Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17310
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWolkowicz, G.S.K.-
dc.contributor.authorFan, Guihong-
dc.date.accessioned2015-05-14T17:21:10Z-
dc.date.available2015-05-14T17:21:10Z-
dc.date.issued2009-01-
dc.identifier.urihttp://hdl.handle.net/11375/17310-
dc.description.abstractOur goal in this thesis is to study the dynamics of the classical predator-prey model and the predator-prey model in the chemostat when a discrete delay is introduced to model the time between the capture of the prey and its conversion to biomass. In both models we use Holling type I response functions so that no oscillatory behavior is possible in the associated system when there is no delay. In both models, we prove that as the parameter modelling the delay is varied Hopf bifurcation can occur. However, we show that there seem to be differences in the possible sequences of bifurcations. Numerical simulations demonstrate that in the classical predator-prey model period doubling bifurcation can occur, possibly leading to chaos while that is not observed in the chemostat model for the parameters we use. For a delay differential equation, a prerequisite for Hopf bifurcation is the existence of a pair of pure imaginary eigenvalues for the characteristic equation associated with the linerization of the system. In this case, the characteristic equation is a transcendental equation with delay dependent coefficients. For our models, we develop two different methods to show how to find values of the bifurcation parameter at which pure imaginary eigenvalues occur. The method used for the classical predator-prey model was developed first. However, it was necessary to develop a more robust, less complicated method to analyze the predator-prey model in the chemostat with a discrete delay. The latter method was then generalized so that it could be applied to any second order transcendental equation with delay dependent coefficients.en_US
dc.language.isoenen_US
dc.subjectpredator-prey modelen_US
dc.subjectchemostaten_US
dc.subjectdiscrete delayen_US
dc.subjectHolling type Ien_US
dc.subjectHopf bifurcationen_US
dc.subjecteigenvaluesen_US
dc.subjectsecond order transcedental equationen_US
dc.titlePredator-Prey Models with Discrete Time Delayen_US
dc.typeThesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Fan_Guihong_2009January_PhD.pdf
Open Access
Thesis3.69 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue