because, when n or d is small, fewer
failures occur during the experiment time. As n or d increases, the number of failures

increases thus resulting in larger relative risks.

In order to check whether 7; and m can be estimated by 7! and 4 respectively,

d?
the results of the average of 999 replications are presented in Table 3.4 as well. We
observe that the table values get closer to the corresponding theoretical values when

n or d take different values. This indicates that “* and %l are good estimators of m;

and 7y, respectively.
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3.4.2 Coverage Probabilities and the Performance of the Con-

fidence Intervals

To compare the performance of different confidence intervals described in Section
3.3, we conducted a Monte Carlo simulation study. We once again chose the values
of the parameters to be 6, = 20, 6, = 25, 8] = 9 and 6, = 14. We then determined
the true coverage probabilities of the 90%, 95% and 99% confidence intervals for the
parameters for different sample sizes by all three methods described earlier in Section
3.3. The results for n = 40, 20 are presented in Tables 3.5 and 3.6, and they are based

on an average over 999 bootstrap replications.

From the tables, we observe that, among the three methods, the parametric BC,
bootstrap method of constructing confidence intervals has its coverage probabilities to

be closer to the nominal level and is therefore recommended for large sample sizes.

As expected, the coverage probabilities of the approximate method based on as-
ymptotic normality of the MLEs is most often smaller than the nominal level. Even
for n = 40 and d = 30, the approximate method does not provide close results. This
indicates that the confidence intervals obtained by this method will often be unduly
narrower. We do observe that, for all the nominal levels considered, the coverage prob-
abilities of the approximate method are lower for small sample size n or d in almost
all cases. This is because, when n or d is small, there are fewer failures observed and
so inference for the parameters is not precise. As n increases, the number of failures
increases thus resulting in a better large-sample approximation for the distribution of
MLEs. This means that we need a much larger sample size to use the asymptotic

normality of the MLEs. We also observe that when n is small, even the parametric
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BC, bootstrap method does not have satisfactory coverage probabilities, but is seen

to be better than the approximate method as well as percentile bootstrap method.

3.4.3 Numerical Examples

In this subsection, we consider two data sets with n = 35, d = 15, d = 25, and

n =15,d =7, d = 10. The parameters were chosen to be §; = 20, 0, = 25, ] = 9,

» = 14. The data are as follows:

Data Set 1: n =35

d=15

(1.45,2; 4.73,1)

(2.88,1; 12.21,2)

(3.69,2; 14.06,1)
(%,%)

(1.46,1; 6.55,2)
(10.48,2; 12.58,1)
(9.65,1; 14.48,2)

(0.48,2; 7.87,1)
(8.66,2; 12.78,1)
(10.40,1; 14.85,2)

(0.02,1; 8.31,2)
(2.39,1; 12.99,2)
(13.31,2; 15.68,1)

(8.56,2; 9.18,1)
(3.39,1; 13.24,2)
(13.48,1; 16.14,2)

d=25

(1.45,2; 4.73,1)
(2.88,1; 12.21,2)
(3.69,2; 14.06,1)
(3.59,1; 16.43,2)
(11.51,1; 23.02,2)
(%)

(1.46,1; 6.55,2)
(10.48,2; 12.58,1)
(9.65,1; 14.48,2)
(5.59,2; 17.01,1)
(21.45,2; 23.84,1)

(0.48,2; 7.87,1)
(8.66,2; 12.78,1)
(10.40,1; 14.85,2)
(3.44,1; 19.46,2)
(7.99,1; 24.83,2)

(0.02,1; 8.31,2)

(2.39,1; 12.99,2)
(13.31,2; 15.68,1)
(13.14,2; 20.61,1)
(6.49,2; 27.92,1)

(8.56,2; 9.18,1)

(3.39,1; 13.24,2)
(13.48,1; 16.14,2)
(7.97,1; 20.83,2)
(19.92,2; 28.20,1)

Data Set 2: n =15
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d=7

(2.55,2; 3.87,1)
(13.64,1; 20.56,2)

(0.94,1; 10.06,2)
(19.41,2; 20.89,1)

(4.50,2; 11.13,1)
(%)

(8.71,2; 13.16,1)

(14.87,1; 17.89,2)

d=10

(2.55,2; 3.87,1)
(13.64,1; 20.56,2)

(0.94,1; 10.06,2)
(19.41,2; 20.89,1)

(4.50,2; 11.13,1)
(7.42,1; 22.47,2)

(8.71,2; 13.16,1)
(6.25,2; 28.58,1)

(14.87,1; 17.89,2)
(17.18,1; 31.80,2)

(%:%)

In the example when n = 35, d = 15, we have d; = 8 and dy = 7. Using the
formulas presented in Section 3.2, the MLEs of 6;, 0, 6] and 6, are 91 = 19.9086,

6, = 33.7003, 6, = 6.8415 and 6}, = 15.6537.

In the example when n = 35, d = 25, we have d; = 13 and dy = 12. The MLEs are
6, = 19.2071, 6, = 25.5931, 6, = 8.8554 and 6} = 16.6016.

In the example when n = 15, d = 7, we have d; = 3 and dy, = 4. The MLEs are
6, = 45.4329, 6, = 46.2074, 6} = 4.2178 and @}, = 11.3774.

In the example when n = 15, d = 10, we have dy = 5 and dy = 5. The MLEs are
6, = 28.7220, 6, = 34.6628, ¢, = 9.6713 and 6/, = 16.8839.

To assess the performance of these estimates, we constructed 90%, 95% and 99%
confidence intervals using the methods outlined in Section 3.3. These results are pre-

sented in Tables 3.7-3.10.

From the results corresponding to the two examples, it is seen that, for the same
sample size, as d increases, we have more accurate estimates for the parameters. We
also note that the approximate method always provide narrower confidence intervals
in most casés. This is because the coverage probability for the approximate method is

significantly lower than the nominal level.
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Table 3.1: Bias, MSE, Mean and Variance based on 999 simulations when 6; = 20,

6, =25,0,=09, 6, =14 and n = 40

d | Parameters | Bias | MSE | Mean | Variance | Approximate Variance
15 61 9.26 | 537.41 | 29.26 | 452.09 463.99
6- 5.14 | 341.30 | 30.14 | 315.23 323.73
0, 0.57 | 30.53 | 9.57 30.42 35.28
o, -3.31 | 49.58 | 10.69 | 38.62 44.95
20 0 4.28 | 137.64 | 24.28 | 119.42 129.40
0, 3.21 | 175.00 | 28.21 | 164.84 171.14
A 0.44 | 21.14 | 9.44 21.01 27.38
é, -1.58 | 31.88 | 1242 | 34.08 40.40
25 0, 1.94 | 80.26 | 21.94 | 76.58 81.13
0, 1.14 | 101.80 | 26.14 | 100.59 106.82
0 0.38 | 20.02 | 9.38 19.84 24.33
A -0.14 | 34.07 | 13.86 | 29.42 38.31
30 61 1.13 | 49.73 | 21.13 | 48.50 50.60
05 0.49 | 72.24 | 2549 | 72.07 75.13
61 0.38 | 14.77 | 9.38 14.45 17.18
o; -0.15 | 24.29 | 13.85 | 24.30 28.59
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Table 3.2: Bias, MSE, Mean and Variance based on 999 simulations when §; = 20,
6, =250,=09,60,=14 and n =20

d | Parameters | Bias | MSE | Mean | Variance | Approximate Variance
10 0 8.45 | 465.59 | 28.45 | 394.62 552.64
02 6.55 | 498.91 | 31.55 | 456.43 473.19
A 0.84 | 39.20 | 9.84 38.94 51.76
g, -2.42| 57.08 | 11.58 | 52.86 92.04
12 6 4.72 | 297.06 | 24.72 | 275.05 360.78
65 3.01 | 373.38 | 28.01 | 364.69 391.43
6] 0.72 | 35.82 | 9.72 35.33 46.52
o -0.62 | 46.20 | 13.38 | 46.25 81.14
14 01 2.56 | 137.97 | 22.56 | 131.55 186.34
6, 2.53 | 206.46 | 27.53 | 200.24 249.19
A 0.71 | 2881 | 9.71 28.33 42.94
&, -0.69 | 45.37 | 13.31 | 44.93 67.16
16 61 1.67 | 87.69 | 21.67 | 85.00 103.93
02 1.62 | 144.32 | 26.62 | 141.83 188.25
& 0.49 | 2249 | 9.49 22.27 34.20
o, 0.19 | 40.35 | 14.19 | 40.36 49.77
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Table 3.3: Bias, MSE, Mean and Variance based on 999 simulations when 6; = 20,
6, =250,=9,6,=14and n =10

d | Parameters | Bias | MSE | Mean | Variance | Approximate Variance
5 0. 10.11 | 744.13 | 30.11 | 642.53 1151.42
02 7.86 | 794.78 | 32.86 | 733.76 1435.75
0] 1.07 | 59.28 | 10.07 | 57.97 295.65
e, -247 | 97.23 | 11.53 | 91.10 173.61
6 0 7.28 | 536.14 | 27.28 | 483.67 874.53
6, 6.70 | 705.97 | 31.70 | 661.77 1207.96
0] 0.79 | 57.82 | 9.79 57.30 105.49
o -0.82 | 76.68 | 13.18 | 76.21 147.62
7 0 6.09 | 436.33 | 26.09 | 399.67 764.16
6, 6.01 | 663.56 | 31.01 | 628.13 1097.30
6, 0.76 | 51.14 | 9.76 50.05 103.59
g, -0.72 | 7542 | 13.28 | 74.98 144.94
8 6, 4.09 | 347.10 | 24.09 | 330.65 535.12
0, 4.70 | 508.29 | 29.70 | 486.67 887.69
6] 0.61 | 44.11 | 9.61 43.54 73.51
é, -0.37 | 67.67 | 13.63 | 67.60 107.01
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Table 3.4: Relative risks based on 999 simulations when 6, = 20, 6, = 25, §] = 9,
g, = 14

3
U
3
5
3
[ 3%
|2

m d] d2

NG

T2

40 | 30 | 22.18 | 17.82 | 0.55 | 0.56 | 15.57 | 14.43 | 0.52 | 0.52
25122411759 0.56 | 0.56 | 12.93 | 12.07 | 0.52 | 0.51
20122191781 0.55|0.56 | 9.97 | 10.03 | 0.50 | 0.50
15| 21.98 | 18.02 | 0.55 | 0.56 | 7.24 | 7.76 | 0.48 | 0.49

20116 | 11.09| 891 [0.55 | 0.56 | 8.45 | 7.55 | 0.53 | 0.53
14 | 11.20 | 8.80 | 0.56 | 0.56 | 7.32 | 6.68 | 0.52 | 0.52
121 11.10 | 890 [ 0.56 | 0.56 | 6.09 | 591 | 0.51 | 0.51
10 | 11.01 | 8.99 | 0.55 | 0.56 | 4.98 | 5.02 | 0.50 | 0.50

10| 8 | 5.59 | 441 | 0.56 | 0.56 | 4.28 | 3.72 | 0.54 | 0.52
558 | 442 | 0.56 | 0.56 | 3.69 | 3.31 {0.53 | 0.51

S N

5.53 | 4.47 1055|056 | 3.03 | 2.97 | 0.51 | 0.51
5| 560 | 440 | 0.56 | 0.56 | 2.54 | 2.46 | 0.51 | 0.50
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Table 3.5: Estimated coverage probabilities based on 999 simulations when 6; = 20,

0, =25,0,=9, 6, =14 and n = 40

Cl of 6, 90% C.1. 95% C.I. 99% C.I.
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
15 83.78 89.69 | 91.89 | 89.38 92.59 | 94.29 | 92.49 98.40 | 98.90
20 85.79 88.99 | 90.59 | 90.49 93.99 | 94.89  94.69 99.20 | 99.30
25 86.59 88.19 | 89.59 | 91.29 93.99 | 94.69 | 95.40 98.60 | 98.80
30 87.89 90.29 | 90.99 | 92.70 93.89 | 95.00 | 96.10 99.00 | 99.40
C.L of 6, 90% C.I. 95% C.1. 99% C.1.
d Approx. | Boot-p | BCy, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
15 83.88 90.09 | 91.59 | 90.10 94.49 | 95.40 | 92.70 98.50 | 98.50
20 86.20 89.59 | 91.29 | 90.69 94.39 | 95.40 | 94.88 99.30 | 99.50
25 86.10 88.29 | 89.59 | 91.00 93.79 | 95.10 | 95.10 98.20 | 98.70
30 87.20 88.59 | 88.69 | 92.10 94.29 | 94.69 | 96.20 98.20 | 98.50
C.I of 6, 90% C.I. 95% C.I. 99% C.I.
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
15 82.10 86.89 | 88.29 | 87.80 91.79 | 92.89 | 89.80 95.10 | 95.60
20 84.80 87.59 | 89.09 | 88.20 92.19 | 93.69 | 90.59 95.50 | 96.30
25 85.90 88.99 | 90.79 | 90.80 92.79 | 94.09 | 93.10 96.50 | 97.40
30 86.80 89.89 | 91.69 91.79 93.99 | 96.20 94.20 98.90 | 99.30
C.1 of 6} 90% C.I. 95% C.I. 99% C.L
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
15 83.10 89.09 | 90.49 | 87.10 91.19 | 92.30 | 90.20 96.60 | 97.30
20 84.30 88.29 | 90.09 | 87.70 90.99 | 92.89 | 90.70 95.50 | 96.20
25 85.10 88.29 | 89.89 | 90.20 92.59 | 94.29 | 92.89 96.60 | 97.50
30 87.70 88.39 { 89.89 | 91.10 92.89 | 9419 | 93.20 97.70 | 98.20
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Table 3.6: Estimated coverage probabilities based on 999 simulations when 6; = 20,

6, =250,=9, 60, =14 and n = 20

Cl of 6, 90% C.I 95% C.L 99% C.L.
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
10 84.89 90.29 | 90.99 | 87.19 91.59 | 91.79 | 91.89 96.60 | 96.70
12 85.10 89.49 | 90.39 | 88.69 94.29 | 95.10 | 93.30 98.50 | 98.80
14 85.90 88.59 | 90.49 | 90.29 95.10 | 96.70 | 93.70 98.30 | 98.80
16 88.10 89.29 | 90.49 | 91.10 95.00 | 96.10 | 95.10 97.90 | 98.90
C.I of 69 90% C.I. 95% C.L 99% C.I.
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
10 84.99 88.99 | 90.19 | 88.29 93.89 | 91.79 | 90.39 96.50 | 96.80
12 85.20 89.19 | 90.39 | 88.10 94.89 | 96.10 | 92.59 98.40 | 98.60
14 85.80 90.49 | 92.09 | 89.90 95.10 | 96.30 | 92.70 98.00 | 98.20
16 86.20 88.59 | 89.79 90.89 94.69 | 95.80 94.10 98.50 | 98.70
C.I of 6] 90% C.1. 95% C.1. 99% C.I
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BCy,
10 76.18 84.28 | 85.89 | 80.08 86.19 | 88.09 | 85.89 91.49 | 91.79
12 78.78 87.59 | 90.59 | 83.68 88.49 | 90.99 | 87.79 93.19 | 93.99
14 77.40 87.29 | 89.99 | 82.79 90.49 | 93.29 | 88.30 95.80 | 96.50
16 80.20 86.89 | 90.59 | 86.09 92.89 | 95.30 | 90.60 95.90 | 97.00
C.IL of 4, 90% C.L 95% C.L 99% C.L
d Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
10 73.29 84.38 | 85.69 | 79.38 89.29 ] 90.39 | 85.10 91.99 | 92.69
12 76.87 86.09 | 87.59 | 82.99 89.09 | 91.09 | 86.20 93.39 | 94.09
14 77.78 85.79 | 85.99 | 81.79 90.49 | 92.99 | 89.00 94.79 | 95.20
16 81.70 86.89 | 88.89 | 85.20 91.39 | 92.89 | 90.89 95.70 | 96.80
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Table 3.7: Confidence intervals for 6;, 0, 6] and 6, in Example when n = 35, d = 15

C.I for 6;

Method 90% 95% 99%
Approx C.I. | (2.57, 37.24) | (0%, 40.56) (0%, 47.05)
Boot-p C.I | (6.4, 52.84) | (5.77, 62.17) | (4.75, 85.99)

BC, C1. | (7.18,57.76) | (6.28, 69.25) | (4.90, 85.99)

C.I. for 6,

Method 90% 95% 99%
Approx C.I. | (7.49, 59.91) | (2.47,64.93) | (0%, 74.74)
Boot-p C.I | (7.73, 66.08) | (6.63, 78.14) | (5.35, 95.93)

BC, C.L | (12.73, 86.33) | (9.61, 92.23) | (6.46, 103.13)

C.I for 6;

Method 90% 95% 99%
Approx C.I. | (0%, 13.92) (0*, 15.28) (0%, 17.93)
Boot-p C.L | (2.25, 20.63) | (1.88, 26.06) | (1.27, 39.91)

BC, CL | (279, 27.02) | (2.35, 33.64) | (1.71, 45.76)

C.I. for 6,

Method 90% 95% 99%
Approx C.I | (1.14,30.17) | (0% 32.95) | (0%, 38.38)
Boot-p C.I. | (3.55, 30.72) | (3.05, 36.61) | (2.11, 45.66)

BC, CL | (6.72, 42.66) | (5.46, 48.66) | (3.63, 55.62)

0* stands for a non-positive number
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Table 3.8: Confidence intervals for 8y, 0, 6] and #;, in Example when n = 35, d = 25

C.L for 6,

Method 90% 95% 99%
Approx C.I | (7.98, 30.44) | (5.82, 32.59) | (1.62, 36.79)
Boot-p C.I | (11.09, 35.59) | (9.76, 42.08) | (8.29, 49.88)

BC, CI | (11.19, 35.85) | (9.84, 42.56) | (8.30, 49.56)

C.1 for 6,

Method 90% 95% 99%
Approx C.L | (11.74, 39.44) | (9.09, 42.10) | (3.91, 47.28)
Boot-p C.I. | (13.88, 43.37) | (12.12, 48.63) | (10.84, 63.33)

BC, C.I. (14.70, 44.86) | (12.60, 49.20) | (10.84, 61.34)

C.I for 6]

Method 90% 95% 99%
Approx C.I | (2.92,14.79) | (1.78, 15.93) | (0%, 18.15)
Boot-p C.I | (4.70, 18.61) | (4.05, 21.40) | (3.12, 29.32)

BC, CL | (4.93,2046) | (4.51,23.37) | (3.66, 31.71)
C.IL for 6,

Method 90% 95% 99%
Approx C.I. | (6.07,27.14) | (4.05, 29.15) | (0.10, 33.10)
Boot-p C.I | (7.26, 27.47) | (6.18, 29.84) | (4.09, 35.24)

BC, CL | (8.32,29.26) | (6.84, 31.76) | (4.48, 35.24)

0* stands for a non-positive number
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Table 3.9:

Confidence intervals for 0y, 05, 6] and 6, in Example when n =15, d =7

C.I for 6,

Method 90% 95% 99%
Approx C.I. | (0% 102.98) (0*, 114.00) (0%, 135.55)
Boot-pC.L. | (9.64, 111.85) | (7.72, 127.39) | (6.08, 145.72)

BC, CL | (9.86,113.21) | (7.42, 124.69) | (3.71, 138.97)

C.I for 6

Method 90% 95% 99%
Approx CL | (0%, 86.30) (0%, 93.98) | (0% 108.99)
Boot-p C.L | (8.78, 104.94) | (6.87, 120.10) | (4.10, 144.94)

BC, C.I. (14.91, 134.67) | (11.16, 142.88) | (6.87, 148.41)

C.IL for 6,

Method 90% 95% 99%
Approx C.L | (0%, 8.65) (0%, 9.50) (0%, 11.16)
Boot-p C.I | (1.09,13.68) | (0.84, 18.44) | (0.31, 31.14)

BC, CIL | (155, 18.44) | (1.10,22.33) | (0.63, 38.85)

C.L for 6,

Method 90% 95% 99%
Approx C.I. | (0% 29.68) (0*, 33.18) (0*, 40.03)
Boot-p C.I | (1.45,34.74) | (0.86, 43.14) | (0.06, 60.83)

BC, CL | (271, 4759) | (1.74,52.71) | (0.30, 61.81)

0* stands for a non-positive number

64




Table 3.10:

Confidence intervals for 6;, 6;, ) and 6} in Example when n = 15, d = 10

C.I. for 64

Method 90% 95% 99%
Approx C.I. | (0.39, 57.05) (0*, 62.48) (0*, 73.09)
Boot-p C.I | (11.16, 72.21) | (9.60, 89.40) | (7.33, 136.25)

BC, C.L | (11.28,73.02) | (9.60,89.37) | (7.02, 126.89)

C.L for 6,

Method 90% 95% 99%
Approx C.L | (5.41,6391) | (0% 69.52) | (0% 80.47)
Boot-p C.I. | (12.39, 86.46) | (10.80, 108.50) | (8.17, 134.05)

BC, CI | (13.94,95.28) | (11.19, 114.15) | (8.17, 134.00)

C.IL for 6

Method 90% 95% 99%
Approx C.I. | (0*, 19.95) (0%, 21.92) (0%, 25.77)
Boot-p C.I | (2.96, 25.79) | (2.17, 31.87) | (1.14, 44.84)

BC, C.L | (3.62,31.87) | (2.97,39.53) | (1.97, 50.52)

C.I for 6,

Method 90% 95% 99%
Approx C.I. | (0%, 36.24) (0*, 39.94) (0%, 47.19)
Boot-p C.I | (4.41, 36.68) | (3.37,40.92) | (1.72, 56.21)

BC, C.L | (5.94,41.03) | (4.51,47.31) | (2.29, 57.69)

0* stands for a non-positive number
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Chapter 4

Exact Analysis under Type-II
Censoring with Partial Information

on Component Failures

4.1 Introduction

In this Chapter, we consider such a two-component system failure model in the
case of Type-II censored data. The information of the censored systems which have
only one component failed at the end of the experiment is incorporated as well. We
then obtain the MLEs of the parameters assuming the lifetimes to be exponentially
distributed. The exact distributions of the MLEs of the parameters, conditioned on
the data, are then derived by using the conditional moment generating function ap-
proach. Construction of confidence intervals for the model parameters are discussed by

using the exact conditional distributions, asymptotic distributions, and two paramet-
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ric bootstrap methods. The performance of the two parametric bootstrap confidence
intervals in terms of coverage probabilities are assessed through a Monte Carlo simu-
lation study. Finally, examples are presented to illustrate all the methods of inference

discussed here.

4.2 Model Description and MLEs

Consider the following simple system failure model: n identical systems are placed
on a life-test and each system has two components. The experiment continues until a
total of d (d < n) systems fail. We assume that X; and Y; (¢ = 1,...,n) are random
variables representing the lifetimes of Components 1 and 2, respectively, in the i-th
system. Let Z; = max(X;,Y;) (¢ = 1,...,n). Thus, the i-th system fails at time Z;,
and Z1., < -+ < Zg.,, are the corresponding ordered failure times. At the end of the
experiment, we observe d systems with complete destruction, d’ systems with only one
failed component and n — d — d’ systems with no failed components. Among the d
systems, there are d; systems in which Component 1 failed first and d; systems in
which Component 2 failed first, with d; + d2 = d. Among the d’ systems, there are d}
systems of which only Component 1 failed and dj systems in which only Component
2 failed, with d} + d, = d’. The data from the two-component system sample under

Type-1I censoring with partial information is then as follows:

(le 5111 Zl:n; 61/)a ey (Tdv 6&) Zd:n; inl)a (Td+1: 6:i+1; *)a ey (Td+d’; 6¢I;l+d’; *)(*a *):
(4.1)
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where 77, . . ., T; denote the first observed failure times in the systems, Z1., < -+ < Zgn,
denote the final observed failure times of the systems, and ¢’ denotes the component
of the first observed failure within the system and ¢” denotes the component of the

second observed failure within the system. We use “*” to denote the censored data.

If we let
IL={ie(1,2,...,d): Component 1 failed first within a failed system},
L={i€(1,2,...,d): Component 2 failed first within a failed system},
I={ie€(1,2,...,d): only Component 1 failed within a system},
IL,={ie(1,2,...,d): only Component 2 failed within a system},

the likelihood function of the observed data in (4.1) is given by

oy (2n)!
L(61,62,61, 62) = (2n —2d — d')!
1 \% 1 1 1 1
X expy— |+ +57 — 7 Ti— - Z
(0195) p{ (01 2 e)z eag; }
1\*% 1 1 1 1
X | — -4+ - = i — o7 Z;
(929;) eXp{ (01 9, 9/);;, elg }

xexp {—(n _d—d) (911 + %) zd:n} , (4.2)

where,

0< 2 < 2 < zgn, for i€l 0<y; <2z < Zgn, for i€l
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0 < < 2gn, fori€ly; 0<y; <zgn, foriel;

0<21g <0 < Zgim < 00

Since we need to integrate Eq. (4.2) term by term to obtain the exact conditional

distribution of the MLEs in Section 4.3, details of the support have to be given. The

support can be expressed as follows:

(1) for 7 ¢ I = {ill,ilg, - ,ildl},

0 <z, <2y,,0 <24y, <24gp,...,0< Tirg, < Zigys

(2) for i€ I = {io,t02,... 024},

0 < ¥iny < Zig, 0 < Yigy < Zigg,---,0< Ying, < Zizdy

0<zy, <2zan <¥iy,0 <Ty, < Zzan <Yir,,...,0< Ty < Zdin < Uiy 5

(4) for i€ Ig= {is,i,... aiIng}’

0<%h<%m<%w0<%h<%m<%w~wo<%%

(5) 0< 21 < 29 < ... < Zgp < 0O.

< Zgin < xilzd’z;

The maximum likelihood estimate (81, 65, 8;, 6}) of (61, 65, 6, 8}) is the value

that globally maximizes the likelihood function in (4.2). After some calculation, the

corresponding conditional maximum likelihood estimates of the mean life times 6, 8,

61, 0 are obtained to be

s Dien it Dien % T 2ien Tt Diien i + (0 —d — d)zgn

8, =
: dy + d}

b — dy + dj i
2T d=d) + (@ —=d) "
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o Ez’e[z (zi - ?/z') + (dlzzd:n - Zie]é yi)
b= d—d ’
1

D ien, (2 — i) + (di2am — Eiel; x;)

f, - - ,

conditional on 1 < d; <d-1,0<d| <d and 0 < d <n—d.

4.2.1 Relative Risks

Based on the results of Section 3.2.2, in this subsection, two additional relative

risks are derived and are presented in Theorems 4.2.1 and 4.2.2.
Lemma 4.2.1. We have
Ps=Pr(X <zgm<Y)=

1 /1 1 1\'|&s
o (9—1 e 9—,2) > >, Cijrgags (M1 + My — Ms)

1=0 (j1,52,43):71+Je+is=n—d+i
d—1
7 4 !
-2 > Cigrgas (M1 + My — M) |, (4.3)
1=0 (j1,J2.93):J1+J2+i3=n—d+i

where M; and M/, i = 1,2,3, are as defined in Lemma 3.2.4.

Proof: The proof is similar to that of Lemma 3.2.4.

Lemma 4.2.2. We have

d—1
Py = Pr(min(X,Y) > zgn) = > Cir aris {M1 + My — Mz},

1=0 (j1,j2,73):51+j2+jz=n—d+i

(4.4)
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where M], i = 1,2,3, are as defined in Lemma 3.2.4.

Proof: We have

Py = PT‘(min(X, Y) 2> Zd:n) = /oo PT’(min(X, Y) 2 a)de:n (a)da

_ /0 ~ exp {_ (9% + 9%) a} fr.(a)da. (4.5)

Then, the result follows by carrying out the required integration.

Theorem 4.2.1. The relative risk that Component 1 fails first within a two-component
system, under the condition that the system has only one failed component at the end

of a Type-II censored experiment, is

P.
m3 = Pr{(X <Y |min(X,Y) < zgpn, max(X,Y) > z4n) = ——3,
P, — Py

where Py is defined in Lemma 3.2.5.

Proof: The result follows immediately from Lemmas 3.2.5, 4.2.1 and 4.2.2.

Theorem 4.2.2. The relative risk that only one component fails within a two-component
system, under the condition that the system does not fail at the end of a Type-II cen-

sored experiment, is

P, - P,
Ty = Pr(min(X,Y) < zgn|max(X,Y) 2 24n) = 2P :
2

where P, is defined in Lemma 3.2.5.

Proof: The result follows immediately from Lemmas 3.2.5 and 4.2.2.
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Lemma 4.2.3. In a Type-II censored experiment with partial information on compo-
nent failures, among the d' (0 < d" < n —d) systems with only one failed component
at the end of experiment, the number of systems due to Component 1 failing first, viz.,

d}, is a non-negative random variable with binomial probability mass function given by

L (d P’ P \*
P 4 = = 1 - ) = e !
T(dl ]) (]) (P2 —P4> ( P2—P4 Y j 0)17 ’d)

where Py is defined in Lemma 8.2.5.

Proof: The result follows immediately from Theorem 4.2.1.

Lemma 4.2.4. In a Type-II censored experiment with partial information on compo-
nent failures, among the n — d systems which do not fail at the end of experiment,
the number of systems of which only one component fails, viz., d', is a non-negative

random variable with binomial probability mass function given by

j n—d—j
;. n—d P\ (P :

Proof: The result follows immediately from Theorem 4.2.2.

4.3 Exact Conditional Distributions of the MLEs

We will now derive the exact marginal (conditional) distribution of the MLEs. The

derivation will require the inversion of the conditional moment generating function
(CMGPF). To obtain the CMGF, we need to find the joint PDF of X;’s, Y;’s and Z;’s

first.
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4.3.1 The Joint PDF of X;’s, Y;’s and Z;’s

The joint PDF of X’s, ¥;’s and Z;’s is proportional to the likelihood function
L(0y,0,,0,6,) and can be obtained by integrating Eq. (4.2). However, the integration
can not be performed unless we know the exact order of the observed failure times.
Different order of the observations results in different forms of integration. Therefore,
in this subsection, we only discuss the joint PDF of X;’s, Y;’s and Z;’s in the general
case. In Section 4.3.4., a Type-II censored sample will be generated to illustrate the

method discussed here.

The general process of finding the joint PDF can be done by using the following

steps:

(1) Generate a Type-II censored two-component system failure data with partial
information on component failures. We observe 2d + d’ (< n) component failure times

at the end of the experiment.

(2) Rank the 2d + d’' observed failure times in descending order: from the largest

observation (Z4.,) to the smallest one.

(3) Rewrite the likelihood function (4.2) as

)
1 1 1 1
C x exp {— (0—1 + 6-2‘ - z) ;L} X exp {—@ 2 Zz}

1 1 1 1
Xex - + = — = ; p X ex - Z;
P{ (91 02 ai)gy} P{ s }
1 1 1 1 1 1
Xex =+ - ZT; p X ex e 2
p{ (91 6, 9)%3 } P (91 0 9'1)2;}
, 1 1 1, 1,
xexp{— |:(n—d-—d) (0—1 + ’9‘2‘) + Q_le +9_I 2:] Zd:n}, (46)
1



here, C' is some constant given in Eq. (4.2).

(4) Take the integration of Eq. (4.6) in the corresponding order as described in
Step (2). This integration results in a product consisting of 2d + d’ multipliers, viz.,

Cx M=C x5 M.

(5) Step (4) implies that the general form of the joint PDF of X;’s, ¥;’s and Z;’s

can be expressed as =57 L(0y, 62, 6}, 05).

We find that the critical part of this process is to find the general form of M;
(Gj=1,...,2d+d). Let A= (n—d— d’)(% + é) + éd’l + —6171d’2; then, the form of M;
can be expressed as follows:

-1
(i) When j = 1, M; = [A + 51,1] , if the largest observation (Zy.,) is the failure
-1
time of Component 1 within a system; otherwise, M; = [A + é] .
-1
(i) When j = 2,....2d+d, M; = [+ (+4-%)] X Gehor

-1
i € I]) is the j-th largest observation; M; = [ L4 (E + % - 51,1—)] LY, (te ]

-1
or ¢ € I3) is the j-th largest observation; M; = [Mjl_l + é] ,if Z; (i € 1) is the j-th

-1
largest observation; M; = [ﬁ + 01—,1] , if Z; (i € I) is the j-th largest observation.

4.3.2 Exact Conditional Distributions of the MLEs

Based on the joint PDF of X;’s, ¥;’s and Z;’s, the CMGF of the MLEs are obtained
in this subsection and are presented in Theorem 4.3.1. Using the inversion theorem
of the CMGPF, the conditional PDF's of the MLEs are computed and are presented in
Theorem 4.3.2.
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Lemma 4.3.1. We have

Pr(Di=k,D'=m,D|=¢1<D;<d-1,0<D' <n—-d,0<D;<d)

_ Pk,m,q
T d-l —d )
Zf:l ZZ:O Zg=0 Prg.s

where

b (d) (m) (n - d) PEPJP~™(1 — P, — P)* (P  — Py — Pp)™*
RN ACY AN Pp=(1— Py ’

and P, P», P; and Py are as given in Lemmas 3.2.4, 3.2.5, 4.2.1 and 4.2.2, respec-

tively.

Proof: We can express
Pimg = Pr(Dy =k,D' =m,D; =q) = Pr(D;, = k)Pr(D} = q|D' = m)Pr(D’' =m)
(N (BN (B N (m P, \'(,__ R\
- \k 1—-Py 1—P4 q Py—P; Py-P
(=AY ([ B\ (P nod-m
m P, Py

_ (d> (m) ( - d) PERIP (1= = P MR = P = P
- \k/\4¢ m P41 — Py S

Lemma 4.3.2. The PDF and CDF of the sum of n independent but non-identical

exponential random variables with failure rates \; (i=1,2,...,n) are

fry) = Z H o _/\))\e"\’y, O<y<oo, Ai>0,i=12...,n,

i=1 j=1,57#t
Z H —eM), 0<y<oo, i>0,i=12...,mn
i=1 j= 1]761 J
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respectively, with
> Il =755-=t
= i 9 = A)
Proof: Suppose that the random variables X3, ..., X, are independent and are expo-

nentially distributed with failure rates A; (> 0),% = 1,2,...,n. Then, the joint density

function of X1,..., X, is
n
— " A
fxo, o xn (T, Tn) = A1e o Ape Xim 0 < Ty, T, , Ty < OO,

Let
=) X, 2=X5, ..., Yo=X.

i=1
The Jacobian of this transformation is 1. So, the joint PDF of ¥7,...,Y,, is

P Ya 1Y) = Ar - - AgePawrt e diuatot On=Anjual,

0<y,...,¥n <00, O0<yr—yo—+—yYnp <00

Integrating the joint PDF of Y, ...,Y,, we get the marginal density of Y; as

fyl(yl):/"'/f(y1;~--7yn)dyndyn—1"'dy2

Y1 [YI—Ye Y1=Yz = =Yn—1
= / / ces / AL Ape~ Pyt Rz=A)yzd+Gn =2 )yn]
0 0 0

Adyndyn_1 -+ dys

n

- Aj =Y
=>_ I e, (4.8)
i=1 j=1,j (A5 = A)

which is the required result.

76



Lemma 4.3.3. The moment generating functions of the random variables

Sy = in+2yi+zwi+2yi+(n—d—d’)zdm,

el ich i€l iel)
S =Y (2 =) + (dyzan — D) _ ), Ss =Y (2 — i) + (dr 24 — Y :)
icly i€l el €l}
can be expressed as
2d+d’ 2d+d’
Ms,(t) = J] (1= catdsi)™, Ms,(t) = J] (1 —ajtr)™,
=1 i=1
2d+d’
Mg, (t) = JI (0 —aftm)™,
i=1

respectively. Here, M; (i =1,...,2d + d') are as defined in Section 4.3.1, and a;, «

/
)

and o are some coefficients.

Proof: Let us take S; as an example. The derivation of the moment-generating

functions for the other two random variables is quite similar.

Let f(@1,. ., Tdy4d;, Y1s- -+ > Ydptdys 21, - - - 24) De the joint PDF of X’s, Yi’s and

Z;’s. Then, we have,

M3, (t) = E(e"™)

1
tS
/ / lf L1y Tdy+dr Y1 - s Ydotdls 215 -+ -5 2 d)

dTgy+a)dY1 - AYdayraydzr - dzg
2d+d’ (M), Mt 2d+d’ (M- — ) 2d-+d’

M H - 1} _—M— H (1 — ot M;)™! (4.9)

here, M, is a product consisting of 2d + d’ multipliers and is defined as (M;); =
M7 —aqit,i=1,2,...,2d+d".
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Theorem 4.3.1. The conditional moment generating functions of él, 92, éﬁ and 9’2,

conditional on 1 < D1 <d—1,0< D' <n—d and 0 < D < D' are given by

d-1 n~d m 2d+m 1
60 525500 TT (=)
k=1 m=0 q=0 =1 kg i
d-—1 n—d m 2d+m 1
300 = 3353 1T (b,
k=1 m=0 ¢q=0 i=1 T ([d=k)+(m—q) "
d—1 n—-d m 2d+m 1
Mal (t) = Z Z Ck,m,q ( o )
k=1 m=0 ¢=0 i=1 1 P lkMit
d—1 n—d m 2d+m
Mg/ (t) = Z Ck’m’q ( m ) ,
’ k=1 m=0 ¢=0 i=1 1— %’“Mit
where
_ Pk m,gq
km,g =

E Z =0 Zs:() Pf,gs

a;, of and o are some coefficients, and A = (n —d —m) (% + %) + o + Tt
2 1

Proof: We can express

M;, (t)

—E( télll<D1Sd—1,OSD/Sn_d’OSD;SD,)

d— m

S35 2L IR

k=1 m=0 g—
xPr(Dl—kD’:mD'=q|1<D1<d—1OSD'Sn—d,OSD;SD')

d—-1 n—d m

PSS e, b
k=1 m=0 ¢=0
xPr(Dy =k, D' =m,D, =qll< D1 <d—1,0< D' <n—d,0< D, <D

(4.10)

Then, the result follows immediately by using Lemma 4.3.3, and the derivations of the

CMGFs for the other three MLEs are quite similar.
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Theorem 4.3.2. The PDFs of él, éz, éi and é’2, conditional on 1 < D; < d -1,

0<D <n—dand 0L D} <D, are given by

d—1 n—d m -1
fo,(2) = > Cimgx 9|z, [ MZ} 2d+m |,
k=1 m=0 ¢=0 k
d-1 n—d m -1
— ai(k +q)
fo,(x) = - mzqu:;Ckm,q X g (m, [(d— B+ (m = )MZ] 2d+m>
d—-1 n—d m , -1
f91($)=Z ch,m,ng(x, [d:lejl 2d+m)
k=1 m=0 ¢=0
d—1 n—-d m " -1
féé(iv):z ZCk,m,ng< [I;MJ ,2d—|—m>,
k=1 m=0 ¢q=0

here, g{x, A\;,n) is the PDF of the sum of n independent but non-identical exponential

random variables with failure rates X;, and

n n A
g(x,)\i,n)-——z H mAe_A’y, 0<zr<oo, A;>0,1=1,2,...,n.

i=1 j=1,j#i

Proof: The conditional PDFs of the MLEs are computed from the inversion theorem
of the moment generating functions. The results follow immediately from Theorem

4.3.1.

4.3.3 Properties of the MLEs

From the two theorems in the previous subsection, we can derive some simple

distributional properties of the MLEs.

Theorem 4.3.3. The first two moments of the MLEs are

E(el Z Z Ck:mq k)—|— i’



m 2 2d+m
A, a a.
E#) = 2 2 Cima 2( : ) et 2 }
k=1 m=0 ¢=0 i=1 k+ ktgq J=1j# q

2d+m 7

n = o,
E(02) = Z Ck,m,q X ?Mz,

o\ o N )
2 (?M) + - M; > M|
J=Li#i
The expressions for the expected values reveal that 91, ég, é’l and 0A’2 are biased

estimators of 6, 62, 6 and 6, respectively. The expressions for the second moments

can be used for finding standard errors of the estimates.

We can also obtain expressions for the tail probabilities by integrating the PDFs in

Theorem 4.3.2. These expressions will be used to construct exact confidence intervals

later in Section 4.4.1.
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Theorem 4.3.4. The tail probabilities of 6;, s, HA'I and ég, conditional on 1 < Dy <

d—1,0< D' <n—dand0< Dy <D, are given by

d—1 n—d m -1
Py (6, >b) = > Chmg x G(b, [Ei—MJ ,2d 4+ m),
k=1 m=0 ¢q=0 q
d—1 n—d m -1
A ~ a;(k +q)
P92 (92 2 b) = ch’m’q X G(b, l: Ml:l ,2d+ m),
k=1 m=0 ¢=0 (d—k)+(m—q)
) d—1 n—d m a{ -1
.Pgl1 (0’1 Z b) = chym,q X G(b, l:d lkMi:| ,2d+ m),
k=1 m=0 q=0 -
R d-1 n—d m a,', -1
Py(By>5) =3 Cimq x Gb, [%LM,-] ,2d +m),
k=1 m=0 ¢=0

here, G(b, \;,n) is the survival function of the sum of n independent but non-identical

exponential random variables with failure rates X;, and

G(b, Ai,n) = Z H —Aib.

i=1 j= lj;ﬁl

4.3.4 Exact Conditional Distributions of the MLEs Based on

the Given Data
In this subsection, a two-component system failure data is generated under Type-II
censoring, with parameters §; = 20, 6, = 25, #; = 9 and 6, = 14. Since the exact
conditional distributions of the MLEs depend on the data, we will illustrate all the

methods and properties presented in Section 4.3.1 - 4.3.3 by using this generated data

and the results are presented in Lemmas 4.3.7-4.3.9.

Description of the Data:
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There are 10 systems in this sample. Each system has 2 components. The experi-
ment continues until a total of 5 systems fail. The termination time of the experiment
i8 Zgn = Zs10 = 21.33. Among the 5 failed systems, we have d; = 3 and dy = 2.
Among the 5 non-failed systems, we have dj = d}, = 2 and 1 system in which both

components did not fail before Z,.,,.

The data set is as follows:

(4.15, 1; 7.40, 2), (0.10, 1; 9.14, 2), (13.89, 2; 15.44, 1), (18.47, 1; 20.76, 2), (14.47, 2; 21.33, 1),
(10.51, 2; * ), (17.80, 1; % ), ( *; * ), (3.77, 2; * ), (8.86, 1; * )

If we rank the observed failure times in ascending order, we find that the 1%, 2™
and 4" observations belong to set I; the 3" and 5% observations belong to set I,

etc. That is,
Iy = {in, t12,518} = {1,2,4}, Lo = {ia1, 922} = {3,5},
Iy = {dyy,ép} = {7,10}, I = {iy, i} = {6,9}.
Next, the order of the observations are:
0 < Xiy, <Yy, <Xy <Zy, <Xy, <Zy, <Yy <Yy <
Yio < Ziyy < Xiy, < Xiyy < Ziyy < Ziny (= Zain) < 0.

Integrating the likelihood function Eq. (4.6) in the descending way, we have the

o () (&) () ()

1 1 1 1 2 2
— _ — ! i -~ __dl _dl — - . = -

result as C' x M, with
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and M = [[2, M;, with

M= | M wraeg |V g

V= s | M= s | Ve g

My = W M = 6(91+92§+9’ A My = 6(91+5)+51r+5§

My = T +a §+5r11 +or M = [ s 1)+711 +Z Mg = 8 +os §+5r11 +or
Mz = WQLIT%—)I% My = T(ﬁ%%_)

Then, based on this given data, the moment generating functions of the random

variables S, S2 and S3 are obtained and presented in Lemmas 4.3.4-4.3.6.

Lemma 4.3.4. The moment generating function of

S = in-l-z:yi+Z%+Zyi+(n—d—d')2d:n,

= i€l iel] i€l}

-1
conditional on the given data, has the form of H;}il (1 - 3‘2) , with

M=(g gttty do=(g+g)+aty
=1+ B+ F+E] | =GR +E+ 4]
=33+ R+ +E] | d=t[aE+ )+ 5+ 7]
M=L[sE k) k] | de=d[60k )+ E g
No=2[6(k+ &)+ +3] | Mo=2[1(E+4) + &+ 4]
M=t T+ R+ d+ 2] | de =[G+ )+ E+ 4]

/\1326[9(%-}—%)%—@%] )\14———(5-!-%
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Lemma 4.3.5. The moment generating function of

Sy = Z(zi — i) + (dyzam — Z Yi),

conditional on the given data, has the form of Hzli1 (1 -

i€l

iE€ly

i

Y

-1
) . with
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Lemma 4.3.6. The moment generating function of

Sy = Z(Zz — ;) + (di2gn — Zﬂvi),

i€ly

i€l

conditional on the given data, has the form of Hzli1 (1 -

—1
t .
F) , with

N =4|G

I

=3+ 5

1y, 38, 1
;) Tt

=gttty

Xs = 6(g; + 5

1 1 1
Dt ety

y 1 1 1 1 2 v 1 1 1 1

)\9=§[6(E+E)+§{+aﬁ2‘.| )\10—7(0—1-4-0—2-)4—%-{—5/2'

" 1 1
Mg =905 +5) +
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Lemma 4.3.7. The PDFs of él, éz, éi and ég, conditional on the given data, are given

by
f (.CC - 5 —5)‘12/‘,
g ;}Lz( v

14 14

f92 (‘T) 4 Z H _4)‘ 1:,
i=1 j= 1]7&1

fa' =9 Z H )}\/ —2Xz ,
g=1 j= 1]7&1

fa’ =3 Z H - )\“ ——3)\ z,
i=1 j= 1,]7&1

here, A; (i =1,...,14) are as defined in Lemma 4.3.4, X, (i =1,...,12) are as defined
in Lemma 4.8.5, and X\, (i =1,...,13) are as defined in Lemma 4.3.6.

Lemma 4.3.8. The tail probability of 61, 05, é’l and 95, conditional on the given data,

are given by

A -
Pu(r20)=)_ ] o
i=1 j=1,j5i Y *
R 4 14 Y s
Pob:20)=3 I 5=5m¢™"
i=1 j=1,j5%i \* 7 ’
) 12 12 )\/. )
PyBi=0)=> 11 me'”"'b,
i=1 j=1,j#i I i
X 13 13 A\ ,
Pa@20) =3 11 rosme™"
i=1 j=1,j7#1

here, \; (1 =1,...,14) are as defined in Lemma 4.3.4, X, (i =1,...,12) are as defined
in Lemma 4.8.5, and X, (i =1,...,13) are as defined in Lemma 4.3.6.
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Lemma 4.3.9. The first two moments o él, é2, 0, and 6, , conditional on the given
1 2 g

data, are given by

E(b;) = ;Fl;[# (Aj/Y W 51& = 2:1: 51Az,
" 14 ' 14 14
B0 = ;FILL ()‘J‘/\—] i) (5i)2 - =1 (5’31)2 ' 51‘ j=Lj#i 51\ ]
14 14 14
B(0s) = ;jzll—u[;éi ( J)z Ai) 4; - =1 41""
14 14
B(%) = ;—1:3 ll—alaéz )‘ =) 4;‘2) i=1 [(4)2”)2 " 4; jga_;#i 4%‘;] |
12 12 12
E@6) = ;Fl;[# ()\9)\_; X)) zi\; ; 21’,
12 12
E@?) = ;J gﬁ X X) (22)2 = Z_: {(2;)2 + 2%2]-—%:# Qf\;] ;
;a 1;[# A7 /\”/\” 3N Z 3X”
Y 13 13
B = ;J 111&1 X’A X) <3A2"> 2 [@%+%;¢ 313"]’

here, A; (i =1,...,14) are as defined in Lemma 4.3.4, X; (i =1,...,12) are as defined
in Lemma 4.8.5, and X\, (i =1,...,13) are as defined in Lemma 4.3.6.

4.4 Confidence Intervals

In this section, we present different methods of constructing confidence intervals

(CIs) for the unknown parameters 6, 65, 6] and 6. The exact Cls are based on the
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exact conditional distributions of the MLEs presented in Theorems 4.3.2 and 4.3.4.
Since the exact conditional PDFs of the MLEs are computationally intensive, we may
use the asymptotic distributions of the MLEs to obtain approximate Cls for 8,, 85,
07 and 8, for large sample size. Finally, we use the parametric bootstrap method to

construct the Cls for the parameters.

4.4.1 Exact Confidence Intervals

The same method in Section 2.4.1 is used to construct the exact Cls for parameters
01, 02, 6] and ¢,. To guarantee the invertibility for the parameters, we assume once
again that the tail probabilities of 6, 65, éi and 63{2 presented in Theorem 4.3.4 are
increasing functions of 6, 02, 8] and 65, respectively. Values of the tail probabilities
Pe,(') (é}” > b) for various 01(,)(1' = 1,2) and b are presented in Tables 4.1 - 4.4 to support
this monotonicity assumption. Since the tail probabilities depend on the data, the form

of P (éf’) > b) is taken as in Lemma 4.3.8.

Confidence Interval for 6,

A two-sided 100(1 — )% CI for 6;, denoted by (61z,61), can be obtained as the

solutions of the following two non-linear equations:

d-1 n—d m -1
0% - A (%
5 = Z Ck,m,q(ﬁm) X G(01, I:k n in(QlL)} ,2d + m), (411)
k=1 m=0 ¢=0
o d-1 n—-d m R CY' —1
1-— 5 = 2 mzoq_zo C’k,m,q(ﬁlU) X G(&l, [mMz(alU):l ,2d + ’I’I’L), (412)

where Cj,m ¢(611)) can be obtained from the expression Cj s, given in Theorem 4.3.1
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and M;(6,.)) can be obtained from the expression M; given in Section 4.3.1. But, in

both cases, we replace (61, 6, 8}, 65) by (61.1w), b5, é’l, 9’2)

Confidence Interval for 0,

A two-sided 100(1 — a)% CI for 6,, denoted by (fsr,8ar7), can be obtained as the

solutions of the following two non-linear equations:

d-1 n—d m a(k+ q) B
= m=o§o Cemalfaz) x Gl0s [(d — k) +(m —q) Miw“)] ,2d+m), (4.13)
d—1 n—-d m .
ai(k +q)
1-— Clym,q(6 G(6, M;(6 .2d ,
k=1 m=0q=20 k, ,q 2U X ( |:(d _ k’) n (m — q) ( 2U):| -+ m)

(4.14)

where Cim,q(f2.(v)) can be obtained from the expression Cy m,q given in Theorem 4.3.1
and M;(02r)) can be obtained from the expression M; given in Section 4.3.1. But, in

both cases, we replace (61, 6, 8}, 6;) by (61, bory, 9, 4,).

Confidence Interval for 4

A two-sided 100(1 — a)% CI for 8}, denoted by (6., 6};), can be obtained as the

solutions of the following two non-linear equations:

d-1n—d m ’ -1
3 Clomalhs) x G0, [dasz(' )| aem )
k=1 m=0 ¢=0
d-1 n—-d m Otl -1
k=1 m=0 q=0

where Ci,m,q(0) (1)) can be obtained from the expression Cy,m,q given in Theorem 4.3.1
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and M;(6; L(U)) can be obtained from the expression M; given in Section 4.3.1. But, in

both cases, we replace (6;, 8-, 67, 63) by (él, 0, GiL(U), 9'2)

Confidence Interval for 6,

A two-sided 100(1 — a)% CI for 65, denoted by (65, 8%), can be obtained as the

solutions of the following two non-linear equations:

d-1 n—d m a.” -1
> 3 Cumaltn) x G, %000 2m), (aan)
k
k=1 m=0 ¢=0
a d—1 n—-d m R . -1
1— - = > " Chmg(O5r) x G0y, | ——M;(Byy) |, 2d +m), (4.18)
2 k=1 m=0 ¢g=0 k

where Chm,q(65L(y) can be obtained from the expression Cj,m,q given in Theorem 4.3.1
and M;(85,;,y) can be obtained from the expression M; given in Section 4.3.1. But, in

both cases, we replace (0y, 65, 61, 65) by (91, 05, 9A’1, G’QL(U)).

Lacking a closed-form solution, we have to apply an iterative root-finding technique
in the determination of 6,1, 6/, 6;y and 8;;;, for ¢ = 1, 2; the Newton-Raphson iteration

method, for instance, was used here for this purpose.

4.4.2 Approximate Confidence Intervals

Using the asymptotic normality of the MLEs, we are able to construct approximate

confidence intervals for 6;, 6, ¢ and @, using the Fisher information matrix.

Let I(6y,02,0,0,) = (Li; (61,62,61,85)), 1,7 = 1,2, 3,4, denote the Fisher informa-
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tion matrix for the parameter (61, 62, 6}, 65). From Eq. (4.2), we have

I (61,02, 6,6,) = —E (dlé;d'l - 29—‘?) - dl;%d'l, (4.19)
I (61, 65,0, 8) = —E (dQ;%dIQ _ %) - d2;%d'2, (4.20)
Iy (61,6,,6,,8)) = —F (;’? - 2;) - ZT (4.21)
s (60,60, 0) = E (g__;_) -4 (12)

Lo=ly=lu=Ih1=lpn=la=I3=Ipp=Iy=1Iy =Ip=103=0 (423)

where 57, S; and S35 are as defined in Lemma 4.3.3. Thus, the Fisher information

matrix is given by
a9 9 0
0 %4 o
d,
0 0 ﬁ 0

dy
LO 0 0

52
63

This implies that the MLEs are asymptotically mutually independent. The as-
ymptotic unconditional variance of 8, 65, é’l and 9§ can be obtained from the Fisher

information matrix as

éz éz é’2 ézz
V= —2— =2 _Vi=-1 V=2
YTt d] P datdy P dy T 4

Then, the 100(1 — )% approximate Cls for 6y, 6, 8] and 6}, are obtained by using the

same method as described in Section 2.4.2.
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4.4.3 Bootstrap Confidence Intervals

The bootstrap methods of percentile interval and the biased-corrected and acceler-
ated (BC,) interval are similar to those described in Section 2.4.3, but with a Type-II
censored two-component system failure sample instead. The acceleration &El) in the

BC, interval should be changed to

50 _ 50 )°
' 211 (gi- —0; )
Z(): J ) (7 Ci=12

3
212
d N7 N7,
6 [2j=1 (950)) - 95(3’)) ]

where éfg) is the MLE of 91(/) based on the original sample with the j-th observation

NG 440
deleted, j =1,2,...,d, and 9§(.) = ZJ——L—Tia' o

4.5 Simulation Study

In this section, a Monte Carlo simulation study based on 999 replications was
carried out to examine the relative risks (Section 4.5.1), to evaluate the performance
of the two bootstrap confidence intervals in terms of coverage probabilities for different
sample sizes (Section 4.5.2). We also present numerical examples in Section 4.5.3 to

illustrate all the inferential methods discussed here.

4.5.1 Relative Risks

The theoretical values of my, ma, 73 and my with 6; = 20, 6, =25 0, =9, 6, = 14

are presented in Table 4.12 when n and d take on different values. The results were
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calculated by using the equations presented in Theorems 2.3.1, 3.2.1, 4.2.1 and 4.2.2.

All 71, 7o and 73 are the probabilities that Component 1 fails first within a system.
But m is conditional on the complete destruction of the systems and 73 is conditional
on the incomplete destruction of the systems. m; = 0.5556 implies that the first failure
of a system is more likely due to Component 1. However, in most cases, m < m < 73.
It reflects that a system is more likely to survive if its Component 1 fails first in a

Type-1I censoring experiment.

From Table 4.12, we observe that my, 3 and 74 are more affected by the change of
n and d. As n or d increases, the three relative risks increase. This is because when
n or d is small, fewer failures occur during the experiment time. As n or d increases,
the number of failures increases thus resulting in larger relative risks.

In order to examine whether 71, 7y, 73 and m4 can be estimated by ™, %1, -3/% and
ni_lg, respectively, the results of the average of 999 replications are presented in Table

4.13. We observe that the tabled values get closer to the corresponding theoretical

a4

. . . . 4
values when n or d take on different values. This indicates that 7%, <, =} and ﬁ are

good estimators of w1, m,, w3 and w4, respectively.

4.5.2 Coverage Probabilities and the Performance of the Con-

fidence Intervals

Since the exact confidence intervals and asymptotic confidence intervals depend on
the data, we carry out a Monte Carlo simulation study to compare only the perfor-
mance of the two bootstrap confidence intervals described in Section 4.4.3. We once

again chose the values of the parameters to be 8; = 20, 6, = 25, §; = 9 and 6, = 14.
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We then determined the true coverage probabilities of the 90%, 95% and 99% confi-
dence intervals for the parameters for different sample size by these two methods. The
results for n = 40, 20 and 10 are presented in Tables 4.5-4.7, and they are based on

average over 999 bootstrap replications.

From Tables 4.5-4.7, we observe that the parametric BC, bootstrap method has
the coverage probability to be comparatively closer to the nominal level for all the
parameters in most cases. In Tables 4.6 and 4.7, when the sample size n is small,
the coverage probabilities of the bootstrap percentile method and the parametric BC,
bootstrap method are most often smaller than the nominal level. But, the parametric
BC, bootstrap method is seen to be better than the percentile bootstrap method,

even though it does not have satisfactory coverage probabilities.

4.5.3 Numerical Examples

In this subsection, we consider two data sets when n = 35 with d = 15 and d = 25
and n = 15 with d = 7 and d = 10. The parameters were chosen to be 6; = 20,

0, = 25, 6; =9 and 0, = 14. The data are as follows:

Data Set 1: n =35

93



d=15

(0.54,1; 2.45,2)
(2.78,2; 7.44,1)
(5.29,1; 10.81,2)

(1.70,1; 4.08,2)
(5.29,1; 7.56,2)
(11.35,2; 11.79,1)

(4.27,2; 4.87,1)
(1.30,2; 7.65,1)
(4.07,1; 12.54,2)

(2.62,1; 5.53,2)
(1.32,2; 7.70,1)
(10.98,1; 15.24,2)

(4.01,2; 6.32,1)
(6.14,2; 8.12,1)
(13.76,1; 16.31,2)

(3.60,2; *) (2.03,2; *) (7.37,1; %) (*;%) (1.29,1; %)

(*;%) (5.56,1; * ) (8.55,1; *) (*:*) (*;*)

(0.73,1; *) (*5%) (*3*) (*5*) (1.61,1; %)

(14.09,1; %) (14.83,1; *) (*5*) (*5*) (*5%)
d=25

(0.54,1; 2.45,2)
(2.78,2; 7.44,1)
(5.29,1; 10.81,2)
(3.60,2; 18.01,1)
(19.91,2; 22.12,1)

(1.70,1; 4.08,2)
(5.29,1; 7.56,2)
(11.35,2; 11.79,1)
(2.03,2; 19.61,1)
(5.56,1; 22.70,2)

(4.27,2; 4.87,1)
(1.30,2; 7.65,1)
(4.07,1; 12.54,2)
(7.37,1; 19.81,2)
(8.55,1; 25.03,2)

(2.62,1; 5.53,2)
(1.32,2; 7.70,1)
(10.98,1; 15.24,2)
(19.00,2; 21.30,1)
(25.39,1; 27.16,2)

(4.01,2; 6.32,1)
(6.14,2; 8.12,1)
(13.76,1; 16.31,2)
(1.29,1; 21.57,2)
(22.66,2; 27.74,1)

(0.73,1; * ) (23.22,1; *) (17.60,2; * ) (27.55,1; *) (161, 1; %)
(14.09,1; *) (14.83,1; *) (*;%) (19.69,1; * ) (*:*)
Data Set 2: n =15
d="7

(1.21,2; 6.16,1)

(7.21,1; 9.53,2)

(9.06,2; 13.00,1)

(7.95,1; 13.98,2)

(5.97,1; 14.19,2)

(8.45,2; 17.90,1) | (6.73,1; 17.94,2) (5.28,1; *) (%5 %) (*;%)
(0.92,2; *) (10.24,1; * ) (*5%) (16.95,1; * ) (*5%)
d=10

(1.21,2; 6.16,1)
(8.45,2; 17.90,1)
(0.92,2; %)

(7.21,1; 9.53,2)
(6.73,1; 17.94,2)
(10.24,1; * )

(9.06,2; 13.00,1)
(5.28,1; 21.59,2)
(%)

(7.95,1; 13.98,2)
( 19.06,2; 24.45,1)
(16.95,1; * )

(5.97,1; 14.19,2)
( 21.43,2; 26.13,1)
(*:%)

In the example when n = 35, d = 15, we have d; = 8, ds = 7, d} = 8 and dj = 2.
Using the expressions presented in Section 4.2, the MLEs of 6, 6, #, and 6, are

6, = 18.6379, 6, = 33.1340, , = 7.1030 and 6} = 13.3399.
In the example when n = 35, d = 25, we have d; = 13, dy = 12, d} = 7 and d;, = 1.
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The MLEs are 8; = 18.2793, 6, = 28.1220, §; = 6.2055 and 6, = 14.6813.

In the example when n = 15, d =7, we have d; =4, dy =3, d; =3 and d), = 1.
The MLEs are 8, = 21.6739, 6, = 37.9294, §, = 11.7864 and @}, = 12.2768.

In the example when n = 15, d = 10, we have d; =5, dy = 5, d} =2 and dj = 1.
The MLEs are 8, = 24.6722, 6, = 28.7843, 6} = 10.7288 and 6}, = 13.8272.

To assess the performance of these estimates, we constructed 90%, 95% and 99%
confidence intervals using the methods outlined in Section 4.4. The results are pre-

sented in Tables 4.8-4.11.

From these results, it is seen that the exact confidence intervals are wider in general
than the other three intervals. It is also seen that the approximate method always
provide narrower confidence intervals. This is because the coverage probabilities for

the approximate method are significantly lower than the nominal levels.
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Table 4.1: Values of Py, (él > b) with §, = 25, 9, = 9 and ) = 14

6 b=6 b=11 b=16 b=21
1 0.0000 0.0000 0.0000 0.0000
5 0.8660 0.1502 0.0050 0.0001
9 0.9850 0.6059 0.1409 0.0158
13 0.9962 0.8109 0.3535 0.0848
17 0.9985 0.8935 0.5157 0.1802
21 0.9992 0.9317 0.6241 0.2715
25 0.9995 0.9519 0.6968 0.3488
29 1.0000 0.9997 0.7471 0.4119
33 0.9998 0.9712 0.7832 0.4630

Table 4.2: Values of P, (éZ > b) with @) = 20, ¢, = 9 and ¢, = 14

) b==6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.9564 0.3745 0.0382 0.0016
9 0.9962 0.8029 0.3329 0.0728
13 0.9991 0.9189 0.5753 0.2212
17 0.9996 0.9573 0.7107 0.3577
21 0.9998 0.9734 0.7876 0.4613
25 0.9999 0.9816 0.8344 0.5374
29 0.9999 0.9862 0.8648 0.5939
33 0.9999 0.9891 0.8857 0.6366
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Table 4.3: Values of Py, (ég > b) with 8, = 20, 6, = 25 and 6, = 14

4 b=6 b=11 b=16 b=21

1 0.1442 0.0002 0.0000 0.0000
5 0.9874 0.7123 0.2711 0.0624
9 0.9981 0.9120 0.6172 0.2986
13 0.9993 0.9569 0.7617 0.4717
17 0.9996 0.9730 0.8295 0.5770
21 0.9997 0.9806 0.8665 0.6437
25 0.9998 0.9848 0.8891 0.6886
29 0.9999 0.9874 0.9041 0.7204
33 0.9999 0.9891 0.9147 0.7440

Table 4.4: Values of Py, (ég > b) with 6; = 20, 6 = 25 and 6] =9

A b=6 b=11 b=16 b=21

1 00012 0.0000 0.0000 0.0000
5 0.5944 0.0286 0.0004 0.0000
9 0.7828 0.1129 0.0051 0.0001
13 0.8445 0.1797 0.0132 0.0006
17 0.8734 0.2261 0.0214 0.0014
21 0.8897 0.2590 0.0286 0.0021
25 0.9002 0.2832 0.0348 0.0029
29 0.9074 0.3018 0.0400 0.0036
33 0.9127 0.3163 0.0444 0.0043
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Table 4.5: Estimated coverage probabilities based on 999 simulations with 6, = 20,

6, =250,=9,6,=14 and n =40

C.I of 6, 90% C.I 95% C.I. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
15 90.49 90.79 | 94.09 95.39 | 98.60 99.20
20 89.69 89.99 [ 9510 95.99 | 98.80 99.20
25 88.19 89.69 | 93.79 95.19 | 98.69 98.79
30 89.29 89.98 | 94.79 9520 | 99.29 99.40
C.I of 8, 90% C.1. 95% C.I. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
15 89.89 91.19 | 94.89 9599 | 98.60 99.20
20 89.99 91.49 | 94.50 95.50 | 98.30 98.80
25 88.69 88.79 | 93.09 94.09 | 98.80 99.00
30 88.69 90.29 | 95.50 96.69 | 98.59 99.20
C.L of 6] 90% C.I. 95% C.I. 99% C.L
d Boot-p BC, | Boot-p BC, | Boot-p BC,
15 89.99 91.69 | 93.89 94.79 | 98.60 99.20
20 87.89 89.09 | 95.50 96.50 | 99.50 99.60
25 89.39 91.91 | 94.09 96.09 | 98.39 98.89
30 90.49 9249 | 95.69 96.39 | 98.39 98.69
C.I of 6 90% C.I. 95% C.IL 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
15 89.09 89.59 | 94.19 94.39 | 98.60 99.20
20 89.09 89.79 | 93.99 94.89 | 98.79 98.70
25 88.29 88.69 | 93.69 94.80 | 98.99 99.30
30 90.39 91.39 | 94.89 9549 | 97.79 98.89
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Table 4.6: Estimated coverage probabilities based on 999 simulations with §; = 20,

6, =25,0,=9, 6, =14 and n = 20

Cl of 6, 90% C.I. 95% C.I. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
10 86.49 87.39 | 92.89 93.79 | 97.50 97.70
12 88.49 90.49 | 94.69 9599 | 9799 98.10
14 89.19 91.69 | 94.09 9469 | 98.20 98.99
16 88.29 90.29 | 94.39 95.80 | 98.80 99.50
C.I of 8, 90% C.I 95% C.I. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
10 89.89 91.59 | 93.69 94.79 | 97.50 97.70
12 89.80 91.69 | 94.19 9560 | 97.80 98.30
14 89.79 91.79 | 9429 9640 | 98.70 99.10
16 90.19 91.39 | 93.69 9469 | 98.20 99.00
C.I of 6] 90% C.I. 95% C.1. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
10 86.99 89.79 | 90.49 9299 | 95.89 96.30
12 88.09 90.99 | 93.09 9520 | 96.60 96.80
14 87.39 89.90 | 93.39 95.20 | 97.40 98.40
16 86.89 90.79 | 93.09 94.79 | 96.60 97.40
C.I of 6, 90% C.1. 95% C.I. 99% C.I
d Boot-p BC, | Boot-p BC, | Boot-p BC,
10 88.89 88.69 | 92.09 93.19 | 97.60 97.60
12 87.79 89.79 | 92.49 93.39 | 96.20 96.10
14 88.89 90.89 | 93.19 96.20 | 97.20 97.80
16 89.69 91.89 | 92.29 93.89 | 97.60 98.00
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Table 4.7: Estimated coverage probabilities based on 999 simulations with §; = 20,

6, =250=9,0,=14and n =10

Cl of 6; 90% C.I. 95% C.I. 99% C.I.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
5 63.16 62.76 | 69.37 68.77 | 65.97 65.67
6 76.48 76.48 | 78.38 78.78 | 83.28 83.18
7 82.08 81.68 | 87.09 86.79 | 88.39 88.29
8 86.79 86.59 | 89.99 90.99 | 92.49 92.49
Cl of 0, 90% C.1. 95% C.1. 99% C.1.
d Boot-p BC, | Boot-p BC, | Boot-p BC,
5 64.86 63.36 | 6947 68.87 | 66.17 65.97
6 77.68 76.78 | 79.68 78.88 | 82.88 82.88
7 82.08 80.98 | 86.29 86.69 | 88.89 88.99
8 86.89 87.99 | 90.79 90.89 | 93.59 93.59
CI of 9] 90% C.I. 95% C.I. 99% C.IL
d Boot-p BCy | Boot-p BC, | Boot-p BC,
5 57.96 60.86 | 64.36 66.57 | 63.76 63.56
6 70.37 73.57 | 72.37 7548 | 80.18 80.78
7 75.48 80.48 | 81.48 84.18 | 84.68 85.59
8 81.88 85.99 | 83.78 87.79 | 89.19 90.39
C.I of 6, 90% C.1. 95% C.I 99% C.L
d Boot-p BC, | Boot-p BC, | Boot-p BC,
5 57.06 58.56 | 66.37 67.57 | 63.86 64.06
6 70.87 7277 | 75.38 77.78 | 80.38 80.78
7 76.88 80.28 | 81.78 83.98 | 86.89 87.29
8 82.08 84.28 | 85.49 87.39 | 91.69 92.29
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Table 4.8: Interval estimation for the simulated sample with n = 35, d = 25

90% C.I.
Method 61 6 61 g,
Exact | (12.99, 27.49) | (19.16, 53.74) | (4.03, 11.57) | (9.56, 23.85)
Approx. | (11.56, 25.00) | (15.29, 40.95) | (3.26, 9.15) | (7.98, 21.38)
Boot-p | (12.60, 27.00) | (18.02, 47.17) | (3.43, 9.63) | (9.11, 22.82)
BC, | (12.57, 26.98) | (18.95, 52.52) | (3.84, 10.67) | (9.34, 23.40)
95% C.I.
Method 61 6> 6 6,
Exact | (12.18, 29.53) | (17.59, 60.80) | (3.55, 13.38) | (8.46, 26.99)
Approx. | (10.27, 26.29) | (12.84, 43.41) | (2.69, 9.72) | (6.70, 22.66)
Boot-p | (11.77, 28.63) | (16.61, 55.87) | (3.15, 10.68) | (8.17, 25.66)
BC, | (11.77,28.62) | (17.19, 58.81) | (3.48, 11.84) | (8.38, 26.02)
99% C.I.
Method 6 62 61 g5
Exact | (10.80, 34.74) | (14.84, 75.66) | (3.09, 17.59) | (6.16, 30.85)
Approx. | (7.75, 28.81) | (8.03, 48.21) | (1.59, 10.82) | (4.19, 25.17)
Boot-p | (10.54, 33.42) | (14.05, 60.44) | (2.41, 13.20) | (6.37, 29.94)
BC. | (10.54, 33.00) | (14.30, 69.44) | (3.03, 14.11) | (6.37, 29.65)
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Table 4.9: Interval estimation for the simulated sample with n = 35, d = 15

90% C.I.
Method 6, - 0] 7
Exact | (13.01, 29.54) | (19.73, 59.72) | (3.70, 14.74) | (7.96, 24.40)
Approx. | (10.97, 26.30) | (14.97, 51.30) | (2.69, 11.52) | (5.58, 21.10)
Boot-p | (12.86, 28.61) | (19.73, 59.16) | (3.36, 13.65) | (6.82, 22.63)
BC, | (12.88, 28.61) | (19.63, 58.08) | (3.41, 13.72) | (7.58, 23.60)
95% C.I.
Method 6 6, 4 o5
Exact | (12.45, 32.13) | (18.88, 68.72) | (3.17, 17.74) | (6.88, 27.80)
Approx. | (9.51, 27.77) | (11.49, 54.78) | (1.84, 12.36) | (4.10, 22.58)
Boot-p | (11.98, 31.10) | (18.36, 67.13) | (2.81, 15.77) | (5.85, 24.67)
BC, | (11.98, 31.01) | (18.32, 66.23) | (2.81, 15.48) | (6.61, 26.20)
99% C.I
Method 6, 0> 61 g,
Exact | (10.41, 41.00) | (16.26, 88.59) | (2.04, 22.92) | (5.37, 34.40)
Approx. | (6.64, 30.64) | (4.68, 61.58) | (0.19, 14.02) | (1.19, 25.49)
Boot-p | (9.89, 37.42) | (15.56, 86.66) | (2.16, 20.71) | (4.24, 31.34)
BC, (9.89, 36.53) | (15.25, 82.56) | (1.39, 19.23) | (4.81, 31.71)
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Table 4.10: Interval estimation for the simulated sample with n = 15, d = 10

90% C.I.
Method 6y 0 0, 2
Exact | (12.28,48.80) | (14.22, 61.37) | (4.79, 21.10) | (5.72, 26.49)
Approx. | (9.33,40.01) | (9.46, 48.11) | (2.84, 18.62) | (3.66, 23.99)
Boot-p | (13.24, 50.04) | (15.25, 62.23) | (4.06, 21.17) | (5.67, 26.88)
BC, | (12,77, 47.69) | (14.90, 59.50) | (4.28, 21.79) | (5.93, 27.84)

95% C.1.
Method 0, 0 ¢, g,
Exact | (10.87, 57.10) | (11.60, 70.43) | (4.15, 25.50) | (4.98, 31.79)
Approx. | (6.40, 42.95) | (5.75, 51.82) | (1.32, 20.13) | (1.71, 25.95)
Boot-p | (11.74, 59.87) | (13.79, 74.61) | (3.25, 24.27) | (4.74, 33.40)
BC, | (11.54,57.46) | (13.06, 69.49) | (3.46, 24.51) | (4.74, 33.40)

99% C.1.
Method 6 0, 61 o,
Exact | (8.78,79.11) | (9.25,95.35) | (2.24, 31.26) | (3.33, 53.17)
Approx. | (0.65,48.69) | (0%, 59.05) | (0%, 23.09) | (0%, 29.76)
Boot-p | (10.15, 94.13) | (10.88, 113.28) | (1.71, 30.85) | (3.35, 55.19)
BC, | (9.89,80.10) | (9.14,93.85) | (1.71, 29.66) | (3.13, 50.93)

0* stands for a non-positive number

103




Table 4.11: Interval estimation for the simulated sample with n =15, d =7

90% C.L.
Method 0, 0 & 0
Exact | (11.27, 43.69) | (16.49, 88.11) | (3.41, 36.40) | (3.85, 25.77)
Approx. | (8.29, 35.15) | (6.74, 69.12) | (0.59, 22.98) | (2.18, 22.37)
Boot-p | (11.76, 42.47) | (17.76, 96.40) | (3.07, 32.58) | (5.05, 24.31)
BC, | (11.68,40.87) | (17.93, 96.40) | (3.57, 34.43) | (5.21, 25.22)

95% C.I.
Method o, 0 g, g,
Exact | (10.02, 52.34) | (15.50, 117.23) | (2.67, 43.54) | (3.43, 33.21)
Approx. | (5.62,37.73) | (0.76,75.09) | (0* 25.12) | (0.25, 24.31)
Boot-p | (10.65, 48.68) | (15.98, 132.89) | (2.08, 39.21) | (4.21, 32.88)
BC, | (10.64,48.13) | (15.88, 130.29) | (2.48, 40.51) | (4.20, 32.52)

99% C.L
Method 01 0 0, 2
Exact | (8.15, 77.45) | (13.71, 168.33) | (1.72, 58.17) | (2.79, 47.67)
Approx. | (0.57,42.78) | (0% 86.79) | (0% 20.31) | (0% 28.09)
Boot-p | (8.37,70.65) | (13.39, 196.47) | (0.31, 62.51) | (2.31, 45.95)
BC, | (8.37,70.18) | (13.25, 195.85) | (0.27, 54.47) | (2.17, 43.98)

0* stands for a non-positive number
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Table 4.12: Theoretical values of relative risks with ¢, = 20, 6, = 25, §; = 9 and
6, =14

40 | 30 | 0.5556 | 0.5215 | 0.6939 | 0.7412
25 | 0.5556 | 0.5097 | 0.6661 | 0.6871
20 | 0.5556 | 0.4992 | 0.6445 | 0.6312
15| 0.5556 | 0.4894 | 0.6256 | 0.5672

20 | 16 | 0.5556 | 0.5274 | 0.7043 | 0.7555
14 | 0.5556 | 0.5176 | 0.6803 | 0.7126
12| 0.5556 | 0.5083 | 0.6609 | 0.6697
10 | 0.5556 | 0.5006 | 0.6437 | 0.6237

10 0.5556 | 0.5214 | 0.6832 | 0.7123

0.5556 | 0.5132 | 0.6654 | 0.6738

S N @

0.5556 | 0.5057 | 0.6499 | 0.6336
5 | 0.5556 | 0.4985 | 0.6361 | 0.5899
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Table 4.13: Relative risks based on 999 simulations with 6; = 20, 8, = 25, 6] =9 and 6, = 14

n | d ny g oL d; dy dj} dy dy ?Tl} nd—,d

40 | 30 | 22.2242 | 17.7758 | 0.5556 | 15.6016 | 14.3984 | 0.5201 | 5.1762 | 2.2793 | 0.6943 | 0.7455
25| 22.2643 | 17.7358 | 0.5566 | 12.7397 | 12.2603 | 0.5096 | 6.8759 | 3.4394 | 0.6666 | 0.6877
20 | 22.1331 | 17.8669 | 0.5533 | 9.9199 | 10.0801 | 0.4960 | 8.0571 | 4.4735 | 0.6430 | 0.6265
15 | 22.2593 | 17.7407 | 0.5565 | 7.3193 | 7.6807 | 0.4880 | 8.9159 | 5.3133 | 0.6266 | 0.5692

20 | 16 | 11.0771 | 8.9229 | 0.5539 | 8.3914 | 7.6086 | 0.5245 | 2.1381 | 0.8769 | 0.7092 | 0.7538
14 | 11.0931 | 8.9069 | 0.5466 | 7.1522 | 6.8478 | 0.5109 | 2.9219 | 1.3003 | 0.6920 | 0.7037
12 | 11.0320 | 8.9680 | 0.5516 | 6.0440 | 5.9560 | 0.5037 | 3.5516 | 1.8308 | 0.6599 | 0.6728
10 | 11.1972 | 8.8028 | 0.5599 | 5.0851 | 4.9149 | 0.5085 | 4.0150 | 2.1722 | 0.6489 | 0.6187

10 | 8 | 5.5285 | 4.4715 | 0.5529 | 4.1932 | 3.8068 | 0.5242 | 1.0440 | 0.4434 | 0.7018 | 0.7438
7 | 5.6466 | 4.3534 | 0.5647 | 3.6967 | 3.3033 | 0.5281 | 1.4515 | 0.6386 | 0.6945 | 0.6970
6 | 5.5335 | 4.4665 | 0.5534 | 3.0280 | 2.9720 | 0.5047 | 1.7287 | 0.8829 | 0.6619 | 0.6529
5 t+ 5.5155 | 4.4845 | 0.5516 | 2.6325 | 2.4675 | 0.5065 | 1.8959 | 1.1391 | 0.6247 | 0.6070




Chapter 5

Exact Analysis under Type-I

Censoring

5.1 Introduction

In this Chapter, we consider a two-component system failure model in the case of
Type-1 censored data. We then present an iterative maximum likelihood estimation
procedure to determine MLEs of the parameters assuming the lifetimes to be expo-
nentially distributed. The asymptotic distributions of the MLEs are also obtained.
Construction of confidence intervals for the model parameters are discussed by using
the asymptotic distributions and two parametric bootstrap methods. The bias and
variance of the estimates as well as the performance of the three confidence intervals
in terms of coverage probabilities are assessed through a Monte Carlo simulation study.

Finally, examples are presented to illustrate all the methods of inference discussed here.
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5.2 Model Description and MLEs

Consider the following simple system failure model: n identical units are placed
on a life test and each system has two components. Assume that the experiment
continues up to a pre-fixed time W. Before the time W there are D observed failed
systems. Failures that occur after W are not observed. The termination point W
of the experiment is assumed to be independent of the failure times. Among the D
failed systems, there are DD systems in which Component 1 failed first and D, systems
in which Component 2 failed first, with D; + Dy = D. We assume that X; and Y;
(t=1,...,n) are random variables representing the lifetimes of Components 1 and 2,
respectively, in the ¢-th system. Let Z; = max(X;,Y;) ({ = 1,...,n). Thus, the i-th
system fails at time Z;, and Z;.,, < --- < Zp., are the corresponding ordered failure
times obtained from a Type-I censored sample from the n systems under test. The

data arising from such a two-component system is as follows:

(Tl, 5’1, Zl:n; 5/1,), ey (TD, 52), ZD:n; 59_’7), (*, *), ey (51)
where 11, ...,Tp denote the first observed failure times in the systems, Z;., < --- <

Zp.n, denote the final observed failure times of the systems, ¢’ denotes the component
of the first observed failure within the system, and §” denotes the component of the

second observed failure within the system. We use “*” to denote the censored data.

If we let

I ={ie(1,2,...,D): Component 1 failed first},

IL={ie(1,2,...,D): Component 2 failed first},

108



the likelihood function of the observed data in (5.1) is

L(6,,65,61,6,)

— Zn_f!D_)!Hf(xi’yi) H Pr(max(X;, V) > W)

i=D+1
n! 1 \™ 1 1 1 1
= X expy—\|\=—++—— = Ty — o 2
(n — D)! (m%> p{ (m_ 0> Q)Z; %2; }
1\ (1 1 1) 1 D
X exp — | =+ — = i = Qs X Py, 5.2
(929g> p{ 6, 0, o ;y 9’124,:2 } v 02

where 0 < z; < zygp fori € I, 0 < y; < zzm fori € Iy, 0 < 2., < - -+ < 2p.p < W, and

1 1 1\'/1 1 1\*' -
Pw=PT(mCL$(Xi,}/i)ZW)=<9—1+a;—9—12) (9—1—!-—9-;—-97) X‘P, (53)
1

where

~ 1 1 1 1 1 1 1 1 1 1
P (242 _ 2 _— Sl R =
61 (91 +92 ei)exp( 95W)+92 (91 Jr92 9é)exp( 91W>
1 1 1 1 1
_ - — =+ = . 54
(75 o) - (67 3) ™) (54)

The exact derivation of Py, is presented later in Lemma 5.2.2.

The maximum likelihood estimate (él, 0y, é{, ég) of (0, 05, 8], 05) is the value that
globally maximizes the likelihood function in (5.2). Taking logarithm in Eq. (5.2), we

obtain the log-likelihood function to be

1 1 1 1
InL=—-diIn6; —dyIn6; - (E+@_§g) Zmi—@zzi

el i€l
1 1 1 1
—dsIn b —dln@'—(——l————-—) = Z;
2 2 2 1 91 92 01 %;y 91 ;

—m—mm(%+%—é)—m—mm(i+i—i)+m—mmﬁ

109



Unfortunately, from (5.5), we observe that no closed-form for the MLEs as a func-
tion of the sample exist. We need to determine the MLEs by numerically maximizing
the log-likelihood function in (5.5). Once again, an iterative procedure for the com-
putation of the MLEs is needed. This procedure is the same as the one described in

Section 3.2.1., except for changing the initial values to be as

g0 _ 2uien it Dier Ui o0 _ 2ien Tit Dier, Ui
' D, ! 2 D, :
g © _ 2icn(% %) g _ 2ien, (% — 7))
1 D, , 2 D, )

Note that these estimates do not use all the information available in the sample, but

they do provide good starting values, for the iterative procedure.

5.2.1 Relative Risks

Based on the results of Section 3.2.2 and Section 4.2.1, in this subsection, one

additional relative risk is derived and is presented in Theorem 5.2.1.
Lemma 5.2.1. We have

PB=Pr(X<Y<W)=

L(L 1 1N 11 AN o111 1)
6, \6, 6, 6, 0, \ 6 6, 6, \6, 6, 6,

1 1/1 1\ 1 1

W) —— | =+ = — =+ |W]. 5.6
Ao ()5 Gra) [ Gea)n]) oo

Proof: We can express

1 1 1 1
Po=Pr(X<Y <W)= / /elgzexp{ (EI—F@_@) H,Qy}d:cdy

Then, the result follows by carrying out the required integration.
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Lemma 5.2.2.

Ps = Pr(max(X,Y)>W) =

(1+1 1)‘1(1+1 1)‘1[1(1+1 1) (
—t - - — —t == — — | =4 ———Jex
0, 0, o 0, 6 0 5, \0 6 o )"

11 1 1 1
+—l -+ exp| ——W
02(91 62 92) p( 1 )

(L1 1Y 1o1Yy,
0.0, ~ 010, " 0,07 ) P\ T\ T o, '

Proof: We have

Ps = Pr(max(X,Y) > W) =1- Pr(maz(X,;,Y;) <W)
1 1 1 1
/ /919’8Xp{ (91+0—2—9—,2)a:—§§y}da:dy
1 1 1 1
/ /eze,exp{ (91 92—0—,1)31—9, }dydx

(5.7)

(5.8)

Then, the result follows by carrying out the required integration and by using the

identity in Lemma 3.2.1.

Theorem 5.2.1. The relative risk that Component 1 fails first within a two-component

system, under the condition that the system fails by time W, is

P

75 = Pr(X < Y|max(X,Y) < W) = .
1= Py

Proof: The proof is straightforward.

Lemma 5.2.3. In a Type-I censored experiment, there are D (D < n) systems with

complete destruction observed before the pre-fized time. Among the D systems, the
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number of failures due to Component 1 failing first, viz., Dy, is a non-negative random

variable with probability mass function given by

. (D\( B Y p N\
Pr(Dy = 7) = 1 — = ..., D.

Proof: The result follows immediately from Theorem 5.2.1.

5.3 Confidence Intervals

In this section, we present two different methods of constructing confidence intervals
(Cls) for the unknown parameters 6y, 0, 6] and ;. First, we use the asymptotic
distributions of the MLEs to obtain approximate Cls for the parameters in case of
large sample sizes. Next, we use the parametric bootstrap method to construct Cls

for the parameters.

5.3.1 Approximate Confidence Intervals

In the last section, we noted that closed-form expressions for the MLLEs do not exist.
However, we can use the asymptotic normality of the MLEs to construct approximate
confidence intervals for the parameters. The computation of the approximate confi-
dence intervals is based on the observed Fisher information matrix, by taking negative

of the second derivatives of the log-likelihood function in (5.5) and then evaluating
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them at the MLEs. Specifically, we have

PInL 8InL 8InL HInl
067 80180, 056180, 09,00}

82InL  8%InL 8%InL 8%Inl
Ly = — 86260, 867 86,00, 80200, ( 5 9)
82InLl 8IlnL 8WInL H2Inl
86,86, 80780, 902 86’86},
InL 8%InL 8%InL 8%Inl
80,00, 06,06, 0606, 07 01=061,6,=02,0, =0/ 0, =0,

and the inverse of this observed Fisher information matrix in (5.9) gives an estimate
of the variance-covariance matrix of the MLEs, which in turn can be used to con-
struct approximate confidence intervals for the parameters. We shall make use of the

asymptotic normality of the MLEs to obtain these confidence intervals.

Thus, if

V(917027 1170,2) = - = (%'(0179% ;10,2))) 7’3] = 13273)45

obs

is the variance-covariance matrix, the 100(1 — &)% confidence intervals for 6y, 65, 61,
6, are given by
0, + Zi-g VVir,
0, z1_2v/Vag,
é'1 + 21-2 VVas,
gy + 21_2v/Vag,

where z, is the g-th upper percentile of the standard normal distribution. This method

(5.10)

may work satisfactorily when n is large, but may not be satisfactory for small sample

sizes.
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5.3.2 Bootstrap Confidence Intervals

The bootstrap methods of percentile interval and the biased-corrected and acceler-
ated (BC,) interval are similar to those described in Section 2.4.3, but with a Type-I
censored two-component system failure sample instead. The acceleration &E') in the

BC, interval should be changed to

where 91(8) is the MLE of 051) based on the original sample with the j-th observation

NG D §()
deleted, j =1,2,..., D, and 95(?) = Ejzgem .

5.4 Simulation Study

In this section, a Monte Carlo simulation study based on 999 replications was car-
ried out to examine the bias, variance and relative risks (Section 5.4.1), and to evaluate
the performance of the three confidence intervals in terms of coverage probabilities for
different sample sizes (Section 5.4.2). We also present numerical examples in Section

5.4.3 to illustrate all the inferential methods discussed here.

5.4.1 Bias, Variance and MSE of the MLEs

It is desirable to examine the bias and variance of the MLEs as they are not explicit

estimators. For this purpose, we carried out a simulation study to evaluate the bias,
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mean squared error (MSE), means and variances of the MLEs, and also the average
of the asymptotic variance of the estimators computed from the observed information
matrix. These results for n = 40,20,10 and W = 40, 35, 30, 25, 20, 15, 10 for each

choice of n are presented in Tables 5.1-5.3.

We observe from Tables 5.1-5.3 that, as sample size n increases, the bias of MLEs
decrease, with the bias tending to zero as n becomes large. Similarly, for the same
sample size n, as the pre-fixed experimental time W decreases, the bias of MLEs
increase. Similar behavior is also observed in MSE of the MLEs. As the sample size n
and pre-fixed experimental time W increase, the MSE of MLEs are nearly identical to
their corresponding variances. This indicates that MLEs are unbiased estimators for

large sample with long experimental time.

The MSE of an estimator is one of many ways to quantify the amount by which
an estimator differs from the true value of the quantity being estimated. In our case,
as n or W decreases, big difference occurs between the true value and the estimator.
The primary reason causing the big difference is the fewer failures that are observed in
a small sample with short experiment time. This is so because when n or W is small,
there will be fewer failures observed and so inference for 6, 65, 6] and 65 is not quite

precise.

We observe a negative bias for the parameter 8, for most cases. This implies the

underestimation of 5.

We also determined the means and variances of the estimates of the parameters
over 999 simulations. We observe that, for large sample sizes, the means of the MLEs

of the parameters 6y, 62, 8] and 6 are quite close to the true values, viz., 20, 25, 9,
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14, respectively. However, this is not true for smaller sample sizes. The variances
of the MLEs can also be compared with the average approximate variance computed
from the observed information. Once again, the variance and the average approximate
variance are closer for large values of n and W, but not so for smaller sample sizes.

The reason for this is the same as the one given earlier for the bias and MSE of the

MLEs.

The behaviors of relative risks m; and w5 are checked through the average of 999
replications. The results are presented in Table 5.4. The values of m and 75 are
computed from the expressions in Theorems 2.3.1 and 5.2.1, respectively. From the
expression we find that m is fixed for all sample sizes n and length of experiment time
W w5 is only affected by the length of experiment time W. m; = 0.5556 implies that
the first failure occurring within a specified system is more likely due to Component
1, with the true parameters 6; = 20 and 6, = 25. 75 increases as the experiment time
W becomes longer. w5 = 0.5 when W = 20. This implies, if the pre-fixed termination
time is 20, Component 1 and Component 2 have the equal chance to fail first within
a system with complete destruction. However, when the experiment time W is longer
than 20, Component 1 is more likely to fail first; otherwise, Component 2 is more
likely to fail first. m5 < m; in all the cases. This implies that the probability that
Component 1 fails first within a system is weakened on the condition that the system

has a complete destruction in a Type-I censoring test.

We observe that as W increases, the value of 2 gets closer to my; the value of %
gets closer to m5. This indicates that °* and %L are good estimators of m; and s,

respectively.
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5.4.2 Coverage Probabilities and the Performance of the Con-

fidence Intervals

The purpose of this subsection is to carry out a Monte Carlo simulation study
based on Type-I censored sample to compare the performance of different confidence
intervals described in Section 5.3. We once again chose the values of the parameters
to be 6; = 20, 02 = 25, 8] = 9 and 6, = 14. We then determined the true coverage
probabilities of the 90%, 95% and 99% confidence intervals for the parameters for
different sample sizes by all three methods described earlier in Section 5.3. These
values, based on 999 Monte Carlo simulations and R = 999 bootstrap replications, are

presented in Tables 5.5 and 5.6.

From these tables, we observe that, among the three methods, the parametric BC,
bootstrap method of constructing confidence intervals has its coverage probabilities to

be closer to the nominal level and is therefore recommended for large sample sizes.

As expected, the approximate method based on the asymptotic normality of the
MLEs has its true coverage probabilities to be always less than the nominal level.
Though the coverage probability improves for larger sample sizes, we still find it to be
unsatisfactory even for n as large as 40 particularly when the pre-fixed termination time
is W = 40. This indicates that the confidence intervals obtained by this method will
often be unduly narrower. We do observe that for all the nominal levels considered, the
coverage probabilities of the approximate method are lower for small sample size n or
short length of pre-fixed experiment time W in almost all cases. This is because, when
n or W is small, there are fewer failures observed and so inference for the parameters

is not precise. As 7 increases, the number of failures increases thus resulting in a
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better large-sample approximation for the distribution of MLEs. This means that we
need a much larger sample size to use the asymptotic normality of the MLEs. We also
observe that when n is small, even the parametric BC, bootstrap method does not
have satisfactory coverage probabilities, but is seen to be better than the approximate

methods as well as percentile bootstrap method.

5.4.3 Illustrative Examples

In this subsection, we consider two data sets by using small and moderately large

sample sizes to illustrate all the methods of inference developed in the preceding sec-

tions.

Data Set 1: n =35

W Failure Times

15

(2.28,2; 2.49,1)

(6.41,2; 6.41,1)

(8.79,1; 9.40,2)
(12.98,1; 13.21,2)

(2.12,2; 2.95,1)
(2.76,1; 6.50,2)
(4.68,1; 10.39,2)
(2.10,2; 13.72,1)

(2.60,2; 3.12,1)
(4.81,2; 6.54,1)
(6.58,2; 11.15,1)
(13.27,1; 14.76,2)

(3.08,1; 3.70,2)
(0.19,1; 7.09,2)
(8.67,1; 11.49,2)
(12.91,1; 14.90,2)

(2.92,1; 4.87,2)

(4.55,1; 8.49,2)

(0.64,1; 12.90,2)
(%, %)

25

(2.28,2; 2.49,1)

(6.41,2; 6.41,1)

(8.79,1; 9.40,2)
(12.98,1; 13.21,2)
(10.42,2; 20.67)

(2.12,2; 2.95,1)

(2.76,1; 6.50,2)

(4.68,1; 10.39,2)
(2.10,2; 13.72,1)
(20.19,2; 20.71,1)

(2.60,2; 3.12,1)
(4.81,2; 6.54,1)
(6.58,2; 11.15,1)
(13.27,1; 14.76,2)
(3.28,1; 22.45,2)

(3.08,1; 3.70,2)
(0.19,1; 7.09,2)
(8.67,1; 11.49,2)
(12.91,1; 14.89,2)
(19.64,2; 24.45,1)

(2.92,1; 4.87,2)

(4.55,1; 8.49,2)

{0.64,1; 12.90,2)

(1.83,2; 15.91,1)
(%, %)

In the case when n = 35, had we fixed W = 15, we would have D; = 12 and
Dy = 7, and we would obtain the MLEs of 6,, 6,, §; and 6, by using the methods

presented in Section 5.2 to be

0, =19.6243, 6, =37.7553, @, =3.5774, 6, =5.3832.
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Instead, had we fixed W = 25, we would have D; = 13 and D, = 11, and we would
obtain the MLEs to be

6, = 25.1019, 6, =30.4837, 6, =5.8473, 6} = 6.5068.

Data Set 2: n =15

(7.92,2; 12.99,1)

(10.25,1; 14.55,2)

(7.51,1; 17.70,2)

(13.33,1; 18.62,2)

w Failure Times

15 | (0.11,2; 1.67,1) (3.93,1; 8.89,2) (5.63,2; 9.26,1) (7.28,1; 9.75,2) (4.15,1; 12.19,2)
(7.92,2; 12.99,1) | (10.25,1; 14.54,2) (%, *)

25 | (0.11,2; 1.67,1) (3.93,1; 8.89,2) (5.63,2; 9.26,1) (7.28,1; 9.75,2) (4.15,1; 12.19,2)

(9.94,2; 21.14,1)

(% %)

In the case when n = 15, had we fixed W = 15, we would have D; = 4 and D, = 3,
and we would obtain the MLEs of 8y, 6,, 6] and 6} by using the methods presented in

Section 5.2 to be

6, = 19.8219, 6, =352041, @ =4.8815, 6} =9.9186.

Instead, had we fixed W = 25, we would have D; = 6 and D, = 4, and we would
obtain the MLEs to be

6, =21.3098, 6, =34.0602, @, =75193, @, =9.1564.

To assess the performance of these estimates, we constructed 90%, 95% and 99%
confidence intervals using the methods outlined in Section 5.3. The results are pre-
sented in Tables 5.7-5.10. Notice that the approximate method always provide nar-
rower confidence intervals in most cases. This is because the coverage probabilities for

the approximate method are significantly lower than the nominal levels.
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Table 5.1: Bias, MSE, Mean and Variance based on 999 simulations when 6,

6, =25,0] =9, 0, =14 and n = 40
W | Parameters | Bias MSE Mean | Variance | Approximate Variance
10 01 7.51 | 346.14 | 27.51 289.74 359.74
02 3.22 | 337.95 | 28.22 327.59 417.34
6 1.21 36.42 | 10.21 34.96 50.00
2% -2.69 | 52.83 | 11.31 45.60 66.46
15 0, 4.70 | 192.14 | 24.70 170.05 198.77
62 2.53 | 229.73 | 27.53 223.32 294.96
6] 0.92 | 29.99 9.93 29.15 40.88
[ -1.65 | 41.01 | 12.35 38.29 58.81
20 th 3.37 | 107.73 | 23.37 96.49 109.61
0 2.16 | 118.65 | 27.16 114.11 130.27
4 0.71 22.02 9.71 21.66 25.17
A -0.95 | 34.41 | 13.05 33.52 50.25
25 [ 2.25 | 89.70 | 22.25 84.75 92.65
02 1.55 | 95.18 | 26.55 92.86 102.06
‘A 0.59 18.02 9.59 17.69 19.50
6, -0.43 | 29.79 | 13.57 29.63 40.06
30 th 1.42 | 65.00 | 21.42 63.06 69.66
02 1.20 | 89.54 | 26.20 88.19 91.15
0] 0.50 16.11 9.50 15.92 16.71
[ -0.04 | 27.60 | 13.96 27.62 35.59
35 01 0.91 4191 | 2091 41.12 42.89
02 1.08 | 67.57 | 26.08 66.24 67.34
0] 0.46 14.49 9.46 14.16 15.72
28 -0.04 | 26.38 | 13.96 26.40 29.02
40 01 0.66 | 35.42 | 20.66 35.14 37.88
02 0.62 | 61.40 | 25.62 61.30 62.31
0] 0.29 11.01 9.29 10.94 11.70
o, 0.18 | 21.04 | 14.18 21.03 22.20
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Table 5.2: Bias, MSE, Mean and Variance based on 999 simulations when 6,

6, =25,60,=9,0,=14 and n =20

W | Parameters | Bias MSE Mean | Variance | Approximate Variance
10 01 10.25 | 713.85 | 30.25 608.17 793.94
G2 9.62 791.88 34.62 698.65 833.70
4 2.01 53.78 11.01 49.79 71.39
o, -3.24 | 102.32 | 10.76 91.84 198.66
15 (21 8.35 547.67 | 28.35 477.57 615.03
02 7.29 592.82 | 32.29 539.51 671.73
6] 1.71 43.33 10.71 40.26 59.98
o, -2.27 77.45 11.73 72.35 97.16
20 0 6.34 396.39 | 26.34 356.62 498.48
[ 5.02 423.17 | 30.02 398.65 540.16
4 1.25 35.51 10.25 33.99 45.20
04 -1.35 58.70 12.65 56.92 74.92
25 6 4.90 264.33 | 24.90 240.32 359.67
02 4.23 323.00 | 29.23 305.53 421.80
o) 0.81 32.19 9.81 31.37 40.22
o, -0.58 50.82 13.42 50.52 60.23
30 0; 3n 164.82 | 23.71 151.21 267.95
02 3.27 | 248.720 | 28.27 238.24 356.72
‘4 0.72 31.40 9.72 31.09 34.16
o, -0.48 48.45 13.52 48.26 56.52
35 th 2.26 115.68 | 22.26 110.69 145.60
02 1.92 189.84 | 26.92 186.26 289.90
4 0.69 29.53 9.69 29.05 30.39
0, -0.24 47.86 14.24 47.85 53.33
40 0 1.89 104.42 | 21.69 100.68 114.21
02 1.80 154.76 | 26.80 151.75 246.82
i 0.56 21.71 9.56 21.42 26.06
04 0.23 46.60 14.43 46.46 48.28
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Table 5.3: Bias, MSE, Mean and Variance based on 999 simulations when 6, = 20,
0,=250,=9,0,=14 and n =10

W | Parameters | Bias MSE Mean | Variance | Approximate Variance
10 0, 13.75 | 981.41 | 33.75 792.74 1067.97
02 11.77 | 1059.98 | 36.77 920.71 1261.65
4 2.79 127.94 11.79 119.35 121.25
0, -4.51 | 154.82 9.49 134.50 179.71
15 0, 10.85 | 791.62 | 30.85 673.49 863.33
02 9.83 917.71 | 34.83 820.65 1049.24
0] 2.16 86.79 11.16 81.81 102.48
o) -3.30 | 111.90 | 10.70 101.03 133.08
20 0, 9.54 680.47 | 29.54 589.17 696.02
[ 8.01 820.25 | 33.01 756.81 882.81
4 1.73 72.66 10.73 69.19 91.01
o/, -1.80 93.32 12.20 90.16 126.41
25 o 8.80 558.09 | 28.80 481.12 512.70
9, 7.35 674.07 | 32.35 620.65 725.00
A 1.07 60.02 10.07 59.15 82.77
A -1.57 87.23 12.43 84.82 101.30
30 [ 7.85 419.91 | 27.85 357.88 398.57
02 5.89 551.34 | 30.89 517.18 594.81
A 0.97 51.51 9.97 56.57 74.81
o -0.73 83.90 13.87 82.96 90.05
35 0, 5.04 339.55 | 25.04 314.59 324.44
62 4.99 471.92 | 29.99 446.92 504.21
0] 0.76 53.97 9.76 52.79 68.23
o, 0.22 80.46 13.78 80.54 84.19
40 0, 4.45 322.34 | 24.45 302.88 307.92
[ 4.83 423.80 | 29.83 400.71 430.96
0] 0.70 51.10 9.70 50.66 65.04
24 0.04 78.49 14.04 78.49 80.66
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Table 5.4: Relative risks based on 999 simulations when 6; = 20, 8, = 25, 6] = 9,

g, = 14
n w 1 T Enl‘ ™ D1 Dz %L T
40 | 40 | 22.36 | 17.64 | 0.56 | 0.56 | 18.55 | 15.97 | 0.54 | 0.53

3512233 | 1767 | 0.56 | 0.56 | 17.19 | 15.25 | 0.53 | 0.53
30 | 22.10 | 17.90 | 0.55 | 0.56 | 15.18 | 14.31 { 0.51 | 0.52
25 | 22.27 | 17.73 | 0.56 | 0.56 | 13.26 | 12.61 | 0.51 | 0.51
20 | 22.38 | 17.62 | 0.56 | 0.56 | 10.71 | 10.44 | 0.51 | 0.50
1512236 | 17.64 | 0.56 | 0.56 | 7.57 | 7.79 | 0.49 | 0.49
10 | 22.31 | 1769 | 0.56 | 0.56 | 4.34 | 469 | 0.48 | 0.48

20 | 40 | 11.13 ) 8.87 | 056 ) 0.56 | 9.31 | 8.04 | 0.54 | 0.53
35| 11.14 | 886 | 0.56 | 0.56 | 853 | 7.64 | 0.53 | 0.53
30 | 11.03 | 897 | 055 | 0.56 | 7.60 | 7.19 | 0.51 | 0.52
25 1 11.06 | 894 | 0.55 | 0.56 | 6.53 | 6.38 | 0.51 | 0.51
20 | 11.09 { 891 [ 0.55 | 0.56 | 533 | 5.25 | 0.50 | 0.50
1511128 | 872 | 056 | 0.56 | 3.74 | 3.84 | 0.49 | 0.49
10 [ 11.16 | 8.84 | 0.56 | 0.56 | 2.32 | 2.50 | 0.48 | 0.48

10 | 40 | 5.56 | 444 | 0.56 | 0.56 | 4.59 | 4.02 | 0.53 | 0.53
35| 547 | 453 | 055|056 422 | 3.91 | 0.52 | 0.53
30| 551 | 449 | 0.55) 0.56 | 3.85 | 3.60 | 0.52 | 0.52
25| 5.58 | 442 | 0.56 | 0.56 | 3.35 | 3.17 | 0.51 | 0.51
20 | 555 | 445 | 0.56 | 0.56 | 2.68 | 2.68 | 0.50 | 0.50
15| 548 | 452 | 0.55 | 0.56 | 2.09 | 2.17 | 0.49 | 0.49
10| 545 | 455 | 055 0.56 | 1.50 | 1.60 | 0.48 | 0.48
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Table 5.5: Estimated coverage probabilities based on 999 simulations when 6, = 20,

6, =25,0, =09, 6, =14 and n = 40

C.L of 8, 90% C.L 95% C.I. 99% C.1.
w Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
10 81.49 89.69 | 90.20 88.10 94.69 | 95.89 90.49 98.69 | 99.20
20 83.10 88.30 | 89.50 | 89.69 94.10 { 9540 { 93.69 98.20 | 99.30
30 86.99 89.19 | 89.69 | 91.49 93.79 | 94.89 | 95.10 98.59 | 98.80
40 88.19 90.09 | 90.19 92.60 94.39 | 95.00 96.20 98.89 | 99.10
C.l of 6, 90% C.I. 95% C.1. 99% C.L.
W Approx. | Boot-p | BC, | Approx. | Boot-p | BCy | Approx. | Boot-p | BC,
10 81.88 89.09 | 91.19 87.80 94.49 | 95.99 89.70 98.89 | 99.60
20 84.09 88.59 | 90.29 89.20 94.29 | 95.49 93.10 98.80 | 99.10
30 86.20 88.70 | 89.10 91.10 93.89 | 94.59 94.80 98.60 | 99.00
40 87.39 88.69 | 89.30 92.09 94.89 | 95.69 95.90 98.39 | 98.80
C.I of ) 90% C.I. 95% C.1. 99% C.1.
154 Approx. | Boot-p | BCy | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,
10 81.20 89.39 | 91.29 87.40 93.69 | 94.79 89.80 96.90 | 97.90
20 83.89 87.89 | 89.59 88.10 95.19 | 96.39 92.89 97.50 | 98.10
30 85.99 88.99 | 90.30 | 90.79 94.09 | 95.70 | 94.20 98.39 | 98.60
40 87.20 89.29 | 91.19 91.89 95.29 | 96.10 94.39 98.10 | 98.70
C.IL of 6} 90% C.1. 95% C.L 99% C.L
w Approx. | Boot-p | BC, | Approx. | Boot-p | BCy, | Approx. | Boot-p | BCy
10 82.19 89.10 | 90.19 | 87.90 91.79 | 93.39 | 89.80 96.70 | 97.89
20 83.30 88.49 | 90.09 88.70 93.49 | 94.89 92.70 97.10 | 98.09
30 86.70 88.49 | 89.70 90.89 93.19 | 94.50 94.30 98.10 | 99.20
40 87.89 89.89 | 90.39 92.10 94.89 | 95.20 95.89 97.80 | 98.89
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Table 5.6: Estimated coverage probabilities based on 999 simulations when ¢; = 20,

0, =25,0,=9,0,=14 and n =20

Cl of 6, 90% C.L 95% C.IL 99% C.I.

w Approx. | Boot-p | BCy | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,

10 80.89 86.20 | 87.69 | 85.19 92.20 92.79 89.89 97.05 | 97.70

20 82.30 88.39 | 90.20 | 87.10 94.49 | 95.55 91.10 98.20  98.49

30 83.10 89.10 | 90.69 89.29 94.59 95.69 93.20 98.20 | 98.89

40 87.10 88.19 | 90.10 | 90.89 94.69 95.20 95.10 98.30 | 99.20
C.l of 6, 90% C.L. 95% C.I. 99% C.I

w Approx. | Boot-p | BCy | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,

10 78.49 89.40 [ 91.19 84.10 93.29 93.79 88.39 7.10 | 97.30

20 80.79 89.40 | 91.30 86.89 94.59 95.80 90.69 98.10 | 98.49

30 81.80 89.79 | 91.80 89.70 94.69 96.30 92.70 98.30 | 98.60

40 85.70 89.19 | 90.79 | 90.20 94.19 95.29 94.30 98.50 | 98.89
C.l of 8] 90% C.L 95% C.I. 99% C.I.

154 Approx. | Boot-p { BCy | Approx. | Boot-p | BC, | Approx. | Boot-p | BC,

10 77.39 | 8528 | 86.89 | 81.39 | 88.39 | 90.50 | 86.49 | 93.69 | 94.09
20 7889 | 87.79 | 90.10 | 85.10 | 90.79 | 93.09 | 88.70 | 94.80 | 95.39
30 80.19 | 87.10 |89.90 | 8579 | 91.90 | 94.29 | 91.30 | 96.60 | 97.40
40 8230 | 87.89 | 90.59 | 86.19 | 92.99 | 95.09 | 9360 | 96.20 | 97.20
C.I of 6] 90% C.I. 95% C.1 99% C.1.

w Approx. | Boot-p | BC, | Approx. | Boot-p | BC, | Approx. | Boot-p | BCy,

10 79.39 86.69 | 87.19 | 82.39 90.69 | 91.79 85.19 94.79 | 95.19
20 79.88 86.99 | 88.69 | 84.99 90.79 | 92.20 87.20 93.79 | 95.09
30 81.79 87.39 | 88.10 | 86.39 91.79 | 94.59 90.89 95.89 | 96.50
40 84.20 88.29 | 90.40 | 88.20 91.80 | 93.389 92.89 96.60 | 97.40
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Table 5.7: Confidence intervals for 61, 8, §; and 65 when n =35, W = 15

C.I for 6,

Method 90% 95% 99%
Approx C.I | (8.01,31.24) | (5.78, 33.47) | (1.43, 37.82)
Boot-p C.I | (6.32, 32.61) | (5.50, 37.60) | (4.29, 47.78)

BC, C.I | (8.38,39.49) | (6.62,42.38) | (4.93, 47.92)

C.I for 6,

Method 90% 95% 99%
Approx C.I. | (12.55, 62.96) | (7.72, 67.79) | (0%, 77.23)
Boot-p C.I. | (10.06, 78.90) | (8.64, 95.92) | (5.80, 132.60)

BC, CI | (14.81,99.59) | (10.64, 111.90) | (7.08, 139.44)

C.1 for 6]

Method 90% 95% 99%
Approx C.I | (0.48, 6.67) (0%, 7.26) (0%, 8.42)
Boot-p C.I | (1.22,10.70) | (1.02, 15.50) | (0.45, 33.03)

BC, C.I | (1.71,21.15) | (1.44,33.03) | (1.05, 43.26)

C.IL for 6,

Method 90% 95% 99%
Approx C.I. | (1.23,9.53) (0.44, 10.33) (0%, 11.88)
Boot-p C.I | (2.29,12552) | (2.10, 15.78) | (1.53, 26.21)

BC, C.L | (2.83,19.97) | (2.50,26.01) | (2.10, 31.16)

0* stands for a non-positive number
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Table 5.8: Confidence intervals for 6y, 6, ; and 8, when n =35, W =25

C.I for 6;

Method 90% 95% 99%
Approx C.L | (11.59, 38.61) | (9.00, 41.20) | (3.95, 46.26)
Boot-p C.I | (13.49, 43.09) | (11.52, 48.03) | (8.35, 66.01)

BC, C.L | (15.22, 46.31) | (13.06, 51.13) | (8.92, 66.01)

C.I. for 6,

Method 90% 95% 99%
Approx C.I. | (13.59, 47.38) | (10.35, 50.62) | (4.03, 56.94)
Boot-p C.L. | (16.05, 52.63) | (13.59, 61.15) | (8.95, 84.38)

BC, CI | (17.12, 55.05) | (14.55, 62.74) | (8.95, 82.59)

C.I. for 6]

Method 90% 95% 99%
Approx C.L | (155, 10.15) | (0.72, 10.97) | (0%, 12.58)
Boot-p C.L | (2.95,12.97) | (2.39, 16.83) | (1.96, 26.56)

BC, C.L | (3.18,15.94) | (2.84, 19.19) | (2.16, 31.55)
ClI. for 6,

Method 90% 95% 99%
Approx C.I | (1.82,11.20) | (0.92, 12.10) | (0*, 13.85)
Boot-p C.I. | (3.45, 12.62) | (3.19, 15.14) | (2.58, 20.62)

BC, C.L | (3.94,15.87) | (3.53,19.50) | (3.14, 23.75)

0* stands for a non-positive number
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Table 5.9: Confidence intervals for 8y, ,, ] and 6, when n =15, W = 15

C.1. for 6,

Method 90% 95% 99%
Approx C.I | (0%, 44.08) (0%, 48.72) | (0% 57.81)
Boot-pC.L | (4.16,60.72) | (3.67, 72.11) | (2.80, 134.65)

BC, C.L (6.49, 87.37) (5.25, 132.06) | (3.75, 143.93)

C.IL for 6,

Method 90% 95% 99%
Approx C.L | (0%, 73.93) (0%, 81.35) | (0%, 95.85)
Boot-p C.L | (5.23, 79.81) | (4.32, 103.05) | (2.70, 138.73) |

BC, C.L | (15.86, 146.44) | (12.12, 146.44) | (7.52, 146.44)

C.I for 8]

Method 90% 95% 99%
Approx C.I | (0%, 12.06) (0%, 13.44) (0%, 16.12)
Boot-p C.I | (0.81,23.15) | (0.53,28.96) | (0.19, 64.40)

BC, C.L | (1.24,28.96) | (0.84,38.68) | (0.28, 71.03)

C.IL for ¢,

Method 90% 95% 99%
Approx C.L | (0%, 24.06) (0%, 26.77) | (0%, 32.06)
Boot-p C.I | (1.26,25.21) | (0.87,33.52) | (0.25, 47.14)

BC,CL | (328 46.80) | (2.53,61.58) | (1.33, 81.85)

0* stands for a non-positive number
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Table 5.10: Confidence intervals for 6y, 65, 8] and 6, when n =15 W =25

C.I for 6,

Method 90% 95% 99%
Approx C.I | (2.26,40.36) | (0%, 44.01) | (0% 51.15)
Boot-p C.I. (7.62, 48.08) (6.42, 62.07) | (4.23, 102.36)

BC, C.I (8.95, 61.91) (7.66, 69.76) | (5.07, 105.49)

C.L for 6,

Method 90% 95% 99%
Approx C.L | (1.16,66.96) | (0%, 73.27) | (0%, 85.59)
Boot-p C.I | (10.72, 84.26) | (7.99, 97.84) | (5.60, 139.78)

BC, C.I | (14.30, 103.11) | (11.49, 120.44) | (6.89, 143.95)

C.I for 6}

Method 90% 95% 99%
Approx CL | (0%, 17.37) (0%,19.26) | (0% 22.95)
Boot-p C.I | (1.67, 24.84) | (0.97, 31.50) | (0.28, 67.70)

BC, C.L (2.81, 41.66) (2.11, 60.01) (0.91, 85.88)

C.IL for €,

Method 90% 95% 99%
Approx C.I | (0%, 19.54) (0%, 21.53) | (0%, 25.41)
Boot-p C.I | (2.84,22.17) | (2.32,26.46) | (0.96, 39.83)

BC, CL | (3.97,2850) | (3.32,36.20) | (2.25, 49.26)

0* stands for a non-positive number
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Chapter 6

Exact Analysis under Type I
Censoring with Partial Information

on Component Failures

6.1 Introduction

In this Chapter, we consider a two-component system failure model in the case of
Type-I censored data. The information of the censored systems which have only one
component failed at the end of the experiment is incorporated as well. We then obtain
the MLEs of the parameters assuming the lifetimes to be exponentially distributed.
The exact distributions of the MLEs of the parameters are derived by using the con-
ditional moment generating function approach. Construction of confidence intervals
for the model parameters are discussed by using the exact conditional distributions,

asymptotic distributions, and two parametric bootstrap methods. The performance of
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these four confidence intervals, in terms of coverage probabilities are assessed through
Monte Carlo simulation studies. Finally, examples are presented to illustrate all the

methods of inference discussed here.

6.2 Model Description and MLEs

Consider the following simple system failure model: n identical systems are placed
in a life test and each system has two components. Assume that the experiment
continues up to a pre-fixed time W. Before the time W, a total of D (D < n) systems
fail. Let X; and Y; (¢ = 1,...,n) represent the lifetimes of Components 1 and 2,
respectively. If Z; = max(X;,Y;) (¢ = 1,...,n), the system i fails at time Z;. Let
L < v+ < Zpn < W be the corresponding ordered failure times. By time W,
we observe D systems with complete destruction, D’ systems with only one failed
component and n — D — D’ systems which are completely censored. Among the D
systems, there are D; systems in which Component 1 failed first and Ds systems in
which Component 2 failed first, with D; + Dy = D. Among the D’ systems, there
are D] systems in which only Component 1 failed and D) systems in which only
Component 2 failed, with D] + D) = D’. The data from the two-component series

system sample under Type-I censoring with partial information is as follows:

(Th ;; Zl:rn 6?)7 ey (TD7 53)) ZD:n) 5%), (TD-H’ 6,D+1; *)a sy (TD+D/7 5/D+D'; *)a (*7 *)
(6.1)
where T3, ...,Tp denote the first observed failure times of the systems, Z;.,, < -+- <

Zp.n, denote the second observed failure times of the systems, and §’s are the indicator
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variables which denote the failed components, §’ stands for the first failed component,

and ¢” stands for the second failed component. We denote the completely censored

ki

systems with a “%”.

If we let
I ={ie(1,2,...,D): Component 1 failed first within a failed system},
I, ={i€(1,2,...,D): Component 2 failed first within a failed system},
II={ie(1,2,...,D'): only Component 1 failed within a system},
L={ie(1,2,...,D) : only Component 2 failed within a system},

then the likelihood function of the observed data in (6.1) is

L(6:, 2,61, 02) = (2n _(2217;)!_ D)
() oG aa) B g
() -5 a) Do g5
x(e_ll)mexp —<%+9—12—0—1,2)§m@ 91,D’1W
x(ei?)Dzexp —<0—i+0—12—;3>§y1 01,1D§W
Xexp {—(n -D-D") (0% + 0%) W} : (6.2)

where

0<x; <z, for i€l O<y <z, for i€l
O<z; <W, foriel]; O0<y;<W, foriel}; 0<z1.p<-<zpn<W
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The maximum likelihood estimator (81, 65, 8}, 6) of 6y, 05, 6} and 6, is the value
that globally maximizes (6.2), and can be obtained by taking the logarithm of (6.2)
and equating the partial derivatives to zero. After some calculation, the corresponding
conditional maximum likelihood estimators of the mean life times 6,, 6o, 8, 6, are

found to be as follows
Zieh T + Eielz Yt Eie[{ T+ Zielé Yi+(n—D— D)W

by = ,
! D, + D]

b — Dy + D] i
T (D-D)+(D-D}) "

i = Dien(z —yi) + Zie]é (W — )
17 D _ Dl ?

o 2uien (B — ) + Dy (W — i)
92 = D )
1

conditionalon 1< D1, < D-1,2<D<n, 0D <D, 0<D <n-D.

6.2.1 The Relative Risks

Based on the results of Section 3.2.2, in this subsection, three additional relative

risks are derived and are presented in Theorems 6.2.1, 6.2.2 and 6.2.3.
Lemma 6.2.1. We have
Pr=Pr(X <W<Y)
11 1 1\ 1 11
= 4= - ——W - =4+ = W:l. 6.3
01 (91 "% 9&) [exp( 0 ) exp{ <91+92> }] (63
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Proof: The proof is similar to that of Lemma 5.2.1.

Lemma 6.2.2. We have

Py = Pr(min(X,Y) > W) = exp {- (% + %) W} | (6.4)

Proof: The proof is straightforward.

Theorem 6.2.1. The relative risk that Component 1 fails first within a two-component
system, under the condition that the system has only one failed component by time W,
15 given by

Py

e = Pr(X <Y|min(X,Y) < W,max(X,Y) > W) = -
Fe — Pg

Proof: The result follows immediately from Lemmas 5.2.2, 6.2.1 and 6.2.2.

Theorem 6.2.2. The relative risk that only one component fails within a two-component
system, under the condition that the system does not fail by the time W, is

B — B
Fs

77 = pr(min(X,Y) < Wmax(X,Y) > W) =

Proof: The result follows immediately from Lemmas 5.2.2 and 6.2.2.

Theorem 6.2.3. The relative risk that the system fails by time W is then

g = Pr(max(X,Y) <W)=1-F;.

Proof: The result follows immediately from Lemma 5.2.2.
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Lemma 6.2.3. In a Type-I censored experiment, among the D' (0 < D' < n- D)
systems with only one failed component by W, the number of systems due to Component

1 fails first, viz., DY, is a non-negative random variable with probability mass function
1

(D Py p, \"7
Pr(Dy=3j)= 1-— =0,1,...,D".
r( 1 -7) ( ] > (P6 _ P8> ( Pﬁ _ P8 ) j 0) 3 3

Proof: The proof is simply based on Theorem 6.2.1.

Lemma 6.2.4. In a Type-I censored experiment, among the n — D systems which do
not fail by W, the number of systems in which only one component failed, viz., D', is

a non-negative random variable with probability mass function

n—D—j
o ("=DY (1 BY (B _ )
Pr(D—])—( j )(1 Pﬁ) (Ps , 7=0,1,...,n—D.

Proof: The proof is based on Theorem 6.2.2.

Lemma 6.2.5. In a Type-I censored experiment, the number of systems with complete

destruction, viz., D, is a non-negative random variable with probability mass function
Pr(D = j) = (3”) (1-PR)yY P, j=0,1,...,n

Proof: The proof is based on Theorem 6.2.3.

6.3 Conditional Distribution of the MLEs

Using the forms of the estimators given earlier in Section 6.2, we now derive the

exact distribution of él, 65, éi and é; conditional on 1 < D; < D -1, D > 2
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0< D} <D and 0 <D <n-—D. These distributions are useful in constructing
exact confidence intervals. The derivations once again require the inversion of the

conditional moment generating function (CMGF).

Lemma 6.3.1. Let X, < --- < X,,.,, be the order statistics of a random sample of size
n from a continuous distribution with PDF f(z) and CDF F(x). Then, the conditional
distribution of Xin, given that X;.,, = x; for i < j, is the same as the distribution of
the i-th order statistic in a sample of size j — 1 from a population whose distribution is
obtained by truncating the distribution F(z) on the right at z;, with PDF h(z;) = %%%

and CDF H(x;) = ?8;))7 for0 <z; < z;.

Proof: See Arnold, Balakrishnan, and Nagaraja (1992, pp. 23-24).

Lemma 6.3.2. Let X, < -+ < Xpn., be the order statistics of a random sample of
size n from a continuous distribution with PDF f(z) and CDF F(z). Let D denote
the number of X;.,’s that are less than or equal to some pre-fired number W. The
conditional joint PDF of X1., < -+ < Xpm, given D = d, is the same as the joint
PDF of all order statistics of a random sample of size d from the right truncated

distribution with PDF h(z;) = 7{1(%’% and CDF H(z;) = g(%%, forO <z, <W, ie.

d

fl=)

f1,2,..,,d:n ($1, ces ,ZEdID = d) =d! , 0< Z1n < ... < ZTgp < W. (65)
Iz-:Il F(W)

Proof: The proof is straightforward.

)d—l

Lemma 6.3.3. Ford > 2, foxd . fomz exp (—a Zf:_ll xi> dey---deg_1 = I—Z’ﬁ(lzgf‘i)!
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Proof: The first two steps immediately yield

1 — exp(—ax3)]
ax 1!

?

/ exp (—azxy)dz; = [
0

z3 q . . X
/0 p [1 — exp(—axq)] exp (—azs) dze = [ a);p)(< 2c!L 2)] ;

repeating this procedure, we obtain the required expression.

Lemma 6.3.4. Let Xy,..., X, be a random sample of size n from the exponential dis-
tribution with the mean 8, and X1, < -+- < Xp.n be the corresponding order statistics.
Let D denote the number of X;.,’s that are less than or equal to some pre-fized number

W. Then the moment-generating function (MGF) of Z = Ei’;l X;, given D =d, is

{1_ exp (_w (1 tO)}

{1 —ep (=) 1 - t01}"

Proof: Since X;.,,’s are ordered iid exp(#), by Lemma 6.3.2, the conditional joint PDF

(6.6)

My(t) = E(e¥|D=d) =

of Xl:n < < Xd:na given D= da iS,

d! 1
fro,.an (T1, .. za|D =d) = 0 [1 R (_%)]dexp (—5 Z%) )
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Therefore, the MGF of Z = EiD=1 X, given D = d, is given by

Mz(t)=E(e?|D=d) =E {exp (tiXi) |D = d]

i=1

w x4 T2 d
z/ / / exp |t E zi ) fxo.xp (X1, .., zq|D = d) dzy - - - dzg
o Jo 0 poy

d!
9d 1——exp(

JUs /exp[(t—-) ($as)

01— exp (—%) d(l — t0)d-

d

- . (6.8)

Lemma 6.3.5. We have

Py ayad

PT(DII:dll,Dlzdl,D,:dl,D:le)I 7 s
ZS—Q Z Z ZC:O PC,f,g,S

where
G=0<D|<D,1<D;<D-1, 0D <N-D, 2<DXN,

and
N
i dd di,d—dy,d,d —dy,N-d—-d
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Proof: We have

Pd’l,dl,d’,d = PT'(D/I = dll, D1 = dl, D, = d,, D = d)

= Pr(Dy=dy|D1 =dy,D =d,D' = d)Pr(D, =di|D =d, D" = d)

x Pr(D' = d|D = d)Pr(D = d)

d\ d'—d d d d—d
= . g (1 — mg)* ™% d1>7r51(1 — )4 TH
% N-d ad 1— N-dg-a [N md(1 — )N ¢
d' 7 d/"8

from which the result follows immediately.

Lemma 6.3.6. For the random variable Y with PDF

A® a-1_-Ay
=y le™ N, y>0
gy N) = @

0, otherwise,

the MGF of Y + A is

Myia = E (e'¥*4) = ¢4E (/) = ' (1 - %) ) :

(6.9)

(6.10)

Proof: The proof follows from the definition of the moment-generating function of

the gamma distribution.

Using Lemmas 6.3.4 - 6.3.6, we can derive the CMGF of él, 92, éi and ég and these

results are presented in Lemmas 6.3.7 - 6.3.9.

Lemma 6.3.7. The joint CMGF of 51 and 92, conditional on 1 < D; < D -1,
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2<D<<N,0<D'<N-Dand0< D] <D, is given by

W(N —-r—m+1) W(N —r—m+1)

Ck,'r,q,m,l X €Xp I: t1 + ta
r=2 k=1 m=0 g=0 1=0 (k+4q) (r—k)+(m—q)
9 0 —r—m
1- 1, — 2 11
x( k+q' (r—k)+(m—q) 2> ’ (6-1)
where
—1}¢
Ck,r g,m,l — N ( )
Zc=2 E Z F ,f29,8

x (r J; m) exp (—%l) [1 —exp (—%i)} Permas (6.12)

and 8 = ( + 912)-1.

Proof: The proof is similar to that of Theorem 2.3.2.

Lemma 6.3.8. The CMGF of 9A’1, conditional on 1 < D; < D—-1,2 < D < N,
0<D <N-Dand0< D] <D, is given by

izzz ké‘ Tqmlxexp((m_/k)) (1—T(i,1kt>_(r_k)_(m_q), (6.13)

. (-
Zév:2z Z cfgs

_ —(r—k)
X (T ] k) exp <——0W,1—l> [1 — exp <—0K,1>] Pirmg (6.14)

Proof: The proof is similar to that of Theorem 2.3.2.
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Lemma 6.3.9. The CMGF of ég, conditional on 1 < D1 < D—-1,2 < D < N,
0D <N-Dand 0L D] <D, is given by

m k —k—

: Wi : ‘
chk,r,q,m,l X exXp (—k_)—t) X ( - 7{2‘15) s (615)
where

(=1
N c—1 n—c g P
EC——‘—2 Zf=1 Zg:O s=0 C:fygvs

-k
X K exp —-V—V—l 1—exp W Pyrmg (6.16)
l 6’ g, T

Proof: The proof once again similar to that of Theorem 2.3.2.

Ckmq,m,l =

Theorem 6.3.1. The PDFs of 91, éz, é’l and éé, conditional on 1 < Dy < D — 1,

2<DLEN,0D'<N-Dand0< D] <D, are given by

N
k+q
fél (LC) = Z Z Z Ck,r,q,m,L X g(x = Tkrgml; T+ M, —0_—)7 (617)

r=2 k=1 m=0 ¢=0 [=0
N

N r—=1 N—r m r+m 3 (r—k)-l—(m—q)
fo, (@) = Z Z Cl,ryqm,i X §(T =Tk r.gm; T+M, 7 ), (6.18)
r=2 k=1 m=0 ¢g=0 =0
Nr—lN—rmr—k:~ r—k
f9’1 (w) = E z k,rgm,l X g(x — Tk,rl (T - k) + (m - Q), 0 )’ (6'19)
r=2 k=1 m=0 g=0 [=0 !
N r-1N-r m k__ 1
o () = Z Z Z Crragmit X 9(T — Thi; k + g, 0—,), (6.20)
r=2 k=1 m=0 g=0 [=0 2
where,
- l:W(N—r—m—H) 7 le(N—r—m+l)
e (k+q) PR (r—k)+ (m—q)’
Wi Wi
Tkrl = _—_—k’ Tkl = T



Proof: From Lemmas 6.3.7-6.3.9, using the inversion theorem of a moment-generating

function, we obtain the conditional PDFs of §;, 6,, 93 and ég

It is of interest to note here that the conditional PDFs of the MLEs are all mixtures

of gamma densities.

6.3.1 Properties of the MLEs

From Theorem 6.3.1. we can derive some simple distributional properties of the

MLEs as presented in the following theorems.

Theorem 6.3.2. The first two moments of él, éz, éi and 9’2 are as follows:

N r=1 N—-r m k

E(él) = Z Z Z Z Z Ck,'r,q,m,l (Tk,r,q,m,l + T].C_:_T;L 9) 3

r=2 k=1 m=0 q=0 [=0

B0 =Y 5 Corgn (“‘ tolrt g

r+m 9
k + q ng,'r,q,m,l + Tk,’r,q,m,l ’

+2

r=1N—r m &k

N
n - r+m
E(gz) = Z Z Z Ck:,r,q,m,l (Tk,r,q,m,l + (7‘ — k}) + (m _ Q) 0) ’

0 I=0

ﬂ
I
[
Eod
l
-
3
I
=]
L~
I

T & c ((T+m)(r+m+1)92
E :E : k,r.qm,l

r=2 k=1 m=0 ¢g=0 [=0 [(T - k) + (m - Q)]2
r+m

+2 (7" _ k) + (m _ q) Q%kmq,m,l + ;’:lg,'r,q,m,l) )

N r— k
E<éll) = Z Z E Z Z C‘nk,'r,q,m,l (Tk,r,l + (T — kz‘t (km _ q) 93) R
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i iék,'r,q,ml ([(T — k) + (m — q()j[ffk_)?k) i (m - q) i 1] 0,12

r—=k)+(m—
+2( 3" —(k: q) IlTk,T,l + 7',3,,’1> ,

m k
. : k+q)k+q+1),, k+
E(67) = :}: E E E Chrqmil (( Q)(k2 g )022 +2 7 q%ﬂc,l + Tlil> .

The expressions for the expected values clearly reveal that él, éz, é’l and 9’2 are
all biased estimators of 61, 8, 6] and 8, respectively. The expressions for the second

moments can be used for finding standard errors of the estimates.

We can also obtain expressions for the tail probabilities from Theorem 6.3.1. These
expressions will be used to construct exact confidence intervals for the relevant para-

meters later in Section 6.4.

Theorem 6.3.3. The tail probability of 61, 0, é’l and é’z are given by

N r—1 N—r m r+m (

Py, (6:> ) =3 Y 3N Chrami x T

k+gq
r+m,—— < a— Tgrgmi > |,
r=2 k=1 m=0 q=0 (=0

0
(6.21)

(r-k)+(m—-q
6

Ck,r,q,m,l x T (T + m, <a-— %k,r,q,m,l >> )

(6.22)

i ~ r
Z Ci,rgmixI <(r —k)+ (m—q), 7 <= Ty >> ,
1
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r—1 N—7r

N r— m r+m
Pglz (é/2 > a) = ZZ Z Z Zék,r,q,m,l x T (k‘ +q, oﬁé <a— Ty >) , (624)

r=2 k=1 m=0 ¢=0 [=0

where, T'(a, z) = F—(l—)fzoo y*le7Vdy s the incomplete gamma ratio and < T >=

max{z,0}.

6.4 Confidence Intervals

In this section, we present different methods of constructing confidence intervals
(CIs) for the unknown parameters 6y, 6, 8] and 6. The exact Cls are based on the
exact conditional distributions of the MLEs presented in Theorems 6.3.3. Since the
exact conditional PDF's of the MLEs are computationally intensive, we may use the
asymptotic distributions of the MLEs to obtain approximate Cls for 6;, 65, 6; and
g, for large sample sizes. Finally, we also use the parametric bootstrap method to

construct Cls for the parameters.

6.4.1 Exact Confidence Intervals

The same method, as described in Section 2.4.1, is used to construct exact Cls for
the parameters 6y, 0, 6] and 6. To guarantee the invertibility for the parameters, we
assume once again that the tail probabilities of 61, s, 9{ and ég presented in Theorem
6.3.3 are increasing functions of 6;, 62, 6] and 65, respectively. Values of the tail

probabilities P, (éﬁ') > b) for various 95,) (1 =1,2) and b are presented in Tables 6.1
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- 6.4 to support this monotonicity assumption.

Confidence Interval for 6,

A two-sided 100(1 — )% CI for 6;, denoted by (611, 61y), can be obtained as the

solutions of the following two non-linear equations:

N r-1 N—-r m r+4+m k—l—
= Z Z Z Ck,r,q,m,l(91L7 92’ 9/1, 612) x T (T +m, 9 d <0 - Tk,r,q,m,l >> >
r=2 k=1 m=0 ¢q=0 =0 L
(6.25)
N r—1 N—r m r+m k‘—|—q A
].——— :Z Z Ck:rqml 01U,02,01,02)XF (r+m <91_Tk,r,q,m,l >) ,
r=2 k=1 m=0 q=0 1=0 Ou
q
(6.26)
where

)
Lo bowy 6,)

and Ci rqm1(0120) 0,,0,,8,) is same as defined in Lemma 6.3.7, but with (61, 65, 6},

») replaced by (61w, 0, 8, 6).

Confidence Interval for 0,

A two-sided 100(1 — )% CI for 6,, denoted by (621, 62r), can be obtained as the

solutions of the following two non-linear equations:

N
g = Z Z Z Crorami(01, 021, 61, 03)

xT' (r +m, (r—k) g (m —g) < By — Thyr,qmil >> , (6.27)
L
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Z Ck,r,q,m,l(él, Oov, élp )

(r—k) ; (m—a) _ by — Frorgm >> (6.28)
U

xI' (r+m,

where

- (5 i)
HO NG, T Oy )
and Ck,r,q,m,l(ély G20y, 9,,0,) is same as defined in Lemma 6.3.7, but with (6;, 6, 6,

8,) replaced by (61, 2L, 61, 6y).

Confidence Interval for 6]

A two-sided 100(1 — )% CI for 6, denoted by (6;,,61;), can be obtained as the

solutions of the following two non-linear equations:

N r—1 N—-r m r+m

% - Z Z E Z Z Crrami(01,05,07;,63)

r=2 k=1 m=0 ¢=0 [=0

xF((r—k)+(m—q) r—k

,—-01— < éi — Tk,rl >) R (629)
1L

m
~ A 0 1 N/
> kr.qmi (01, 02,0117, 05)

r—k

xT' ((’I‘ — k) + (m - q), —0-/—— < éll — Tk, >) ) (630)
U

where, ék,r,q,m,l(éla ég, GiL(U), ég) is same as defined in Lemma 6.3.8, but with (8, 6,

, 04) replaced by (61, 62, 6}, 1, 65).

Confidence Interval for 65’
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A two-sided 100(1 — )% CI for 63, denoted by (65, 6%;,), can be obtained as the

solutions of the following two non-linear equations:

N r— ~ n A A A
% = ZZ ZZ ~k,r,q,m,l(91792791179;L) x T (k+ q, GIE—L < 0& — Tk, >) ’

N r—=1 N—-r m r+m (631)
o Z b o o o k N’
1— 5 = ZZ Z CkyT1q7m7l(01, 92; 917 ZU) x T (k +gq, 0/_ < 02 Tk, >) ’
r=2 k=1m=0 ¢=0 (=0 2U
(6.32)

where C:'k,T,q,m,l(él, 05,6, 051,()) is same as defined in Lemma 6.3.9, but with (61, 62,

/., 65 replaced by (81, 65, 8, 2 w))

Lacking a closed-form solution, we have to apply an iterative root-finding technique
in the determination of 6,1, 8, , 6,y and 8}, for ¢ = 1, 2; the Newton-Raphson iteration

method, for instance, was used in our study.

6.4.2 Asymptotic Confidence Intervals

Using the asymptotic normality of the MLEs, we can construct approximate con-
fidence intervals for 6, 65, 6] and 6, using the Fisher information matrix.
Let I(01,6,6,05) = (1;; (61,62,0,63)), i,j = 1,2,3,4, denote the Fisher informa-

tion matrix for the parameter (61, 62, 6}, 65). From Eq. (6.2), we have

o Dy+D, 25\ Di+D
Ill (91,92, 1,92) = -—E (——1—7—1 - A—31> = —1-72——1‘, (633)
i 4 01
o Dy+D, 25\ D,+D;
Ip, (91,62’ 1:02) =-E (_1_"2*2 - —A?1> = _2_A2__2’ (634)
82 a3 a2
, D, 25\ D
Isg (61,09, 6,05) = —E | — — ==} = =, (6.35)
6 o 01
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I44(61,604,0,,6;) = —E (Ql - Eﬁ) Dy (6.36)

2 /3 A’
62 64 %

Lo=Is=Iy=In=Ia=Iy=Ig=Ip=I3=In=Ip=13=0, (6.37)

where

S1= ) zm+> v+ Y zi+ Y yi+(N-D-DW,

i€ly i€lp iely el
Sy = Z(Zz —¥) + Z(W = ¥i),
i€lp ielp
0= Y m )+ YW )
1€l 4 ’LEI'
Thus, the Fisher information matrix is given by
BBl 00 0 0
1
D34-D;
0 -—ég—l 0 O
0 0 £ o
01
D
o0 0 g

This implies that the MLEs are asymptotically mutually independent. The asymp-
totic unconditional variance of 01, 92, 9 and 0' can be obtained readily from the Fisher

information matrix as

H2 0 0/2
h=d oyl S Vs = -, Vi= %
ni No TL1

Then, the 100(1 — a)% approximate Cls for 6, 8-, 6] and 6, are obtained accordingly
1 2

by using the same method as described in Section 2.4.2.

6.4.3 Bootstrap Confidence Intervals

The bootstrap methods of percentile interval and the biased-corrected and acceler-

ated (BC,) interval are similar to those described earlier in Section 2.4.3, but with a
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A()

Type-I censored two-component system failure sample instead. The acceleration &;

in the BC, Percentile Interval should be changed accordingly to
O _ 50\
0 _ il (‘% %))
Q)
6 [Z (01() %)) }

where 91(8) is the MLE of 0(,) based on the original sample with the j-th observation

) i:1’2’

6.5 Simulation Study

In this section, a Monte Carlo simulation study based on 999 replications was
carried out in order to examine the relative risks (Section 6.5.1), and to evaluate
the performance of the four confidence intervals in terms of coverage probabilities for
different sample sizes (Section 6.5.2). We also present numerical examples in Section

6.5.3 to illustrate all the inferential methods discussed here.

6.5.1 Relative Risks

The theoretical values of my, 75, 7, 77 and g with 8, = 20, 6, =256, =9, 6, = 14
are presented in Table 6.5 when n = 40,20, 10 and W = 40, 35, 30, 25, 20, 15,10. The
results were calculated by using the expressions presented in Theorems 2.3.1, 5.2.1,

6.2.1, 6.2.2 and 6.2.3, respectively.

my is the probability that Component 1 fails first within a system. m = 0.5556

implies that the first failure within a system is more likely due to Component 1. 5
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and g are also the probabilities that Component 1 fails first within a system, but
is conditional on the complete destruction of the system and mg is conditional on the
incomplete destruction of the system. In most cases, 5 < m; < mg. It reflects that
a system is more likely to survive if its Component 1 fails first in a Type-I censoring

experiment.

As expected, , is fixed for all sample sizes n and length of the experiment time
W. &5, mg, m7 and mg are only affected by the length of the experiment time W; they
all increase as the experiment time W becomes longer. 75 = 0.5 when W = 20. This
means that if the pre-fixed termination time is 20, Component 1 and Component 2
have equal chance to fail first within a system with complete destruction. However,
when the experiment time W is longer than 20, Component 1 is more likely to fail first

within a system with complete destruction.

. D’ 1]
We observe that as W increases, the values of 2, 21 21 D and L oot closer
’ n

n’ D’ D'’ n—D
to the corresponding theoretical values when n or W take on different values. This
indicates that o, 2 51 D' gpg D d estimators of d

indicates that %%, ', £}, -=5 and £ are good estimators of m, w5, 76, ™7 and s,

respectively.

6.5.2 Coverage Probabilities and the Performance of the Con-
fidence Intervals

The purpose of this subsection is to carry out a Monte Carlo simulation study

based on Type-I censored sample to compare the performance of different confidence

intervals described in Section 6.4. We once again chose the values of the parameters

to be 6, = 20, 6, = 25, §; = 9 and 6, = 14. We then determined the true coverage
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probabilities of the 90%, 95% and 99% confidence intervals for all the parameters for
different sample size (n = 40,20, W = 10, 20, 30, 40) by all four methods described
earlier in Section 6.4. These values, based on 999 Monte Carlo simulations and R = 999

bootstrap replications, are presented in Tables 6.10 and 6.11.

From these tables, we observe that, among the four methods, the exact method
of constructing confidence intervals (based on the exact conditional distributions of
the MLEs derived in Section 6.3) has its coverage probability to be quite close to
the nominal level in all cases. Between the two bootstrap methods of constructing
confidence intervals, the parametric BC, method seems to have coverage probabilities

to be closer to the nominal level and is therefore recommended for large sample sizes.

As expected, the approximate method based on the asymptotic normality of the
MLEs has its true coverage probabilities to be always less than the nominal level.
Though the coverage probability improves for larger sample sizes, we still find it to be
unsatisfactory even for n = 40 when the pre-fixed termination time is W = 40. This
indicates that the confidence intervals obtained by this method will often be unduly
narrower. We do observe that, for all the nominal levels considered, the coverage
probabilities of the approximate method are lower for small n or W in almost all
cases. This is because when n or W is small, there are fewer failures obhserved and
so inference for the parameters is not precise. As n increases, the number of failures
increases thus resulting in a better large-sample approximation for the distribution of
MLEs. This means that we need a much larger sample size to rely on the asymptotic
normality of the MLEs. We also observe that when n is small, even the parametric
BC, bootstrap method does not have satisfactory coverage probabilities, but is seen

to be better than the approximate method as well as the percentile bootstrap method.
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6.5.3 Illustrative Examples

In this subsection, we consider two data sets with small and moderately large sample

sizes to illustrate all the methods of inference developed in the preceding sections.

Data Set 1: n =35

(8.22,1; 8.36,2)
(2.36,2; 12.54,1)
(9.52,2; 18.20,1)
(3.38,1; 23.23,2)
(*35%*)
(9.22,1; % )

(3.57,1; 8.56,2)
(7.81,2; 13.44,1)
(12.02,1; 19.47,2)
(1.36,1; 23.86,2)
(5.41,1; x )
(*5%)

(6.66,1; 9.25,2)
(8.48,1; 14.12,2)
(5.99,1; 20.41,2)
(16.83,1; 24.06,2)
(*5%)
(*5%)

(3.57,1; 9.37,2)
(1.12,2; 14.43,1)
(18.71,1; 21.35,2)
(17.60,2; 24.12,1)
(17.32,2; %)
(%)

w Failure Times
15 | (0.42,2;0.58,1) | (210,2;2.76,1) | (3.352;3.66,1) | (5.59,1;5.893,2) | (5.09,2;6.39,1)
(8.22,1; 8.36,2) | (3.57,1;8.56,2) | (6.66,1;9.252) | (3.57,1;9.37,2) | (3.78,2; 12.37,1)
(2.36,2; 12.54,1) | (7.81,%; 13.44,1) | (8.48,1;14.12,2) | (1.12,2; 14.43,1) (9.87,2; %)
(9.52,2; %) (12.02,1; %) (5.99,1; ) (%5 %) (*5%)
(3.38,1; %) (1.36,1; % ) (*;5%) (*5%) (7.76,1; * )
(*;%) (5.41,1; x ) (*5%) (*;%) (9.52,1; %)
(9.22,1; =) (*5%) (%5%) (%;%) (%;%)
25 | (042,2;058,1) | (210,2;276,1) | (3.3523.661) | (5.59,1;580,2) | (5.09,2; 6.39,1)

(3.78,2; 12.37,1)
(9.87,2; 15.04,1)
(21.93,2;22.00,1)
(7.76,1; 24.27,2)
(9.52,1; * )
(*i%)

In the case when n = 35, had we fixed W = 15, we would have D, = 6, Dy = 8§,
D} =8 and D; = 2, and we would obtain the MLEs of 8,, 65, 6] and 6, by using the

methods presented in Section 6.2 to be

6, =21.5316, 6, =30.1443, @, =6.3100, 6, = 14.1301.

Instead, had we fixed W = 25, we would have D; = 13, D, = 12, D; = 3 and

D; =1, and we would obtain the MLEs to be

~

6, = 23.6774, 0, =29.1414, @, =56654, 6, = 12.3760.

152



Data Set 2: n =15

w Failure Times
15 | (2.73,2;3.50,1) | (2.68,1;4.00,2) | (4.84,1;8.04,2) (2.32,1; 8.55,2) | (1.60,2; 12.48,1)
(0.02,2; 13.32,1) | (10.33,2; 13.67,1) | (11.98,2; 14.71,1) (*;%) (1.48,1; % )
(%5 %) (12.68,1; * ) (*5%) (%3 %) (10.17.1; %)
25 | (2.73,2; 3.50,1) | (2.68,1; 4.00,2) (4.84,1; 8.04,2) (2.32,1;8.55,2) | (1.60,2; 12.48,1)
(0.02,2; 13.32,1) | (10.33,2; 13.67,1) | (11.98,2; 14.71,1) | ( 17.15,1; 18.74,2) | (1.48,1; 20.44,2)
(20.16,1; %) (12.68,1; * ) (*;%) (*;%) (10.17,1; * )

In the case when n = 15, had we fixed W = 15, we would have D; = 3, Dy = 5,
D} =3 and D, = 0, and we would obtain the MLEs of 61, 6,, 8] and 6, by using the

expressions presented in Section 6.2 to be

A

6, =20.1380, 6, =24.1656, 6, =6.2030, 6, = 10.4730.

Instead, had we fixed W = 25, we would have D; =5, Dy =5, D} = 3 and D} =0,

and we would obtain the MLEs to be

6, = 185170, 6, =29.6273, @, =6.2030, 6, = 12.6577.

To assess the performance of these estimates, we constructed 90%, 95% and 99%
confidence intervals by using the methods described in Section 6.4. These results
are presented in Tables 6.5-6.9. Notice that the approximate method always provide
narrower confidence intervals in most cases. This is because the coverage probabilities

for the approximate method are significantly lower than the nominal levels.
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Table 6.1: Values of Py, (él > b) with 6, = 25, 8] =9 and 6, = 14

& b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.2576 0.0028 0.0000 0.0000
9 0.8997 0.2548 0.0368 0.0059
13 0.9894 0.6861 0.2690 0.0887
17 0.9985 0.8914 0.5626 0.2833
21 0.9997 0.9621 0.7637 0.4964
25 0.9999 0.9858 0.8749 0.6648
29 1.0000 0.9942 0.9327 0.7807
33 1.0000 0.9975 0.9626 0.8561

Table 6.2: Values of P, (é2 > b) with 8, = 20, 8, = 9 and 6}, = 14

02 b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.2633 0.0036 0.0001 0.0000
9 0.8953 0.2625 0.0424 0.0077
13 0.9880 0.6827 0.2778 0.0980
17 0.9982 0.8855 0.5633 0.2934
21 0.9996 0.9581 0.7590 0.5010
25 0.9999 0.9835 0.8690 0.6641
29 1.0000 0.9930 0.9275 0.7769
33 1.0000 0.9968 0.9586 0.8512
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Table 6.3: Values of Py (6] > b) with 6; = 20, 5 = 25 and 6, = 14
1 1 2

0, b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.3773 0.0477 0.0102 0.0034
9 0.8257 0.3953 0.1723 0.0846
13 0.9388 0.6980 0.4599 0.3035
17 0.9716 0.8451 0.6765 0.5297
21 0.9840 0.9127 0.8033 0.6914
25 0.9897 0.9460 0.8744 0.7941
29 0.9927 0.9639 0.9153 0.8579
33 0.9945 0.9742 0.9399 0.8982

Table 6.4: Values of Py, (9'2 > b) with 8; = 20, 6, = 25 and 6, = 9

A b=6 b=11 b=16 b=21

1 0.0000 0.0000 0.0000 0.0000
5 0.3726 0.0327 0.0052 0.0015
9 0.8610 0.3974 0.1550 0.0681
13 0.9626 0.7349 0.4755 0.3012
17 0.9862 0.8841 0.7176 0.5577
21 0.9935 0.9443 0.8476 0.7355
25 0.9964 0.9703 0.9141 0.8409
29 0.9978 0.9825 0.9486 0.9011
33 0.9985 0.9889 0.9673 0.9360

155



Table 6.5: Relative risks based on 999 simulations when 6; = 20, 6, = 25, §; = 9,
g, =14

n|WI| m L m Dy %1 w5 | Dj %,L Te n?'D mr —an g

40 | 40 | 22.26 | 0.56 | 0.56 | 18.59 | 0.54 | 0.53 | 3.13 | 0.73 } 0.73 | 0.81 | 0.80 | 0.87 | 0.86

3512221 | 0.56 | 0.56 | 16.98 | 0.52 | 0.53 [ 4.24 [ 0.72 | 0.71 | 0.77 | 0.78 { 0.81 { 0.81

30 12225 1 0.56 | 0.56 | 1536 [ 0.52 1 0.52 1 5.41 { 0.70 | 0.69 | 0.74 | 0.74 | 0.74 | 0.74

25 ] 2240 j 0.56 | 0.56 | 13.20 | 0.51 | 0.51 | 6.85 | 0.67 | 0.67 | 0.71 | 0.70 | 0.64 | 0.65

20 | 22.46 | 0.56 | 0.56 | 10.67 | 0.50 | 0.50 | 8.02 ) 0.66 | 0.65 | 0.65 | 0.65 | 0.53 | 0.53

151 22.14 | 0.55 | 0.56 | 7.53 [ 0.49 | 0.49 | 9.82 | 0.63 | 0.63 | 0.58 { 0.58 | 0.39 | 0.38

10 § 22.38 1 0.56 | 0.56 | 4.33 [ 0.48 | 0.48 | 9.06 | 0.61 | 0.60 | 0.48 | 0.48 | 0.23 | 0.22

20| 40 ) 11.04 | 055 | 0.56 | 9.13 | 053 {053 | 165|073 ] 0.73 | 0.81 | 0.80| 0.86 | 0.86

35 11.09 | 0.55 { 0.56 | 853 | 0.53 ] 0.53 | 2.09 | 0.71 | 0.71 | 0.78 | 0.78 | 0.81 | 0.81

30 [11.28 | 0.56 | 0.56 | 7.73 | 0.53 | 0.52 [ 2.77 { 0.70 | 0.69 { 0.74 | 0.74 | 0.73 | 0.74

25| 11.27 | 0.56 | 0.56 | 6.69 | 0.52 | 0.51 | 3.43 | 0.68 | 0.67 | 0.70 | 0.70 | 0.64 | 0.65

20 | 11.07 | 055 | 0.56 | 5.22 | 0.50 | 0.50 | 4.06 | 0.66 | 0.65 | 0.65 | 0.65 { 0.53 | 0.53

151 11.21 { 0.56 { 0.56 | 3.80 | 0.49 | 0.49 | 4.50 | 0.64 | 0.63 | 0.58 | 0.58 | 0.39 | 0.38

10 | 11.01 [ 0.55 | 0.56 | 2.33 | 0.48 { 0.48 | 4.30 | 0.60 | 0.60 | 0.47 | 0.48 | 0.24 | 0.22

10 | 40 | 5.51 | 0.5510.56 | 457 | 053 105311080 0.74]|0.73| 0.80 [ 0.80 | 0.87 | 0.86

351 555 | 055|056 | 423 | 052 (053]|1.06}072|0.71| 077 | 078 0.81} 0.81

30 { 557 | 056 ) 056 | 3.87 | 0.52 | 052133070069 | 074 | 0.74 | 0.74 | 0.74

25 | 557 1056|056 | 3.32 (051 1051164068067 069 | 070 0.65 | 0.65

20 | 553 1055|056 | 277 | 051|050 | 1.85]|0.64 | 0.65 | 0.64 | 0.65 | 0.55 | 0.53

15§ 550 | 055 [ 0.56 | 2.05 [ 0.49 | 0.49 | 2.09 | 0.62 | 0.63 | 0.59 | 0.58 | 0.42 | 0.38

10 ] 552 {055 [ 0.56 | 1.57 [0.50) 048 | 1.96 | 0.59 | 0.60 | 0.48 | 0.48 | 0.32 | 0.22

156




Table 6.6:

Confidence intervals for 6;, 6;, 6] and 6, when n =35, W =15
C.1 for 6,
Methods 90% 95% 99%
Exact C.I. | (14.82, 35.32) | (13.05, 37.89) | (11.04, 51.44)
Approx C.I | (12.07, 31.00) | (10.25, 32.81) | (6.71, 36.35)
Boot-p C.I | (14.45, 34.02) | (13.17, 35.78) | (11.34, 47.54)
BC, CI1. | (14.31,34.63) | (12.82, 38.06) | (10.89, 49.50)
C.1. for 6,
Methods 90% 95% 99%
Exact CI | (18.63, 56.36) | (17.48, 65.23) | (14.33, 87.22)
Approx C.I | (14.46, 45.82) | (11.46, 48.83) | (5.59, 54.70)
Boot-p C.I | (18.84, 54.23) | (17.50, 62.12) | (14.39, 89.66)
BC, CI1. | (18.71,54.89) | (17.42, 63.52) | (14.39, 91.65)
C.1 for 8}
Methods 90% 95% 99%
Exact C.I | (3.35,12.88) | (2.87, 15.44) | (2.43, 41.72)
Approx C.I | (2.64,9.98) | (1.94,10.68) | (0.56, 12.06)
Boot-p C.L | (3.11,12.29) | (2.73, 14.97) | (2.00, 26.16)
BC, CL | (3.46,14.04) | (3.06,16.98) | (2.22, 37.59)
C.1L for 6,
Methods 90% 95% 99%
Exact CI. | (8.06,28.89) | (7.03,29.63) | (5.35, 57.33)
Approx C.L | (4.64,23.62) | (2.82,25.44) | (0%, 28.99)
Boot-p C.I | (7.78,30.03) | (7.06,35.97) | (5.36, 52.38)
BC, CL | (7.69,30.78) | (6.98, 36.87) | (4.82, 58.59)

0* stands for a non-positive number
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Table 6.7:

Confidence intervals for 61, 62, 6] and 6, when n =35 W =25

C.I. for 6,
Methods 90% 95% 99%
Exact C.I | (16.78, 35.63) | (16.31, 39.42) | (13.21, 48.23)
Approx C.I. | (13.94, 33.41) | (12.08, 35.28) | (8.43, 38.92)
Boot-p C.I. | (16.51, 35.34) | (15.45, 37.25) | (12.71, 41.39)
BC, CI. (16.52, 35.57) | (15.52, 38.75) | (12.71, 43.69)
C.1. for 9,
Methods 90% 95% 99%
Exact C.I. | (18.33, 45.36) | (17.89, 50.43) | (15.89, 68.35)
Approx C.I | (15.85, 42.44) | (13.30, 44.98) | (8.32, 49.96)
Boot-p C.L | (19.18, 43.89) | (17.77, 47.31) | (15.32, 65.30)
BC, C.I. | (18.41, 44.13) | (17.21, 49.93) | (14.50, 67.92)
CL for 6,
Methods 90% 95% 99%
Exact CI | (3.84,9.11) | (3.22,9.88) | (2.67, 16.78)
Approx C.I | (2.98,8.36) | (2.46,887) | (1.45,9.88)
Boot-p C.I | (3.35,9.07) | (3.09,9.78) | (2.44,13.38)
BC, CL | (347,9.26) | (3.14,10.18) | (2.56,13.88)
ClL for 6,
Methods 90% 95% 99%
Exact CL | (7.89,20.54) | (6.33,22.23) | (5.21, 30.13)
Approx C.L | (6.73,18.02) | (5.65, 19.10) | (3.53, 21.22)
Boot-p C.I | (7.33,20.58) | (6.71,23.23) | (5.30, 30.76)
BC, CI | (7.81,2237) | (712, 24.16) | (5.66, 32.50)

0* stands for a non-positive number
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Table 6.8: Confidence intervals for 0y, 65, 8] and 8, when n =15, W =15

C.1 for 6,

Methods 90% 95% 99%
Exact C.I. | (10.99, 44.13) | (9.91, 52.82) (8.16, 77.97)
Approx C.I. | (6.62, 33.66) (4.02, 36.25) (0%, 41.31)
Boot-pC.I. | (10.79, 40.05) | (9.58, 49.70) (8.42, 72.28)

BC, CIL (10.47, 42.48) | (9.28, 51.29) (7.85, 76.05)

C.I. for 6,

Methods 90% 95% 99%
Exact C.I. | (12.44, 57.49) | (11.13, 70.65) | (9.05, 111.34 )
Approx C.I | (6.39, 41.94) | (2.98,45.35) | (0%, 52.00)
Boot-p C.I { (1256, 56.22) | (11.19, 67.75) | (9.64, 120.37)

BC, CL | (1256, 56.47) | (11.19, 69.11) | (9.64, 125.37)

C.1 for 6]

Methods 90% 95% 99%
Exact C.L | (278, 15.31) | (2.42, 20.46) | (1.82, 51.53)
Approx C.L | (1.64,10.77) | (0.77, 11.64) | (0%, 13.35)
Boot-p C.I | (2.08,15.32) | (1.61,19.10) | (0.82, 32.30)

BC, CI | (2.85,19.10) | (2.18,26.69) | (1.36, 36.24)

C.I for 6,

Methods 90% 95% 99%
Exact C.I | 4.48,21.14) | (3.94,26.75) | (3.02, 50.92)
Approx C.L | (0.53,20.42) | (0%, 22.32) (0*, 26.05)
Boot-p C.I | (3.78,27.00) | (3.11,35.51) | (1.98,52.14)

BC. CL | (3.90,2824) | (3.28 3551) | (1.81,52.90)

0* stands for a non-positive number
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Table 6.9: Confidence intervals for 6y, 62, 8] and 6, when n =15 W = 25

C.IL for 6,
Methods 90% 95% 99%
Exact C.L. | (10.98, 35.41) | (10.01, 40.83) | (8.41, 55.27)
Approx C.I | (7.75,29.29) | (5.69, 31.35) | (1.65, 35.38)
Boot-p C.I. | (10.28, 35.24) | (9.02, 39.20) (7.55, 46.94)
BC, CI1. | (10.11, 35.37) { (9.06, 39.53) (7.55, 47.05)
C.L for 6,
Methods 90% 95% 99%
Exact (15.36, 69.37) | (13.73, 84.98) | (11.12, 133.76 )
Approx C.I. | (7.83,51.42) | (3.66, 55.60) (0*, 63.76)
Boot-p C.I. | (15.41, 66.73) | (13.63, 80.30) | (10.59, 169.98)
BC, Cl1. (14.72, 67.77) | (12.75, 83.34) (9.89, 174.06)
C.1I. for 9]
Methods 90% 95% 99%
Exact C.I. | (3.08, 15.63) | (2.70, 20.45) | (2.06, 44.36)
Approx C.I | (1.64,10.77) | (0.77,11.64) | (0%, 13.35)
Boot-p C.I. | (2.13, 13.72) (1.45, 17.35) (0.66, 24.38)
BCy CL | (2.95,18.09) | (2.35, 22.48) | (1.29, 34.23)
C.I for 6,
Methods 90% 95% 99%
Exact C.I. | (6.77, 23.56) | (6.10, 27.64) (4.97, 39.71)
Approx C.I | (3.35,21.97) | (1.56,23.75) | (0%, 27.24)
Boot-p C.I | (5.8, 28.89) | (5.01,32.34) | (3.57, 54.41)
BC, C1 (6.16, 29.48) | (5.30, 33.40) (3.75, 54.85)

0* stands for a non-positive number
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n =40

Table 6.10: Estimated coverage probabilities based on 999 simulations when ¢; = 20, 8, = 25, ] = 9, 6, = 14 and
Cl of 6 90% C.I 95% C.I. 99% C.I.
w Exact | Approx. | Boot-p | BC, | Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCq
10 88.10 79.28 84.18 84.68 | 93.99 84.10 88.09 90.89 | 97.89 88.10 94.09 95.89
20 91.20 81.38 91.29 | 92.59 | 94.59 88.20 93.29 | 96.00 | 98.30 89.09 97.90 | 98.70
30 90.69 85.59 89.09 | 89.69 | 94.89 89.09 95.50 | 95.40 | 98.89 91.00 98.40 | 99.00
40 90.59 86.19 89.89 90.29 | 95.10 90.99 93.79 94.59 | 99.20 92.09 99.10 99.20
C.I of 62 90% C.L 95% C.I 99% C.I.
w Exact | Approx. | Boot-p | BCo | Exact | Approx. | Boot-p | BCa | Exact { Approx. ( Boot-p | BCqx
10 89.10 80.68 84.58 84.98 | 94.30 86.59 91.49 93.99 | 98.20 88.59 94.89 95.99
20 89.99 83.39 88.10 90.99 [ 94.89 90.39 94.89 96.10 | 98.90 90.90 98.20 99.30
30 89.90 85.09 88.19 89.39 [ 95.60 90.10 93.39 94.29 | 99.20 92.00 98.60 98.90
40 90.39 86.79 88.59 90.79 | 95.10 91.59 93.39 95.10 | 99.00 93.70 99.10 99.10
C.L of 6} 90% C.I 95% C.I. 99% C.I
w Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCq
10 88.60 79.58 82.58 83.48 | 94.40 87.40 92.69 94.79 | 98.20 87.88 92.29 93.39
20 89.70 84.79 88.89 91.59 | 95.60 91.39 93.39 95.60 | 98.10 91.10 98.80 99.30
30 90.10 85.79 89.29 | 92.59 | 95.79 91.89 93.89 | 95.70 | 99.10 93.00 98.70 | 99.20
40 89.90 86.09 89.99 | 90.89 | 96.00 90.99 93.79 | 95.20 | 98.80 94.00 97.60 | 98.30
C.L of 6}, 90% C.L 95% C.I. 99% C.L
w Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCo | Exact | Approx. | Boot-p | BCq
10 88.90 80.39 84.38 84.38 | 94.30 87.90 91.79 93.39 | 98.80 87.59 90.99 91.79
20 89.10 85.10 89.99 90.79 | 96.00 91.29 94.69 95.70 | 98.79 95.30 98.70 99.10
30 89.79 86.00 90.09 91.99 | 95.40 92.79 94.59 95.80 | 99.20 95.60 99.40 99.70
40 89.09 87.10 87.99 89.89 | 95.90 92.69 94.19 95.80 | 99.00 95.30 98.50 98.90
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Table 6.11: Estimated coverage probabilities based on 999 simulations when ¢, = 20, 6, = 25, 6 = 9, 6, = 14 and

n =20
Cl of 6, 90% C.L 95% C.L 99% C.I
w Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCa
10 88.10 76.79 81.18 81.69 | 94.10 82.19 89.10 90.30 | 98.40 85.59 88.09 90.29
20 88.79 81.19 86.49 87.59 | 96.00 89.50 92.79 93.59 | 98.79 91.29 97.00 97.00
30 89.99 85.10 90.69 91.99 | 95.79 90.39 93.89 9540 | 99.20 92.70 98.30 98.80
40 90.89 86.10 89.79 | 90.99 | 95.20 91.99 9349 | 95.30 | 99.30 93.59 97.70 | 98.40
C.IL of 02 90% C.L 95% C.1. 99% C.L
w Exact | Approx. | Boot-p { BCy | Exact | Approx. | Boot-p | BCo | Exact | Approx. { Boot-p | BCu
10 88.30 77.00 82.19 82.79 | 94.20 83.80 86.49 87.00 | 98.79 86.59 88.89 89.19
20 91.20 85.59 87.19 88.69 | 96.19 89.79 91.69 92.79 | 99.60 90.09 97.50 97.60
30 90.30 88.79 89.39 91.59 | 95.70 91.19 93.89 95.60 | 99.10 92.10 98.40 98.80
40 90.10 87.99 88.49 90.59 | 95.19 91.29 94.29 95.60 | 99.00 93.60 98.60 99.40
C.L of 6] 90% C.I. 95% C.I. 99% C.I.
w Exact | Approx. | Boot-p | BCo | Exact | Approx. | Boot-p | BCy | Exact | Approx. | Boot-p | BCq«
10 88.90 74.59 80.19 81.49 | 95.19 81.30 86.20 88.10 | 97.10 83.88 88.29 88.39
20 91.40 83.78 87.29 89.69 { 95.90 85.39 89.59 9249 | 99.80 91.09 96.40 96.60
30 90.19 85.29 87.79 91.69 | 96.20 89.19 93.29 96.10 | 99.20 93.59 97.10 97.80
40 90.30 86.09 89.69 91.99 | 95.10 89.59 93.29 96.40 | 99.06 94.49 98.10 98.90
C.L of 8} 90% C.1 95% C.I 99% C.I
w Exact | Approx. | Boot-p | BCqo | Exact | Approx. | Boot-p | BCq | Exact | Approx. | Boot-p | BCqx
10 88.70 76.20 81.19 82.20 | 94.79 81.79 87.10 88.79 | 97.79 84.59 88.79 88.99
20 91.10 84.49 87.49 89.59 | 95.30 86.09 92.19 93.49 | 99.60 90.29 96.20 96.80
30 90.30 86.49 88.49 91.59 | 95.70 91.29 93.29 95.39 | 99.10 93.49 98.50 99.00
40 89.19 86.09 89.69 91.99 | 95.40 89.89 92.89 96.20 [ 98.79 94.89 98.10 98.60




Chapter 7

Conclusions and Future Work

In this thesis, we have considered the two-component system failure model when
the observed failure time data are complete in Chapter 2, Type-II censored in Chapter
3, Type-1I censored with partial information on component failures in Chapter 4,
Type-I censored in Chapter 5, and finally Type-I censored with partial information on
component failures in Chapter 6. For each situation, we have obtained the MLEs of the
model parameters 6, 05, 6, 6, and have derived their exact conditional distributions
(when possible). Several different procedures for constructing confidence intervals have
been discussed. Simulation studies and numerical examples have been presented to
assess the performance of these confidence intervals and also to illustrate the methods

developed in this thesis.

From our simulation studies, we have observed that the exact method of construct-
ing confidence intervals (based on the exact conditional distributions of the MLEs 01,
05, éi and é;) always maintains its coverage probability at the nominal level even

in the case of small sample sizes. The approximate method of constructing confi-
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dence intervals (based on the asymptotic normality of the MLEs) are almost always
unsatisfactory in terms of coverage probabilities. Between the two bootstrap meth-
ods of constructing confidence intervals, the adjusted percentile and biased-corrected
bootstrap method (BC, method) seems to have coverage probabilities closer to the
nominal level in case of larger sample sizes. Hence, we recommend the use of the ex-
act method (when available) whenever possible, especially in the case of small sample
sizes; the adjusted percentile method is recommended for at least moderately large
sample sizes when the computation of the exact confidence interval becomes difficult;
and the approximate method is recommended only for large sample size because of its
computational ease as well as for having its coverage probability close to the nominal

level when n is large (preferably over 50).

7.1 Future Work

Several problems that are worthy of consideration for further studies are as follows.

In this thesis, we have considered the two-component system failure model under
Type-1 and Type-II censoring schemes with or without partial information on compo-
nent failures, assuming the lifetimes of the components to be exponentially distributed.
One possible extension of interest will be the exact analysis of the two-component
system failure under different censoring schemes such as: (1) progressive Type-I or
progressive Type-II censoring, and (2) hybrid Type-I or hybrid Type-II censoring.
Another possible extension of interest will be to consider different lifetime distribu-
tions for the components such as (1) Gamma and (2) Weibull. Therefore, in each of

these situations, we may develop the corresponding models and discuss the determi-
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nation of MLEs of the unknown parameters. We can also discuss the construction of
confidence intervals for the parameters and evaluate their performance by means of

Monte Carlo simulations and illustrative examples.

We can also extend all the methods presented in this thesis to the case of k-out-of-n
systems, consisting of n non-identical and dependent components. A system having
k-out-of-n structure can survive if at least k of its n components are operating; it fails
if n — k4 1 or more components fail. Two important special cases of this model are:
(1) k =1 corresponding to a parallel system, and (2) k = n corresponding to a series
system. We also need to note that, since all components start working at the same
time, this approach may lead to a kind of redundancy called active redundancy of n—k

components.

In the models considered in this thesis, we only assumed that failure of one com-
ponent forces a change in the surviving component in that the mean lifetime changes
from 6; to ;. We do not assume any relationship between 6; and ¢;. There may,
however, be some situations where in X and Y, the lifetimes of the two components,
are independent, i.e., §; = 8] and 6, = 0;. We could, therefore, develop hypothesis
tests for Hy : 0, = 0], 02 = 6, using the likelihood ratio method. The hypothesis
Hy is equivalent to testing whether we have a constant hazard rate if the lifetimes
have exponential distributions. The development of suitable tests and a study of their

power properties will certain be of interest.
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