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Abstract 

Our goal in this thesis is to study the dynamics of the classical predator-prey model 

and the predator-prey model in the chemostat when a discrete delay is introduced 

to model the time between the capture of the prey and its conversion to biomass. In 

both models we use Holling type I response functions so that no oscillatory behavior 

is possible in the associated system when there is no delay. In both models, we prove 

that as the parameter modelling the delay is varied Hopf bifurcation can occur. 

However, we show that there seem to be differences in the possible sequences of 

bifurcations. Numerical simulations demonstrate that in the classical predator-prey 

model period doubling bifurcation can occur, possibly leading to chaos while that is 

not observed in the chemostat model for the parameters we use. 

For a delay differential equation, a prerequisite for Hopf bifurcation is the 

existence of a pair of pure imaginary eigenvalues for the characteristic equation as

sociated with the linerization of the system. In this case, the characteristic equation 

is a transcendental equation with delay dependent coefficients. For our models, we 

develop two different methods to show how to find values of the bifurcation param

eter at which pure imaginary eigenvalues occur. The method used for the classical 

predator-prey model was developed first. However, it was necessary to develop a 
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more robust, less complicated method to analyze the predator-prey model in the 

chemostat with a discrete delay. The latter method was then generalized so that it 

could be applied to any second order transcendental equation with delay dependent 

coefficients. 
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Chapter 1 

Introduction 

In this thesis, we consider two predator-prey models with discrete time delay. One 

is the classical Gause type predator-prey model and the other is the resource based 

chemostat model. We choose Holling type I response functions so that no nontrivial 

oscillating solutions are possible in the absence of delay. The delay is introduced 

to model the time between the capture of the prey and its conversion to viable 

biomass. In this chapter, we give a brief literature review related to predator-prey 

models. Then we introduce the models that will be considered, first without and then 

with delay. We conclude this chapter by reviewing the results on solutions of tran

scendental equations with delay dependent coefficients. Analysis of such equations 

constitutes a major part of our contribution to the study of these models. 
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1.1 Predator-Prey Models 

The classical Lotka-Volterra predator-prey model ([39], [52]) is one of the simplest 

mathematical models to incorporate interactions between species, and it serves as a 

basis for many models used today to analyze population dynamics (see Chapter 6 in 

[15], Chapter 11 in [25], and Chapter 3 in [42]). Although this model is a milestone 

in the history of mathematical modelling, its inadequacy cannot be neglected. The 

phase plane is a center and hence the model predicts that the population sizes os

cillate and that the amplitude of the oscillations depends on the initial conditions. 

This phenomenon does not seem to occur in real ecosystems. 

One of the unrealistic assumptions of this model is that prey reproduce expo

nentially in the absence of predation. Various modifications have been introduced, 

see Gause, Smaragdova, and Witt [19], Rosenzweig [44], and Schoener [47]. Among 

them, Gause et al. [19] proposed the so called Gause type predator-prey model 

when they analyzed the interaction between Paramecium and Didinium. The classi

cal Gause type predator-prey model incorporates population regulation (also termed 

as overcrowding or intraspecific competition) by replacing the exponential growth 

term with a logistic growth term for the prey population in the absence of preda

tion. Ever since, models of this type (discrete, continuous or integral) with different 

forms of functional response describing predator growth dependency on prey density 

have been studied by ecologists, biologists, and mathematicians, see Armstrong[2]

[3], Hassell and May [23], Hassell [24], Hsu, Hwang, and Kuang [32], Kuang and 

Freedman [36], Rosenzweig [45]-[46], Sugie, Kohno, and Miyazakiand [49]. 

The first mathematical description of functional responses dates back to Holling 

2 



[27], [28], and [29]. Holling described the changes in organism's (predator's) feeding 

rates as a function of the changes on the density of food (prey population) and called 

this the functional response. He proposed three forms of response functions, Holling 

type I, II, and III. The Holling type I function takes the form mx, The Holling type II 

function is a saturating function of the form :::_:, and is particularly relevant for non

learning predators. This form is also called Michaelis-Menten when used in enzyme 

kinetics. Parameter m is called the maximum specific growth rate and a is called 

the half saturation constant since it is the concentration at which the half maximal 

growth rate '1? is reached. The Holling type III function (a+:)(b+x) is S-shaped. It 

is most useful for predators that show a certain type of learning ability. When the 

prey population is below a threshold density, predators have difficulty capturing the 

prey. Above that threshold predators tend to increase their feeding rate as the prey 

density increases until a saturation level is met. Holling type response functions have 

become the most often used functional forms used in models of population dynamics. 

Oscillation in population size has often been observed in natural ecosystems. 

After Lotka and Volterra, many modelers have tried to derive models that account 

for these oscillations. They are particularly interested in the existence of stable 

periodic solutions. Biologists and ecologists attempt to find more realistic models 

that can capture the observed oscillations in experiments or in natural ecosystems 

(see Armstrong [2]-[3], Hassell and May [24]). In this area, mathematicians try to 

understand the qualitative properties of the models. They are interested in the local 

and global stability of equilibrium solutions. See for example, Cheng, Hsu, and Lin 

[11], Hsu, Hubbelld, and Waltman [31], Hsu, Hwang, and Kuang [32], Kuang and 

Freedman [36], May [40], Sugie, Kohno, and Miyazaki [49]. They also often try to 
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determine necessary and sufficient conditions that guarantee the existence of periodic 

solutions. 

Hsu et al. [31] investigated the dynamics of a Gause type predator-prey model 

with Holling type II response function ;~. They showed that either the predators 

die out and the prey population approaches its carrying capacity, or the interior 

equilibrium is globally asymptotically stable, or there is a periodic orbit which is 

stable if it is unique. If there is more than one periodic orbit, the outer one is stable 

from the outside and the inner one is stable from the inside. They conjectured that 

the periodic orbit is unique. The conjecture was later proved by Cheng [10]. Ding 

[14] studied the model further and gave a classification of the dynamics in the case of 

response function a~:n for both n = 1 and 2. He proved that when a periodic orbit 

exists it is unique. Sugie et al. [49] considered this model with response functions 

allowing n to be any real positive number and obtained necessary and sufficient 

conditions under which the system has exactly one stable limit cycle. Kuang and 

Freedman [36] considered a more generalized predator-prey model of Gause type and 

derived criteria for the uniqueness of limit cycles which includes the results of Cheng 

[10]. 

The Gause type predator-prey model with the Holling type I response function 

is given by 

{ 

±(t) = rx(t) ( 1 - xJ)) - my(t)x(t), 

y(t) = -sy(t) + Y my(t)x(t), 

(1.1.1) 

where x(t) denotes the density of the prey population and y(t) the density of preda-

tors. Parameters r, K, s, Y, and m are positive constants denoting the intrinsic 

growth rate and the carrying capacity of the prey, the death rate of the predator in 
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the absence of prey, the yield constant, and the maximal growth rate of the predator, 

respectively. It is known that for this model either the predator population becomes 

extinct and the prey population approaches its carrying capacity, or the predator 

population and the prey population coexist and their density approaches a positive 

equilibrium that is an asymptotically stable spiral. The Dulac criterion is used to 

eliminate the possibility of any nontrivial periodic solution. The Poincare-Bendixson 

Theorem is used to prove that the positive equilibrium is globally asymptotically sta-

ble when it exists. This system has no nontrivial periodic solution. For a detailed 

analysis, refer to Chapter 6 and 8 in reference [15]. 

We are interested to study how delay affects the dynamics of this model. In 

particular, we wish to determine whether delay can induce periodic solutions. We 

include a time delay in (1.1.1) to model the time between the capture of the prey 

and its conversion to viable biomass and obtain the following system: 

{ 

x(t) = rx(t) ( 1 - xk)) - y(t)x(t), 

y(t) = -sy(t) + Ye-87my(t - T)x(t - T). 

(1.1.2) 

Here the term e-sTy(t-T) represents the density of the predator population at time t, 

that captured prey at time t - T and survived the T units of time required to process 

the captured prey. The reason we chose the Gause type predator-prey model with 

Holling type I response function instead of a more realistic response function is that 

we are guaranteed that there is no intrinsic periodicity without delay, and and so it is 

possible to isolate the effect of the delay. If the delay can produce oscillating behavior 

in this model, then it is very likely that it can also induce oscillatory behavior in a 

model with more detailed response functions. The way we incorporate delay in this 
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system was first proposed by Freedman, So, and Waltman [18] when they modelled 

a single species in the chemostat feeding on a growth-limiting nutrient. See also 

Ellermeyer [16], Wang and Wolkowicz [53], Xia and Wolkowicz [56], Xia, Wolkowicz, 

and Wang [57]. Other researchers obtained a similar model when they considered a 

structured population model. One such model was studied by Gourley and Kuang 

[21]. They considered a two-stage predator-prey ecosystem, where they assumed 

that juvenile predators take T units of time to mature. If the juveniles suffer the 

same mortality rate as adult predators, their model reduces to the model (1.1.2). 

Cooke, Elderkin, and Huang [12] also obtained the same model when they considered 

inactive juvenile predators in their predator-prey model. We improve the existing 

results concerning the dynamics of (1.1.2) by extending the analytical results and 

giving less complicated criteria that are easier to apply. 

In Chapter 2, we show that model (1.1.2) can have up to three equilibria. 

We analyzed the stability of each equilibrium and obtained some analytical results 

about the Hopf bifurcation of the interior equilibrium as the delay T varies. Combin

ing the analytical results with the numerical simulations, we confirmed that a stable 

periodic solution bifurcates from the interior equilibrium as the time delay increases 

from zero. As the time delay increases further the periodic solution eventually dis

appears through a secondary Hopf bifurcation. Numerically, we determine there is a 

parameter range for the parameter T where more complicated dynamics including a 

series of period doubling occurs, possibly leading to chaotic dynamics. This appears 

to be a new result. 
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1.2 The Predator-Prey Model in the Chemostat 

In Chapter 3, we studies the chemostat version of the predator-prey model. This 

scenario has attracted the attention of many investigators (see [7], [8], [34], [50]) 

mainly motivated by the feasibility to test the mathematical predictions in a labo-

ratory environment. The chemostat, also known as a Continuous Stir Tank Reactor 

( CSTR) in the engineering literature, is a basic piece of laboratory apparatus used 

for the continuous culture of microorganisms. It has potential for such process as 

wastewater decomposition and water purification. Some ecologists consider it a lake 

in a laboratory. It consists of three vessels, the feed bottle which contains fresh 

medium with all the necessary nutrients, the growth chamber where the microor-

ganisms interact, and the collection vessel. The fresh medium from the feed bottle 

is continuously added to the growth chamber. The growth chamber is well stirred 

and its contents are then removed to the collection vessel at a rate that maintains 

constant volume. For a detailed description of the importance of the chemostat and 

its application in biology and ecology, one can refer to [30] and [48]. 

The following system describes a food chain in the chemostat where a predator 

population feeds on a prey population of microorganisms which in turn consumes a 

nonreproducing nutrient that is assumed to be growth limiting at low concentrations. 

s(t) =(so - s(t))Do - x(t)f(s(t))' 
rJ 

x(t) = x(t) (-D + J(s(t))) - y(t)g~x(t)), 

y(t) = -!1y(t) + y(t)g(x(t)). 

(1.2.3) 

Here s(t) represents the concentration of the nutrient, x(t) the density of the prey 

population, and y(t) the density of the predator population. Parameter s0 denotes 
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the input nutrient concentration, D0 the dilution rate, T/ (or ~) the growth yield 

constant, and D (or ~) a sum of the natural death rate and the dilution rate of 

the prey (or predator) population, respectively. Here f ( s) denotes the functional 

response of the prey population on the nutrient and g(x) denotes the predators 

functional response on the prey. 

Butler, Hsu, and Waltman [7] considered the coexistence of two competing 

predators feeding on a single prey population growing in the chemostat. As a sub

system of their model, they studied the global stability of system (1.2.3) with both 

J(s) and g(x) taking the form of Holling type II. They proved that under certain 

conditions the interior equilibrium is globally asymptotically stable with respect to 

the interior of the positive cone. If one particular condition is reversed, they proved 

there is at least one limit cycle and conjectured that the limit cycle is unique and 

would be a global attractor with respect to the non-critical orbits in the open posi

tive octant. This conjecture was partially solved by Kuang [34]. Kuang showed that 

there is a range of parameters that guarantees the uniqueness of the limit cycle of 

this system and roughly located the position of the limit cycle. But he was unable 

to give an explicit estimate of the parameter range. 

Bulter and Wolkowicz [8] studied predator mediated coexistence in the chemo

stat assuming D0 = D = ~. Model (1.2.3) was studied as a submodel. For general 

monotone response functions, Bulter and Wolkowicz showed that (1.2.3) is uniformly 

persistent if the sum of the break even concentrations of substrate and prey is less 

than the input rate of the nutrient s0 . However they showed that it is necessary 

to specify the form of the response functions to discuss the global dynamics of the 

model. If f(s) is modelled by Holling type I or II and g(x) by Holling type I, Bulter 
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and Wolkowicz proved that (1.2.3) could have three potential equilibrium points and 

that there is a transfer of global stability from one equilibrium point to another as 

different parameters are varied making conditions favorable enough for a new popu-

lation to survive. In this case, there are no periodic solutions. However, even if f ( s) 

is given by Holling type I, if g(x) is given by Holling type II, they showed that a Hopf 

bifurcation can occur in (1.2.3), and numerical results indicated that the bifurcating 

periodic solution is asymptotically stable. 

We include a time delay in (1.2.3) as we did in the predator-prey model and 

require that both f(s) and g(x) are modelled by the simplest form for the response 

functions, Holling type I so that (1.2.4) has no nontrivial periodic solutions without 

delay. With delay modelling the time required for the predator to process the prey 

after it has been captured, the model is given by 

s(t) =(so - s(t))Do - x(t)f(s(t))' 
TJ 

x(t) = x(t) (-D + j(s(t))) - y(t)gix(t)), 

i;(t) = -t::..y(t) + e-t::.ry(t-T)g(x(t - 7)). 

(1.2.4) 

We are interested whether delay can induce oscillatory behavior in this system. 

In Chapter 3 we analyze the stability of each equilibrium and prove that 

the coexistence equilibrium can undergo Hopf bifurcations. Numerical simulations 

appear to show that (1.2.4) can have a stable periodic solution bifurcating from the 

coexistence equilibrium as the delay parameter increases from zero. This periodic 

orbit can then disappear through a secondary Hopf bifurcation as the delay parameter 

increases further. 
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1.3 2nd Order Transcendental Equations with Delay 

Dependent Coefficients 

To study stability switches of models with delay, we consider the roots of the charac-

teristic equation. In this case we consider the stability of the coexistence equilibrium, 

and so evaluate the characteristic equation given by 

P(>.) = >.2 + p(r)>. + (q(r)>. + c(r))e--\r + a(r) = 0. (1.3.5) 

A necessary condition for Hopf bifurcation is that the characteristic equation has a 

pair of pure imaginary eigenvalues. However, since (1.3.5) involves a transcendental 

term and also its coefficients depend on delay, it is difficult to find the actual values 

of the parameter modeling the delay, at which pure imaginary roots occur. For 

coefficients with special form, there are some results, see [54], [57] and [58]. In [5], 

Beretta and Kuang consider a general equation of the form 

(1.3.6) 

where n > m ~ 0 and 

n m 

Pn(>.,r) = LPk(r)>.k, Qm(>.,r) = Lqk(r)>.k. 
k=O k=O 

Coefficients qk ( r) and Pk ( r) are continuously differentiable functions for r ~ 0. Equa

tion (1.3.5) is a special case of (1.3.6) when n = 2 and m = 1. Beretta and Kuang 

provide a systematic method for finding pure imaginary roots of (1.3.6). Although 

their method is constructive, it relies heavily on numerical techniques. 

In Chapter 4, we present sufficient conditions that guarantee the existence of 

pure imaginary roots for (1.3.5). Also a procedure is proposed to find the delay values 
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at which the pure imaginary roots occur. The method also depends on numerical 

techniques, but extra care is taken to define all functions involved explicitly, which 

endows the method with some advantages in applications. The method is applied 

to a single patch model in Brauer, van den Driessche, and Wang [6], where they 

consider a patchy environment disease model and assume that the host has a period 

of immunity of fixed length T after recovery from the disease. For (1.3.5) in the 

case of constant coefficients, a considerable amount of work has been done, and the 

interested reader is referred to [9], [13], and [33] and the references therein. 

The remainder of this thesis is organized as follows. In Chapter 2, we consider 

the delayed Gause type predator-prey model. In Chapter 3, we consider the analo

gous model for predator-prey interaction with delay in the chemostat. In Chapter 4, 

we generalize the method given in Chapter 3 used to find pure imaginary roots of the 

characteristic equation so that it can be applied to any second order transcenden

tal equation with delay dependent coefficients. This method can be used to study 

Hopf bifurcations of delay differential equations for characteristic equations that are 

second order transcendental equations of the form (1.3.5). 
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Chapter 2 

A Gause Type Predator-Prey Model 

with Delay 

2.1 Model Considered 

In this chapter, we are interested in a predator-prey model with discrete time de-

lay. Let x(t) denote the density of the prey population and y(t) the density of the 

predator. The model is given by 

{ 

x(t) = rx(t) ( 1 - x~)) - y(t)f(x(t)), 

y(t) = -sy(t) + Ye-sT y(t - T)f (x(t - T) ), 
(2.1.1) 

where r, K, s and Y are positive constants and T is a nonnegative constant. In the 

absence of the predator population, it is assumed that the prey population grows 

logistically with intrinsic growth rate r and carrying capacity K. In the absence of 

the prey population, the predator population declines exponentially at rate s. The 

function f ( x) denotes the response function of predators to the prey density. We 
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consider the simplest choice for the response function, Holling type I, i.e. f (x) = mx, 

where m > 0, so that the model has no periodic orbits if delay is ignored. 

It is assumed that the process of conversion of the prey, once caught, to 

predator biomass takes T units of time. Therefore e-sTy(t-T) represents the density 

of the predator population at time t, that captured prey at time t - T and survived 

the T units of time required to process the captured prey. Parameter Y is a growth 

yield constant. 

For any integer n ~ 1, define JR+. = { (x1, x2, ... , Xn) E lRnlxi ~ 0, 1 ~ i ~ n} 

and denote its interior by IntJR+. = { (x1 , x2 , ... , Xn) E JRnlxi > 0, 1 ~ i ~ n }. 

For T > 0, let C([-T, OJ, JR2 ) denote the space of continuous functions mapping the 

interval [-T, OJ into JR2 with the uniform norm, i.e. if</> E C([-T, OJ, JR2), 11</Jll = 

supeE[-T,oJ l</>(B)I, where I· I is any norm in lR2
. Let C! = C([-T, O], IntJR!). If a> 0 

and</>: [-T, a) -t IntlR!, define <f>t(B) = </>(t + B) fort E [0, a) and (1 E [-T, 0]. Then 

if </J is continuous on [-T, a), then <Pt E C!. For system ( 2 .1.1), we consider any 

initial data in IntC~. 

2. 2 Scaling of the Model and Basic Properties of 

Solutions 

We introduce the following change of variables in order to simplify model (2.1.1): 

t =rt 
' 

T =TT, 

x(t) = x(t)/ K, 

v s 
s = -

r' 

13 

y(t) = my(t)/r, 

Y = YKm/r. 
(2.2.2) 



A direct calculation, using (2.1.1) gives: 

dx 1 dx 
--

dt Kr dt 

= ;r [rx(t) ( 1 - xz)) - my(t)x(t)] 

= x(t) (l _ x(t)) _ my(t) x(t) 
K K r K 

= x(t)(1 - x(i)) - y(t)x(t), 

and 
dy m dy m [ ( ) y -sr ( ) ( )] --;:; = - - = - -sy t + e my t - T x t - T 
dt r 2 dt r 2 

= -~ my(t) + Y Km exp {-~rr} my(t - r) x(t - r) 
r r r r r K 

= -sy(t) + -Ye-87 y(t - t)x(t -T). 

To simplify the notation, we drop the "'s and study the equivalent scaled version of 

model (2.1.1): 

{ 

x(t) = x(t)(l - x(t)) - y(t)x(t), 

y(t) = -sy(t) + Ye- 87 y(t - r)x(t - r). 
(2.2.3) 

Let T = 0 in (2.2.3). To have biological significance, an equilibrium point of 

(2.2.3) is only assumed to exist provided all of its components are nonnegative. In 

this case, the model has been well studied (see [15]). If Y < s, the model has two 

equilibria (0, 0) and (1, 0). Equilibrium (0, 0) is a saddle point and (1, 0) is globally 

asymptotically stable with respect to the positive cone. When Y = s, equilibrium 

points (1, 0) and (fr, 1-fr) coalesce and are globally attracting. If Y > s, there is one 

more equilibrium point (fr, 1- fr). Equilibrium point (0,0) remains a saddle point, 

equilibrium point (1, 0) becomes a saddle point, and equilibrium point (fr, 1 - fr) 

is globally asymptotically stable. Therefore system (2.1.1) with response function 

modeled by Holling type I has no periodic solutions. If the response function is 
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allowed to be Holling type II, it is possible that (2.1.1) has periodic solutions (see 

[31]). But in this thesis, we restrict ourselves to the simplest case, the Holling type 

I response function in order to see whether delay can destabilize model (2.1.1) by 

means of a Hopf bifurcation resulting in periodic solutions. If delay can destabilize 

the simplest model, it is likely that delay can destabilize a model with more detailed 

response functions. 

Lemma 2.1. Solutions of (2.2.3} with initial data Ci exist on [O, o-), for some a-> 0, 

and are unique and positive for 0 < t < a-. 

Proof. Since the right hand side of (2.2.3) is smooth, by Theorem 2.1 and 

2.3 in Hale and Verduyn Lunel [22], solutions of (2.2.3) with such initial data exist 

on 0 < t < a- for some a- > 0, and are unique. Suppose (x(t), y(t)) is a solution of 

(2.2.3) fort E [O, o-). Without loss of generality, assume that [O, a-) is the maximum 

interval of the solution and a- = oo if the solution exists for any t > 0. Integrating 

the equation 

x(t) = x(t) (1 - x(t)) - y(t)x(t) 

gives 

x(t) = ¢1(0)exp (1t(l-x(t)-y(t))ds) > 0, t E [O, o-). 

Hence the prey population density x(t) is positive for any t E [O, o-). 

To prove the predator population density y(t) > 0 for any t E [O, o-), use the 

method of contradiction. Suppose there exists £ E [O, o-) such that 

y(i') = 0, and y(t) > 0 for any t E [-r, £). 

Then y(t) ~ 0. From the second equation of the system (2.2.3), we have 

y(i') = -sy(t) + Y e-sT y(t - r)x(i - r) = Ye-sT y(t - r)x(t - r) > 0, 
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a contradiction. Hence y(t) > 0 for all t E [O, o-). 

Lemma 2.2. The solutions of (2.2.3) are bounded fort~ 0. In addition 

lim supt_.00 x( t) ~ 1. 

Proof. From the first equation of (2.2.3) 

x(t) = x(t)(l - x(t)) - y(t)x(t) ~ x(t)(l - x(t)). 

Consider z(t) = z(t) (1 - z(t)), this is the well known logistic equation. 

0 

Given Eo > 0, s.t. lz(t)i < 1 + Eo for Vt~ T. 

By Theorem A.4 in Appendix A, -x(t) ~ z(t) and so 0 < x(t) < 1 + Eo for all t ~ T. 

Then 

To prove y(t) is bounded, we define 

w(t) = Ye-sT x(t - r) + y(t). 

. ( ) _ y _3 ,,.dx(t - r) dy(t) 
wt - e dt + dt 

= -sy(t) + Ye- 87X(t- r) (1 - x(t - r)) 

= -sw(t) + sYe-87 x(t - r) + Ye- 87 x(t - r) (1- x(t - r)) 

= -sw(t) + Ye- 87 x(t - r) (s + 1- x(t - r)) 

1 ' 
~ -sw(t) + 4Ye-87 (s + 1)2

, 

and since (x(t - r) - 2(s + 1))2 ~ 0, 

(s+1)2 

x(t - r) (s + 1 - x(t - r)) ~ 
4 

. 

(2.2.4) 

Therefore, by Theorem A.4, w(t) ~ z(t), where z(t) = z(O)e-st + 4
1
8
Ye-87 (s+1) 2(1-

e-st) is the solution of the initial value problem 

1 
z(t) = -sz(t) + 4Ye-87 (S + 1)2, z(O) = w(O). 
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Consequently w(t) ~ w(O) + JsYe-sr(s + 1)2 . By (2.2.4), 

1 
Y e-sr x(t - r) + y(t) = w(t) ~ w(O) + -Ye-sr(s + 1) 2 

4s 
1 

~ (Ye-srx(-r)+y(O))+ 
48

Ye-sr(s+1)2
. 

Therefore y(t) is bounded. 0 

2.3 Equilibria and their Stabilities 

For the sake of biological realism, we only consider equilibria with nonnegative com-

ponents. Model (2.2.3) can have three equilibria Ea = (0, 0), E 1 = (1, 0) and 

(2.3.5) 

Note, therefore, that E+ exists and is distinct from E 1 if and only if 0 ~ r < Tc, 

where 

(2.3.6) 

We call E+ the coexistence equilibrium. 

To analyze the local stability of each equilibrium, we use the linearization 

technique for differential equations with discrete delays (see Hale and Verduyn Lunel 

[22]). The linearization of system (2.2.3) about any one of the three equilibria Ea, 

E 1 and E+, denoted as (x*, y*) is given by 

[ 

±(t) ] = [ 1 - 2x* - y* 

y(t) 0 

-x* ] [ x(t) ] [ 0 0 ] [ x(t - r) ] 
-s y(t) + Ye-sry* Ye-srx* y(t - r) ' 

(2.3.7) 
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The characteristic equation P(>..) is given by detA = 0, where 

[ 

1 - 2x* - y* - >.. 
A-

y e-(s+>-)r y* 

-x* ] 

-s + y e-(s+.>-)r x* - >.. 

Therefore 

P(>..) = (>.. + s)(>.. + y* - (1 - 2x*)) + Ye-(s+A)r x*(l - 2x*) - >..Ye-(s+.>-)r x* = 0. 

The stability of each equilibrium can be determined by studying the roots of P(>..) = 

o. 

Theorem 2.3. Consider (2.2.3). Equilibrium E 0 is a saddle point. 

Proof. Evaluating the characteristic equation P(>..) at the equilibrium E0 

gives 

P(>..)JEo = (>.. + s)(>.. - 1) = 0. 

Then P(>..) has two real roots >.. = -s and >.. = 1. Therefore, the equilibrium E0 is a 

saddle point. 0 

Theorem 2.4. Consider (2.2.3). Equilibrium E 1 is unstable if 0 ~ T < Tc and 

globally asymptotically stable if T > Tc· 

Proof. The characteristic equation evaluated at E1 is given by 

P(>..)JE
1

=(>..+1)(>.. + s - Ye-(s+>-)r) = 0. 

One of the roots of the characteristic equation is >.. = -1. The other roots satisfy 

(>.. + s)e(A+s)r = Y. (2.3.8) 
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For any fixed 0 ~ T <Tc, we show that there is a positive real root. The left 

hand side of (2.3.8) is a monotone increasing function in >. for any fixed T. It takes 

the value sesr at ,\ = 0 and tends to positive infinity as ,\ --t +oo. Since 0 ~ T < Tc, 

sesr < Y. By the Intermediate Value Theorem, there exists a unique >.(T) > 0 such 

that equation (2.3.8) holds and so P(>.)IEi = 0 has at least one positive root >.(T). 

Hence E 1 is unstable for 0 ~ T < Tc. 

Now, we prove E 1 is globally asymptotically stable if T > Tc. Since T > Tc, 

then y e-S'T < s. If Eo = ~ ( veS'T - 1) > 0, by Lemma 2.2, there exists a T > 0 such 

that x(t) < 1 + Eo for all t > T. Therefore 

y e-S'T x ( t - T) < y e-S'T ( 1 + ~ (; eS'T - 1)) 
1 s 

= -Ye-sr + - < S 2 2 . 

Therefore the second equation of (2.2.3) can be written 

y(t) = -sy(t) + b(t)y(t - T), 

where b(t) = Ye-srx(t - T) < s. Choose a= s/2 in Lemma A.l in Appendix A. 

Since 4(s - s/2)s/2 = s2 > b2(t), y(t) --t 0 as t --t oo. Hence, for any E > 0, there 

exists T1 such that 0 < y( t) < E for t > T1 . From the first equation of (2.2.3), 

x(t) (1 - x(t) - E) < x(t) < x(t) (1 - x(t)). 

Note that 1- E and 1 are globally asymptotically stable equilibria of equation i(t) = 

z(t)(l - z(t) - E) and i(t) = z(t)(l - z(t)), respectively where E > 0 is arbitrary. By 

Theorem A.4, for any solution x(t) of (2.2.3), x(t) --t 1 as t --t oo. Therefore E 1 is 

globally asymptotically stable. 0 
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Thus we have proved that if T > Tc, there are only two equilibria: Ea, a 

saddle, and E 1 , a globally asymptotically stable equilibrium. However if 0:::;; T < Tc, 

both Ea and E1 are unstable and the coexistence equilibrium E+ also exists, since 

sesr 
Y+(T) = 1 - y > 0. 

In what follows, we investigate the local stability of E+. Evaluating the 

characteristic equation P(>.) at E+ gives 

( 
e

87

) 82 ( ( 2se
87

) ) P(>.)IE+=>.2 +>.s l+y- +ye87 +e->.7 s ->.+ 1-----y- =0. 

Denoting the coefficients of P (>.)IE+ as 

( 
e
8T) ( se

8T) p(T) = S 1 + y , q = -S, c(T) = S l - 2y 

(2.3.9) 

First assume that T = 0. Then (2.3.9) reduces to 

>.2 + (p(O) + q)>. + (a(O) + c(O)) = 0. 

Since a(O) + c(O) = s (l - -f;) = s · Y+(O) > 0 and p(O) + q = s~T > 0, by the 

Routh-Hurwicz criterion, all roots of (2.3.9) have negative real part. Hence E+ is 

locally asymptotically stable. 

Now assume that T > 0. P(O)IE+ = a(T) + c(T) = s Y+(T) > 0, and so>.= 0 

is not a root of P(>.)IE+ = 0. 

Lemma 2.5. As T increases from zero, roots of (2.3.9) with positive real part can 

only appear if roots with negative real part cross the imaginary axis as T increases. 
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Proof. In Theorem 1.4 (see p.66) of Kuang [35], taking n = 2 and g(>.., T) = 

p(T)A + (q>.. + c(T))e->-r + a(T) gives 

lim sup i>..-29(>..,T)I-+ 0. 
Re,\>O,l>-1--->oo 

No root of (2.3.9) with positive real part can enter from infinity as T increases from 

0. Hence roots with positive real part can only appear by crossing the imaginary 

axis. D 

Suppose that)..= iw (w > 0) is a root of P(>..)\E+ = 0, where i = J=I. Then 

P(iw)IE+ = -w2 + ip(T)w + (iqw + c(T))e-iwr + a(T) = 0. (2.3.10) 

Using Euler's identity eie =cos e + i sine, 

-w2 + a(T) + qw sin(wT) + c(T) cos(wT) + i (p( T)w + qw cos(wT) - c( T) sin(wT)) = 0. 

Separating the real and imaginary parts, 

{ c(T) cos(wT) + qwsin(wT) = w2 
- a(T), 

c(T) sin(wT) - qw cos(wT) = p( T)w. 

Solving for cos(wT) and sin(wT) gives 

· ( ) _ c(r)(p(r)w)+qw(w2 -a(r)) 
Sln WT - c(r)2+q2w2 , 

( ) _ c(r)(w2 -a(r))+qw(-p(r)w) 
COS WT - c(r)2+q2w2 · 

(2.3.11) 

(2.3.12) 

Recalling that sin2 (wT) + cos2 (wT) = 1, squaring both sides of equations (2.3.11), 

adding them, and rearranging gives 

(2.3.13) 
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Define 

T* = ~ ln (y). 
s 3s 

(2.3.14) 

Therefore se;· = ~. 

Lemma 2.6. Assume that TE [0,T*), or equivalently x+(T) E (0, ~). Then {2.3.13) 

has one positive root W+ ( T) given by 

1 ( (sesT)
2 

(sesT)
4 

( s2e2sT sesT )) 
W+(T) = 2 - y + y + s2 12--y2 -16--y + 4 . (2.3.15) 

Also w+(T*) = 0 and if T > T*, then (2.3.13) has no positive root. 

Proof. Solving for w2 in (2.3.13), 

The quantity 

( 
esT) 2 s2esT (sesT) 2 

q2 
- p2 (T) + 2a(T) = s

2 
- s

2 1 + y + 2--y = - y < 0. 

Therefore w~ is either complex or negative for any T. But W+ is positive if 

( 

s2 e2ST seST s2 e2ST) 
(a2 (T) - c

2(T)) = s
2 --y2 - 1+4--y - 4--y2 

This is the case if 

=S 4- -1-3--2 ( sesT s2e2sT) 

y y2 

- -3s --- --1 _ 2 (se87 1) (se 87 

) 

y 3 y 

< 0. 

se87 1 
-<y 3 

or 
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However, E+ only exists when x+ ( T) = s~.,. < 1. Therefore, we only consider 

s~.,. < ~· This implies that T < T* or equivalently x+(T) < ~· Hence, for TE [O, T*), 

a root with w+(T) > 0 exists and is defined explicitly by (2.3.15). If T > T*, then 

W+ ( T) is complex. D 

Consider (2.3.12) and note that p(T) = 8 + x+(T), q = -8, c(T) = 8(1 -

2x+(T)) and a(T) = 8X+(T). Therefore, 

and 

. ( )- c(T)p(T)+q(w2 -a(T)) 
sm WT - w c(T)2 + q2w2 

8(1 - 2x+(T))(8 + x+(T)) + (-8)(w2 - 8X+(T)) 
=w----------------

32 ((1 - 2x+(T))2 + w2) 

(1- 2x+(T))(8 + x+(T)) - (w2 - 8X+(T)) 
= w--------------

8 ((1 - 2x+(T))2 + w2) 

= w (8 + x+(T) - 28x+(T) - 2(x+(T))2 - w2 + sx+(T)) 
s (1 - 2x+(T)) 2 + w2 

= w (8 + x+(T) - 8X+(T) - 2(x+(T))2 - w2) 
8 (1-2x+(T))2 +w2 · 

( ) 
_ w2(c(T) - qp(T)) - c(T)a(T) 

cos WT - c(T)2 + q2w2 

-

w2[8(l - 2x+(T)) + 8(8 + x+(T))] - 8(1 - 2x+(T))8x+(T) 
82 ((1 - 2x+(T))2 + w2) 

w2(1+3 - x+(T)) - (1 - 2x+(T))8x+(T) 
8 ((1 - 2x+(T))2 + w2) 

Denote the function on the right hand side of sin(wT) and cos(wT), respectively by 

h ( ) = w (8 + x+(T) - sx+(T) - 2(x+(T))
2 

- w2) 
iW,T 8 (1-2x+(T))2 +w2 . (2.3.17) 

and 

h ( ) _ w2(1+8 - x+(T)) - (1 - 2x+(T))8x+(T) 
2 w, T - 8 ((1 - 2x+(T))2 + w2) · 

(2.3.18) 
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Lemma 2.7. Assume TE [O, r*) so that 0 < x+( r) < i· Define l(r) = J s(l - 2x+(r)). 

Then there exists a unique w(r) E [O, l(r)) satisfying sin(arccos(h2(w(r), r))) = 

h1 (w(r), r). In fact w(r) = w+(r). Let 

e(r) = arccos(h2(w+(r),r)). (2.3.19) 

There exists E > 0 such that E ~ e( T) ~ 7r and e( T) satisfies 

{ 

sin(B(r) + 2kn) = h1 (w+(r), r), 
k = 0, 1, 2, ... 

cos(B(r) + 2kn) = h2(w+(r), r). 
(2.3.20) 

Proof. Fix TE [O, r*). Recall that x+(r) = s~T. It follows that 0 < x+(r) < 

i· For w > 0 

8h2 (w, r) 
ow 

2w(l + s - x+(r))s [(1 - 2x+(r))2 + w2] 

s2 [(1 - 2x+(r))2 + w2] 2 

[w2(1 + s - x+(r)) - (1- 2x+(r))sx+(r)] (2ws) 

s2 [(1 - 2x+(r))2 + w2] 2 

_ ( ( ))(l+s-x+(r))(l-2x+)+sx+(r) 
0 -2ws 1 - 2x+ T 2 > · 

s2 [(1 - 2x+(r))2 + w2] 

Therefore h2(w, r) is monotonically increasing in w and 

1. h ( ) _ 1 + s - x+(r) 1 im 2 w,T - > . 
w-+oo S 

Also 

h ( ) 
__ (1 - 2x+(r))sx+(r) _ 1 x+(r) 

2 0, T - ( ( ))2 - 1 ( ) ' s 1 - 2x+ T 2 - x+(T) 2x+ T - 1 

Thus for T E [O, r*), -1 < h2(0, r) < 0 and for T = r*, x+( r*) = i and 

(2.3.21) 

Solving for l so that h2 (l,r) = 1 gives l(r) = Js(l - 2x+(r)). Therefore, for TE 

[O, r*) and w E [O, l(r)], we have -1 < h2(w, r) ~ 1, and for l(r) E [JI, JS], 

x+(r) E [o, ~]. 
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Then 

Also 

since 

For any fixed TE [O, T*] and w E [O, l(T)], consider the function 

{ 

sin(arccos(h2 (0, T))) - 0 > 0, for 
r(o, T) = 

0, for 

0 < T < T*, 
(2.3.22) 

By the Mean Value Theorem, for any fixed T E [O, T*), there exists at least one 

w(T) E (0, l(T)) such that r(w(T), T) = 0. In addition, 

for any T E [0, T*). 

For T = T*, x+(T*) = ~· By (2.3.22), r(O,T*) = 0. Thus w(T*) = 0. By (2.3.21), 

h2 (w(T*), T*) = -1. If there is another zero w such that r(w, T*) = 0, then w-/=- l(T*), 

since r(l(T*),T*) < 0. Therefore 0 < w < l(T*). And so -1<h2(w(T*),T*)<1. In 

summary 

TE [O, T*), or T = T* but w(T*) #- 0, 
(2.3.23) 

T = T* and w(T*) = 0. 
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In what follows, we want to prove that for any fixed T E [O, T*], there is a 

unique w( T) SUCh that f(w( T), T) = Q by considering the partial derivative of f(w, T) 

with respect tow or T at the point (w(T), T). To do that, we need to evaluate the 

partial derivatives of h1 (w, T) and h2 (w, T) with respect to both wand T. 

The partial derivatives of the function h1 ( w, T) with respect to w evaluated 

at the point ( w( T), T) are given by 

oh1(w, T) I 
OW (w(T),T) 

= s - 5sx+(T) + 8sx~(T) - sw2 + x+(T) - 6x~(T) + 12x!(T) + llx+(T)w 2 I 
s(l - 4x+(T) + 4x!(T) + w2)2 (w(7 ), 7 ) 

sx+( T)w 2 
- 4sx!(T) - 8xt(T) - lOx~( T)w 2 

- 3w2 - w4 I 
+ s(l-4x+(T)+4x~(T)+w2 ) 2 (w(T),T) 

s - 5sx+(T) + 8sx~(T) - sw2 (T) + x+(T) - 6x~(T) + 12x!(T) + llx+(T)w2 (T) 
s(l - 4x+(T) + 4x!(T) + w2(T))2 

sx+(T)w2 (T) - 4sx!(T) - 8xt(T) - 10x~(T)w2 (T) - 3w2(T) - w4 (T) 
+ s(l - 4x+(T) + 4x!(T) + w2(T))2 

and 

oh1 (w, T) I = oh1 (w, T) dx+ I 
OT (w(T),T) OX+ dT (w(T),T) 

w(l - 4x+ + 4x~ - 3w2 + 3s - 8sx+ + 4sx~ - sw2 + 4x+w2) I 
= 2 • SX+ 

s (1 - 4x+ + 4x~ + w2) (w(T),T) 

w(T)x+(T) ( 1- 4x+(T) + 4x~(T) - 3w2(T) 

(1 - 4x+(T) + 4x~(T) + w2(T))2 

3s - 8sx+(T) + 4sx~(T) - sw2(T) + 4x+(T)w2(T)) 

+ 2 . 
(1- 4x+(T) + 4x!(T) + w2(T)) 

Similarly, the partial derivatives of the function h2(w, T) with respect to w at the 
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point (w(r), r) are given by 

oh2(w, r) I = 2w(l - 5x+(r) + 8x!(r) + s - 3sx+(r) + 2sxi(r) - 4x!(r)) I 
OW (w(r),r) s(l-4x+(r)+4x!(r)+w2)

2 
(w(r),r) 

2w(r)(l - 5x+(r) + 8x!(r) + s - 3sx+(r) + 2sx~(r) - 4x!(r)) 

s (l - 4x+(r) + 4x!(r) + w2(r))2 

and 

oh2(w, r) I oh2(w, r) dx+ I 
OT (w(r),r) = ax+ dr (w(r),r) 

= (3w2 - 8x+(r)w2 + 4x!(r)w2 - w4 + 4sx+(r) 
s(l - 4x+(r) + 4x!(r) + w2)2 

-4sx~(r)-4sx+(r)w2 -s+3sw2 ) ()I 
+ 2 2 2 . SX+ T 

s(l - 4x+(r) + 4x+(r) + w ) (w(r),r) 

x+(r) ( 3w2(r) - 8x+(r)w2(r) + 4x~(r)w2 (r) - w4 (r) + 4sx+(r) 

(1 - 4x+(r) + 4x~(r) + w2(r))2 

-4sx~(r) - 4sx+(r)w2(r) - s + 3sw2(r)) 

+ (1 - 4x+(r) + 4x!(r) + w2(r))2 

For r = r* and w(r*) = 0, 

ar(w,r)I = (cos(arccos(h2(w,T))) -1 oh2 - oh1) I 
ow T=T*,w(r*)=O Jl - h§ ow ow T=T*,w(r*)=O 

-h2( w, r*) oh2 (w, r*) oh1 (w, r*) 

J1 - h§(w, r*) ow aw 

s(i + w2) ( 4w(3 + 9s)) fi + ~ - ~w2 - ¥w2 - w4 

wJ(2;-2~2)(~+ 2s) s(1+9w2)2 - s(i+w2)2 

4(3 + 9s) 6s + 1 2 + 6s 6s + 1 

gJ2;(~ + 2s) 8 Js(~ + s) 

2s + 6s2 - (6s + l)Vs(~ + s) 

sJs(~+s) 

s 

v36s4 + 24s3 + 4s2 - J36s4 + 24s3 + 5s2 + ~s 
= < 0, 

sJs(~ + s) 
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since s > 0. 

Before considering the partial derivatives off (w, 1) at the point (w( 1), 1) with 

1 E [O, 1*), or 7 = 1*, but w(1*) I- 0, we require some preliminary calculations. Since 

r(w(1),1) = 0 and sin(arccos(h2(w(1),1))) = \h-h§(w(1),1), it follows that 

Therefore hi(w(1),1) + h§(w(1),1) = 1. By (2.3.17) and (2.3.18) 

Therefore 

h~(w, 1) + hi(w, 1) 

= w2 (s + x+(1) - sx+(1) - 2(x+(i))2 -w2)
2 

s2 (1-2x+(i))2 +w2 

+ (w2(1 + s - x+(1)) - (1- 2x+(1))sx+(1))
2 

s ((1 - 2x+(i))2 + w2) 

w2s2 + w2x!(1) + s2w2x!(1) + 4w2xt(1) + w6 
- 4x+(i)s2w2 

-
(1 - 4x+(1) + 4x~(1) + w2)2 s2 

+ 4x!(i)w4 
- 4x!(i)w2 + w4 + w4 s2 + w4x!(1) + s2x!(1) 

(1 - 4x+(1) + 4x~(1) + w2)2 s2 

+ 4s2xt(1) + 4s2x!(i)w2 - 4s2x!(1) - 4x+(i)w4 

(1 - 4x+(1) + 4x~(1) + w2)2 
3 2 

(x!(1) + w2)(s2 + w2)(1 - 4x+(1) + 4x!(1) + w2) 

(1 - 4x+(7) + 4x~(1) + w2)2 s2 

(x!(1) + w2)(s2 + w2) 

( x! ( 1) + w2 ( 1)) ( s2 + w2 ( 1)) = 1. 
(1 - 4x+(1) + 4x~(T) + w2(1)) s2 

(2.3.24) 

(2.3.25) 

The partial derivative of r(w, 1) with respect to w at the point (w( 1), 1) with 7 E 
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[0,7*), or 7 = 7*, but w(7*) #- 0 is given by 

or(w,7) I ( -1 oh2 oh1) I 0 = cos(arccos(h2(w, 7))) v 2 8 - 8 
W (w(r),r) 1 - h2 W W (w(r),r) 

= ( -1 h2oh2 _ oh1) I 
y11 - h§ OW OW (w(r),r). 

By (2.3.24) 

or(w,7)I = -1 (h2oh2 +h1oh1) I 
OW (w(r),r) y11 - h§ OW OW (w(r),r) 

= -w(7) (w4 (7) + 8w2(7)x!(7) + 2w2(7) - 8w2(7)x+(7) + x!(7) 
y11 - h§(w(7), 7) s2(1- 4x+(7) + 4x~(7) + w2(7))2 

+ 4x~(7) + s2 - 4s2x+(7) + 3s2x~(7) - 4xt(7)) 
s2(1 - 4x+(7) + 4x~(7) + w2(7))2 

= -w(7) ((s2 + x~(7) + 2w2(7))(1 - 4x+(7) + 4x~(7) + w2(7)) 
y11 - h§(w(7), 7) s2(1- 4x+(7) + 4x~(7) + w2(7))2 

(w2(7) + x~(7))(s2 + w2(7)) ) 
s2(1 - 4x+(7) + 4x~(7) + w2(7))2 

-w(7) ( s2 + x!(7) + 2w2(7) 
y11 - h§(w(7), 7) s2(1 - 4x+(7) + 4x~(7) + w2(7)) 

(w2(7) + x!(7))(s2 + w2(7)) ) 
s2(1- 4x+(7) + 4x~(7) + w2(7))2 · 

From (2.3.25), 

of(w, 7) I -w(7) ( s2 + x!(7) + 2w2(7) 
ow (w(r),r) - y11 - h§(w(7), 7) s2(1 - 4x+(7) + 4x~(7) + w2(7)) 

- 1 - 4x+(7) + ~x~(7) + w2(7)) 

-1 ( w(7)(x!(7) + 2w2(7)) ) 0 
= y11 - h§ ( w ( 7), 7) s2 ( 1 - 4x+ ( 7) + 4x~ ( 7) + w2 ( 7)) < · 

The partial derivative of the function f(w,7) with respect to 7 at the point (w(7),7) 
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for TE [0,T*), or T = T*, but w(T*)-=/= 0 is 

or(w,T) I ( -1 oh2 oh1) I 0 = cos(arccos(h2(w, T))) a - a 
T (w(r),r) \/1 - h§ T T (w(r),r) 

= ( -1 h2 oh2 _ oh1) I . 
Jl - h§ OT 8T (w(r),r) 

By (2.3.24) 

or(w,T)I = -1 (h2oh2 +h1oh1) I 
OT (w(r),r) Jl - h~ OT OT (w(r),r) 

_ -sx+(T) (2w4(T) - 3w4(T)x+(T) - 2w2(T)x!(T) 
- Jl - h§(w(T), T) s2(1- 4x+(T) + 4x!(T) + w2(T)) 2 

+ -3s2x+(T)w2(T) + x+(T)w2(T) + 2s2w2(T) - 2s2x!(T) + s2x+(T)) 
s2(1 - 4x+(T) + 4x!(T) + w2(T)) 2 

= sx+( T)(s2 + w2( T)) (2w2( T) - 3w2( T)x+(T) - 2x! ( T) + x+( T)) . 
Jl - h~(w( T), T) s2(1 - 4x+( T) + 4x!( T) + w2( T) )2 

From (2.3.25), 

of(w, T) I 
OT (w(r),r) 

-1 (sx+(T)(2w2 (T) - 3w2(T)x+(T) - 2x~(T) + x+(T)) 
- Jl - h§(w(T), T) (x!(T) + w2 (T))(l - 4x+(T) + 4x!(T) + w 2 (T)) 

s2x+(T) 
(w2 (T) + x!(T))Js - 3sx+(T) + 2sx!(T) + w2(T)(x+(T) -1) 

w2 (T)(2 - 3x+(T)) + x+(T)(l - 2x+(T)) 
0 x < . 

ys - 5sx+(T) + 6sx!(T) + w2 (T)(2s + x+(T) - 1) 

Therefore for any w(T) with TE [O, T*], 

or(w, T) I < o. 
OW (w(r),r) 

(2.3.26) 

For any fixed T E [O, T*], assume that w1 ( T) < w2( T) are two different consecutive 

zeros of r(w, T). We have either 

r(w,T) > 0 for 
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or 

f(w, T) < 0 for 

In either case, derivatives of r ( w, T) at w1 ( T) and w2 ( T) should have opposite signs, 

which contradicts (2.3.26). Hence, there is a unique w(T) for any TE [O, T*]. In addi

tion, by Theorem A.5 in Appendix A, w(T) is continuous on [O, T*] and differentiable 

on [O, T*) with 

ow( T) - - &r1~,T) I 
a - ~ <O. 

T aw (w(T),T) 

From (2.3.25) 

Since w(T) ~ 0, 

Noting that x+(T) = s~T and (2.3.15), it follows that w(T) = W+(T). Therefore 

Defining e(T) = arccos(h2(w+(T),T)) for TE [0,T*]. Then e(T) is continuous and 

satisfies (2.3.20). By (2.3.23) and w+(T) = w(T), 0 < B(T) < 7f for TE [O, T*). Also 

w+(T*) = w(T*) = o. By (2.3.21) 

Therefore 0 < e( T) ~ 7f for any T E [O, T*]. Since e( T) is continuous on the closed 

interval [0,T*], there exists E > 0 such that E ~ B(T) ~ 7f. 0 
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Theorem 2.8. Consider system (2.2.3). Assume that 7 E [O, 7*] (where 7* was 

defined by (2.3.14)). If there exists an integer n;;?; 0 such that e(7) + 2mr intersects 

7W+(7) at some 7n E (0,7*), then the characteristic equation (2.3.9) has a pair of 

pure imaginary eigenvalues,\ = ±iw+(7n)· Thus system (2.2.3) undergoes a Hopf 

bifurcation at 7 = 7n provided that dRey(T)) I _ # 0. 
T T-Tn 

Proof. Assume that 7 E [O, 7*]. By Lemma 2.6, w+(7) ;;?; 0 with equality 

holding at 7 = 7*. By Lemma 2.7, there exists E > 0 and e(7) such that E ~ e(7) ~ 7r 

and e(7) satisfies (2.3.20). Suppose there exists an integer n;;?; 0 such that e(7)+2n7r 

intersects 7W+(7) at some 7n E (0,7*). Then (7n,w+(7n)) is a solution of (2.3.12), 

and therefore the characteristic equation (2.3.9) of (2.3.7) at E+ has a pair of pure 

imaginary eigenvalues ,\ = ±iw+(7n), and no other root of (2.3.9) is an integral 

multiple of ±iw+(7n)· 

In what follows we will verify the requirements of the Hopf Bifurcation Theo-

rem (see Theorem A.2 in Appendix A) for the linearized equation (2.3.7) of (2.2.3) 

at E+. 

In (A.0.3), choosing the bifurcating parameter a= 7, 

[ 
1 0 ] [ x(t) ] D(et, Xt) = ' 
0 1 y(t) 

and 

[ 

1 - 2x* - y* -x* ] [ x(t) ] [ 0 0 ] [ x(t - 7) ] 

0 -s y(t) + Y e-sTy* Ye- 87 x* y(t - 7) ' 

(A.0.3) reduces to equation (2.3.7). Taking a to be any positive real number and 
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b = ~' then hypothesis (81) in the Hopf Bifurcation Theorem holds since 

and 

for all T E JR and !Re.Al <a. 

Since the characteristic equation (2.3.9) has a pair of pure imaginary eigen

values,\= ±iw+(Tn) and no other root of (2.3.9) is an integral multiple of ±iw+(Tn), 

hypothesis (82 ) holds. Then (2.2.3) undergoes a Hopf bifurcation at E+ when T = Tn 

0 

Theorem 2.9. Consider system (2.2.3) with T E [O, 7*]. Assume that there exists 

N ~ 0 such that (2N + l)n < max7 E[o,7 •J TW+(T) ~ (2N + 3)n. 

1. ForO ~ n ~ N, B(T)+2nn andTw+(T) have at least two intersections in (0,T*) 

denoted as T~ and T~. Hence (2.2.3) undergoes a Hopf bifurcation at T = T~ 

Provided dRe(.>-(T)) j · _/.. 0. 
dT T=Th f 

2. For n = N + 1, one of the following holds. 

i) Function B(T) + 2nn and TW+(T) have no intersection in (0, T*). 

ii) B(T) + 2nn and TW+(T) have an intersection denoted as TL where j ~ 

1, and thus (2.2.3) undergoes a Hopf bifurcation at T = T~ provided 

dRe(.>-(T)) I . _/.. O. 
dT T=Th f 
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3. For n ~ N + 2, e(7) + 2mr and 7W+(7) have no intersection in (0, 7*). 

Further, if f is the smallest delay such that (2.3.9) has a pair of pure imaginary 

eigenvalues, then the coexistence equilibrium E+ is asymptotically stable for 0 :::;; 7 < 

7. 

Proof. Fix 7 E [O, 7*]. By Lemma 2.6, w+(7) ~ 0 with equality holding at 

7 = 7*, By Lemma 2.7, there exists E > 0 and e(7) such that E:::;; e(7) :::;; Jr, and e(7) 

satisfies (2.3.20). 

1. For 0 :::;; n :::;; N. Since w+( 7*) = 0, 7w+( 7) = 0 for 7 = 0 and 7 = 7*, and 

w(7) is positive for 7 E (0,7*). Therefore minTE[O,T*] 7W+(7) = 0. Since E:::;; e(7):::;; 7r, 

we have 

E + 2n7r:::;; e(7) + 2n7r:::;; 7r + 2n7r. 

Assume that there exists N ~ 0 such that (2N + 1)7r < max7 E[o, 7 •J7W+(7):::;; (2N + 

3)7r. Then 

min 7W+(7) < e(7) + 2n7r < max 7W+(7). 
TE[O,T*j TE[O,T*j 

By the Mean Value Theorem, 7W+(7) intersects e(7) + 2n7r at least twice. Denote 

these intersection points 7L J. = 1, 2. By Theorem 2.8, (2.2.3) undergoes a Hopf 

bifurcation at 7 = 7~ provided dRey(T)) I _ J =f- O. 
T T-Tn 

2. For n = N +1, e(7)+2n7r and Tw+(T) may or may not have an intersection. 

If e(7) + 2n7r and 7W+(T) have an intersection T~, by Theorem 2.8 the conclusion 

follows. 

3. For any n ~ N + 2, since 

e(T) + 2n7r ~ E + 2n7r ~ E + 2(N + 2)7r > (2N + 4)7r > max 7W+(T), 
TE[O,T*] 
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B(T) + 2k7r and TW+(T) have no intersection. 

Assume that i is the smallest delay such that the characteristic equation 

(2.3.9) has a pair of pure imaginary eigenvalues. Since 0 is not a root of (2.3.9), and 

Lemma 2.5 assures no roots of (2.3.9) with positive real part can enter from infinity 

as T increases from 0, it follows that all eigenvalues of E+ have negative real parts 

for T E [O,T). Therefore E+ is asymptotically stable for T E [O,T). D 

Corollary 2.10. Consider system (2.2.3) with TE [O, T*]. If there exists N ~ 0 such 

that~ ln (~) -/2 + ~V 614 + 1
3
3 s2 > (2N + l)n, then for o:::;; n:::;; N, B(T) + 2nn 

and Tw+(T) have at least two intersections in (0, T*) denoted by T~ and T~. Hence 

(2.2.3) undergoes a Hopf bifurcation at T = T~ provided dRe~(T)) \T=T~ =/= 0. 

Proof. Let T = ~ln(~). Then TW+(T) = ~ln(~) - 712 +~.j-b+ 1
3
3 s2

• 

Hence max7 E[o, 7 •JTW+(T) > ~ln (~) -/2 + ~V6~ + 1;s2 > (2N + l)n. By Theo-

rem 2.9, for 0 :::;; n:::;; N, the conclusion follows. D 

As in Kuang [5], we define 

S () 
__ B(T) +2kn 

kT-T (), W+ T 

where k is a nonnegative integer. Then any zero of Sk(T) corresponds to an intersec-

tion of B(T) + 2kn with TW+(T) and vice verse. From (4.10) (see p.1157 of Beretta 

and Kuang [5]), we have the relation 

(2.3.27) 
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Assume that Theorem 2.9 holds. The characteristic equation (2.3.9) has a pair of 

pure imaginary eigenvalues >. = ±iw+ ( T~) at T~ for 0 ~ n ~ N and j = 1, 2, and this 

pair of imaginary roots cross the imaginary axis from left to right if 

and from right to left if it is less than zero (see Figure 2.1 (Right)), where 

= w!(T) [w!(T)q2 + c2 (T) + p1(T) (a(T) - W+(T)) + qc'(T) - p(T)c'(T))] 

+ w+(T)w~(T) [T(w!q2 + c2 (T)) - qc(T) + p(T) (a(T) - w!)) + 2w!p(T)]. 

2.4 Numerical Simulations 

In this section, we present some numerical results to illustrate the analytical 

results obtained in the former section, mainly those of Theorem 2.9. In carrying out 

our numerical simulations, we use the package DDE23 in MATLAB. We employ the 

non-scaled model (2.1.1) with f(x) = mx. Within this section T*, Tc, w+(r), and 

B(r) are calculated in terms of the non-scaled parameters. We fix all parameters 

m = 1, r = 10, Y = 0.2, s = 0.2 except for T and K. We divide our numerical 

analysis into two parts corresponding to two different choices of K. The first set of 

figures (Figures 2.1-2.13) is for K = 30 chosen to illustrate cases 1., 2.i), and 3. of 

Theorem 2.9. The second set of figures (Figures 2.14-2.22) is for K = 50 chosen to 

demonstrate cases 1., 2.ii), and 3. of the theorem. 

For the choice of K = 30, Tc= ~ ln (YsK) ~ 17.00 and r* = ~ ln (~~) ~ 11.51, 

we see in Figure 2.1 (Left), for n = 0, function B(T) intersects Tw+(T) exactly twice 
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0(T)+2rr 60 

So(T) 

40 

6 TW+(T) 20 

2 
O(T) -20 

-40 

4 6 10 12 0 2 4 10 
T T 

Figure 2.1: (Left) Intersections of B(T) + 2k7r (k = 0, 1) and Tw+(T). Tw+(T) intersects 

B(T) twice. (Right) So(T) has two zeros. 

at TJ = 0.15 and TJ = 10.81. By (2.3.27), instead of dRef,(T)) I _ i -=/:- 0, one can 
T T-To 

check if sign{dSdo(T)} 1- i -=/:- 0, where j = 1,2. Figure 2.1 (Right) shows that 
T T-To 

. { dSo(T)} I - 1 d . { dSo(T)} I - -1 F - 1 e( ) 2 h sign dT 
7

= 0.15 - an sign dT T=lO.Sl - . or n - , T + 7r as 

no intersection with TW+(T). For n > 2, there is no intersection and B(T) + 2kn (not 

plotted in the figure) lies above e ( T) + 27r. This confirms our findings in Theorem 

2.9. 1., 2.i), and 3. with N = 0. 

To demonstrate the occurrence of Hopf bifurcations at TJ or TJ, we chose the 

initial data x(t) = 1.6 and y(t) = 0.4 fort E [-T, O]. For a small delay, the coexistence 

equilibrium E+ is stable (see Figure (2.2) with T = 0.1). However, when T increases 

beyond TJ, E+ becomes unstable, since a Hopf bifurcation occurs at TJ. There is a 

stable periodic orbit surrounding E+ (see Figure 2.3 and 2.4 for T = 0.2). Increasing 

T to 7, the periodic solution changes its shape slightly and develops a kink (see Figure 
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Figure 2. 2: Equilibrium E+ is stable when T is small. 

2.6). From Figure 2.5, it appears that a period doubling bifurcation occurs for some 

1 between 0.2 and 7. As T continues to increase, it seems that the original periodic 

solution develops more kinks and loses its periodic feature (see Figures 2.7 and 2.8). 

In fact, when / = 9, we calculated the largest Lyapunov exponent and it was equal to 

0.12. Since it is positive, this seems to indicate that the system is chaotic. Increasing 

1 even further, say T = 10, kinks on the orbit disappear and the solution is once 

again attracted to a periodic solution (see Figures 2.9 and 2.10). Taking T = 12, 

the periodic orbit disappears and the coexistence equilibrium E+ regains its stability 

and remains stable until T = 17 (see Figure 2.11). For T > 17, E+ disappears since 

the predator component Y+ ( 1) becomes negative, and E1 is globally asymptotically 

stable. 

We also used MATLAB to plot a bifurcation diagram as a function of T (see 

Figure (2.12)). Along the vertical axis, the local maximum and minimum values of 

the density of the predator on the attracting solution are plotted (ignoring the initial 

transient solution). At T >=:::! 5.2, a period doubling bifurcation appears. Around 

T = 7.8, it is necessary to blow up the figure in order to see the detail, since the 
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Figure 2.3: Time series of a solution that converges to a periodic solution for T = 0.2. 
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Figure 2.4: The stable periodic orbit sh0wn in Figure 2.3 in phase space for T = 0.2. 
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Figure 2.5: Time series of a solution when T = 7. 

Figure 2.6: Projection of the periodic solution shown in Figure 2.5 into phase space. Notice 

the kinks. 
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Figure 2.7: Time series of a solution that no longer appears to be periodic, for T = 9. 
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Figure 2.8: Projection of the solution in Figure 2.7 into phase space. The solution no 

longer appears to be periodic. The largest Lyapunov exponent is positive indicating that 

the system is chaotic 

41 



30r-~-,-~----.~~.-~---.~--.~~,---~--.~~.-~-.-~-, 

25 

20 

>< 15 

10 

5 

0.8 

0.6 

0.4 

0.2 

50 100 150 200 250 300 350 400 450 500 

o~~~~~~~~~~~~~~~~~~~~~~~~ 

0 50 100 150 200 250 300 350 400 450 500 

Figure 2.9: Time series of a solution when T = 10. 
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Figure 2.10: The stable periodic solution from Figure 2.9 in phase space when T = 10. 
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Figure 2.11: Equilibrium E+ regains stability when T is larger than T(f. 

-cO 0.5 
(..) 

0 
,_:i 

10 12 

T 

Figure 2.12: Bifurcation diagram. For more detail for TE (7.798, 7.803), see Figure 2.13. 

curves around this area change quickly as T varies and our mesh size for T was 

relatively large. This blow up is given in Figure 2.13. 

For K = 50, Tc ~ 19.56 and,-* ~ 14.06. In Figure 2.14 (Left), e(,-) and 

Tw+(T) have two intersections, ,-J ~ 0.12 and ,-g ~ 13.55. From Figure 2.14 
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Figure 2.13: Blow up of the bifurcation diagram in Figure 2.12 for TE (7.798, 7.803). 

(Right), sign { ds;;Tl-J} = 1 and sign { ds;;r) lrg} = -1. For n = 1, e(r) + 27r 

intersects rw+( r) twice at Tf >=::: 5.4 with sign { dsJ;r) lr;i} = 1, and Tf >=::: 10.6 with 

sign { dsJ;r) Irr} = -1. This illustrates cases 1., 2.ii), and 3. in Theorem 2.9. We 

use constant initial data x(t) = 1.6 and y(t) = 0.4 for t E [-r, OJ to show that 

Hopf bifurcations occur. Figure 2.15-2.22 show how the dynamics of system (2.1.1) 

change when T increases from zero to 13. 7. The coexistence equilibrium E+ is stable 

for small delays. Increasing T = 0.14 > rJ, E+ loses its stability and an attracting 

periodic solution appears. Increasing T to T = 8, kinks appear on the periodic so-

lution. Increasing T = 13. 7 > rJ, E+ regains its stability and remains stable until 

T = 19.56. After that E+ does not exist since its second component Y+(r) becomes 

negative, and E1 is globally asymptotically stable. 
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Figure 2.14: Four delay values for Hopf bifurcation. 
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Figure 2.15: Equilibrium E+(T) is stable when T = 0.05. 

45 



20 

15 

x 10 

5 

0 
0 100 200 300 400 500 600 700 800 900 1000 

2 

1.5 

,., 1 

0.5 

100 200 300 400 500 600 700 800 900 1000 
t 

Figure 2.16: A solution converging to the stable periodic solution when T = 0.14. 
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Figure 2.17: The periodic orbit shown in Figure 2.16 in phase space when T = 0.14. The 

vertical axis is y and the horizontal is ln(x). 
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Figure 2.18: Time series of an attracting solution with kinks when T = 8. 
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1.5 

Figure 2.19: The periodic orbit shown in Figure 2.18 in phase space when T = 8. The 

shape of periodic solution is different from the one when T = 0.14. 
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Figure 2.20: Time series of an attracting solution when T = 10.08. 
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Figure 2.21: The periodic orbit shown in Figure 2.20 for T = 10.08 has a kink. It is quite 

close to the vertical axis on the left, but remains positive. 
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Figure 2.22: Equilibrium E+(T) is stable again when T = 13.7. It regains stability by the 

secondary Hopf bifurcation at TJ. 

2.5 Discussion 

Gourley and Kuang [21] studied a stage structured predator-prey model with con

stant maturation time delay. Although the interpretation of the time delay was 

different, they considered the same model studied here. They considered the pos

sibility of stability switches, in this case and concluded that there is a range of 

the parameter modeling the time delay for which there are periodic solutions. We 

improve their results by giving more complete analytical results. 

As pointed out by Gourley and Kuang [21], one cannot in practice compute 

the stability switches analytically. Therefore, they apply the approach developed in 

Beretta and Kuang [5]. Their main result states that if w( T) is a positive real root 

of (2.3.13) and Sk(f) = 0 for some nonnegative integer k, then the characteristic 

equation (2.3.9) has a pair of pure imaginary roots at T = f. Hence the stability 

switch of the interior equilibrium is determined by the zeros of function Sk(r). But 

the remaining question is whether there exists a positive root w(r). Also note that 

the definition of Sk(r) involves the function B(r), which is only implicitly defined as a 

solution of (2.3.20), and whether or not such a function B(r) exists is not determined. 
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Although we cannot study stability switches completely analytically, more 

complete analytical results than those given in [21] are possible. From the analysis 

in this chapter, we proved that one positive root w+(r) of (2.3.13) is possible. In 

Theorem 2. 7, we provided the explicit definition of() ( T) and hence determine precisely 

when such a solution of (2.3.20) exists. The proof required introducing the function 

f(w, r) and using the Implicit Function Theorem. Theorem 2.9 gives conditions for 

when (2.3.12) has solutions, or equivalently, when the characteristic equation (2.3.9) 

has pure imaginary eigenvalues. It states that Hopf bifurcation is possible for the 

model considered and for what parameter range we can expect the periodic solutions. 

In [13], Cooke, Elderkin, and Huang considered a model similar to the one 

in Gourley and Kuang [21], and obtained results concerning Hopf bifurcation of a 

scaled version. However the scaling they used eliminated the bifurcation parameter 

r. Therefore made the analysis much easier. However this is not without sacrifice. 

To interpret their results with respect to the unscaled model became delicate. They 

must take care of the delay parameter again. 

In Chapter 3, we simplify the approach studied here in order to make it more 

easily applied to the other models. In Chapter 4, we generalize that method so that 

it can be applied to general second order transcendental equations. 
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Chapter 3 

A Predator-Prey Model in the 

Chemostat with Time Delay 

3.1 Model Considered 

Consider a chemostat involving a predator-prey interaction. Assuming it takes T 

units of time for the predator to convert prey to viable biomass once the prey is 

captured. The model is given by 

Fort E [-r, OJ, 

s(t) = (s0 - s(t))Do - x(t)j(s(t)), 
T/ 

x(t) = x(t) (-D + f(s(t))) - y(t)gix(t)), 

y(t) = -1::::,.y(t) + e-t.Ty(t - r)g(x(t - r)). 

t > 0, (3.1.1) 

s(O) = s0 E intIR+, and (x(t), y(t)) = (¢, '¢) E <C([-r, O], intIR!), (3.1.2) 
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where s0 , D0 , rJ, ~' D ~ D0 , and 6 ~ Do are positive constants and Tis a nonnegative 

constant. In this model, s(t) denotes the concentration of substrate in the growth 

chamber at time t, x(t) the biomass density of the prey population, and y(t) the 

biomass density of predator population. s0 is the concentration of nutrient in the 

feed bottle and Do denotes the input rate from the feed bottle and output rate from 

the growth chamber. Parameters rJ and ~ denote the growth yield constants. D and 

6 denote the sum of the washout rate Do and the natural death rate of prey and 

predators, respectively. Hence D ~ D0 and 6 ~ D0 . The functional responses are 

given by f (s) and g(x). It is assumed that the process of conversion from prey to 

predator is not instantaneous, but rather takes T units of time. Hence, e-t::.Ty(t - r) 

represents the concentration of the predator population in the growth chamber at 

time t that were available at time t - T to capture prey and were able to avoid death 

and washout during the T units of time required to process the captured prey. 

3.2 Scaling of the Model and Existence of Solutions 

Suppose that functions f ( s) and g( s) are of Holling type I form i.e. f ( s) = as 

(a> 0) and g(x) = kx (k > 0). System (3.1.1) reduces to 

s(t) =(so - s(t))Do - ax(t)s(t)' 
rJ 

x(t) = x(t) (-D + as(t)) - kx(t~y(t), t > 0, (3.2.3) 

y(t) = -6y(t) + ke-t::.7 y(t - r)x(t - r). 
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Introducing the following change of variables 

t =Dot, 

f = D0r, 

s(t) = s(~), 
s 

v D 
D= Do' 

v (v) - x(t) v(v) - y(t) 
xt- O' yt- O' 

s 17 ~s 17 
v 6 
6 = Do' 

v ks0 17 
k = Do' 

as0 

a= Do' 

and using (3.2.3) gives 

ds(t) 1 ds(t) dt 1 ds(t) 
dt - s0dt dt - s0D0 dt 

= _1_ ((so_ s(t))Do _ ax(t)s(t)) 
s0Do 17 

_ 
1 

s(t) as0 x(t) s(t) 
- - 7 - Do s017 7 

= 1 - s(t) - ax(t)s(t), 

dx(t) 1 dx( t) dt 1 dx( t) 
dt - s017 ~ dt - s017Do dt 

= 
1 (x(t) (-D + as(t)) - kx(t)y(t)) 

s017Do ~ 

= x(t) (-!!_ + as0 s(t)) _ ks017 x(t) y(t) 
s017 Do Do s0 Do s017 s0 17~ 

= x(t)(-fJ + as(t)) - kx(t)iJ(t), 

and 
dy({) 1 dy(t) dt 1 dy(t) 

dt - s0 17~ ~ dt - s0 17~ Do dt 

= 8017~Do ( - 6y(t) + ke-1:>.r y(t - r)x(t - r)) 
-6y(t) ke-t:n 

= 0 ~D + 0 ~D y(t - r)x(t - r) 
s17 o s17 o 
-6 y(t) ks017 -~DorY(t - r) x(t - r) =--+-e Do 
Do s017~ Do s017~ s017 

= -l.y(t) + 'ke-At y(t - T-)x(t - 7-). 

53 



With this change of variables, omitting the v for convenience system (3.2.3) becomes 

s(t) = 1 - s(t) - ax(t)s(t), 

x(t) = x(t) (-D + as(t)) - ky(t)x(t), 

i;(t) = -6.y(t) + kct::.Ty(t - r)x(t - r), 

(3.2.4) 

where 6. ;? 1 and D ;? 1, with initial data given by (3.1.2). For biological significance, 

a point is assumed to be a critical point of (3.2.4) only if all its components are 

nonnegative. 

Let r = 0. Model (3.2.4) reduces to a special case of the model considered in 

[55]. If D > a, the model has only one equilibrium point (1, 0, 0) which is globally 

asymptotically stable. If D < a and 1 - ~ - t::.t < 0, the model has a second 

equilibrium point ( ~' aa-z:?, 0) which is globally asymptotically stable. When 1 -

~ - t::.t > 0, the model has a third equilibrium point ( k+~t::., ~, k+°'aD - f;) which is 

the global attractor. This implies that model (3.1.1) with Holling type I response 

functions has no periodic solutions when there is no time delay. If g(x) is of Holling 

type II form, Butler and Wolkowicz [8] proved that a Hopf bifurcation is possible 

resulting in a periodic solution for a certain range of parameter values. It is for 

this reason that in this thesis we restrict our attention to the simplest case for both 

response functions, i.e. Holling type I, to see whether delay can be responsible for 

periodic solutions in (3.1.1). 

Theorem 3.1. Assume (s0 ,¢(8),1j;(8)) E int IR+ x <C([-r,O],int IR~). Then there 

exists a unique solution (s(t), x(t), y(t)) of (3.2.4) passing through (s0 , ¢(8), 1j;(8)) 

with s(t) > 0, x(t) > 0 and y(t) > 0 fort E [O, oo). The solution is bounded. In 

particular, given any Eo, x(t) < 1 + Eo for all sufficiently large t. 
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Proof. Since the right hand side of (3.2.4) is continuous, by Theorem B.1 in 

Appendix B, the existence of solutions can be obtained for any t ~ 0. Next we 

prove s(t) > 0 for all t > 0. By the method of contradiction, we suppose there exists 

a first t* such that s(t*) = 0 and s(t) > 0 for t E [O, t*). Then s(t*) ~ 0. But from 

the first equation of (3.2.4) 

s(t*) = 1 - s(t*) - ax(t*)s(t*) = 1 > 0, 

a contradiction. 

To prove x(t) > 0, divide both side of the second equation of (3.2.4) and 

integrate from 0 to t, to obtain 

x(t) = ¢(0) exp (it (-D + as(t) - ky(t)) dt) > 0. 

To show that y(t) is positive on [O, oo), we use the method of contradiction. Suppose 

that there exists t* > 0 such that 

y(t*) = 0, and y(t) > 0 for t E [O, t*). Then y(t*) ~ 0. 

From the third equation of (3.2.4), we have 

y(t*) = -1::,.y(t*) + ke-t::.Ty(t* - T)x(t* - T) 

= ke-t::.T y(t* - T)x(t* - T) > 0, 

a contradiction. 

To prove the boundedness, define 

w(t) = s(t) + x(t) + et::.7 y(t + T) - 1, for 
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It follows that 

w(t) = 1 - s(t) - Dx(t) - !::::.eb.T y(t + T) 

~ 1- s(t) - x(t) - eb.7 y(t + T) 

~ -w(t), 

where the first inequality holds since D ~ 1, !::::. ~ 1, x(t) > 0 and y(t + T) > 0. It 

follows that 

as t---+ 00. 

Therefore the solution (s(t), x(t), y(t)) is bounded, and x(t) < 1 + Eo for sufficiently 

large t and any small positive E0 . 

Now we are ready to prove the uniqueness of the solution. For any t E 

[O, T], (3.2.4) with initial data (s0, ¢(e), 'ljJ(e)) is a system of nonautonomous ordinary 

differential equations: 

s(t) = 1 - s(t) - ax(t)s(t) = F(s, x), 

x(t) = x(t) (-D + as(t)) - ky(t)x(t) = G1 (s, x, y), 

y(t) = -!::::.y(t) + ke-b.7 1/J(t - T)c/>(t - T) = G2(c/>, 'l/J, y), 

s(O) = s0 , x(O) = ¢(0), y(O) = 'l/J(O). 

(3.2.5) 

Noting that a solution (s(t), x(t), y(t)) of (3.2.4) with initial data (s 0 , ¢(e), 'ljJ(e)) 

exists and is bounded, let M > 0 such that ls(t)I < M, lx(t)I < M, and ly(t)I < M. 

For any (t, s, x, y) E [O, T] x [O, M] x [O, M] x [O, M], F(s, x), G1(s, x, y), and G2(c/>, 'l/J, y) 

are continuous and their partial derivatives with respect to s, x, and y are continuous 

and bounded on [O, T] x [O, M] x [O, M] x [O, M]. By Corollary 4.3 in [41], solution 

(s(t), x(t), y(t)) of (3.2.5) fort E [O, T] is unique. Hence the solution (s(t), x(t), y(t)) 

of (3.2.4) is unique fort E [O, T]. 
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Fort E [T,2T], consider the renewed initial data (s0,¢(t - T),1/J(t - T)) = 

(s(T), x(t - T), y(t - T)). System (3.2.4) with the renewed initial data becomes a 

system of ordinary differential equations (3.2.5) with initial values (s( T), x( T), y( T) ). 

Similarly, by Corollary 4.3 in [41], the solution (s(t), x(t), y(t)) of (3.2.5) is unique 

on t E [T, 2T]. Hence solution (s(t), x(t), y(t)) of (3.2.4) is unique on t E [T, 2T]. 

Step by step, it can be proved that solution (s(t), x(t), y(t)) of (3.2.4) is unique on 

[nT, (n + l)T] for any integer n ~ 0. 

D 

3.3 Equilibria and Stability 

Model (3.2.4) has three equilibria E1 = (1,0,0), E2 = (~, aa-l,O), and 

(3.3.6) 

We call E 2 the single species equilibrium and E+ the coexistence equilibrium. For 

the sake of biological significance, E+ exists (distinct from E2 ) if and only if its third 

coordinate Y+(T) = as+(~)-D > 0, i.e. s+(T) > ~' or equivalently, T lies between 0 

and Tc, where 

T = I_ ln (~ (I.. -~)) 
c 6 6 D a . (3.3.7) 

Note that if ~ (-JJ - ~) ~ 1, the equilibrium E+ does not exist no matter the value 

of T (~ 0). In fact if~ (-JJ - ~) = 1, then E+ = E 2 . 
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The linearization of (3.2.4) about an equilibrium (s, x, y) is 

i1(t) -1-ax -as 0 Z1 ( t) 

i2(t) - ax -D +as- ky -kx z2(t) 

i3(t) 0 0 -~ Z3(t) 

0 0 0 Z1 (t - T) 

+ 0 0 0 Z2(t - T) 

0 keATy ke6:.7 X Z3(t - T) 

The associated characteristic equation is given by 

-1 - ax - >. -as 0 

det ax -D+as-ky->. -kx = 0. 

0 

Direct calculation of the left hand side of (3.3.9) gives 

(-~ + ke-(6:.+>.)rx - >.) { (-1 - ax - >.)(-D +as - ky - >.) + a2sx} 

+ kxke-(6:.+>.)ry(-1- ax - >.) 

= (-~ - >.) { (1 +ax+ >.)(D - as+ ky + >.) + a 2sx} + e-(6:.+>.)rkx 

{ky(-1- ax - >.) + (1 +ax+ >.)(D- as+ ky + >.) + a 2sx} 

= (-~ - >.) { (1 +ax+>.) (D - as+ ky + >.) + a 2sx} 

+ e-(6:.+>.)r kx { (1 +ax+>.) (D - as+>.) + a 2 sx} 

= (-~ - >.) {(>. + 1)(>. + D + ky) +ax(>.+ D + ky) - as(>.+ 1)} 

+ e-(6:.+>.)rkx {(>. + 1)(>. + D) +ax(>.+ D) - as(>.+ 1)}. 

For convenience, define 

(3.3.8) 

(3.3.9) 

P(>.) :=(-~ - >.) {(>. + 1)(>. + D + ky) +ax(>.+ D + ky) - as(>.+ 1)} 

+ e-(6:.+>.)rkx {(>. + 1)(>. + D) +ax(>.+ D) - as(>.+ 1)}. 
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Theorem 3.2. Equilibrium E 1 is stable if a < D and unstable if a > D. 

Proof. Evaluating the characteristic equation at E 1 gives 

The eigenvalues -1 and -6 are both negative. The third eigenvalue is -D +a. 

Therefore the equilibrium E 1 is stable if a < D and unstable if a > D. D 

Remark If a < D, then there is only one equilibrium, E 1 . If a > D, 

equilibrium E 2 also exists. 

Lemma 3.3. Assume a > D. The characteristic equation at E 2 has two negative 

eigenvalues, and the remaining eigenvalues are solutions of 

(,\ + 6)e(A+L1)r = k (~ - ±). (3.3.10) 

In addition, the characteristic equation at E2 has zero as an eigenvalue if and only 

if T =Tc· 

Proof. Assume a > D. Equilibrium E2 exists. Consider the characteristic 

t . t E s· a.-D l-s t E equa ion a 2 . mce a.D = --;;a a 2, 

P(,\)IE2 = {(,\ + 1)(,\ + D) +ax(,\+ D) - as(,\+ 1)} 

( -,\ - 6 + e-(l1+,\)r kx) 

{ 
1-s } = (,\ + 1)(,\ + D) + -

3
-(,\ + D) - D(,\ + 1) 

(-,\- 6 + e-(L1+A)rka a-DD) 

= { ,\(,\ + 1) - (,\ + D) + ,\: D} (-,\ - 6 + k a a-DD e-(l1+,\)r) 

= -(,\2 +~,\+a - D) (,\ + 6 - k a - D e-(l1+,\)r) 
D aD 

= -e(l1+,\)r(,\ - A1)(,\ - A2) ((>, + 6)e(l1+,\)r - k (~ - ±)) = 0, 
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where >.1 + >.2 = -]5 and >.1>.2 =a - D > 0. Therefore, >. 1 and >.2 have negative real 

parts. The rest of the eigenvalues are roots of (3.3.10). 

Assuming that >. = 0 is a root of (3.3.10), we have 

Solving for T gives 

T = ]:_ ln (~ (]:_ - ~)) = T 6 6 D a c· 

0 

Theorem 3.4. Assume that D? 1, 6? 1, k > 0, a> 0, and! (-}J - ~) ? 1 so that 

Tc ? 0. Equilibrium E2 is locally asymptotically stable if T > Tc and unstable if T < Tc. 

If D = 1, then equilibrium E2 is globally asymptotically stable for T > i ln ( ! ) . 

Proof. Assume that T >Tc· Assumptions k > 0, 6? 1, and ! (-b - ~) ? 1 

imply -}J > ~' or equivalently a > D . By Lemma 3.3, to prove equilibrium E 2 is 

locally asymptotically stable, one only needs to show that (3.3.10) admits no root 

with nonnegative real part. 

Consider the real roots of (3.3.10) first. Note that -}J > ~· (3.3.10) has no 

solution for >. ~ -6 , otherwise the left hand side would be less than zero, but the 

right hand side would be greater than zero. Assume >. > -6. The left hand side 

of (3.3.10) is a monotone increasing function in both >. and T, and takes value 0 at 

>. = -6 and goes to positive infinity as >. -t +oo or T -t +oo. By Lemma 3.3, 

when T =Tc, then,\= 0 is a solution of (3.3.10). Thus for T >Tc, any real root A of 

(3.3.10) must satisfy -6 < >. < 0. 

For any T = f < Tc, we have (>. + 6)e(A+t:.)7
17 =r, >.=o < k (-b - ~) and 
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lim>._.+00 (>. + 6)e(>.+t>)f = +oo. Therefore there exists at least one >. = ~ > 0 

such that (7, ~) is a solution of (3.3.10). Equilibrium E2 is unstable if T <Tc· 

In what follows, we prove that if T > Tc all complex eigenvalues of (3.3.10) 

have negative real parts. Suppose that >. + 6 = r + i/3 (/3 > 0) is a solution of 

(3.3.10). Using the Euler formula, we have 

r cos(/]T) - /3 sin(/]T) + i(r sin(/]T) + /3 cos(/]T)) = k ( ~ - ±) e-'YT. 

Equating the real part and imaginary part of the equation, we have 

{ 1cos(/3T) - /3sin(/3T) = k (iJ - ~) e-1r 

/ sin(/3T) + /3 cos(/]T) = 0. 

Squaring both equations, adding, and taking the square root on both sides gives 

(3.3.11) 

The left hand side of (3.3.11) is monotonically increasing in /, /3, and T provided 

that r > o. Since (3.3.11) has solution r = 6, /3 = 0 at T =Tc, any roots of (3.3.11) 

must satisfy r < 6 since T >Tc. Hence Re{>.}= 1-6 < 0. Therefore (3.3.10) has 

no complex eigenvalue with nonnegative real part and so E 2 is locally asymptotically 

stable for T > Tc· 

Assume that D = 1. Now we prove E2 is globally asymptotically stable when 

T > i ln (!), or equivalently ke-t::..r < 6. In this case, choose Eo > 0 small enough 

such that ke-t:>.r(l + Eo) < 6. By Theorem 3.1, for such Eo, there exists a T > 0 so 

that 0 < x(t) < 1 + Eo for t > T. Hence, for t > T + T, ke-fl'x(t - T) < 6. In 

Lemma A.1, choose p(t) = T, a(t) = 6, b(t) = ke-t:>.rx(t - T), and a= 6/2. The 

third equation of (3.2.4) is in the form of (A.0.1). Also equation (A.0.2) is satisfied, 
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(a:+ k)E > 0. For such E, there exists a sufficiently large t so that s(t) > 1 - E and 

0 < y(t) < E. Recalling that x(t) > 0, by (3.2.4) 

x(t) > x(t)(-D + a:(l - E) - kE) = x(t)(a - D - O:E - kE) > 0, 

for all sufficiently large t. Therefore it is impossible for x( t) to approach 0 from 

above. A contradiction. Therefore, we must have (s,x) = (~, °':1
). 

Now suppose that the limits do not exist. In particular if x(t) does not 

converge, then let x = lim supt-+oo x(t) and ;J:. = lim inft-+oo x(t). By Lemma (A.6), 

there exists { tm} j oo and { sm} j oo such that 

lim x(tm) = x and lim x(tm) = 0, 
m-+oo m-+oo 

and 

lim x(sm) = ;J:. and lim x(sm) = 0. 
m-+oo m-+oo 

From (3.2.4), 

x(tm)(-D + as(tm) + ky(tm)) = 0. 

Noting that x(tm) > 0, we have s(tm) = l-k;(tm). Since limt-+oo y(t) = 0, limt-+oo s(tm) = 

~- By (3.3.12), limt-+oo x(tm) = limt-+oo(x(tm) + s(tm)) - s(tm) = 1 - ~ = °':1
. 

Therefore x = °':1
. Similarly we can show that ;J:. = °':1

. This implies that 

limt-too x( t) = °':1
, a contradiction. 

Since s(t) + x(t) converges and x(t) converges, then s(t) must also converge. 

Hence limt-too s(t) = ~ and limt-+oo x(t) = °':1
. It follows that E 2 is globally asymp-

totically stable. 0 
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3.4 Hopf Bifurcations at E+ assuming D = 6 = 1 

Now consider the stability of E+. The characteristic equation at E+ is 

P(1')1E+ =(-~ - A) ((1 + o:x+(T) + A)(D - o:s+(T) + ky+(T) +A)+ o:2s+(T)x+(T)) 

+ e-(b.+,\)7 kx+(T) ((,\ + 1)(>. + D) + o:x+(T)(>. + D) - as+(T)(A + 1)) 

=(-~ - A) ((1 + ax+(T) + >.)>. + a2s+(T)x+(T)) 

+ e-(Ll+,\)7 kx+(T) ((>. + 1)(>. + D) + ax+(T)(>. + D) - as+(T)(>. + 1)) 

=(-6-,\) ((s+~T) +>-)>.+o:(l-s+(T))) 

+ e-,\T ~ ((,\ + 1)(,\ + D) + l ~+s(~~T) (,\ + D) - o:s+(T)(A + 1)) 
=(-~ - ,\) ( ,\2 + S+~T) + o:(l - s+(T))) 

+ 6e-,\
7 

( ( ,\ + s+~T)) (>. + D) - as+(T)(>. + 1)) = 0. 

By assumption 6 = D = 1, 

P(A)[E+ = - (,\ + 1) ( ,\
2 

+ s+~T) + o:(l - s+(T)) + e-,\T (-,\ + o:s+(T) - s+~T))) 
= - (>. + 1) (1'2 + p(T)A + (3(T) + e-,\T(q>. + c(T))) = 0, 

(3.4.13) 

where 

1 1 
p(T) = -(-)) (3(T) = o:(l - s+(T)), q = -1, c(T) = as+(T) - -(-). (3.4.14) 

S+ T S+ T 

The characteristic equation at E+ has one eigenvalue -1 and the others are given 

by solutions of the equation 

(3.4.15) 
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Lemma 3.5. Assuming k > 0, a> 0, and k (1 - ~) ~ 1 so that Tc= ln (k (1 - ~)) ~ 

0, then E+ has no zero eigenvalue for T E (0, Tc). 

Proof. Assume that T E (0, Tc). By the method of contradiction, suppose 

there exists a zero root of (3.4.15). Therefore 

1 
,B(T) + c(T) =a - -(-) = 0. 

S+ T 

But for any T < Tc, 

1 QT ( 1) a - s+(T) =a - 1 - ke >a - 1 - a 1 - -; = O. 

A contradiction. D 

Lemma 3.6. Assume k > 0, a> 0, k(l - ~) > 1. Equilibrium E+ is asymptotically 

stable when T = 0. 

Proof. For T = 0, (3.4.15) reduces to 

>.2 + p(O)>. + ,B(O) + (q>. + c(O)) = >.2 + ( s+~O) - 1) >.+a - s+~O)' 
Both coefficients are positive, since 

1 a 
---1=->0 
s+(O) k 

and 

a - s+~O) =a - 1 - ~ = a ( 1 - l -l) > 0, 

since k( 1 - ~) > 1 implies 1 - ~ > i, Therefore, all the roots of the characteristic 

equation have negative real parts. D 

Lemma 3.7. As Tis increased from 0, a root of (3.4.15) with positive real part can 

only appear if a root with negative real parts crosses the imaginary axis. 
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Proof. The proof is similar to the proof of Lemma 2.5 and the details are 

omitted. D 

For T ::/=- 0, assuming,\= iw (w > 0) is a root of P(-\)IE+ = 0, 

-w2 + ip(T)w + /3(T) + e-iwr(iqw + c(T)) = 0. (3.4.16) 

As in Chapter 2, substituting ei8 =cos e + i sine into (3.4.16) gives 

-w2 + /3( T) + qw sin(wT) + c( T) cos(wT) + i (p( T)w + qw cos(wT) - c( T) sin(wT)) = 0. 

Separating the real and imaginary parts, we obtain 

{ c(T) cos(wT) + qwsin(wT) = w2 - /3(T), 

c(T) sin(wT) - qw cos(wT) = p(T)w. 

Solving for cos(wT) and sin(wT) gives 

· ( ) _ c(r)(p(r)w)+qw(w2-,6(r)) 
Sln WT - c(r)2+q2w2 ' 

cos(wT) = c(r)(w2 -,6(r))+qw(-p(r)w). 
c(r)2+q2w2 

(3.4.17) 

Noting sin2 (wT) + cos2 (wT) = 1, squaring both sides of equations (3.4.17), adding, 

and rearranging gives 

w4 + (p(T) 2 
- q2 

- 2/3(T))w2 + /3(T) 2 
- c(T) 2 = 0. (3.4.18) 

Solving for w, 
1 

W1(T) = ~ (q2 -p2 (T) + 2/3(T) + y/(q2 -p2 (T) + 2/3(T)) 2 
- 4((32 (T) - c2 (T))) 

2 

= 
1 

J2 ((1 - s+(T))(2o:s!(T) - s+(T) - 1) 
S+( T) 2 

1 

+ y'(s!(T) - 1)2 + 4o:s!(T)(s!(T) - 1)(1 - s+(T)) + 4s!(T)(o:s!(T) - 1)2) 

2 

(3.4.19) 
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and 
1 l 

W2 ( T) = J2 ( q2 - p2 ( T) + 2,6 ( T) - J ( q2 - p2 ( T) + 2,6 ( T)) 2 - 4 (,62 ( T) - c2 ( T))) 
2 

= 
1 J2 ((1 - s+(r))(2a:s!(r) - s+(r) - 1) 

s+(r) 2 
1 

- J(s~(r) - 1)2 + 4as~(r)(s~(r) -1)(1- s+(r)) + 4s~(r)(as~(r) - 1)2) 
2 

(3.4.20) 

Define conditions (Hi) and (H2 ) as follows 

(H1) { 
q2 - p2(r) + 2,6(r) > 0, ,62(r) - c2(r) > 0, 

(q2 - p2(r) + 2,6(r))2 - 4 (,62(r) - c2(r));;? 0. 

Lemma 3.8. If (Hi) holds for all Tin some interval I, then (3.4.18) has two positive 

roots wi ( T) ;;? w2 ( T) for all T E I with wi ( T) > w2 ( T) when all the inequalities in 

(H1) are strict. If (H2 ) holds for all T in some interval I, then (3.4.18) has only 

one positive root, w1 ( T) for all T E I. If no interval exists where either (Hi) or (H2 ) 

holds, then there are no positive real roots of (3.f 18). 

Define the interval 

J =[in(~( 1 -1)), In (k(~ -l))]. 
a l+J.1..+.l... a 

4 16 2a 

When the end points of J are real and Ji= 0, define 

(3.4.21) 

We prove that (Hi) holds for any TE Ii. 

From D = 6 = 1, 

Tc = ~ ln ( ~ ( ~ - ±)) = In ( k (a a-
1
)) . 
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If a > 1, then a > Vfa. It follows that 

1 (
k(vta-1)) 

'Tc> n . 
a 

Therefore 

(3.4.22) 

Theorem 3.9. Assume a > 7+~v'5 and k > ~-i · Then Ii is not empty, and for 

any T E Ii, but T -::/:- ln (~ ( 1 ~ - 1)), condition (Hi) holds and w1 (r) > 
4 + 16 +2ao 

w2(r) > 0. If T = ln (~ ( 1 ~ - 1)) E I1, then wi(r) > w2(r) = 0. 
4 + 16 +2ao 

Proof. For any a > 7+~v'5, we have 1 - * > 0 and therefore 

1 1 J5 1 1 J5 -+- - - < +- - - = 0. Via 2 2 ef1¥ 2 2 

Hence 

Th f 1 1 / 1 1 s· 1 I 1 1 1 / 1 1 1 rt ere ore ~ - 4 < y i6 + 2a · mce 4 + y 16 + 2a < 4 + y i6 + 7+3v'5 < · 
follows that 

1 1 ~1 -<-+ -+-<l. Via 4 16 2a 
(3.4.23) 
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Hence 

ln (75_( 1 
-1)) < ln (k(V'(i-l))· 

a l+J.l+..1_ a 
4 16 2a 

From k > ( ~-l), we have ln ( k( ~-l)) > 0. Therefore 

and so 11 is not empty. Noting s+( r) = l+~eD-T and .6. = 1, for any T E 11 , but 
k 

T yf ln ( ~ ( ~+~ - 1)), we have s+ ( T) E [ fc:, ~ + J 116 + 2~ ) • 

In what follows, we intend to show for any such T, condition (H1) holds. From 

(3.4.14), 

Since s+ ( T) < 1, to show that the first inequality in ( H 1) holds, it suffices to show that 

factor on the right hand side of above the expression is positive. Since a > 7+~v'5, 

_l - ..1_ = -1 (1 - - 1
-) > 0 and fo 4a fo 4fo 

Since -1 < 1 for a > 7+3v'5 
fo ~ 2 ' 

1 J 1 1 1 1 -+ --+-<-<-
4a16a2 2a y'O: vra· 
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For any s+(1) > *' 
1 1 1 v 1 1 s+(1) - - ;;?: - - - > -- + -. 

4a ~ 4a 16a2 2a 

Hence 

( 
1 )

2 
1 1 

s+(i) - 4a ;;?: 16a2 + 2a· 

Next consider the second inequality in ( H 1). For a > 7+~v'5, since -h > ~, s+ ( 1) ~ 

-h > ~· Therefore as+(1) > 1. For s+(1) E [ *' i + J 116 + 2~ ) • 

= (a-2as+(i)+-
1 

) (a--
1 

) 
s+(1) s+(1) 

2a ( 2 s+(1) 1 ) = --- s (1) - -- - - (as+(1) - 1) 
s~(1) + 2 2a 

2a (( 1)
2 

1 1) = --- s+(1) - - - - - - (as+(1) - 1) > 0. 
s~(1) 4 16 2a 

Finally, 

(q2 - p2(1) + 2f3(1))
2 

- 4 (f32(1) - c2(1)) = (q2 - p2(1)) (q2 - p2(1) + 4f3(1)) + 4c2(1) 

= ( 1 - S~~T)) ( 1 - S~~T) +4<>(1 - S+(7))) +4 (2s+(7) - S+~Ts 
= ( 1 - 8~~T) )' + 4a ( 1 - 8~~T)) (1 - s+(T)) + 4s+(7)

2
a

2 
- Sa+ si~T) 

= 4s+(r)
2
a

2 
+4<> ( ( 1 - 8~~ T)) (1 - s+(r))) - Ba+ ( 1 - 8~~ 7 i)' + si~ 7 : 

=4s+(1)
2
a

2
+4a((1- s~~i)) (1-s+(1))-2) + (1+ 8~~7))

2 

= (a - 0:1)(0: - 0:2), 
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where 

2- (1- ~) (1- S+(T)) + (~ + 2s+(T) + 1) (s+1w- lr 
0:1= 

2si(T) 

2- (1- ~) (1- s+(T)) - (~ + 2s+(T) + 1) (s+1w- lr 
0:2 = 

2si(T) 

Since s+(T) < 1, 

and 

> 0. 

It follows that 0 < o:2 < o:1 . Again noting that s+ ( T) < 1, 
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Hence, for any s+(r) > -:b, we have a> -::rh( ) > a 1 > a 2 . This leads to 
ya S+ T 

Hence (H1) holds for any 7 E 11. By Lemma 3.8, both w1(r) > 0 and w2 (r) > 0. 

Ifr=ln(~( 1 ~-1)) El1 ,wehaves+(r)=i+J 116 + 2~. Noting 
4 + 16 +2a 

(3.4.23), we obtain 

q2 
- p2 (r) + 2{3(r) > 0, 

By (3.4.19) and (3.4.20), we know w1(r) > 0 and w2 (r) = 0. D 

Now we define interval 12 and prove that (H2 ) holds on 12 . 

12 := [0, Tc) n ( -oo, ln ( ~ ( l ~ _1_ - 1))] · 
4+V16 + 2a 

In the following theorem, we consider the case that parameters are chosen so that 

(3.4.24) 

Theorem 3.10. Assume a > 1 and k > a ( 
1 
~ - 1)-1

. Interval h given by 
4 + 16+2a 

(3.4.24) is not empty. For any 7 Eh , (H2 ) holds and hence w1 (r) > 0. 

then 

Proof. Assume a > 1. Letting 

dG(a) 
da 

1 ~1 1 G(a) = - + - + - - -, 
4 16 2a a 
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G (a) is an increasing function of a and G ( 1) 

1 + . I_!_+_!__ - l > 0. Therefore 

0. G(a) > G(l) implies that 

4 V 16 2a a 

This gives 

1 {Ffl 1 1 > -+ -+- > -. 
4 16 2a a 

1 
a -1 > -1 > 0. 

~ + v 1
1
6 + 2~ 

By assumption k > a ( 2 ~ - 1)-1

, we obtain 
4 + 16 + 2u 

k (a - 1) > 15_ ( 1 _ 1) > 1. 
a a l+ 11-+_!_ 

4 V 16 2a 

Noting that D = ~ = 1 and Tc is defined in (3.3.7), 

Tc= ln (k(a- l)) > ln (15_( 1 -1)) > 0. 
a a l+J..l+_!_ 

4 16 2a 

(3.4.25) 

Therefore I2 is given by (3.4.24) is not empty. For any TE 12, noting s+( T) = 
1 

°'1 ,e;
7 +Te 

and~= 1, we have s+(T) E [i + J 1
1
6 + 2~, l+;/k) C [i + J1~ + 2~, 1). 

In what follows, we intend to show for any T E 12 , or equivalently s+ ( T) E 

[i + J116 + 2~,1), (H2 ) holds. For any s+(T) E [i + J116 + 2~,1), by (3.4.25), it 

follows that s+( T) > ~ and so as+( T) > 1. Hence 

(32 (T) - c2(T) = -~ ((s+(T) - ~)
2 

- _!_ - J__) (as+(T) - 1) ~ 0. 
si(T) 4 16 2a 

For any s+(T) E [ ~ + V {6 + 2~,1), we have s+(T) > 4~ + V 16~2 + 2~, since i > 4~ 
and 1

1
6 > 16~2 imply that 
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Therefore 

q - p (r) + 2/](r) = s+(r) - - - - - - > 0. 2 2 (1-s+(r))2a(( 1)
2 

1 1) 
s!(r) 4a 16a2 2a 

Condition (H2 ) holds. By Lemma 3.8, w1(r) > 0. D 

Next, to determine whether (3.4.13) has a pair of pure imaginary eigenvalues, 

we consider 

c(r)(p(r)w) + qw(w2 
- /](r)) =w(c(r)p(r) + q(w2 

- /](r))) 

and 

We obtain 

=w (a - -
1

- - w2 + a(l - s+(r))), 
s!(r) 

c(r)(w2 
- /](r)) + qw(-p(r)w) 

= (as+(r) - s+~r)) (w
2

- a(l - s+(r))) + (-l)w (s~~)) 

=a (s+(r)w
2 

- (1 - s+(r)) ( as+(r) - s+~r))). 

sin(wr) 

cos(wr) = 

(3.4.26) 

If there exists (r,w) satisfying (3.4.26), then (3.4.13) has a pair of pure imag

inary roots ±iw. A necessary condition for (3.4.26) to have solutions is as!(r)-=/:- 1. 

Otherwise as!(r) = 1, and the second equation of (3.4.26) becomes cos(wr) 

as+( r). However for any T E (0, Tc), we have as+( r) > 1, since 

a a a a 
as+(r) = 1 + ar > 1 + ~k (1 - ~) = 1 + a(l - ~) =-;; = 1. 
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Hence the second equation of (3.4.26) has no solution. Assume asi ( T) i= 1 for w ?:: 0 

and T E [O, Tc] and denote the right hand sides of (3.4.26) by 

h
1
(w T) = _c(_T)_(p_(T_)_w_) +_qw_(_w2_-_f3(_T_)) 

' c2 ( T) + q2w2 

w2 
- (a - ~) - a(l - s+(T)) 

= -W ( O'.S+(T) - s+~T)r + W2 ' 

h ( ) 
_ c(T)(w2 - j3(T)) + qw(-p(T)w) 

2 WT -
' c2( T) + q2w2 

w2 
- (1- s+(T)) (a - si~T)) 

= as+(T) 2 

( as+(T) - s+~T)) + w2 

Define functions 

if (3.4.27) 

and 

if (3.4.28) 

Lemma 3.11. Assume a > 7+~v'5 and k > ~-l. For any T E 11 given by (3.4.21), 

there exists Ej > 0 and ej(T) with Ej ~ ej(T) ~ 7r (j=J,2) such that 

{ 

sin(ej(T) + 2mr) = h1(wj(T), T), 

cos(ej(T) + 2n7r) = h2(wj(T), T). 
n = 0, 1, 2, ... (3.4.29) 

Proof. For any T E 11 , by Theorem 3.9, w1 (T) > 0 and w2 (T) ?:: 0. We 

know h1 (0, T) = 0 and limw ...... += h1(w, T) = -oo. There are two roots of h1(z, T) = 0, 

z1 = 0 and 
1 

a - ~( ) + a(l - s+(T)). 
S+ T 
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Hence h1(w, T) > 0 for 0 < w < z2(T). For any T E Ii, as shown in Theorem 3.9, 

s+(T) E [ *' ~ + J 1
1
6 + 2~ J. This implies s+(T) ~ * > Ja > ~- Therefore 

as~(T) > 1 and as+(T) > 1. The function h2(w, T) is monotonically increasing for 

w ~ 0 since 

Since s+( T) < 1, 

Also limw-oo h2(w, T) = as+(T) > 1. Therefore there exists a unique w = lmax(T) = 

Ja - si~T) > 0 such that h2(lmax(T), T) = 1. Solving h2(lmax, T) = 1 for lmax and 
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noting that a - kc) # 0, it is easy to see that lmax(r) = Ja - kc ) : 
s+ T s+ T 

1;,~{<>s+{r) - 1) = <ts+{r)(l - s+{r)) (a - si~r)) + ( as+(r) - s+~r)) 
2 

= as+(r) (a - ~( ) - as+(r) + ~( )) + a 2s!(r) - 2a + ~( ) 
S+ T S+ T S+ T 

2 () a 22() 22() 1 =a S+ T - -(-) - a S+ T +a+ a S+ T - 2a + ~( ) 
S+ T S+ T 

2 a 1 
= a s+ ( r) - -(-) - a + ~( ) 

S+ T S+ T 

= (a - 8~~r)) (as+(r) -1). 

Then h2(w,r) ~ 1 for any w E [O,lmax(r)]. Since s+(r) < 1, lmax(r) < z2(r). There

fore h1 (w, r) > 0 for any w E [O, lmax(r)]. Since w1(r) is a positive root of hi(w, r) + 

h~(w,r) = 1, we have h2(w1(r),r) ~ 1, which implies that 0 < w1(r) ~ lmax(r) < 

z2(r). Therefore h1(w1(r), r) > 0, and so h1(w1(r), r) = Jl - h2(w1(r), r). In fact 

since 

h~(lmax( r), r) + hi(lmax( r), r) = 1 + hi(lmax( r), r) > 1. 

sin(B1 (r) + 2nn) = Jl - cos2 (B1 (r) + 2nn) 

= J1 -h~(w1 (r), r) 

= hi(w1(r), r). 

(3.4.30) 

Hence B1 (r) satisfies (3.4.29). From (3.4.30), h2(w1(r),r) < h2(lmax(r),r) = 1 and 

so 81 ( r) > 0. Since 81 ( r) is continuous on the interval 11 and Ii is closed, there exists 

E1 > 0 such that B1(r) ~ E1. Similarly we can prove the existence of B2 (r). D 
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Lemma 3.12. Assume a> 1 and k > a( 1 ~ - 1)-1
. For any TE 12 given 

4 + 16+2a 

by (3.4.24), there exists E > 0 and e1(T) 8UCh that E ~ e1(T) < 7r and e1(T) 8ati8fie8 

(3.4.29) for j = 1. 

Proof. For any TE 12, by Theorem 3.10, only w1(T) > 0. 

As in Lemma 3.11, we have h1(w, T) > 0 for 0 < w < z2(T). For any TE 12, 

as shown in Theorem 3.10, s+(T) E [i + V 1~ + 2~, 1). Letting 

we have 

dG(a) 
da 

1 ~1 1 G(a) = - + - + - - -
4 16 2a yla' 

a> 1, 

-------;::1== + 1 = _1 ( -1 + _1_) > 0 
4a2J 116 + 2~ 2afo 2a v~2 + 2a Va . 

G(a) is an increasing function and G(l) = 0. Since G(a) > G(l), it follows that 

i+ V 1
1
6 + 2~ > Ja· Therefore, for any s+( T) > i+ V 1

1
6 + 2~, we obtains+( T) > fo' 

or equivalently a > :zh( ) . Since 
B+ T 

h2 ( w, T) is monotonically increasing for any w ~ 0. For any s+ ( T) > ~ + V 1
1
6 + 2~, 
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which implies that as+(7 )(l-s+(7
)) < 1. Hence 

a4(7)-1 

(1 - s+(T)) (a -
8
2(

7
)) 

0 > h2 (0, T) = -as+( T) + 2 

(as+( T) - s+(7 )) 

For TE [0,Tc), limw-+ooh2(w,T) = as+(T) > 1, since 

a a a a 
as+( T) = 1 + °'t > 1 + Ik (1 - ~) = 1 + a(l - ~) = ;- = 1. 

As in the proof of Lemma 3.11, there exists a unique lmax(T) = Ja - si(
7

) > 0 

such that h2(lmax( T), T) = 1. Then lmax ( T) < z2( T). Therefore hi (w, T) > 0 for 

any w E [O, lmax(T)]. The rest of the proof is similar to the proof of Lemma 3.11. 

Furthermore B1(T) < 7r, since h2(w1(T), T) > -1 for any w1(T) E [O, lmax(T)). D 

Theorem 3.13. Consider system (3.2.4) with D = 6 = 1. 

1) Suppose a > 7+~v'5) k > ~-l' and T E 11 given by (3.4.22). For T E 11 

and j = 1, 2) Wj( T) is nonnegative and there exists Ej > 0 and Bj( T) such that 

Ej ::;:; ej(T) ::;:; 7r and ej(T) satisfies (3.4.29). If there exists n ~ 0 such that 

Bj(T) + 2n7r intersects TWj(T) at some T~ E f1) then equation (3.4.15) has a 

pair of pure imaginary eigenvalues,\= ±iwj(T~). System (3.2.4) undergoes a 

Hopf bifurcation at T~ provided dRef,(
7

)) J _ i =I- 0. 
T T-Tn 

2) Suppose a > l) k > a ( ! ~ - 1)-1

) and T E 12 given by (3.4.24). 
4 + 16+2a 

For T E 12) only w1 ( T) is positive and there exists E > 0 and 81 ( T) such that 

E::;:; B1(T) < 7r and B1(T) satisfies (3.4.29) for j = 1. If there exists n ~ 0 such 

that B1(T) + 2n7r intersects Tw1 (T) at some T~ E 12) then equation (3.4.15) has 

a pair of pure imaginary eigenvalues,\= ±iw1 (T~). System (3.2.4) undergoes 

a Hopf bifurcation at T~ provided dRe~:(7)) 1
7

_ 71 =I- 0. 
- n 
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Proof. Assume D = .6 = 1 in system (3.2.4). 

Case 1) Suppose TE 11. By Theorem 3.9, wj(r) ~ 0 for j = 1, 2. By Lemma 

3.11, there exists Ej > 0 and Bj(T) SUCh that Ej ~ Bj(T) ~ 7f and Bj(T) satisfies (3.4.29). 

Assume there exists a positive integer T~ E 11 such that ej ( T~) + 2n7r = T~Wj ( T~) for 

some integer n ~ 0. Then system (3.4.26) has one solution (r~,wj(rD). Equation 

(3.4.15) has a pair of pure imaginary eigenvalues ,\ = ±iwj('r~). 

In what follows, we show that the conditions required for a Hopf Bifurcation 

(see Theorem A.2 in Appendix A) are satisfied by the linearization (3.3.8) of (3.2.4) 

at E+· In (A.0.3), choosing T as the bifurcation parameter and letting 

1 0 0 z1(t) 

D(r, Zt) = 0 1 0 z2(t) 

0 0 1 Z3(t) 

and 

-1- ax+ -as+ 0 z1(t) 

L(T,Zt) = ax+ -D +as+ - ky+ -kx+ z2(t) 

0 0 -.6 Z3(t) 

0 0 0 z1(t - r) 

+ 0 0 0 z2(t - r) 

0 ke!J.TY+ ke!J.TX+ Z3(t - T) 

the linearization (3.3.8) of (3.2.4) at E+ is of the form (A.0.3). Taking a to be any 

positive real number and b = ~' hypothesis (S1) in the Hopf Bifurcation Theorem 
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holds since 

and 

1 0 0 

<let O 1 O 

0 0 1 

det (~A•( a )e-""•C0 l + 1: A( a, O)e'° dO) <let 

for all T E IR and IRe-\I <a. 

1 

0 

0 

1 
= 1?: -

2 

0 0 

1 0 

0 1 

1 
= 1?: -

2 

The characteristic equation (3.4.15) of (3.3.8) at E+ has a pair of pure imag

inary eigenvalues ,\ = ±w1 ( T~) and no other root of (3.4.15) is an integral mul

tiple of ±w1 (TD. Hence the hypothesis ( 8 2) in the Hopf Bifurcation Theorem 

holds. Therefore, (3.2.4) undergoes a Hopf bifurcation at E+ when T = T~ provided 

dRe(.\(T)) I . __j_ O. 
dT T=Th I 

Case 2) Suppose TE 12 . By Theorem 3.9, only w1 (7) > 0. By Lemma 3.12, 

there exists E > 0 and (}i(T) such that E ::::; 81 (7) < 7r and 81 (r) satisfies (3.4.29). 

Assume there exists T~ E 12 such that 81 ( r~) + 2nn = T~w1 ( r~) for some integer 

n?: 0. Then system (3.4.26) has one solution (r~,w1 (r~)). Equation (3.4.15) has a 

pair of pure imaginary eigenvalues ,\ = ±iw1 ( T~). The rest of the proof is similar to 

Case 1) when j = 1. 0 

Corollary 3.14. Consider system (3.2.4) with D = ~ = 1. 

1) Suppose a> 7+~v'5, k > ~-l' and TE 11 given by {3.4.22). For TE 11, Wj(T) 

is nonnegative and there exists Ej > 0 and 8j ( T) such that Ej ::::; 8j ( T) ::::; 7r and 
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e j ( T) satisfies ( 3. 4. 29) for j = 1, 2. If there exists a positive integer nj ~ 0 such 

thatminTEli rwj(r):::;; 2njn andmaxTEli TWj(r) > (2nj+l)n, thenej(r)+2njn 

intersects TWj(r) at least once at some T~. E 11 . System (3.2.4) undergoes a 
J 

Hopf bifurcation at T~j provided dRed~(T)) IT=T~. -1- 0. 
J 

2) Suppose a > 1, k > a ( 
1 
fil - 1)-1

, and T E h defined in (3.4.24). 
4 + 16+2a 

For r E 12, only w1 ( T) is positive. There exists E > 0 and e1 ( r) such that 

E:::;; B1(r) < 7r and B1(r) satisfies (3.4.29) for j = 1. If there exists a positive 

integer N ~ 0 such that max7 EJ2 rw1(r) > (2N + l)n, then for any 0:::;; n:::;; N, 

B1 (r) + 2nn intersects rw1(r) at least once at some T~ E I2 • System (3.2.4) 

undergoes a Hopf bifurcation at T~ provided dRed.A(T)) I _ 1 -1- 0. 
T T-Tn 

Proof. Assume D = 6 = 1 in system (3.2.4). 

Case 1) Suppose T E fi. By Theorem 3.9, wj( r) ~ 0 for j = 1, 2. By 

Lemma 3.11, there exists Ej > 0 and ej(r) such that Ej :::;; ej(T) :::;; 1f and ej(T) 

satisfies equations (3.4.29). Assume that there exists a positive integer nj ~ 0 such 

that min7 EJi TWj(r):::;; 2nfrr and maxTE/i rwj(r) > (2nj + l)n. For such nj, 

By the Mean Value Theorem, there exists T~j E 11 such that ej ( T~j) + 2nfrr 

T~ wj(T~ ). By Theorem 3.13. Case 1), the conclusion follows. 
J J 

Case 2) Suppose T E h. By Theorem 3.9, only w1 (r) > 0. By Lemma 

3.12, there exists E > 0 and B1(r) such that E :::;; B1(r) < n and B1(r) satisfies 

equations (3.4.29). Assume that there exists a positive integer N ~ 0 such that 

max7 EI2 rw1 (r) > (2N + l)n. By (3.4.24), 0 E 12. Therefore minTEI2 rw1(r) = 0. For 
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0 ::::-; n ::::-; N, 

min TW1(T) < E + 2mr ::::-; 8i(T) + 2mr ::::-; (2n + l)7r < maxTW1(T). 
rEh rEl2 

By the Mean Value Theorem, there exists T~ E I 2 such that 81 ( T~) + 2nn = T~w1 ( T~). 

By Theorem 3.13. Case 2), the conclusion follows. D 

Corollary 3.15. Consider system (3.2.4) with D = ~ = 1. Assume a > 7+~v'5 and 

k > ~-l· If~+ J1
1
6 + 2~ > a!k' then Il = [O, ln (~(~ -1))], where I1 was 

defined in (3.4.22). For any TE I1, wj( T) is nonnegative and there exists Ej > 0 and 

ej(T) such that Ej ::::-; ej(T) ::::-; 1f and ej(T) satisfies (3.4.29) for j = 1, 2. If there exists 

a positive integer Nj ~ 0 (j = 1, 2) such that maxrEii TWj(T) > (2Nj + l)n, then for 

any 0 ::::-; n ::::-; Ni, ej ( T) + 2nn intersects TWj ( T) at least once at some T~ E I1. System 

(3.2.4) undergoes a Hopf bifurcation at T~ provided dRed~(r)) lr=r~ /= 0. 

Proof. Assume~+ J1
1
6 + 2~ > a!k' Then ln (~ (~+~ -1)) < 0. 

By (3.4.22), 

Ji~ [max{o,1n(~(±+J~+,\; -1))}, lnC(~-ll)] 
[o, ln(~(V'a-1))]· 

For any T E I 1, by Theorem 3.9, wj(T) ~ 0 for j = 1, 2. By Lemma 3.11, there 

exists Ej > Q and 8j(T) SUCh that Ej ::::-; 8j(T) ::::-; 1f and 8j(T) satisfies equations 

(3.4.29). Noting 0 E I 1, minrEli TWj(T) = 0. Assume there exists a positive integer 

Nj ~ 0 (j = 1, 2) such that maxrEii TWj(T) > (2Nj + l)n. For any 0 ::::-; n ::::-; Nj, 

minrEli TWj(T) = 0 ::::-; 2nn and maxrEli TWj(T) > (2Nj + l)n ~ (2n + l)n. By 

Corollary 3.14, the conclusion follows. D 
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3.5 Numerical Results 

This section includes bifurcation diagrams involving the interior equilibrium E+ and 

numerical simulations of periodic solutions of the predator-prey model in the chemo

stat. 

3.5.1 Variation of Eigenvalues and a Bifurcation Diagram 

To study the stability switches of E+, DDEBIFTOOL (see [17], [51]) was chosen to 

illustrate how the real part of the eigenvalues of (3.4.13) change as parameters a and 

T vary. 

First fix parameters D = 6 = 1, k = 24, and T = 0.5. Taking a as the 

bifurcation parameter and varying it from 0 to 10, the real part of the eigenvalues 

with largest real part of (3.4.13) was plotted in Figure 3.1. At a~ 1.15 and a~ 1.5, 

there is either a zero eigenvalue or a pair of pure imaginary roots. For a E (1.15, 1.5), 

all eigenvalues have negative real parts. For example, taking a = 1.3, Figure 3.2 

(TOP) shows that the eigenvalues of (3.4.13) with largest real part (the ones in the 

circle) have negative real parts. Note that due to the scaling, the eigenvalues in 

the circle seems to be indistinguishable from zero. But in fact, they are a pair of 

complex eigenvalues with real parts slightly less than zero. DDEBIFTOOL can keep 

track of the occurrence of a pair of pure imaginary eigenvalues as a varies in the 

neighborhood of a = 1.5. Figure 3.2 (BOTTOM) clearly shows that there is a pair 

of pure imaginary eigenvalues. Hence Hopf bifurcation is possible. Note that by 

continuation, the pair of eigenvalues with largest real parts in Figure 3.2 (TOP) for 

a = 1.3 become the pair of pure imaginary eigenvalues in Figure 3.2 (BOTTOM) for 
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1.5.--------r---------r--------~---~--~ 

-1f--------------------~ 

-2~---~---~---~---~--~ 

0 4 10 

a 

Figure 3.1: Variation of the largest real part of eigenvalues as the bifurcation parameter 

o: is varied. At o: :::::; 1.15 and 1.5, the largest real part crosses zero and it seems that there 

is a zero eigenvalue for o::::::; 1.15 and a pair of pure imaginary eigenvalues for o::::::; 1.5. The 

largest real part becomes positive as o: increases through 1.5. But as o: increases further, 

for o::::::; 17, the largest real part crosses zero again and remains negative thereafter. There 

is a second Hopf bifurcation at o: :::::; 17. This is consistent with what is observed in Figure 

3.3 when T = 0.5 and o: varies from 0 to 30. Parameters D = b. = 1, k = 24, and T = 0.5. 

a~ 1.5. 

Finally fix all parameters as before and vary T and a. In Figure 3.3, we 

plot the Hopf bifurcation diagram in a and T parameter space. The curve at the 

left upper corner is T = Tc. For any pair (a, T) below that curve, a coexistence 
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Figure 3.2: Eigenvalues with the largest real part of the characteristic equation (3.4.13) at 

E+. Parameters are the same as in Figure 3.1 except a = 1.3 for the TOP and a ~ 1.5 for 

the BOTTOM graph. Due to the scaling, the eigenvalues in the circle (see the TOP) seem 

indistinguishable from zero. In fact, they are a pair of complex eigenvalues with real parts 

slightly less than zero. As a varies from 1.3 to 1.5, the pair of complex eigenvalues with 

largest real part becomes a pair of pure imaginary roots in the figure (BOTTOM). The 

eigenvalue with the second largest real part remains equal to -1. This is consistent with 

our analytical results that showed (3.4.13) has a constant eigenvalue -1whenD=ti.=1. 
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Figure 3.3: The bifurcation diagram of E+ in T and a parameter space. Parameters are 

the same as in Figure 3.1 except T and a are allowed to vary. For any pair (a, T) on the 

closed curve, there is a Hopf bifurcation. Inside the closed curve, there is a periodic solution 

surrounding E+. For any (a, T) outside the closed curve and below T =Tc, the coexistence 

equilibrium E+ is stable. 

equilibrium E+ exists (i.e. all components are positive). For any pair (a, r) on the 

closed curve, there is a Hopf bifurcation. Inside the closed curve, there is a periodic 

solution surrounding E+. For any (a, r) outside the closed curve and below T =Tc, 

the coexistence equilibrium E+ is stable. 

3.5.2 Simulations Demonstrating Hopf Bifurcations 

In this section, we illustrate Theorem 3.13 for system (3.2.4). Take D = ~ = 1 and 

let T vary. We choose parameters a = 100 and k = 100 for case 1), and a = 2 and 
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TW1 (T) 
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2 

B2(T) B1 ( T) 

0 : 1 00 0 To 0.2 0.4 0.6 0.8 T 0.2 0.4 T2 0.6 0.8 T 0 

Figure 3.4: Critical value of delay T at which a Hopf Bifurcations occur. 

k = 20 for case 2). 

Case 1). Note that 11 is given by (3.4.22). Since ln (~ ( 1 ~ - 1)) 
4 + 16 +2<> 

-0.03, 

Also ln ( k( ~-l)) ~ 0.77. Therefore 11 ~ [O, 0.77]. By Theorem 3.13, wj( T) is 

positive and ej( T) satisfies (3.4.29) for any T E 11 and j = 1, 2. 

Figure 3.4 shows that ej ( T) intersects TWj ( T) at some TJ with TJ ~ 0.022 and 

T;f ~ 0.48. We see that ej(T) + 2mr has no intersection with TWj(T) for n ~ 2 and 

j = 1, 2. By Theorem 3.13, (3.4.15) has two pairs of pure imaginary eigenvalues with 

distinct frequency>.= ±iwj(~). Next we need to check if Red>.d(T) J _ j #- 0. 
T T-To 
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0 0.2 0.4 0.6 0.8 7 0.2 0.4 0.6 0.8 7 

Figure 3.5: When the slope of Sh(T) is nonzero at T when Sh(T) = 0 (j 1, 2), the 

transversality condition holds and there is a Hopf bifurcations. 

As in Kuang [5], we can define 

for j=l,2, n=0,1,2 ... 

Any zero T~ of s~ ( T) is an intersection of ej ( T) + 2mr and TWj ( T)' and versa vice. By 

(4.10) in Beretta and Kuang [5] and noting that (q2 
- p2 (r) + 2a:2 (r)) 2 -4 (a:2 (r) - c2 (r)) > 

0, we have the relation 

(3.5.31) 

where we take + for j = 1 and - for j = 2. 

From Figure 3.5 (LEFT), it is observed that S~ has only one zero rJ ~ 0.022 
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at n = 0 with sign { dSdJ(T) j _ 1 } > 0. Hence, sign {Red.\d(T) j _ 1 } > 0. By Theorem 
T T-To T T-To 

3.13, system (3.2.4) undergoes a Hopf bifurcation at rJ. Similarly from Figure 3.5 

(RIGHT), S~ has only one zero r6 ~ 0.48 for n = 0 and (3.2.4) undergoes a Hopf 

bifurcation at r6. 
Next we used MATLAB to simulate solutions of model (3.2.4) for several 

values of T. For each fixed delay T, we chose initial data s(t) = s+( r) - 0.01, 

x(t) = x+(r) + 0.01, and y(t) = Y+(r) + 0.001 fort E [-r, OJ. From Figures 3.6, 

we can see the equilibrium E+ is stable if T = 0.02 < rJ. As delay T increases past 

rJ ~ 0.022, where Hopf bifurcation occurs, a pair of complex eigenvalues of (3.4.15) 

enter the right half plane. The equilibrium E+ loses its stability and a periodic 

solution bifurcates from E+ (see Figures 3.7 and 3.8). As we increase the delay 

further to T = 0.4 < r6, the periodic solution still exists and remains stable (see 

Figure 3.9 and 3.10). However, as the delay T increases further, past r6, the stable 

periodic solution disappears and E+ regains stability (see Figures 3.11). We also 

obtain the bifurcation diagram as T varies (see Figure 3.12). For any T E ( rJ, rJ), 

there exists a stable periodic solution. 

Case 2). Take k = 20 and a = 2. For such parameters, 12 ~ [O, 0.85]. By 

Theorem 3.13, w1 (r) is positive and 81 (r) satisfies (3.4.29) for j = 1 and T E 12 . 

Figure 3.13 shows that 81 ( T) intersects rw1 ( T) twice. To distinguish them, denote as 

rJ, 1 ~ 0.22 and rJ, 2 ~ 0.65. But 81(r) + 2n has no intersection with Tw1(r). 

From Figure 3.14, 

. {ds1
(r)I } sign ~ _ 

1 
< 0. 

T T-To, 2 
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Figure 3. 7: Time series of a periodic solution, for T = 0.03. 
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Figure 3.8: The trajectory in phase space of the periodic solution in Figure 3. 7 for T = 0.03 
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Figure 3.9: Time series of a periodic solution for r = 0.4. 
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Figure 3.10: The trajectory in phase space of the periodic solution shown in Figure 3.9. 
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Figure 3.11: The periodic solution disappears at the secondary Hopf bifurcation at T6 ~ 

0.48 and E+ regains stability. In this figure T = 0.5 > T6. 
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Figure 3.12: Bifurcation diagram as the delay varies. 
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Figure 3.13: Intersections indicate critical values of the delay at which Hopf bifurcations 

occur. 
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Figure 3.14: Verification of the transversality condition required for Hopf bifurcation. 
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Figure 3.15: Equilibrium E+ ( T) is stable when T = 0.15 < TJ 1 . , 

3.6 Comparison between the Predator-Prey Model 

and the Predator-Prey Model in the Chemostat 

We studied the classical predator-prey model in Chapter 2 and the corresponding 

predator-prey model in the chemostat in Chapter 3. Based on our analysis, the 

dynamics of the two models appear to have some similarities and some difference. 

For both models, we linearized the system and evaluated the characteristic 

equation at the interior equilibrium. The amplitude of any possible pure imaginary 

root is a solution of a quadratic equation in w2 (see (2.3.13) for the classical Gause 

type predator-prey model and (3.4.18) for the predator-prey model in the chemo

stat). For the classical Gause type predator-prey model, (2.3.13) has at most one 

positive root, w+(r) defined in (2.3.15). However for the predator-prey model in the 
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Figure 3.16: Time series of a solution with constant initial data s(O) = 0.87, x(t) = 0.077, 

and y(t) = 0.048 for t E [-0.3, O], that approaches a stable periodic solution as time 

increases. In this figure, T = 0.3. 
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Figure 3.17: The attracting periodic solution shown in Figure 3.16 in the phase space for 

T = 0.3 > 76,1· 
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Figure 3.18: Periodic solution disappears and E+(r) regains stability for T > rJ. In this 

figure, T = 0. 7 4. 

chemostat, (3.4.18) can have two positive roots w1(T) and w2(T) defined in (3.4.19) 

and (3.4.20), respectively. Theorem 2.9 in Chapter 2 gives conditions for Hopf bi

furcations related to w+(r). Theorem 3.13. Case 2) in this chapter gives conditions 

for Hopf bifurcations related to w1 ( T). But Theorem 3.13. Case 1) is a result about 

Hopf bifurcations that involves both w1 ( T) and w2 ( T). This does not occur in the 

Gause type predator-prey model. 

However the effect of delays on the dynamics of the Gause type predator-prey 

model and predator-prey model in the chemostat do have some similarities. The 

interior equilibrium in both models is stable at delay equal to 0 and loses stability 

as delay increases. It regains stability by a secondary Hopf bifurcation at a larger 

delay value and remains stable until the critical value of the delay is reached and 
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eventually the interior equilibrium disappears. 

In Chapter 2, Figure 2.12 shows that the Gause type predator-prey model 

has other interesting bifurcations besides the Hopf bifurcation. We did not see ev-

idence for these other bifurcations in the predator-prey model in the chemostat for 

the parameters used (see Figure 3.12). In an attempt to find these interesting dy-

namics, we rescaled the predator-prey model in the chemostat and chose parameters 

so that without predators, the dynamics of the prey were almost identical in both 

models. Introducing predators with delay in exactly the same way in both models, 

we expected that the dynamics of the two models would be the same, in the sense 

that they would have the same sequence of bifurcation as the delay T was increased. 

Figure 2.12 was obtained by using model (2.1.1) with parameter m = 1, 

r = 10, Y = 0.2, s = 0.2, and k = 30. For initial data, we used x(t) = 1.6 and 

y(t) = 0.4 fort E [-r, O]. By the change of variable (2.2.2), we have 

s = 0.02, -Y = o.6, x(t - f) = o.053, y(t - f) = o.o4. 

Noting that (2.2.3) is the scaled model omitting~ we have 

x(t) = x(t)(l - x(t)) - y(t)x(t), 

y(t) = -0.02y(t) + 0.6e-sry(t - r)x(t - r), 

x(e) = 0.053, y(e) = 0.04 for e E [-r, 0]. 

To make the dynamics of the predator-prey model in the chemostat comparable with 

the Gause type predator prey model as described above, we introduced the following 

change of variables 

i =Dot, 

f =Dor, 

A(A) - s(t) 
st - -0' 

s 
A D 
D= Do' 

A (A) - o:x(t) 
x t - D , 

01] 

A(A) - ky(t) 
y t - Do~' 

A k17 
k=-, 

0: 
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In (3.6.32), choose D = 1, ~ = 0.02, k = 0.6 and a = 2. Taking s(O) = 0.5 

and the same initial data for x and y gives 

s(t) = 1 - s(t) - x(t)s(t), 

x ( t) = x ( t) ( -1 + 2s ( t)) - y ( t) x ( t), 
(3.6.33) 

y(t) = -0.02y(t) + 0.6Ct.7 y(t - r)x(t - r), 

s(O) = 0.5, x(B) = 0.053, y(B) = 0.04 for e E [-r, 0]. 

We chose D and a so that without predation the prey in the chemostat grows simi

larly as the prey in the predator-prey model. 

The maximum delay which guarantees the coexistence equilibrium of system 

(3.6.33) exists is T ~ 170.05. We used MATLAB to produce the bifurcation diagram 

as T was increased from 0 to 170.05 (see Figure 3.19). The bifurcation diagram clearly 

shows the effect of varying the delay on the predator-prey model in the chemostat 

gives a less complicated sequence of bifurcations than for the Gause type predator

prey model. Other interesting bifurcations in between the two Hopf bifurcations do 

not occur for the predator-prey model in the chemostat as they do for the classical 

Gause type predator-prey model. 
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Figure 3.19: Bifurcation diagram as the delay varies. 
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Chapter 4 

Pure Imaginary Roots of General 2nd 

Order Transcendental Equations 

In this chapter we generalize the method in Chapter 3. For a delay differential 

equation, its stability is related to the distribution of eigenvalues of its characteristic 

equation. A system of delay differential equations can result in a characteristic 

equation of the special form 

P(>..) = >.. 2 + p(r)>.. + (q(r)>.. + c(r))e-.\7 + a(r) = 0. (4.0.1) 

For example, Cooke, Elderkin, and Huang [12], Kuang and So [37], Gourley and 

Kuang [21] considered models for which the analysis required study a characteristic 

equation of this form. If q( T) = c( T) = 0, then ( 4.0.1) is a quadratic equation 

in >.., and the roots are easily determined. If q(r) or c(r) is nonzero, (4.0.1) is 

a transcendental equation and it is much hard to find its roots analytically. We 

assume that both c( T) and q( T) are not equal to zero simultaneously and investigate 

when ( 4.0.1) has pure imaginary roots. This is of importance, since the existence of 
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a pair of pure imaginary roots is a necessary condition for Hopf bifurcations. 

As before, to determine whether (4.0.1) has pure imaginary roots, assume 

that ,\ = iw (w > 0) is a root of ( 4.0.1). Then 

P(iw) = -w2 + ip(T)w + (iq(T)w + c(T))e-iwT + a(T) = 0. 

Using Euler's identity eio =cos()+ i sin(), 

-w2+a(T)+q(T)wsin(wT)+c(T) cos(wT)+i (p(T)w + q(T)wcos(wT) - c(T) sin(wT)) = 0. 

Separating the real and imaginary parts, 

{ c(T) cos(wT) + q(T)wsin(wT) = w2 - a(T), 

c( T) sin(wT) - q( T)w cos(wT) = p( T)w. 

Solving for cos(wT) and sin(wT), we obtain 

(4.0.2) 

(4.0.3) 

Note that if one can find (T, w) satisfying (4.0.3), then (4.0.1) will have a pair of pure 

imaginary roots ±iw at T. Our goal in the remaining part of this chapter is to find 

solutions of (4.0.3). 

Recalling that sin2 (wT) + cos2 (wT) = 1, squaring both sides of the equations 

in ( 4.0.3), and adding them, and rearranging gives 

(4.0.4) 

Solving for potential positive roots of (4.0.4), we obtain, 

w1(T) = ~ (q2 (T) -p2 (T) + 2a:(T) + y'(q2 (T) -p2(T) + 2a:(T)) 2 - 4 (a:2 (T) - c2 (T))). 

(4.0.5) 
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and 

w2(T) = ~ ( q2(T) - p2(T) + 2a(T) - J(q2(T) - p2(T) + 2a(T))2 - 4 (a2(T) - c2(T))). 

(4.0.6) 

Beretta and Kuang obtained (4.0.4) in [5], They were also interested in 

whether (4.0.1) has pure imaginary roots. In their method, they assume that e is a 

solution of ( 4.0.3) with e in the position of WT at the left hand side of ( 4.0.3). How-

ever ( 4.0.3) may or may not have solutions. Here, we show how to determine whether 

or not such a solution e exists based on conditions in terms of p( T), q( T), c( T), and 

a(T) and when it does, we give out explicit expression fore. 

Remark. Note that a solution of ( 4.0.3) must satisfy ( 4.0.4), but the converse 

need not be true, since ( 4.0.4) is obtained by squaring and adding the equations in 

(4.0.3). 

Define conditions (H1 ) and (H2 ) as follows: 

q2(T) - p2(T) + 2a(T) > 0, 

(H1) a 2(T) - c2(T) > 0, 

(q2(T) - p2(T) + 2a(T)) 2 - 4 (a2(T) - c2(7)) :;:: 0. 

(H2) a 2(T)-c2(T)<O, or a 2(T)-c2(7)=0 & q2(T)-p2(T)+2a(T)>O. 

Lemma 4.1. If (H1) holds for all T in some interval I, then (4. 0.4) has two positive 

roots w1 ( T) ;? w2 ( T) for all T E I with w1 ( T) > w2 ( T) when all the inequalities in 

(H1) are strict. If (H2) holds for all T in some interval I, then (4.0.4) has only one 

positive root, w1 ( T) for all T E I. If no interval exists where either (H1) or (H2) 

holds, then there are no positive real roots of (4. 0.4). 
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Corollary 4.2. A necessary condition for Hopf bifurcations is that there exists some 

interval I such that for all TE J, (q2(r) - p2(r) + 2a(r))2 - 4 (a2(r) - c2(r));?:: 0, 

and if a 2(r) - c2(r) ~ 0, then q2(r) - p2(r) + 2a(r) > 0. 

To simplify notation, denote the right hand sides of ( 4.0.3) as follows 

h ( )- c(r)(p(r)w)+q(r)w(w2 -a(r)) 
1 w,r - c2(r) + q2(r)w2 ' w;?:: 0, (4.0.7) 

h ( ) 
_ c(r)(w2 - a(r)) + q(r)w(-p(r)w) 

2 W,T - , 
c2(r) + q2(r)w2 w;?:: 0. (4.0.8) 

In most cases, it is a challenge to seek solutions of ( 4.0.3) directly. Instead, in what 

follows, we consider the associated systems of the form 

{ 

sin(B(r) + 2k7r) = h1 (wi(r),r), 

cos(B(r) + 2k7r) = h2(wi(r), r), 
i = 1, 2, k = 0, 1, 2, ... 

where wi(r) given by (4.0.5) for i = 1 or (4.0.6) for i = 2. 

(4.0.9) 

Theorem 4.3. If B(r) satisfies (4.0.9) and B(r) + 2k7f (k nonnegative integer) in

tersects rwi(r) at some fi, then (fi, wi(fi)) will be a solution of (4.0.3), and hence, 

(4.0.1) has a pair of pure imaginary roots ±iwi(fi)· 

Now we start to investigate when (4.0.9) has a solution B(r). To avoid zero 

denominators in (5.0.7) and (5.0.8), we consider the two cases c(r)-/:- 0, and c(r) = 0 

but q( r) -/:- 0 separately. 

4.1 The case c( T) -=/= 0. 

For a fixed T, assume that wi(r) is positive (i = 1,2). By (4.0.7) and (4.0.8) noting 

that wi(r) is a root of (4.0.4), we obtain hi(wi(r), r) + h~(wi(r), r) = 1. Define 
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functions 

( 4.1.10) 

It follows that Bi(T) E [0, 7r]. If hi(wi(r), T) 2: 0, then sin(Bi(T) + 2k7r) = hi(wi(r), r). 

Hence ei(T) satisfies (4.0.9). If hi(wi(r), r) < 0, then 

and 

Therefore 27r - ei(T) satisfies (4.0.9). 

Theorem 4.4. Assume that wi(T) is positive (i = 1, 2). Consider the following 

conditions: 

(i) q(T) > 0 and a(T)q(T) - c(T)p(r) < 0. 

(ii) q(r) < 0, a(r)q(r) - c(T)p(r) < O, and w[(r) < a(T)q(Tj~)(7)P(7). 

(iv. a) q(T) = 0 and l±:l >- 0 c(T) ,,,,- ' 

(iv.b) q(T)=O and p(T) < 0 
c(T) . 

If one of (i),(ii), (iii), or (iv.a) holds, then ei( T) E [O, 7r] and satisfies (4.0.9). If ( iv.b) 

holds, then 27r - Bi(T) E [7r, 27r] and satisfies (4.0.9). 
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Proof. For any fixed T, assume wi(r) is positive. From (4.0.7) and (4.0.8) 

hi(w, r) + h~(w, r) 
c2(r)p2(r)w2 + q2(r)w2(w2 - a(r))2 + 2c(r)p(r)wq(r)w(w2 - a(r)) 

(c2(r) + q2(r)w2)2 

c2(r)(w2 - a(r))2 + q2(r)w2p2(r)w2 - 2c(r)p(r)wq(r)w(w2 - a(r)) 
+---'----'--'-~~---'--'-'--~-'-_;__~_;__;_~~-'--'--'--'---'---'----'--~~:..._:_:_ 

(c2(r) + q2(r)w2)2 

(c2(r) + q2(r)w2)(p2(T)w2 + (w2 - a(r))2) 
(c2(r) + q2(T)w2)2 

p2(T)w2 + (w2 
- a(T)) 2 

c2(r) + q2(r)w2 

A rearrangement of (4.0.4), noting that wi(r) is a root gives 

(4.1.11) 

( i) By ( 4.0. 7), hi (0, T) = 0 and limw-++oo hi (w, r) = +oo. From a straightfor

ward calculation using the assumption that q(r) > 0 and a(T)q(r) - c(T)p(r) < 0, 

it follows that w = 0 is the only root of hi(w, T) = 0. Hence, hi(w, r) > 0 for any 

w > 0. For wi(T) > 0, we obtain hi(wi(T), r) > 0. Therefore, ei(T) satisfies (4.0.9). 

(ii) By (4.0.7), hi(O,T) = 0 and limw-++oohi(w,T) = -oo. By assumption 

8hi(w,r)I =-a(r)q(r)-c(r)p(r) >O 
OW w=O c2 (r) . 

Solving hi(z(T),r) = 0 for z(r), we obtain the unique positive root 

a(r)q(T) - c(T)p(T) 

q(r) 
(4.1.12) 

Therefore h1 (w, r) > 0 for w E (0, z(r)) and hi(w, T) < 0 for w E (z(T), +oo) (see 

Figure 4.l(a)). 

From assumption w[(T) < a(r)q(rj(~l(r)p(r) and (4.1.12), we have wi(r) < z(T). 

It follows that hi(wi(r),T) > 0. Therefore, ei(T) satisfies (4.0.9). 
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(a) (b) 

QJ..-~~~~~~-'<-~~~-J 

z(T) 

0 w 0 w 

Figure 4.1: A schematic diagram of h1(w,T) for fixed T. (a) Case (ii) holds. (b) Case (iii) 

holds. 

(iii) By (4.0.7), h1 (0, T) = 0 and limw---++oo h1(w, T) = +oo. By assumption 

8h1(w, T) \ = _ a(T)q(T) - c(T)p(T) < 
0 

8w w=O c2(T) . 

As in (ii), z(T) = a(T)q(Tj~)(T)p(T) is the unique positive root of h1(z(T), T) = 0. 

Therefore h1(w,T) < 0 for any w E (O,z(T) and h1(w,T) > 0 for w E (z(T),+oo) 

(see Figure 4.l(b)). From assumption wJ(T) > a(T)q(Tj(~)(T)p(T) and (4.1.12), we have 

wi(T) > z(T). This implies that hi(wi(T), T) > 0. Therefore ei(T) satisfies (4.0.9). 

(iv.a) Since q(T) = 0, functions h1(w,T) and h2(w,T) reduce to the following 

simpler form: 
w2 - a(T) 

h2(w, T) = c(T) . 

From ~~;~ ~ 0, we have h1(w, T) ~ 0 for any w ~ 0. For wi( T) > 0, we obtain 

hi(w1(T),T) 2:: 0. Therefore ei(T) satisfies (4.0.9). 

(iv.b) Since q(T) = 0, functions h1(w,T) and h2(w,T) have the following 
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simpler form 

p(r)w 
hi ( W, T) = c( T) , 

w2 - a(r) 
h2 (w, r) = c( r) . 

From ~~;j < 0, we have hi(w, r) < 0 for any w ;?: 0. For wi(r) > 0, we obtain 

hi (wi( r), r) < 0. It follows that 21f-ei( r) satisfies (4.0.9). Noting that 0 ~ ei(T) ~ 7f, 

0 

In Theorem 4.4 all of the conditions in (ii) and (iii) are easy to verify except 

whether w[ ( T) < a(r)q(r~~)(r)p(r) (or >). For this reason we introduce conditions 

(A2), (A3), (A5) and (AB), that may appear more complicated, but are more easily 

verified. Conditions (Ai) and (A7) are both sufficient conditions ensuring ( 4.0.9) has 

no solutions. If A4 holds the following results does not apply. Instead one can try to 

apply theorem 4.4 directly. 

(Ai) _ a(r) > l c(r)-p(r)q(r) > l 
c(r) ' q2(r) · 

(A2
) _ a(r) > l c(r)-p(r)q(r) < 1 and c(r)a(r)+c2(r) > a(r)q(r)-c(r)p(r) 

c(r) ' q2(r) ' c(r)-p(r)q(r)-q2(r) q(r) 

(A3
) _ a(r) < l c(r)-p(r)q(r) > 1 and c(r)a(r)+c2(r) < a(r)q(r)-c(r)p(r) 

c(r) ' q2(r) ' c(r)-p(r)q(r)-q2(r) q(r) 

(A4
) -1 < _ a(r) < 1 -1 < c(r)-p(r)q(r) < 1. 

c(r) ' q2(r) 

(A 5
) _a(r) > _1 c(r)-p(r)q(r) < _1 and c(r)a(r)-c2(r) < a(r)q(r)-c(r)p(r) 

c(r) ' q2(r) ' c(r)-p(r)q(r)+q2(r) q(r) 

(AB) _a(r) < -1 
c(r) ' 

c(r)-p(r)q(r) > -l d c(r)a(r)-c2(r) > a(r)q(r)-c(r)p(r) 
q2(r) ' an. c(r)-p(r)q(r)+q2(r) q(r) 

(A7) _a(r) < -1 
c(r) ' 

c(r)-p(r)q(r) < -l 
q2( T) ) 

When a positive root l(r), L(r) satisfies h2 (l(r),r) = 1 or h2(L(r),r) = -1 respec-

tively, it is unique and given by 

c(r)a(r)+c2(r) d 
l(r) = c(r) - p(r)q(r) - q2(r) an L(r) = 

c(r)a(r) - c2(r) 
c(r) - p(r)q(r) + q2(r)" (4.l.l3) 
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Theorem 4.5. Assume that wi(r) > 0. If either (A3 ) or (A5 ) holds, then wl(r) < 

a(T)q(T)-c(T)p(T). If either (A ) or (A ) holds then w?(r) > a(T)q(T)-c(T)P(T). 
q( T) 2 6 J i q( T) 

Proof. For any fixed r. From (4.0.8), 

and 1. h( )-c(r)-p(r)q(r) 
Im 2 W, T - 2 ( ) . 

W-->00 q T 
( 4.1.14) 

First assume (A3 ) holds. From (4.1.14), h2 (0, r) < 1 and limw-->oo h2 (w, r) > 1. 

There exists a unique l(r) > 0 (see (4.1.13)) such that h2 (l(r),r) = 1. Therefore 

h2 (w, r) ~ 1 for any w E [O, l(r)] and h2 (w, r) > 1 for w > l(r) (see Figure 4.2(b)). 

The last inequality of assumption that (A3 ) implies that l(r) < z(r) (see (4.1.12)). By 

(4.1.11), we have -1 ~ h2 (wi(r), r) ~ 1, which implies that wi(r) ~ l(r). Therefore 

2( ) ~ z2( ) < 2( ) = a(r)q(r) - c(r)p(r) 
wi T "' T z T q(r) . 

Suppose (A5 ) holds. By (4.1.14), h2 (0, r) > -1 and limw-->oo h2 (w, r) < -1. 

There exists a unique L(r) > 0 (see (4.1.13)) such that h2 (L(r),r) = -1. Hence 

h2 (w, r) ?: -1 for any w E [O, L(r)] and h2 (w, r) < -1 for w > L(r) (see Figure 

4.2(c)). By the last inequality of (A5), L(r) < z(r). By (4.1.11), we have -1 ~ 

h2 (wi(r),r) ~ 1, which implies that wi(r) ~ L(r). Therefore 

2( ) ~ L( ) < 2( ) = a(r)q(r) - c(r)p(r) 
W2 T '-" T Z T q( T) · 

Assume (A2 ) holds. By (4.1.14), h2 (0, r) > 1 and limw-->oo h2 (w, r) < 1. 

There exists a unique l(r) > 0 such that h2 (l(r),r) = 1. Hence h2 (w,r) ~ 1 for any 

w E (l(r), +oo) and h2(w, r) > 1 for w E (0, l(r)) (see Figure 4.2(a)). By the last 

inequality of (A2), l(r) > z(r). By (4.1.11), we have -1~h2 (wi(r),r)~1, which 

implies that wi ( r) ?: l ( r). Therefore 

~( ) >- z2( ) > 2( ) = a(r)q(r) - c(r)p(r) 
wi T ?' T z T q(r) . 
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0 

-1 

0 

(a) 

l( T) 

(c) 

w 

L(T) w 

0 

-1 

0 L(T) 

(b) 

l( T) 

(d) 

w 

w 

Figure 4.2: A schematic diagram of h2(w, T) for fixed T. (a) The case (A2) holds.(b) The 

case (A3) holds.(c) The case (A5) holds.(d) The case (A5) holds. 
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Suppose (A6 ) holds. From (4.1.14), h2 (0, r) < -1 and limw_,= h2 (w, r) > -1. 

There exists a unique L(r) > 0 such that h2 (L(r), r) = -1. Hence h2 (w, r) ?: -1 

for any w E (L( r), +oo) and h2(w, r) < -1 for w E (0, L( r)) (see Figure 4.2( d)). By 

the last inequality of (A6 ), l(r) > z(r). By (4.1.11), we have -1~h2 (wi(r),r)~1, 

which implies that wi ( T) ?: l ( T). Therefore 

wf(r)?: z2(r) > z2 (r) = a(r)q(r~~)c(r)p(r). 

D 

Note that if the last inequality in assumptions (A2 ), (A3 ), (A5 ), or (A6 ) is 

violated, our method breaks down because the relative relationship between wJ ( T) 

and a(T)q(T)-c(T)p(T) is uncertain. 
q(T) 

Theorem 4.6. If either (A1) or (A7 ) holds, then system (4.0.9) has no solutions. 

Proof. For any fixed T. Assume (Ai) holds. Multiplying c2 (r) on both sides 

of-~~;? > 1 gives c(r)a(r) + c2 (r) < 0. From the second inequality of (A1), we 

have c(r) - p(r)q(r) - q2 (r) > 0. Hence l(r) < 0 (see (4.1.13) for the definition of 

l(r)). Then h2 (w, r) = 1 has no positive root. Hence, h2 (w, r) > 1 for any w > 0. 

Therefore the equation for cos(e + 27r) in (4.0.9) has no solutions. 

Assume (A7) holds. Multiplying c2 (r) on both sides of-~{;? < -1 gives 

c(r)a(r) - c2 (r) > 0. From c(T)~fgrcT) < -1, we have c(r) - p(r)q(r) + q2 (r) > 0. 

Hence L(r) < 0 (see (4.1.13) for the definition of L(r)). We have h2 (w,r) < -1 

for any w > 0. Again, the equation for cos(e + 27r) in (4.0.9) has no solutions. The 

conclusion follows. 0 

Theorem 4.7. Assume that wi(r) > 0 and ei(r) is a solution of (4.0.9) for TE Ii, 

where Ii is a closed interval including 0. Let Mi = max7 EI; TWi(r). If (2n + 1)7r < 
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Mi < 2( n + 1 )n' then ei ( T) + 2k7f and TWi ( T) have at least one intersection, where 

1 ~ k ~ n, and n = 1, 2, .... 

Proof. By (4.1.10), Bi(r) E [0, n]. Therefore Bi(r) + 2kn E [2kn, (2k + l)n]. 

Since 0 Eh we obtain minTEl; TWi(r) = 0 < ei(r) + 2k7r. If (2n + l)n <Mi< 2(n + 

l)n, noting 1 ~ k ~ n, we have (2k + l)n <Mi· This implies that max7 EI; rwi(r) > 

Bi(r) + 2kn. By the Mean Value Theorem, the conclusion follows. 0 

Later in section 4.3, we provide an application where we apply theorem 4. 7 

and define interval Ii explicitly guaranteeing that ei ( T) + 2kn and TWi ( T) have at 

least one intersection in the interval. 

4.2 The case c( T) = 0 and q( T) =f. 0. 

When c( T) = 0, in Theorem 4.4, the proof for the case (ii) or (iii) fails, since the 

proof involves the derivative of h1 ( w, T) at w = 0 and the derivative has c( T) as a 

denominator. Also cases (iv.a) and (iv.b) do not work since again a denominator is 

equal to c(r). Similarly conditions (A1) - (A7) are no longer defined. In this section 

we consider c( T) = 0. Note that this case is simpler and some of the proofs in the 

proceeding section still work, even if c(r) = 0. 

If c( r) = 0, ( 4.0.3) reduces to the simpler form 

sin(wT) = w
2
-a(r) 

q(r)w ' 

cos(wT) = -p(r). 
q(r) 

This results in h1 ( w, T) and h2 ( w, T) are simpler 

w2 - a:(T) 
h1(w,r) = ( ) , QTW 

h ( ) 
= -p(T) 

2 T q(r) 
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(4.2.15) 

for w > 0. ( 4.2.16) 



Note that h2 (w, 7) does not depend explicitly on wand can be considered as a function 

of 7 alone, h2 ( 7). Since w is a factor in the denominator of h1 ( w, 7), in this section, 

we consider h1(w, 7) and h2 (7) for w > 0. Define 

0(7) = arccos(h2 (7)) for h2 (7) E [-1, 1], 

and consider the associated system 

cos(B + 2n) = -p(T). 
q(T) 

Theorem 4.8. Consider system (4.2.18) 

(i) a(7) = 0, q2 (7) - p2 (7) > 0, and q(7) > 0. 

(ii) a(7) < 0, q2 (7) - p2 (7) + 4a(7) > 0, and q(7) > 0. 

(4.2.17) 

(4.2.18) 

(iii) a(7) > 0, q2 (7) - p2 (7) > 0, q(7) > 0, and wi(7) > y'a(T). 

(iv) a(7) > 0, q2 (7) - p2 (7) > 0, q(7) < 0, and wi(7) < y'a(T). 

If (i) holds, then (H2 ) holds and 0(7) E (O, n] satisfies (4.2.18) with w = w1(7). If 

one of (ii), (iii), or (iv) holds, then (H1 ) holds and 0(7) E (O, n] satisfies (4.2.18) 

with w = wi(7) > 0 (i = 1, 2). 

Proof. For any fixed 7. 

(i) From c(7) = 0, a(7) = 0 and q2 (7)-p2 (7) > 0, it follows that (H2 ) holds. 

By Lemma 4.1, w1(7) is positive, but w2 (7) is not positive. By (4.1.11), we have 
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-1 ~ h2 ( w1 ( T) , T) ~ 1. Then (} ( T) is defined and 0 ~ (} ( T) ~ 7f. >From w1 ( T) > 0 

and q(T) > 0, we obtain h1 (w1(T), T) = ~\~) > 0. Again by (4.1.11), 

Since cos(B(T) + 2k7r) = h2(T), sin(B(T) + 2k7r) = h1 (w1 (T), T), which implies that 

B(T) satisfies (4.2.18). 

(ii) By c( T) = 0, a( T) < 0, and q2
( T) - p2 ( T) + 4a( T) > 0, it follows that 

(H1) holds. By Lemma 4.1, both roots wi(T) are positive ( i = 1, 2). As in (i), B(T) 

is defined and 0 ~ B(T) ~ 7f. Since a(T) < 0 and q(T) > 0, function h1(w1(T),T) = 

w!(~j~(~)) > 0. The rest of the proof is similar to ( i). 

(iii) From c(T) = 0, a(T) > 0, and q2(T) - p2(T) > 0, it follows that (H1 ) 

holds and so wi(T) is positive (i=l,2). As in (i), B(T) is defined and 0 ~ B(T) ~ 7f. 

Since q(T) > 0 and wi(T) > ~' h1(wi(T),T) > 0. The rest of the proof is similar 

to ( i). 

1.(iv) Conditions c(T) = 0, a(T) > 0, and q2(T) - p2(T) > 0 imply that (H1) 

holds and so wi( T) is positive. Since q(T) < 0 and wi( T) < ~' h1 (wi(T), T) > 0. 

The rest of the proof is similar to ( i). 

To prove that (}( T) =I= 0, we use the method of contradiction. Suppose that 

(}( T) = 0 for some T. By ( 4.2.17), h2 ( T) = 1. From ( 4.2.16), we have q2 ( T)-p2( T) = 0. 

This contradicts q2(T) - p2(T) > 0 in (i), (iii), or (iv). For (ii), a(T) < 0 and 

q2(T) -p2(T) + 4a(T) > 0 also implies that q2(T) - p2(T) > 0, another contradiction. 

Therefore B( T) E (0, 7r]. D 

Theorem 4.9. Assume that wi(T) > 0 and e(T) is a solution of (4.2.18) for TE Ji, 

where Ii is a closed interval including 0. Let Mi = maxrEI; Twi(T). If (2n + 1)7r < 
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Mi < 2(n + l)7r, there is at least one intersection of B(T) + 2k7r and Twi(T), where 

1 ~ k ~ n, and n = 1, 2, .... 

4.3 Application 

In this section, we apply our analytical results about ( 4.0.1) to single patch in the 

model studied in Brauer, van den Driessche, and Wang [ 6]: 

S(t) =A - dS(t) - (3S(t)I(t) + "(e-dr I(t - T), 

j(t) = (3S(t)I(t) - b + E + d)I(t), 

R(t) = "fl(t) - "(e-dr I(t - T) - dR(t). 

(4.3.19) 

>From [6], we know if Ro = d("Y~~+d) > 1, model (4.3.19) has a unique endemic 

equilibrium E* = (S*, I*, R*) given by 

S* A 
= dRo' 

A(l - _L) 
J* = Ro 

( 1 - e-dT h + E + d' 

The characteristic equation of system ( 4.3.19) at E* has the same form as ( 4.0.1) 

with 

p(T) = d + (31*, q(T) = 0, a(T) = f3b + E + d)J*, c(T) = -"((3I*e-d7
• (4.3.20) 

Since a 2 ( T) - c2 ( T) > 0 for any T, only condition ( H1) is possible. Note that c( T) -=f 0 

and q( T) = 0, was considered in Section 4.1. 

Applying Lemma 4.1, Theorem 4.3, and Theorem 4.4.(iv.b) to model (4.3.19), 

we obtain the following theorem. 

Theorem 4.10. Assume that Ro= d('Y~~+d) > 1 and the coefficients of (4.0.1) satisfy 

( 4 .3. 20). Consider hypotheses, 
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If either i) or ii) holds, condition (H1) holds and so both w1 ( T) and w2 ( T) are positive. 

Moreover 27r - Bi(T) E [7r, 27r] and satisfies (4.0.9). If there exists an integer k ~ 0 

such that 27r - ei(T) + 2k7r intersects Twi(T) at some Ti, then (4.0.1) has a pair of 

pure imaginary roots ±wi(Ti) where i = 1, 2. 

Proof. See Appendix C. D 

Lemma 3.1 in [6] can be rephrased as follows: If q2 (T) - p2 (T) + 2a(T) ~ 

2J a 2 ( T) - c2 ( T), there exists an interval ( Tz, Tu) such that q2
( T) - p2

( T) + 2a( T) > 0 

and fl(T) = (q2 (T) -p2 (T) + 2a(T)) 2 -4 (a2 (T) - c2 (T)) ~ 0, where either Tz = 0 and 

fl( Tu) = 0, or fl( Tz) = fl( Tu) = 0. This lemma gives the existence of the interval 

[Tz, Tu] on which pure imaginary roots are possible. In Theorem 4.10, we define this 

interval explicitly in terms of the original parameters of the model. We have Tz = 0, 

-1 1 4(/'+E+d)(A,8-d(')'+E+d)) f ") d -1 1 4d2 (/'+E+d) 2 f · ') 
2d n 1'2 (E+d) < Tu or case i , an 2d n 1'2 (A,B-d(l'+E+d)) < Tu or case ii . 

Lemma 3.2 in [6] states that (4.0.1) has a pair of pure imaginary roots ±wi(Ti) 

at T = Ti if and only if there exists an integer k such that the graph of Ok ( T) 

intersects Twi(T) at some Ti, where ok(T) is implicitly defined as the unique solution 

of cot(77) = ~:rn:~~ in the interval [2(k - l)7r, 2k7r] (k = 1, 2, 3 ... ). In Theorem 4.10, 

though our results also depend on the assumption that 27r - ei ( T) + 2k7r and TWi ( T) 

intersect, the function Bi ( T) is explicitly defined by ( 4.1.10). If condition i) Or ii) 

holds, from 27r - ei(T) E [7r, 27r]. Therefore 27r - ei(T) + 2k7r E [2k7r + 7r, 2(k + l)7r], 

which implies that pure imaginary roots can only take values in [2k7r + 7r, 2(k + l)7r]. 

This is consistent with the conclusion in [6] that ok(T) E [2(k - l)7r, 2k7r]. 
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Figure 4.3: Intersection of 2n - (}i ( T) and TWi ( T) for i = 1, 2. 

As pointed out in [6], since e-dT _, 0 as r _, oo and P(>.) = >.2 + (d + 

/3!*) + f3(r + E + d)I* = 0 with I* = A~~~{~o) has all roots with negative real parts, 

complex eigenvalues with positive real parts of (4.0.1) with coefficients satisfying 

( 4.3.20) cannot enter the right half plane of the complex plane from infinity. The 

only way that a pair of complex eigenvalues with positive real part can appear is by 

a pair of roots crossing the imaginary axis. If dRe~~(T)) IT=f; -=/:- 0, by Theorem (A.2), 

system (4.3.19) has a Hopf bifurcation at r = 1\. 

For numerical simulations, we chose A= 0.045, d = 0.001, E = 0.01, / = 0.5, 

f3 = 0.032, and hence R0 = 2.64 > 1. For such parameters, Theorem 4.10.i) can be 

used, since A/3 - 2d(r + E + d) ~ 0.0003 > 0, 4h'+c+d~~~~;r)+c+d)) = 0.62 < 1, and 

T E [O -l ln 4h'+c+d)(A,8-d('Y+c+d)) l ,....., [O 236] Plotting TW (r) and 27r - e (r) in one 
' 2d 'Y2( c+d) "' ' · 1 1 

figure (see Figure 4.3 (Left)), we know there is one intersection at f 1 ~ 16. Figure 

4.3 (Right) indicates that 27r - B1 ( T) intersects TW1 ( T) at f2 ~ 212. 
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We chose constant initial data S(t) = 15, I(t) = 2.5, and R(t) = 20 for 

t E [-T, O]. For T = 15 < 7\, the solution converges to the endemic equilibrium E* 

(see Figure 4.4). For T = 1 7 > 7\, numerical simulation indicates there is a stable 

periodic solution (see Figure 4.5). This confirms that Hopf bifurcation occurs at f 1 

and the endemic equilibrium loss stability resulting a stable periodic solution as T 

increases past f 1 . For the bifurcation at T = f 2 . Simulations (not shown) confirm 

that a secondary Hopf bifurcation occurs resulting in the disappearance of periodic 

solution. 

4.4 Discussion 

Beretta and Kuang [5] considered the general characteristic equation with delay 

dependent coefficients 

(4.4.21) 

where n > m are nonnegative integers and 

n m 

Pn(A, T) = LPk(r)>.k, Qm(A, T) = L qk( T)Ak. 
k=O k=O 

Coefficients qk ( T) and Pk ( T) are assumed to be continuously differentiable functions 

for T ~ 0. Assume that w( T) is a positive root of 

( 4.4.22) 

and B(T) E [O, 2n] is a solution of 

{ 

. B() =I (Pn((iw,T))) 
sm T m Q (" ) , 

m 'lW,T 

(}( ) = -R (Pn((iw, T))) 
COS T e Q (. ) . 

m 'lW,T 

( 4.4.23) 
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11.s~----------------~ 
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400 800 1200 1600 2000 1000 2000 3000 4000 5000 

19 

17 
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15 

13 

11'----.L_--L--~~----'------'---
o 1000 2000 3000 4000 5000 6000 

Figure 4.4: Time series showing that the endemic equilibrium is stable for T = 15 
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a: 

2000 4000 6000 8000 10000 13.5 14.5 15.5 16.5 17.5 18.5 
s 

Figure 4.5: There is a stable periodic solution for T = 17. 
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Define 

S ( ) 
- - B(T) + 2l7r 

l T - T w(T) , l=0,1,2···. 

They claimed that if there exists T* > 0 such that 81 ( T*) = 0 for some l, then a simple 

pair of pure imaginary roots ±iw(T*) of (4.4.21) exists. However, the definition of 

Sz( T) involves functions w( T) and B( T), where w( T) has an analytical expression, but 

B( T) is implicitly defined as a solution of ( 4.4.23). They do not provide analytic 

criteria to determine whether or not a solution of ( 4.4.23) exists. 

In this chapter we considered (4.4.21) with n = 2 and m = 1, i. e., the second 

order transcendental equation. In system ( 4.4.23), 

I ( 
g ( ( iw, T)) ) = h ( ) 

m Q(' ) 1W,T, 
1 'lW, T 

-R ( P2 ( ( iw, T)) ) = h ( ) 
e Q(' ) 2W,T 

1 'lW,T 
( 4.4.24) 

where h1(w, T) and h2(w, T) are defined in (4.0.7) and (4.0.8), respectively. In this 

case, to distinguish between two potential positive roots of ( 4.4.22), we denote them 

as wi(T) (i = 1,2), defined in (4.0.5) or (4.0.6). Condition (H1) or (H2 ) guarantees 

that either w1 ( T), or w2 ( T), or both are positive (see Lemma 4.1). We define ei ( T) 

explicitly in ( 4.1.10) in term of wi ( T). We obtain conditions in term of the coefficients 

of (4.4.21) that tell when a solution ei(T) of (4.4.23) exists with w = wi(T) and show 

that Bi( T) E [O, 7r] provided it is a solution. These conditions were given in Theorems 

4.4, 4.8, and Corollary 4.5. If ei ( T) + 2k7r and TWi ( T) have intersections, then ( 4.4.21) 

has a pair of pure imaginary roots (see Theorem 4.3). But determining whether or 

not there are intersections is also of importance in applications. We showed that 

Bi(T) E [0, 7r] and so Bi(T) + 2k7r E [2k7r, 2k7r + 7r]. If the maximum of TWi(T) is 

greater than 2k7r + 7r and the minimum is less than 2br, then we know that there 

are intersections of ei ( T) + 2k7r and TWi ( T). This is summarized in theorem 4. 7. 
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We applied our method to a single patch of the model in [6] and showed 

that there is a Hopf bifurcations for appropriate parameters. In applications, if all 

parameters are fixed except the delay T, it would be useful to to be able to determine 

whether either of conditions (H1) or (H2 ) holds, for T in some interval. We have 

shown that in most cases one can find such an interval explicitly, and if not one can 

at least find an approximation to that interval. Once this interval is determined, it 

is easier to search for delay values at which Hopf bifurcations occur, using numerical 

simulations. 
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Appendix A 

Preliminary Results 

In example 5.1 of Kuang ([35], p.32), he studied the stability of the equilibrium 

x = 0 of the differential equation 

±(t) = -a(t)x(t) - b(t)x(t - p(t)), (A.0.1) 

where a(t), b(t) and r(t) are bounded continuous functions, and a(t) > 0, 0 < p(t) < 

Pmax' and p(t) < 1. 

Lemma A.1. Considering the scalar equation (A.0.1}. If there exists a > 0 such 

that 

b2 (t) < 4 (a(t) - a) (1 - p'(t)) a, (A.0.2) 

then the equilibrium x = 0 of (A. 0.1) is globally asymptotically stable. If a, b and p 

are constants, (A. 0. 2) reduces to 

b2 < 4 (a - a) a :::;; a 2 , 

which implies that if lbl < a, then the equilibrium x = 0 is globally asymptotically 

stable. 
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To establish the existence of periodic solutions in autonomous delay differ-

ential equations, one of the simplest ways is through Hopf Bifurcation. Below is a 

general Hopf Bifurcation theorem for delay differential equations due to De Oliveira 

[43]. Before stating the theorem we require some notation. 

Consider a one parameter family of neutral delay differential equations: 

(A.0.3) 

where D, L, f, and g are continuously differentiable in a and Xt E C([-r, OJ, IRn) 

(r is a constant), f(a,O) = g(a,O), 8f(a,0)/8xt = 8g(a,0)/8xt = 0, D(a,xt) and 

L(a,xt) are linear in Xt, and 

D(a, x1) = ~ Ak(a)x(t - rk(a)) + 1: A(a, B)x(t + B)dB, 

00 10 
L(a, Xt) = ~ Ak(a)x(t - rk(a)) + -1 A(a, e)x(t + e)de, 

for Xt E C([-r, OJ, IRn). Assume a E IR, where ro(a) = 0, rk(a) E (0, 1], and Ak(a), 

Bk(a), A(a, B), and B(a, B) satisfy 

~(IA,(a)I + B,(a)I) + 1: (IA(a, B)I + IB(a, B)l)dB < oo. 

It is easy to see that the characteristic matrix 

is continuously differentiable in a E IR and 6 (a, >.) is an entire function of >.. Making 

the following assumptions on (A.0.3): 

(S1) There exist constants a > 0, b > 0 such that, for all complex values >. 
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such that IReAI < a and all a E JR, the following inequalities hold: 

det (t, Ak( a )e-Ac,(a)) ;. b, 

det (t, Ak (a )e-'"• (a) + 1: A( a, B)e'° dB) ;. b. 

(82 ) The characteristic equation det6(a, A) = 0 has, for a = a 0 , a simple 

purely imaginary root Ao= iv0 , v0 > 0, and no root of det6(a0 , A) = 0, other than 

±iv0 , is an integral multiple of Ao. 

(83) Re 8>-J~o) -::/= 0. 

Now we are ready to state the Hopf bifurcation Theorem for (A.0.3). 

Theorem A.2. (Hopf Bifurcation Theorem, see Kuang [35} p.60). In (A.0.3), as

sume that (81) - (83 ) hold. Then there is an E > 0 such that, for a E JR, lal ~ E, 

there are functions a(a) E JR, w(a) E JR, a(O) = a 0 , w(O) = 2n/v0 , such that (A.0.3) 

has an w(a)-periodic solution x*(a)(t), that is continuously differentiable int, and a 

with x*(O) = 0. Furthermore, for la - 0:0 1 < E, lw - (2n/vo)I < E, every w-periodic 

solution x(t) of (A.0.3) with lx(t)I < E must be of this type, except for a translation 

in phase; that is, there exists a E (-E, E) and b E JR such that x(t) = x*(a)(t + b) for 

all t E JR. 

In the study of differential equations, one must often estimate a function that 

satisfies a differential inequality. An important technique to address that problem 

is the following Comparison Theorem (see [38] or [41]). Before proceeding to the 
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Comparison Theorem, we require the following notation for Dini derivatives: 

D+u(t) = lim sup h-1 [u(t + h) - u(t)], 
h-+O+ 

D + u ( t) = lim inf h-1 
[ u ( t + h) - u ( t)], 

h-+O+ 

D-u(t) = lim sup h-1 [u(t + h) - u(t)], 
h-+O-

D _ u ( t) = lim inf h - l [ u ( t + h) - u ( t)], 
h-+O-

where u E IC[(t0 , t0 +a), IR]. Let Ebe an open set of (t, u) in IR2 and g E IC(E, IR). 

Consider the scalar initial value differential equation 

u(t) = g(t, u), u(to) = uo. (A.0.4) 

The concepts of maximal and minimal solutions of (A.0.4) are now introduced. 

Definition A.3. Let v(t) be a solution of the scalar differential equation (A.0.4) on 

[t0 , t0 +a). Then v(t) is said to be a maximal solution of (A.0.4) if, for every solution 

u(t) of (A.0.4) existing on [to, t0 +a), the inequality 

u(t) :::;; v(t), t E [to, t 0 + a) (A.0.5) 

holds. A minimal solution w(t) may be defined similarly by reversing the inequality 

(A.0.5). 

Theorem A.4. (Comparison Theorem, Theorem 1.4.1 in {38}, p.15) Let E be an 

open set of (t, u) in IR2 and g E IC(E, IR). Suppose that [t0 , t0 +a] is the largest 

interval in which the maximal solution r(t) of (A.0.4) exists, and S is an at-most 

countable subset of [t0 , t0 +a). Let m(t) E IC[(t0 , t0 +a), IR], (t, m(t)) E E fort E 

[to, to+ a), m(to) :::;; uo, and for a fixed Dini derivative, 

Dm(t) :::;; g(t, m(t)), t E [t0 , t 0 +a) - S. 
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Then, 

m(t) ~ r(t) for t E [ t0 , to + a). 

We now states the Basic Implicit Function Theorem taken from [1]. 

Consider maps F: Ax U-+ Y, where A and U are open subsets of Banach 

space T and X, respectively, and Y is a Banach space. 

Theorem A.5. Let (.A*, u*) EA x U. Suppose that 

(i) F is continuous and F has the u-partial derivative in Ax U and Fu : Ax U-+ 

L(X, Y) is continuous. 

(ii) Fu(A*, u*) E L(X, Y) is invertible. 

Then the map w : Ax U -+ T x Y, given by w(.A, u) = (.A, F(.A, u)), is locally invertible 

at (.A*, u*) with continuous inverse <I>. If, in addition, FE C1(A x U, Y), then <I> is 

ci. 

The following lemma is usually called the Fluctuation Lemma. For a proof, 

see Hirsh, Hanisch, and Gabrial [26]. 

Lemma A.6. Let f : R+ -+ R be a differentiable function. If lim inft_,00 f (t) < 

limsupt_,00 J(t), then there are sequences tm i oo and Sm i oo such that for all m 

and f (tm) -+ lim sup j(t) as m-+ oo, 
t-+oo 

and f(sm) -+ lim inf j(t) as m-+ oo,. 
t-+oo 

The proof of the following useful lemma can be found in [20]. 

Theorem A. 7. Let a E (-oo, oo) and f : [a, oo) -+ R be a differentiable function. 

If limt_,00 f (t) exists (finite) and the derivative function j(t) is uniformly continuous 

on (a, oo), then limt-+oo j(t) = 0. 

129 



Appendix B 

Existence and Uniqueness of 

Solutions for a Class of DDEs with 

Simplified Initial Data. 

In (1.2.4), s(t) does not involve a delay term, thus it is only necessary to know s(O), 

rather than s(t) fort E [-7, O] to obtain the existence and uniqueness of solutions. 

We prove a more general form of this result in Theorem B.l. 

Consider the following system of delay differential equations with initial data 

u(t) = F(u(t), v(t), v(t - 7)), 

v(t) = G(u(t), v(t), v(t - 7)) (B.0.1) 

u(to) = Uo E lRm, v(B) = ¢(8) E C([to - 7, t - OJ, lRn), 

where u(t) is a vector function mapping t to lRm, v(t) is a vector function mapping 

t to JRn, and both functions F and G are continuous in each of their arguments and 

map to ]Rm or lRn, respectively. Note that in system (B.0.1), u(t) does not involve 
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delay. By simplified initial data, only those functions (e.g. v ( t)) that involve delay 

require initial data on E [to - T, t0]. The other functions (e.g. u(t)) need only be 

specified at t 0 . 

Without loss of generality, in the following theorem, we assume t 0 = 0. 

Theorem B.1. Suppose D is an open subset of~m x ~n x C([-r, O], ~n) and func

tions F and G are both continuous on D. If (u0 , ¢(0), c/>(B)) ED, then there exists a 

solution (u(t), v(t)) of (B.0.1) passing through (u0 , cf>(O), c/>(B)) fort~ 0. If F and G 

are both C1 on D, the solution is unique. 

Proof. Fort E [O, r], one hast - TE [-T, O] and v(t - r) = cf>(t - T). System 

(B.0.1) becomes 

u = F(u(t), v(t), c/>(t - T)), 

v = G(u(t), v(t), cf>(t - r)), (B.0.2) 

u(O) = Uo E ~m, v(O) = ¢(0) E ~n. 

This changes the original problem to the existence of solutions of ordinary differential 

equations (B.0.2) with initial conditions u(O) = u0 and v(O) = c/>(O). Since F and 

G are continuous, by Theorem 2.3 and 3.1 in Miller and Michel [41], there exists a 

solution (u(t),v(t)) defined on [O,r] satisfying (B.0.2). If F and Gare both C1, by 

Corollary 4.3 in Miller and Michel [41], the solution is unique. Similarly, using the 

method of steps in Bellman and Cooke [4], we can prove the existence and uniqueness 

of solutions for any t ~ T. 
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Appendix C 

Proof of Theorem 4.10 

First assume that i) holds. From A,B - 2d( / + E + d) ~ 0, 

Adding d( I + E + d) to both sides and noting I - 1e-dr > 0 gives 

Therefore, 

which is equivalent to 

From 

A,B - d(! + E + d) d 
d > ' / + E + d - /Cr 

,BI* > d. 

1 l (4(/+E+d)(A,8-d(/+E+d))) 
T ~ - 2d n / 2 ( E + d) ' 

we have 
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Since / + E + d - 1e-dr > E + d, 

4(/+E+d)(A/3-d(/+E+d)) 4(/+E+d)(A/3-d(/+E+d)) 2 -2dr ---------- < ~I e . / + E + d - 1e-dr E + d 

Noting ~ l* = A,8-d('y+e+d) we have 
I-' ')'+e+d--ye-dr ' 

Multiplying (31* on both sides and rearranging gives 

From (C.0.1), 

p2(7) = (d+ (31*)2 ~ (2/31*)2 ~ (!(3l*e-dr)2 = c2(r). 
(3 l * (! + E + d) a ( T) 

It follows that -4p2(r)a(r) + 4c2(r) ~ 0. Therefore, 

(q2(r) - p2 (r) + 2a(r))2 - 4 (a2(r) - c2(r)) 

= (-p2(r) + 2a(r))2 -4 (a2(r) - c2(r)) 

= p4 (r) - 4p2(r)a(r) + 4c2(r) 

~ -4p2(r)a(r) + 4c2(r) ~ 0. 

By (4.3.20), a 2(r) - c2(r) > 0. By (C.0.2), 

2 c2 (r) a 2 (r) 
p (r) < a(r) < a(r) = a(r) < 2a(r). 

Hence 

Therefore, condition (H1) holds. 
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Now assume that ii) holds. From A/3 - d(r + 2E + 2d) ::;; 0, 

Adding d(r + E + d) to both sides and noting that Ro = d(r~~+d) > 1, we obtain 

Therefore, 

d A/3 - d(r + E + d) 0 
~ > ' 'Y + E + d - 1e-dr 

which is equivalent to 

d ~ ;3I*. 

From 

T ~ _ 2_ ln ( 4d2 (r + E + d) 2 ) 
~ 2d 'Y2(A/3 - d(r + E + d)) ' 

we have 

Since "( + E + d > 'Y + E + d - 1e-dr, 

2 _ 2dr 4d2(r + E + d) 2 4d2(r + E + d)(r + E + d - "(e-dr) 
'Y e ~ ~ ------------

A/3 - d( 'Y + E + d) A/3 - d( 'Y + E + d) 

Noting f.l I* = A,6-d(r+E+d) we have 
/.J /'+E+d-")'e-dT l 

Multiplying ;31* on both sides and rearranging gives 
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From (C.0.3), 

It follows that -4p2 (r)a(r) + 4c2 (r);;?; 0. Therefore, 

(q2 (r) - p2(r) + 2a(r)) 2 
- 4 (a2 (r) - c2 (r)) 

= (-p2 (r) + 2a(r)) 2 
- 4 (a2 (r) - c2 (r)) 

= p4 (r) - 4p2 (r)a(r) + 4c2 (r) 

;;?; -4p2 (r)a(r) + 4c2 (r);;?; 0. 

By (4.3.20), a 2(r) - c2(r) > 0. By (C.0.4), 

Hence 

c2
( r) a 2

( r) 
p2 (r) < -- < -- = a(r) < 2a(r). a(r) a(r) 

Therefore condition (Hi) holds. 

(C.0.4) 

In either case, (H1 ) holds. By Lemma 4.1, both w1(r) and w2 (r) are positive. 

By Theorem 4.4 (iv.b), 271" - Bi(r) E [7r, 271"] satisfies (4.0.9). 

If 271" - ei(r) + 2k7r intersects rwi(r) at some fi, by Theorem 4.3, (4.0.1) has 

a pair of pure imaginary roots ±wi(fi). D 
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