Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16750
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSmith, James E.-
dc.contributor.authorMironov, Marina-
dc.date.accessioned2015-02-12T14:40:02Z-
dc.date.available2015-02-12T14:40:02Z-
dc.date.issued2004-09-
dc.identifier.urihttp://hdl.handle.net/11375/16750-
dc.description.abstract<p>The shallow soils of a former orchard area in Point Pelee National Park, near Leamington, Ontario, Canada have elevated concentrations of chlorinated pesticides above the regulatory limits. Previous studies in this area have shown that the DDT, DOE and ODD are highly persistent with an estimated half-life of DDT in the range of 15-30 years. In 2002 a pilot-scale field remediation experiment involving the application of cyclodextrin was conducted. This experiment resulted in substantial decrease of DDT, DDE and DDD concentrations in the upper soil layer within the remediation grid. Soil samples were collected within the treatment plots a year after the cyclodextrin application was completed to assess any further changes in concentrations of DDT, DDE and DDD. Groundwater samples were collected in the vicinity of the soil remediation grid which provided DDT, DDE and DDD concentrations in groundwater to assess the vertical mobilization of the compounds. Mass balance of the "soil - groundwater" system was calculated in order to estimate the degradation rate of DDT within the remediation zone. The 2-D unsaturated/saturated flow and solute transport numerical model "HYDRUS 2-D" was used to gain a better estimation of DDT, DDE and DDD mass and distribution in groundwater. The effectiveness of cyclodextrin application for remediation of DDT contaminated soils was assessed. After remediation treatments had stopped, there was no indication of further degradation of DDT and its metabolites in the upper layer of soil. The groundwater concentration of DDT, DDE and DDD near the remediation grid was 10-100 times higher than background value. This increase in groundwater concentration is a direct indication of DDT, DDE and DDD mobilization by cyclodextrin. The estimates of total mass of DDT in groundwater are less than 1% of mass leached from the soil. It was concluded that the application of cyclodextrin promoted enhanced co-metabolic biodegradation of DDT and it metabolites DDE and DDD. The estimated half-life for the displaced DDT was less than 2 months. This work demonstrates that cyclodextrin can be a highly effective agent for remediation of DDT contaminated soils.<p>en_US
dc.language.isoenen_US
dc.subjectDDT, DDE, DDDen_US
dc.subjectPoint Pelee National Parken_US
dc.subjectchlorinated pesticidesen_US
dc.subjecthalf-lifeen_US
dc.titleA Field and Modeling Study of DDT in Soil and Groundwater Following In-Situ Soil Remediationen_US
dc.typeThesisen_US
dc.contributor.departmentEnvironmental Scienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mironov Marina .pdf
Open Access
Main Thesis 36.87 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue