Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16613
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProtas, Bartosz-
dc.contributor.authorMelkoumian, Sergei-
dc.date.accessioned2015-01-09T16:01:52Z-
dc.date.available2015-01-09T16:01:52Z-
dc.date.issued2015-
dc.identifier.urihttp://hdl.handle.net/11375/16613-
dc.description.abstractThis investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible, inviscid fluid such that the flow is potential and time-independent in a suitable frame of reference. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the Föppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the Föppl vortex wake some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the Föppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is shown to have an unbounded total drift area. By providing a systematic account of the wake effects on the drift, the results of this study will allow for more accurate modeling of hydrodynamic stirring.en_US
dc.language.isoenen_US
dc.subjectdriften_US
dc.subjectwakesen_US
dc.subjectFöppl flowen_US
dc.subjectKirchhoff flowen_US
dc.titleWake Effects on Drift in Two-Dimensional Inviscid Incompressible Flowsen_US
dc.typeThesisen_US
dc.contributor.departmentComputational Engineering and Scienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
SMthesis.pdf
Open Access
1.58 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue