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Abstract

This investigation analyzes the effect of vortex wakes on the Lagrangian displacement

of particles induced by the passage of an obstacle in a two-dimensional incompressible,

inviscid fluid such that the flow is potential and time-independent in a suitable frame

of reference. In addition to the trajectories of individual particles, we also study their

drift and the corresponding total drift areas in the Föppl and Kirchhoff potential

flow models. Our findings, which are obtained numerically and in some regimes

are also supported by asymptotic analysis, are compared to the wakeless potential

flow which serves as a reference. We show that in the presence of the Föppl vortex

wake some of the particles follow more complicated trajectories featuring a second

loop. The appearance of an additional stagnation point in the Föppl flow is identified

as a source of this effect. It is also demonstrated that, while the total drift area

increases with the size of the wake for large vortex strengths, it is actually decreased

for small circulation values. On the other hand, the Kirchhoff flow model is shown to

have an unbounded total drift area. By providing a systematic account of the wake

effects on the drift, the results of this study will allow for more accurate modeling of

hydrodynamic stirring.

iv



Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Bartosz Protas, for all

of his support throughout this research endeavour and for having the confidence to

offer me this opportunity. His mentorship has allowed me to grow both academically

and personally, and for this I would like to extend my sincere gratitude. I very much

look forward to our future collaboration! I would also like to thank the members

of my examination committee, Dr. Nicholas Kevlahan and Dr. Stephen Tullis, for

all of their input and recommendations about my thesis. In addition, I would like

to acknowledge the School of Computational Science and Engineering as well as the

Mathematics and Statistics department at McMaster University which I consider to

be a great work environment, full of many genuine and friendly people. Finally, I am

deeply indebted to my family and friends for their continuous support.

v



Notation

Symbol Description

Ω Fluid domain

∂Ω Domain boundary

∇ Vector differential operator

D
Dt

Material derivative

n Unit normal vector

x A point in Ω

t Time

u Fluid velocity

p Fluid pressure

ρ Fluid density

b Body forces on the fluid

U Object velocity

a Object acceleration

F Force on the object

ω Vorticity

ω Vorticity pseudo-scalar
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ΓC Circulation

V Complex velocity

W Complex potential

φ Scalar potential

φ Vector of unit potentials

ψ Streamfunction

U Flow velocity

a Cylinder radius

Γ Vortex strength

ξ Particle drift

D Total drift area

M Added mass

A Added mass tensor

B Body area

K Complete elliptic integral of the first kind

E Complete elliptic integral of the second kind

k Elliptic modulus

u Incomplete elliptic integral of the first kind

E Incomplete elliptic integral of the second kind

dn Jacobi elliptic function
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Chapter 1

Introduction

When a body passes through an unbounded fluid, it induces a net displacement of

fluid particles. The difference between the initial and final positions of a fluid particle

is defined as the particle’s “drift” [1], and plays an important role in characterization

of the stirring occurring in multiphase flows [2] and due to swimming bodies [3].

Hereafter we will exclusively focus on flows with velocity fields stationary in a suitable

steadily translating frame of reference, and will consider flows symmetric with respect

to the flow centerline. Analysis of drift in time-dependent flows is more involved and

some efforts in this direction have been made using methods of chaotic dynamics

[4, 5].

Following the seminal study by Munk [6], the phenomenon of drift has recently

received a lot of attention in the context of mixing in the oceans caused by swimming

organisms [7]. Since the ocean is vertically stratified, the vertical motion of solid

bodies such as zooplankton or larger mammals mixes the lower fluid layer which

has a higher density with the higher fluid layer which has a lower density. This

process causes a variation in the potential energy in the oceans which is important
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for ocean circulation and also for nutrient transport. The study [7] performed in

situ measurements of swimming jellyfish through different fluid layers to validate a

computational model of a moving sphere in potential flow in addition to circular and

elliptical 2D swimmers in viscous flow. The empirical measurements of that study

show that about 90% of the potential energy increase in the fluid can be attributed to

induced drift as opposed to other causes such as turbulent wake mixing. In another

study [3], the effect of drift due to multiple cylindrical or spherical swimmers in a

potential fluid on a passive target particle transporting a scalar quantity such as

heat, salt or a nutrient was studied. When typical physical values corresponding to

krill in the ocean were considered for the swimmer, the effective diffusivity due to

drift was found to be a considerable source of diffusion in the fluid. Furthermore,

rough estimates showed that when the effect of viscosity was included, there was an

increase in the effective diffusivity. Most of the theoretical descriptions in past studies

of stirring rely on irrotational flow models used to compute or estimate the drift (an

exception to this is a recent study [8] focused on the Stokesian approximation).

For a more complete theory on drift in the real world, more effects need to be

considered. For instance, the recommended considerations in [3] include, “boundary

layers, more realistic shape distributions for the swimming bodies, wakes, spatial

correlations between swimmers, patchiness and schooling, finite correlation length of

swimming, distribution of velocities, and buoyancy and stratification effects.” The

goal of the present contribution, the results of which have been published in [9], is to

understand the effect of vortex wakes on the drift in inviscid, incompressible flows.

This will be accomplished in the two-dimensional (2D) setting using a combination

of careful numerical computations and mathematical analysis. The set-up of the

2
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Figure 1.1: Schematic of the problem indicating representative particle trajectories and the
coordinate systems used. The body is translated from left to right during an infinite time.
The solid looping curves indicate the fluid particles’ trajectories. The dashed lines indicate
the initial and final resting positions of a line of particles that are initially vertically aligned.

problem is illustrated in Figure 1.1 with (r, θ) and (r′, θ′) representing, respectively,

the polar coordinates in the fixed and moving frame of reference.

The structure of the thesis is as follows: We begin by introducing the theoretical

framework of potential flows and providing a thorough background on drift. Then, in

Chapter 2, we introduce the different vortex flows considered in our study and iden-

tify their key parameters. In Chapter 3 we give a precise definition of drift and the

total drift area, explaining how these quantities can be evaluated in a given flow and

rederiving some key analytical results regarding individual particle drift. Computa-

tional results are presented in Chapter 4 together with a validation of the numerical

approaches, whereas their discussion and a posteriori justification via asymptotic

analysis are offered in Chapter 5. Conclusions and outlook are deferred to Chapter 6.

3
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Finally, Appendix A gives some background on added mass which is a concept used

in calculating the total drift area.

1.1 Euler System

In fluid mechanics there exists a framework of describing idealized flow, called the

Euler system or Euler flow [1, 10]. This system, typically derived by considerations of

the conservation of mass, momentum and energy laws, is idealized in the important

sense that the fluid has no viscosity, which may be a suitable approximation for the

more complete Navier-Stokes equations in the case when the Reynolds number of the

flow becomes large. For incompressible flows, where the rate of change of kinetic

energy in a portion of fluid equals the rate at which the pressure and body forces do

work, the Euler equations may be written as [10]:

ρ
Du
Dt

= −∇p+ ρb, (1.1a)

∇ · u = 0, (1.1b)

in the fluid region we are considering, Ω. A point (x, y) ∈ Ω will be represented as

x = [x, y]T , u(x) = [ux, uy]
T is the fluid velocity, p is its pressure, ρ is a constant for

the fluid density, b = [bx, by]
T is any body forces acting on the fluid such as gravity.

The vector differential operator is given by ∇ :=
[
∂
∂x
, ∂
∂y

]T
(the symbol “:=” defines

the quantity on the left-hand side with the quantity on the right-hand side) in two

dimensions. The D
Dt

operator is called the material deriative and is defined as

D

Dt
:=

∂

∂t
+ u ·∇. (1.2)

4
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In addition, for any rigid boundary ∂Ω in the fluid, we require the following boundary

condition to be satisfied:

u · n = 0, (1.3)

where n is the unit normal vector pointing away from the interior of the boundary and

into the fluid. For example, for a circular cylinder of unit radius, n = [cos θ′, sin θ′]T .

This boundary condition, also referred to as the no through-flow boundary condition,

implies that the fluid cannot penetrate any walls. If the boundary is also in motion

with velocity U = [Ux, Uy]
T in the fluid, then the boundary condition becomes

u · n = U · n. (1.4)

With the given set of unknowns, u and p, these equations allow for a complete

description of the flow. Note that, unlike in the Navier-Stokes equations, there is no

viscosity term and that the “no-slip" boundary condition, u = 0 on ∂Ω, does not

apply.

Besides the velocity field u(x, t) that describes the fluid flow, there is a physical

quantity called the vorticity field, ω(x, t), which is used to describe the rotation of

the flow. It is defined as

ω = ∇× u, (1.5)

such that when the flow is 2D and in the xy-plane, ω is a vector that points in the

z-direction, thus, in the present context vorticity can be considered as a pseudo-scalar

given by

ω =
∂ux
∂y
− ∂uy

∂x
. (1.6)

5



M.Sc. Thesis - Sergei Melkoumian McMaster - CSE

A more global property involving vorticity is the circulation, which may be more

intuitively associated with the observed “rotation" of the fluid. If C is a simple,

smooth, oriented closed contour of an oriented surface S, the fluid circulation of the

velocity field u on C is given, due to Stokes’ theorem, by

ΓC =

∮
C

u · dx =

∫
S

n · (∇× u)dS =

∫
S

n · ωdS. (1.7)

1.2 Potential Flow

An important class of fluid flows that may be used to approximate many flows in

nature are called potential flows (also called “harmonic" or “irrotational"). In these

flows, the velocity field can be expressed as the gradient of some scalar potential.

That is,

u = ∇φ. (1.8)

As a consequence of our flow being incompressible, we may write

∇ · u = ∇2φ = 0 (1.9)

so we can see that the potential φ is a harmonic function that satisfies Laplace’s equa-

tion. Thus, we may take advantage of numerous results in mathematical analysis that

characterize such types of functions. In addition, these flows are called irrotational

because the vorticity is zero:

ω = ∇× u = ∇× (∇φ) = 0, (1.10)

6
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almost everywhere, with the exclusion of isolated points or sheets. However, it is

important to note that even for irrotational flows in Ω where the vorticity is zero,

it is possible that the circulation is non-zero. Such a result would suggest that the

source of vorticity giving rise to the circulation lies outside Ω.

For two-dimensional flows the conditions of incompressibility and irrotationality

imply that

∂ux
∂x

+
∂uy
∂y

= 0, (1.11a)

∂ux
∂y
− ∂uy

∂x
= 0. (1.11b)

Before proceeding, we will introduce the complex variable setting. A point (x, y) ∈

Ω will be represented as a complex number z = x+ iy, where i :=
√
−1. An overbar

will denote complex conjugation. The fluid velocity (which will also be referred to

as the complex velocity) will be denoted V (z) = (ux − iuy)(z). Thus, the equations

in (1.11) are the Cauchy-Riemann equations for the analytic function V (z). The

complex velocity is defined as the complex derivative of the complex potential, an

analytic function given by W (z) = (φ + iψ)(z) where φ and ψ are, respectively, the

scalar potential, cf. (1.8), and the streamfunction. Thus, the velocity components of

the flow may be related to the potential and streamfunction in the following way:

[ux, uy] =

[
∂φ

∂x
,
∂φ

∂

]
=

[
∂ψ

∂y
,−∂ψ

∂x

]
. (1.12)

The streamfunction ψ(x, y) is particularly useful when visualizing fluid flow. When

the flow is independent of time, i.e., steady, particles follow trajectories that corre-

spond to level sets where ψ is a constant. In other words, when the flow is steady

7
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these level sets, called streamlines of the fluid flow, are equivalent to the particle

pathlines (the trajectories of individual fluid particles). When the flow is unsteady,

streamlines can only be produced for a particular instance in time, thus they are less

useful.

1.3 Potential Flow Examples

In this section we will briefly introduce some of the crucial building blocks that are

necessary for describing the models that we are ultimately interested in. More specif-

ically, the wakeless potential flow and Föppl flow in Chapter 2 rely on fundamental

models described by singularities in potential flow that will be introduced here. The

bulk of these simple examples are obtained from [11].

A source or a sink in two-dimensional potential flow at position z0 ∈ C has the

complex potential

W (z) =
m

2π
log (z − z0), (1.13)

where m ∈ R is referred to as the strength of the source/sink and describes the rate of

emission of volume per unit time. It is easy to verify via (1.12) that when m > 0, this

corresponds to a source where fluid is emitted away from the singularity and when

m < 0, it is a sink where fluid is being transferred into the singularity. In addition,

the streamlines, coinciding with the level sets of the streamfunction ψ, are straight

lines that extend radially from the point while the potential lines described by φ are

circles.

A point vortex may be considered in analogy to a source/sink except where the

streamlines and lines of constant potential are swapped. This is akin to swapping the

8
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real and imaginary parts of W (z) which can be achieved by multiplying the complex

potential by i. The vortex strength is written as Γ ∈ R, and so we may write that

for a point vortex with flow circulating counter-clockwise,

W (z) =
Γ

2πi
log (z − z0), Γ > 0. (1.14)

In the case when the circulation is clockwise, Γ < 0. See Figure 1.3a for the potential

and streamline pattern. It is interesting to note that even in the presence of a point

vortex, the vorticity ω of the fluid region Ω (which excludes the point z0), remains

zero. This is because in the case of a point vortex, vorticity is concentrated at a single

point. A buoyant object placed in the vicinity of z0 may circumnavigate the point

vortex following the particle paths described by the level sets of ψ, however, the point

vortex cannot induce a change in the object’s angular velocity.

Suppose that we place a source and a sink with equal strength |m| > 0 near to

each other around the origin, with a separation distance given by ε. Then the complex

potential, given by the sum of their individual complex potentials, is

W (z) = −m
2π

log (z − ε) +
m

2π
log (z + ε)

= −m
2π

log
[
z
(

1− ε

z

)]
+
m

2π
log
[
z
(

1 +
ε

z

)]
= −m

2π
log
[
1− ε

z

]
+
m

2π
log
[
1 +

ε

z

]
. (1.15)

Taking the Taylor expansion for the logarithm terms, and making the substitution

9
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µ = mε/π, this becomes

W (z) = −m
2π

(
− ε
z
− ε2

2z2
− ε3

3z3
− ...

)
+
m

2π

(
ε

z
− ε2

2z2
+

ε3

3z3
− ...

)
=
µ

z
+
µε2

3z3
+ ... (1.16)

Then, if we take m→∞ and ε→ 0 simultaneously such that µ remains a constant,

we get that the first term in (1.16) is all that remains and that W (z) = µ/z. This is

the expression for the potential of a dipole or doublet of strength µ. Its streamlines

consist of circles of various sizes tangent to a horizontal line passing through the origin

as seen in Figure 1.3b.

Uniform flow has the complex potential W (z) = Ue−iαz where α is the angle of

the flow with respect to the x-axis and U ∈ R is its magnitude. We will only consider

the case when α = 0. This leads us to a convenient tool when constructing potential

flows in domains with certain types of boundaries:

Theorem (Milne-Thomson Circle Theorem [1]). Let a harmonic flow have complex

potential f(z), analytic in the domain |z| ≤ a. If a circular cylinder of radius a is

placed at the origin, then the new complex potential is W (z) = f(z) + f(a2/z).

If we would like to obtain the complex potential of uniform flow past a circular

cylinder with speed U and radius a, we may apply the theorem to find that

W (z) = Uz +
Ua2

z
. (1.17)

Note that the second term is the equivalent of a dipole at the origin with µ = Ua2.

We will return to this model when we discuss the wakeless potential flow model in

10
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Figure 1.2: The flow around a corner (z-plane) being mapped to uniform flow (zeta-plane)
via the conformal map ζ(z) = z

π
α , α = π/2.

Chapter 2.1. For streamlines, see Figure 2.1a.

In our discussion of potential flows so far, we have been able to obtain the formulas

for the complex potential with relative ease, in part, because (except in the case of

the circular cylinder) we are dealing with an unbounded domain with no boundaries.

There are situations, however, where solid boundaries such as walls or edges in the

fluid need to be considered. As will be discussed later, these boundaries may in fact

represent vortex sheets such the one that we will see in Kirchhoff flow. For these

types of problems, we may use a useful tool in complex analysis called a conformal

map.

Conformal maps are functions from one complex domain to another that preserve

the angles between curves [12]. One useful property of conformal maps is that a

harmonic function transformed from one domain to another will remain harmonic.

This suggests that if we can find a conformal map from one domain or geometry to

another, then we may easily evaluate the complex potential, which is the harmonic

function that we are interested in.

For example, suppose we wish to determine the flow around a corner. To achieve

this, we may use the complex potential for uniform flow and transform the domain,

via a conformal map, to a domain with a corner in which the flow satisfies the correct

boundary conditions. Thus, suppose that z represents the physical domain featuring

11
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Figure 1.3: Level sets for potential (thin black solid line) and streamfunction (thick blue
solid line) in the case of a point vortex (a), dipole (b) and corner flow (c), respectively.

a boundary with a corner, and ζ(z) is the mapped domain corresponding to a uniform

flow where we already know that the complex potential is W (ζ) = ζ. There exists a

conformal map, ζ(z) = z
π
α [13], where α is the angle of the corner, which maps points

in the upper half-plane to points in the first quadrant that are bounded by a boundary

with a corner. Figure 1.2 shows the two boundaries and flows corresponding to the

complex variables z and ζ. Evaluating this example for α = π/2, we find that the

flow appears as shown in Figure 1.3c.
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1.4 Drift and Wakes

Drift has been investigated for over a century with the earliest work belonging to

Maxwell [14] who showed that, when the passing object is a circular cylinder inducing

a simple potential flow, then surrounding fluid particles follow trajectories in the

form of “elastica” curves (a more modern account of this problem can be found in

monograph [11]). For a given fluid particle, an elastica-shaped trajectory approaches

a straight line parallel to the path of the moving cylinder for points far upstream and

downstream, and exhibits a loop with a fore-and-aft symmetry (when the particle

travels along this loop, the cylinder is underneath it). The historical origins and

some other applications of elasticas are surveyed in [15]. Another major contribution

to this area is due to Darwin1 who, in addition to particle trajectories, studied the

problem of drift area and drift volume which are global quantities characterizing

the particle drift in a given flow. Darwin’s proposition [17], also referred to as a

“theorem”, is a key result relating the drift area or volume of a moving body to its

added mass. Its utility consists in the fact that the latter quantity tends to be easier

to evaluate for flows past objects with complex shape. There has been some debate

[18, 19, 20, 21] concerning a rigorous proof of this result in its full generality which

was centered on the evaluation method for conditionally convergent integrals. Details

of this discussion are however beyond the scope of this thesis. The relation between

drift volume and added mass was investigated in a controlled experiment [22] where

it was found that the shape of the displaced material surface is similar to that of

the inviscid case and that the added mass coefficient measured for a spherical bubble

for Reynolds numbers ranging from Re = 500 to 1000 is consistent with its value
1Charles Galton Darwin (1887-1962), an English applied mathematician, who was the grandson

of Charles Darwin known for evolutionary theory [16].
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obtained from Darwin’s theorem. Connections between the Darwinian drift and the

Stokesian drift, related to the wave motion, were explored in [23].

The concept of drift was recently generalized for the case of flows induced by prop-

agating vortices (vortex rings) in [24]. Motivated by biofluid applications, a recent

study [8] investigated the effects of vortex wakes on the drift induced by simple swim-

mers moving in the Stokes fluid. On the other hand, recognizing that the concept of

drift is idealized, in the sense that the object is assumed to travel during infinite time,

corrections resulting from finite travel times were obtained leading to the definition of

partial drift [21, 25]. This quantity was studied in recent experimental investigations

concerning stirring by swimmers [24, 7]. Another related quantity is the mean squared

displacement of particles which can be used to compute the effective diffusivity [3].

A trailing wake is the region of recirculating flow typically found behind a moving

object in a fluid. See the classical album [26] for a visual illustration of various types

of wakes. Due to the complexity of the wake region, which may indeed be turbulent,

there are various models that may be used as approximations. In the present study

we provide a thorough account of the effects of different vortex wakes on the drift in

inviscid flows. We will focus on 2D flows, because they offer simple solutions amenable

to straightforward analysis, so that closed-form results can be obtained.

14



Chapter 2

Model Problems

In this Chapter we describe the three model flows we will consider in our study.

In addition to the wakeless potential flow for which the questions of drift are well

understood and which will serve as a reference, we will also investigate the Föppl and

Kirchhoff flows which will be shown to have quite different properties. These two

flows are often invoked as the possible inviscid limits of steady viscous Navier-Stokes

flows [27]. For simplicity, in all three cases the cylinder radius and the free stream at

infinity have unit values, a = 1 and U = −1.

We will consider a circular cylinder of unit radius (a = 1) passing through an

incompressible inviscid fluid in a 2D unbounded domain Ω. The flow satisfies the

continuity and momentum equations introduced in (1.1) and we will consider the

case when ρ = 1 and b = 0. The cylinder passes with its center along the x-axis

from x = −∞ to x =∞ with constant unit speed. Hence, in the cylinder’s frame of

reference there is a uniform stream at infinity such that u→ U x̂ as |x| → ∞, where

U = −1 and x̂ is the unit vector associated with the x-axis. In this frame of reference,

the flow is steady, i.e., u = u(x). Euler system (1.1) is known to admit nonunique
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solutions and different such solutions will be discussed below.

Hereafter, without the risk of confusion, we will interchangeably use the vector and

complex notation for various vector quantities. The velocity field is incompressible

and irrotational, thus to reiterate some of the notation from Chapter 1.2, it can be

expressed in terms of the complex potential W (z) = (φ + iψ)(z) as V (z) = dW/dz

and V (z) = (ux − iuy)(z), where φ and ψ are, respectively, the scalar potential and

the streamfunction.

2.1 Wakeless Potential Flow

The construction of the wakeless potential model of a circular cylinder in uniform

flow was discussed in Chapter 1.3 and is provided here for completeness. Making

the substitutions a = 1 and U = −1 in (1.17), this flow is defined by the complex

potential

W (z) = −
(
z +

1

z

)
(2.1)

which does not involve any parameters. The flow field exhibits no separation and is

characterized by symmetry with respect to both OX and OY axes. The streamline

pattern and the velocity fields are illustrated in Figures 2.1a,b.

2.2 Föppl Flow

The Föppl vortex system [28] is a one-parameter family of solutions constructed by

superimposing a pair of opposite-sign vortices with circulations Γ > 0 and −Γ located

symmetrically at z1 = x1 + iy1, y1 > 0, and z1, where the overbar denotes complex

conjugation, on the flow with potential (2.1). The resulting potential of the Föppl
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flow is thus

W (z) = −
(
z +

1

z

)
+

Γ

2πi
log

(
z − z1

z − 1
z1

)
− Γ

2πi
log

(
z − z1

z − 1
z1

)
. (2.2)

The locus of equilibrium vortex locations, the so-called Föppl curve, is described by

the algebraic relation

r2
1 − 1 = 2 r1 y1, (2.3)

where r1 :=
√
x2

1 + y2
1. The circulation of the vortices is related to their position

through

Γ = 2π
(r2

1 − 1)(r4
1 − 1)

r5
1

. (2.4)

For a given circulation Γ > 0, the Föppl system is a limiting solution (as the vortex

area goes to zero) of a family of Euler flows with finite-area vortex patches discovered

by Elcrat et al. [29] (see also [30]). The Föppl system features a closed recirculation

region with size growing with Γ. As is evident from (2.2), in the limit Γ → 0 the

wakeless potential flow from Chapter 2.1 is recovered. The streamline pattern and

the velocity field of a representative Föppl flow are illustrated in Figures 2.1c,d. The

Föppl system has been successfully employed as a model in a number of studies

concerning the stability and control of separated wake flows [31, 32, 33, 34, 35].

2.3 Kirchhoff Flow

The Kirchhoff flow is a manifestation of the free-streamline theory of the 2D ideal flows

[36]. It features an object with two free streamlines in the upper and lower half-planes

that separate the external fluid from the region behind the object, called the cavity
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region, where the velocity is zero and the pressure is constant. Commonly, the object

used for these types of flows is a flat plate, however, for consistency with the wakeless

potential and the Föppl flows, we will consider here a 1st-order approximation of a

circular cylinder presented in [37]. The Kirchhoff flow is interesting as an inviscid

model, because it features an infinite wake and a finite drag.

We will first clarify the notation: variable z denotes the physical plane we are

interested in, where the circular cylinder is of unit radius centered at (0, 0) and the

flow is moving from right to left, whereas variable Z refers to the physical plane

as used in [37], where, by the particular choice of conformal maps, the cylinder has

a radius of approximately 1.77 and is centered at approximately (1.38, 0) with flow

going in the opposite direction. We can define a map to switch between the two

spaces

Z(z) := −1.770434824562303 z + 1.377445608362303. (2.5)

The complex potential is defined as a modified Levi-Civita transformation [37]

W (τ) = −
(
τ − 1

τ

)2

4
(2.6)

where τ = ρeiσ and 0 ≤ ρ ≤ 1, −π/2 ≤ σ ≤ π/2. Unlike the models described

in Chapter 2.1 and 2.2, potential (2.6) is not given in terms of the variable in the

physical space and additional transformations are needed, so that it can be evaluated

at z or Z. An intermediate map ζ(τ) may be used to connect the τ and Z planes

ζ =
dZ

dW
(2.7)
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and for a 1st-order approximation of a circular cylinder we have

ζ(τ) =
1 + τ

1− τ
e−0.9426τ+0.0191τ3 . (2.8)

Then, using the chain rule, we may write

dZ

dτ
=

dZ

dW

dW

dτ
, (2.9)

where the first derivative factor is (2.8) and the second can be derived from (2.6).

Thus, Z(τ) can be determined up to a constant through the integration

Z(τ) =

∫ τ0

a

dZ

dW

dW

dτ ′
dτ ′

= −1

2

∫ τ0

a

(
1 + τ ′

1− τ ′

)(
1 +

1

τ ′2

)(
τ ′ − 1

τ ′

)
e−0.9426τ ′+0.0191τ ′3 dτ ′ (2.10)

where τ0 is an arbitrary constant. Integral (2.10) does not lend itself to analytical

treatment, however, a generalized series expansion for the integrand was found up to

O(τ 2) around τ = 0, so that, after integration, we obtain

Z(τ) = −1

2

(
c1τ
−2 + c2τ

−1 + c3 log τ + c4τ + c5τ
2
)

+ Z0, (2.11)

where c1 = 0.5, c2 = 1.0574, c3 = −0.55904738, c4 = −0.8828122332, c5 = 0.1113906656

and Z0 is some constant.

From (2.7) and (2.8), we can now compute the velocities in the Z-plane in terms
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of the τ variable

ux(τ) = <
(

1

ζ(τ)

)
, (2.12a)

uy(τ) = −=
(

1

ζ(τ)

)
. (2.12b)

Since we are interested in the flow in the direction opposite to the one in the Z-plane

[37], we set V (z) = (ux − iuy)(z) = (−ux − iuy)(τ). In order to be able to evaluate

velocities (2.12) at a given location Z in the physical space, we need to invert map

(2.11), i.e., find τ = Z−1(z). This is done by applying Newton’s method to

F (τ) = −1

2

(
c1τ
−2 + c2τ

−1 + c3 log τ + c4τ + c5τ
2
)
− Z = 0. (2.13)

Once τ is found, the velocity at the required location can be computed using (2.12).

The streamlines and velocity field of the Kirchhoff flow can be seen in Figures 2.1e

and 2.1f.
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Figure 2.1: Streamlines (left column) and velocity field (right column) of the wakeless po-
tential flow (top row), Föppl flow with Γ = 8.84 (middle row) and in the Kirchhoff flow
(bottom row).
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Figure 2.2: Streamlines (left column) and velocity fields (right column) relative to a frame
of reference where the cylinder is in motion. See the caption in Figure 2.1 for a description
of the model types.
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Chapter 3

Drift: Definition and Calculation

3.1 Individual Particle Drift

In much the same way that Maxwell [14] and Darwin [17] studied the problem of

drift, we will consider the trajectories and drifts of individual particles in the fluid

as the cylinder passes. Let the initial position of the particle at t = 0 be x0 and

[x(t;x0), y(t;x0)]T denote the corresponding particle trajectory. Then, the displace-

ment, or drift, of the particle initially at x0 is defined as

ξ(x0) :=

∫ ∞
−∞

ux(x(t;x0), y(t;x0)) dt, (3.1)

where the horizontal velocity component ux is given in the absolute frame of reference.

Integral (3.1) is improper and the question of its convergence will be addressed further

below. By changing the integration variable from time t to the polar angle θ′ in the

moving frame of reference, cf. Figure 1.1, it can be transformed to an integral (still

improper) defined over a finite interval θ′ ∈ [0, π] with the bounds corresponding to
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the position of the particle in front and behind the obstacle. Rewriting the velocity

in the polar coordinate system in the moving frame of reference as u = urr̂′ + uθθ̂
′
,

where {r̂′, θ̂
′
} are the two unit vectors, we have for the azimuthal component

uθ(r
′, θ′) = r′

dθ′

dt
=⇒ dt =

r′ dθ′

uθ(r′, θ′)
(3.2)

and (3.1) becomes

ξ(x0) :=

∫ π

0

r′
ux(r

′, θ′)

uθ(r′, θ′)
dθ′. (3.3)

Form (3.3) is more convenient for some of the manipulations we will need to perform

when deriving the drift in wakeless flow (Chapter 2.1).

3.2 Total Drift Area

The key quantity of interest in practical applications is the total drift area D repre-

senting the integral displacement of particles initially located on a line perpendicular

to the path of the obstacle at an infinite upstream distance (Figure 1.1)

D :=

∫ +∞

−∞
ξ(ψ) dψ = 2

∫ ∞
0

ξ(y∞) dy∞, (3.4)

where y∞ is the transverse coordinate of the particle’s position when t→ −∞ (with a

slight abuse of notation, ξ may be equivalently considered a function of x0, y∞ or ψ).

The two integrals in (3.4) are equal, because ψ → y∞ as x→∞. The total drift area

D involves two nested improper integrals (in expressions (3.1) and (3.4)). Whether

this quantity is actually well-defined has been the subject of a debate [18, 19, 20, 21]

with the conclusion that this is indeed the case, provided the order of integration is as
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used here, i.e., first with respect to the streamwise coordinate and then with respect

to the transverse coordinate. On the other hand, reversing the order of integration

will result in a conditionally convergent expression.

There are two ways to evaluate the total drift area D. First, we can use a suitably

transformed definition of formula (3.4) combined with the particle displacement given

in (3.1). From the practical point of view, the most convenient way to evaluate the

improper integral (3.1) is to set the particle positions x0 at t = 0 and then obtain the

trajectories by integrating the system

dx(t)

dt
= u(x(t)), x(0) = x0 (3.5)

forward and backward in time, i.e., for t → ±∞, for different x0. Since the initial

particle positions in formula (3.4) are given at infinity, they need to be transformed

to positions with finite streamwise locations, e.g., x0 = [0, y0]T . Since for a particle

on a given streamline, ψ is constant and equal to some C, we have

C = ψ(0, y0) = lim
x→∞

ψ(x, y∞) = y∞. (3.6)

Defining g(y0) := ψ(0, y0) = y∞ as the map between the y-coordinates of the particle

at x = 0 and at x =∞, we obtain

dy∞
dy0

= g′(y0), (3.7)

so that (3.4) becomes

D = 2

∫ ∞
1

ξ(g(y0))g′(y0) dy0, (3.8)
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where the lower bound is now set to unity, because the particle on the streamline

with ψ = 0 has the coordinate y0 = 1 at x0 = 0. We note that function g(y0) will be

different for different solutions of Euler system (1.1).

The second method to evaluate the total drift area is to use Darwin’s theorem

[17] which stipulates that D = M , where M is the added mass, and the fluid density

is assumed equal to the unity. See Appendix A for a discussion on added mass. For

our problem, the added mass is given by a line integral over the contour C which is

the boundary of the largest region with closed streamlines

M =

∮
C

φnx ds, (3.9)

where nx is the x-component of the unit normal vector. In addition to the boundary

of the obstacle, contour C also comprises the boundary of the recirculation region, if

it is present in the flow. The reason is that, in obtaining relation (3.9), the divergence

theorem cannot be applied on regions where singularities (point vortices) are present.

Alternatively, one can bypass evaluation of integral (3.9) by the application of

Taylor’s added mass theorem [38]. If we consider the union of our cylinder and

the recirculation region as a single “body” B in motion, this theorem allows us to

compute the added mass in terms of the singularities within this region. Suppose

that our composite body contains P sources and sinks with locations zi and strength

mi. In addition, it contains Q doublets (or dipoles) with strength µj and continuously

distributed sources and sinks with area density defined by σ. Then for irrotational

26



M.Sc. Thesis - Sergei Melkoumian McMaster - CSE

flows, the generalized form of the added mass given in [39] is

Aα1 +Bα1 + i(Aα2 +Bα2) = 2πρ

∫
B

σαz dA+
P∑
i=1

miαzi +

Q∑
j=1

µjα

 , α = 1, 2,

(3.10)

where A is the added mass tensor and B a tensor representing the mass of the dis-

placed fluid per unit area of the body with entries given by

Bαβ = ρ

∮
C

xβnα ds, α, β = 1, 2 (3.11)

in which x1 = x, x2 = y, u1 = ux, u2 = uy. For our problem, formula (3.10) simplifies

quite significantly. In particular, since we are considering rectilinear motion in the

x-direction of a body symmetric with the OX axis, we need only consider the element

of the added mass tensor with α, β = 1 so we may take the real part of (3.10) and

drop these indices. Further, as there are no continuous sources or sinks and ρ = 1,

we get for the added mass (now writing A = M)

M = 2π<

[
P∑
i=1

mizi +

Q∑
j=1

µj

]
−B. (3.12)

In addition, since ds is a infinitesimal distance along the body, we have nxds = dy.

Thus, B can be simplified and interpreted as the area of the cylinder augmented by

the area of the wake

B =

∮
C

xnx ds =

∮
C

x(y) dy. (3.13)

We remark that relation (3.12) can be interpreted as consisting of two parts: a “uni-

versal” part represented by the first term involving only the far-field expansion of the
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velocity field induced by the obstacle together with its vortex system and a second

part characterizing the specific flow and represented by B. An analogous decompo-

sition of the total drift area was obtained in [8] for a swimmer in the Stokes flow.

While all three approaches, involving definition formula (3.4), added-mass relation

(3.9) and Taylor’s theorem (3.12)–(3.13), are equivalent as far as the evaluation of

the total drift area is concerned, the first one offers additional insights in the form of

the particle trajectories responsible for the observed drift.

3.3 Analytical Lagrangian Trajectories and Drift in

the Wakeless Potential Flow

These classical results, recalled here for completeness, were derived by Maxwell [14]

and were also surveyed in [11]. A key relation, which makes this problem analytically

tractable, allows one to express the radial coordinate of the particle in the cylinder’s

frame of reference r′ in terms of its azimuthal angle θ′ with the streamfunction ψ used

as a parameter. In other words, the expression for the streamfunction for uniform

flow past a circular cylinder

ψ = r′ sin θ′
(

1− a2

r′2

)
, (3.14)

can be rearranged to give

r′(θ′) =
ψ +

√
ψ2 + 4a2 sin2 θ′

2 sin θ′
. (3.15)
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Figure 3.1: Schematic of the angles between the cylinder and the target particle (θ′) as well
as the angle that the tangent to the particle’s curvature makes with the OX axis (η).

Additionally, when expressed using the angle η made by the tangent to the particle

trajectory at a given point P and the OX axis (see Figure 3.1, which shows the

moment the cylinder is at the origin, O) as the dependent variable and the arc-length

s along the particle trajectory as the independent variable, the equation describing the

particle trajectories may be determined. In particular, rewriting the streamfunction

in (3.14) in terms of sin2 θ′ and differentiating both sides with respect to y (it should

also be noted that y and y′ are equivalent under the transformation between the

coordinate systems in Figure 1.1 so we may write y′ = y), we obtain

sin2 θ′ =
y2

a2
− ψy

a2

2 sin θ′ cos θ′
dθ′

dy
=

(
2y

a2
− ψ

a2

)
dθ′

dy
=

(
2y
a2
− ψ

a2

)
sin (2θ′)

. (3.16)

According to Figure 3.1, we may write η = 2θ′. For an infinitesimal line element,
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ds, along a path taken by a particle we also have dy/ds = sin (2θ′). Therefore,

dη

ds
=
d(2θ′)

dy

dy

ds
= 2 sin (2θ′)

dθ′

dy
(3.17)

and thus, after substituting (3.16) the particle trajectories are of the form

dη

ds
=

4

a2

(
y − 1

2
ψ

)
, (3.18)

implying that the trajectories are examples of “elasticas”, a family of curves with a

long history in mathematics [15]. The quantity dη/ds represents the curvature of the

trajectory and the connection with elasticas was first recognized by Milne-Thomson

[11]. However, for our purposes, it is more convenient to start from equation (3.5)

in which the independent variable is changed from t to θ′ as shown in (3.2). More

specifically, we have the following velocity components in our two coordinate systems

ux(r
′, θ′) =

dx

dt
=
a2 cos (2θ′)

r′2
(3.19)

uθ(r
′, θ′) = r′

dθ′

dt
= sin θ′

(
a2

r′2
+ 1

)
. (3.20)

which, when substituted into (3.3) (we will refer to the drift in the wakeless potential

flow as ξ1), yield

ξ1(y0) =

∫ π

0

r′
ux(r

′, θ′)

uθ(r′, θ′)
dθ′

=

∫ π

0

a2 cos (2θ′)

r′ sin θ′
(
a2

r′2
+ 1
)dθ′ (3.21)

for the drift. We may substitute for a2/r′2 by solving (3.14). Furthermore, using
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relation (3.15) for r′ and remembering that ψ remains constant during a particle’s

motion, we may now obtain an expression for ξ1 that depends solely on θ′ as the

independent variable,

ξ1(y0) =

∫ π

0

a2 cos (2θ′)

r′ sin θ′(2− ψ
r′ sin θ′

)
dθ′

=

∫ π

0

a2 cos (2θ′)

2 sin θ′
(
ψ±
√
ψ2+4a2 sin2 θ′

2 sin θ′

)
− ψ

dθ′

=

∫ π

0

a2 cos (2θ′)

±
√
ψ2 + 4a2 sin2 θ′

dθ′. (3.22)

From now on, we will neglect the negative variant of the denominator because, due

to symmetry, we can restrict our calculations to the upper half-plane only.

We will have to rely on some special functions to evalute the integral in (3.22). In

particular, we will use the complete elliptic integrals of the first and second type

K =

∫ π/2

0

1√
1− k2sin2 θ

, dθ, (3.23a)

E =

∫ π/2

0

√
1− k2sin2 θ dθ (3.23b)

where the parameter k ∈ R is called the elliptic modulus. Starting with equation
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(3.22), we obtain

ξ1(y0) =

∫ π

0

a2 cos (2θ′)√
ψ2 + 4a2 sin2 θ′

dθ′

=

∫ π

0

a2(1− 2 sin2 θ′)√
ψ2 + 4a2 sin2 θ′

dθ′

=

∫ π

0

a2√
ψ2 + 4a2 sin2 θ′

dθ′ −
∫ π

0

2a2 sin2 θ′√
ψ2 + 4a2 sin2 θ′

dθ′ (3.24)

=R− S

where R and S refer to the two integrals in equation (3.24). We will first solve for R

by making the substitution, θ = θ′− π
2
, such that sin θ′ = cos θ and sin2 θ′ = 1−sin2 θ.

After some rearrangning, we get,

R =

∫ π/2

−π/2

a2√
ψ2 + 4a2(1− sin2 θ)

dθ

=
a2√

ψ2 + 4a2

∫ π/2

−π/2

1√
1− 4a2

ψ2+4a2
sin2 θ

dθ. (3.25)

Next we can define the parameter in the elliptic function to be k2 := 4a2

ψ2+4a2
. Since the

integrand is an even function, the integration can be reduced to the interval [0, π/2].

Therefore, we obtain

R =
1

2
k2

(
2a

k

)∫ π/2

0

1√
1− k2sin2 θ

dθ. (3.26)

Which is exactly the complete elliptic integral of the first kind. Thus, we conclude

that

R =
1

2
k2

(
2a

k

)
K. (3.27)
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Next, to solve for S, we follow the same approach,

S = 4a2

∫ π/2

0

(1− sin2 θ)√
ψ2 + 4a2(1− sin2θ)

dθ

= k2

(
2a

k

)∫ π/2

0

(1− sin2 θ)√
1− k2 sin2 θ

dθ

= k2

(
2a

k

)[
K −

∫ π/2

0

sin2 θ√
1− k2 sin2 θ

dθ

]

=

(
2a

k

)[
k2K −

∫ π/2

0

k2 sin2 θ

1− k2 sin2 θ

√
1− k2 sin2 θdθ

]

=

(
2a

k

)[
k2K −

∫ π/2

0

(
1

1− k2 sin2 θ
− 1

)√
1− k2 sin2 θdθ

]

=

(
2a

k

)[
k2K −K + E

]
. (3.28)

Thus, we have expressed R and S in equation (3.24) in terms of complete elliptic

integrals of the first and second kind. Now putting the two together for the drift, we

arrive at

ξ1(y0) = R− S =
2a

k

[(
1− 1

2
k2

)
K − E

]
. (3.29)

This is the equation which allows us to compute the individual particle drift in the

wakeless potential flow. It relies on elliptic functions which cannot be written in terms

of elementary functions, however, they may be evaluated using modern numerical

tools. We note that the initial position of the particle is encoded in the value of the

streamfunction ψ appearing in the expression for k.

To extend the analysis using elliptic functions further, it is possible to find the par-

ticle’s displacement x as a function of the incomplete elliptic integral. The incomplete
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elliptic integrals of the first and second type may be written as

u :=

∫ θ′−π/2

0

1√
1− k2 sin2 θ

dθ,

E(u) :=

∫ θ′−π/2

0

√
1− k2 sin2 θ dθ.

(3.30)

where the parameter k2 is chosen as before. Then x(u) is given by

x(u) =
a

k

[(
1− 1

2
k2

)
u− E(u)

]
. (3.31)

We note that the drift corresponding to t ∈ (−∞,∞), cf. (3.29), is then obtained by

taking the limit θ′ → π/2 in (3.30).

Likewise, it is possible to determine the particle’s vertical position in terms of

special functions. The Jacobi elliptic function may be defined as

dn(u) :=

√
1− k2 sin2

(
θ′ − π

2

)
. (3.32)

Then, solving the streamfunction expression (3.14) for y and substituting in dn(u),

y(u) =
a

k

[
ψ√

ψ2 + 4a2
+ dn(u)

]
=
a

k

[
dk

dψ
+ dn(u)

]
. (3.33)

To conclude, in this section we have shown that with a careful analysis of the

wakeless potential flow model, it is possible to obtain closed-form expressions for the

resulting particle displacement as well as the drift in terms of elliptic functions. This

will provide an important benchmark for which to compare our numerical results in

Chapter 4.1.
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As regards the total drift area for the wakeless potential flow, using Darwin’s

theorem as in (3.9), the total drift area (which we will refer to as D1 in the wakeless

potential flow) can then be shown to be

D1 = π. (3.34)

These results will be illustrated in Chapter 4.2.
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Chapter 4

Results

In this Chapter we compare the trajectories of individual particles, their drift and the

corresponding total drift areas in the three flows introduced in the previous Chapter.

While, as reviewed in Chapter 3.3, these quantities can be determined analytically

in the wakeless potential flow, they have to be computed numerically in the case of

the Föppl and Kirchhoff flows, and the computational techniques are described and

validated in Chapter 4.1. Finally, the main results are presented in Chapter 4.2.

4.1 Numerical Computation of Particle Trajectories,

Drift and Total Drift Area in the Föppl and

Kirchhoff Flows

Since explicit relations of the type (3.15) are not available for the Föppl and Kirchhoff

flows, we need to resort to numerical computations in order to determine the particle

trajectories, drift and the total drift area. The particle trajectories are computed as
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described in Chapter 3 by solving system (3.5) with the initial data x0 = [0, y0]T ,

where y0 > 1 is a parameter (we note that, when y0 = 1 in Föppl flow, the particle

is on the streamline connected to the stagnation point and the drift ξ(1) is infinite).

In the case of the Föppl flow the particle trajectories are additionally parameterized

by the vortex circulation Γ. The velocity on the right-hand side of (3.5) is obtained,

respectively, by complex-differentiating potential (2.2) and using expressions (2.12)

in the two cases. System (3.5) is integrated for different values of y0 and, in the

case of the Föppl flow, Γ using MATLAB routines ode23 and ode45 with adaptive

adjustment of the time step. Numerical evaluation of the drift, given by an improper

integral (3.1), is a subtle issue requiring judicious choice of the truncation [−T, T ]

of the original unbounded interval (−∞,∞). Questions concerning the partial drift,

evaluated for finite times t ∈ [−T, T ], were investigated in [21, 25] where it was

shown that such truncation of the integration domain leads to nontrivial corrections

to the drift as defined in (3.1). In order to exclude these finite-time effects from

the numerical integration, one has to make sure that T is chosen sufficiently large.

For Föppl flow, this is achieved by setting T close to realmax, the largest positive

floating-point number in the IEEE double-precision standard [40], which is of the

order O(10300) and then balancing the accuracy with the computational time by

adjusting the relative and absolute tolerances, RelTol and AbsTol, in the routines

ode23 and ode45. The drift actually converges to a number which is within a very

small tolerance of the exact result well before t reaches T = O(10300), however,

we select large values of T to ensure that we achieve the largest accuracy possible

(which may not be necessarily required to obtain satisfactory estimates in many

applications). Owing to the adaptive adjustment of the time step employed in these
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routines, the total computational time required for a single particle trajectory does

not typically exceed one minute on a state-of-the-art workstation even for the finest

tolerances. This approach is validated by computing the particle trajectories x(t; y0)

and the associated drift ξ(y0) numerically for the wakeless potential flow (obtained

setting Γ = 0 in (2.2)) and then comparing them to the analytical expressions (3.29),

(3.31) and (3.33) (since these formulas involve special functions, care must be taken

to enforce a required level of precision in the evaluation of these functions as well).

The results obtained for a single trajectory with y0 = 2 are presented in Figure 4.1a,

where we show a segment of the particle trajectory computed numerically and given

by expressions (3.31) and (3.33), and in Figure 4.1b in which we show the difference

between the exact drift value ξ1(2) = 2.011398641052742 × 10−1 and its numerical

approximation ξ̂1(2) for different fixed RelTol and varying AbsTol. As is evident

from Figure 4.1b, the error in the evaluation of the drift is rather small and decreases

algebraically with the refinement of both RelTol and AbsTol, Thus, in all subsequent

calculations we will use routine ode45 with RelTol = AbsTol = 10−13.

Unlike in the case of the wakeless and Föppl flow where T was allowed to extend

close to realmax, in Kirchhoff flow we have to restrict the truncation of the time

axis to T = 103 which is due to the failure of Newton’s method applied to (2.13)

to converge for such large values of t. However, since the amount of data obtained

despite such a truncation in time is sufficient and since the structure of the flow

advecting the particles does not change much when |t| > T , we will compensate for

this by extrapolating the velocity for large times. Since, as will be shown below, the

velocity field following the particle trajectory is for sufficiently large t a power-law

38



M.Sc. Thesis - Sergei Melkoumian McMaster - CSE

−0.2 −0.1 0 0.1 0.2 0.3

1.5

1.6

1.7

1.8

1.9

2

x

y

(a)

6 8 10 12 14

−13

−12

−11

−10

−9

−8

−7

−6

− log (AbsTol)

lo
g
|ξ
1
(2
)
−
ξ̂ 1
(2
)
|

 

 

(b)

Figure 4.1: (a) Particle trajectories corresponding to y0 = 2 in the wakeless potential flow
obtained numerically with RelTol = AbsTol = 10−13 (symbols) and evaluated analytically
using formulas (3.31) and (3.33) (solid line); (b) error between the corresponding drift ξ1(2),
cf. (3.29), and its numerical approximation ξ̂1(2) computed using routines ode23 (open
symbols) and ode45 (filled symbols) for RelTol = 10−10 (squares), 10−11 (stars), 10−12

(circles), and 10−13 (triangles). In this example, it takes t ≈ O(1016) time units for the
particle to converge to machine precision.

function of time, this extrapolation will be performed using the formula

h(t) = ctβ, (4.1)

where c ∈ R and β < 0, using 10 data points corresponding to the largest available

times.

As regards evaluation of the total drift area D, three different approaches are

used: definition formula (3.4), or more conveniently (3.8), added-mass formula (3.9)

and Taylor’s theorem (3.12)–(3.13). In the first approach the parameter space y0 is

discretized in such a way that the relative variation of ξ(y0) between two adjacent

discrete values of y0 would not exceed 1%. The function g(y0) and its derivative
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needed in (3.8) are identified for the Föppl flow as follows

g(y0) = −
(
y0 −

1

y0

)
+

Γ

2π

[
log

(√
x2

1 + (y0 + y1)2√
x2

1 + (y0 − y1)2

)

+ log


√(

x1
x21+y21

)2

+
(
y0 − y1

x21+y21

)2

√(
x1

x21+y21

)2

+
(
y0 + y1

x21+y21

)2


]
, (4.2)

g′(y0) = −
(

1 +
1

y2
0

)
+

Γ

2π

[
y0 + y1

x2
1 + (y0 + y1)2

− y0 − y1

x2
1 + (y0 − y1)2

+
y0 − y1

x21+y21(
x1

x21+y21

)2

+
(
y0 − y1

x21+y21

)2 −
y0 + y1

x21+y21(
x1

x21+y21

)2

+
(
y0 + y1

x21+y21

)2

]
. (4.3)

Concerning the computation of the total drift area via Taylor’s theorem (3.12)–(3.13),

the two Föppl vortices and their images inside the cylinder make the contributions

m = ± Γ
2πi

each, whereas the dipole at the origin representing the cylinder with unit

radius contributes µ = 1. Therefore, equation (3.12) becomes

M = 2π<
(

Γ

2πi
z1 −

Γ

2πiz1

− Γ

2πi
z2 +

Γ

2πiz2

+ 1

)
−B

= 2π + 2Γ

(
y1 −

y1

x2
1 + y2

1

)
−B.

(4.4)

Since it does not appear possible to find an analytic expression for B representing

the area of the recirculation bubble, it has to be evaluated numerically using (3.13).
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4.2 Comparison of Particle Trajectories, Drift and

Total Drift Area in Flows with Different Wake

Models

The particle trajectories corresponding to several different initial positions x0 =

[0, y0]T are shown in Figure 4.2 for the wakeless potential flow, the Föppl flow with

different circulations Γ and for the Kirchhoff flow. The initial positions corresponding

to the indicated cylinder locations are marked with circles, whereas crosses indicate

the particle positions at the same instances of time in the different cases. First, we see

that in the wakeless potential flow (Figure 4.2a) all the particle trajectories have the

form of elastica curves symmetric with respect to the OY axis. The presence of the

vortex wakes in the Föppl flows breaks the fore-and-aft symmetry of the trajectories

and, for small values of y0, spawns a second loop on the trajectory which becomes

larger for increasing vortex circulations Γ. The presence of this secondary loop results

from the fact that, for sufficiently small y0, the transverse component uy of the par-

ticle velocity must change sign when the particle is flowing around the recirculation

region. The total drift areas produced by the fluid displacements shown in Figures

4.2(a) and (c) are approximately equal, cf. (3.8), even though the individual particles

with the same initial locations have quite different trajectories.

Next, in Figure 4.3a, we show the drift ξ of the individual particles as a function

of the circulation Γ and, in Figure 4.3b, as a function of the initial distance y0 form

the horizontal axis. Since this is how it is often presented, the latter data is replotted

in Figure 4.3c using the linear scaling with the drift ξ marked on the horizontal

axis and the vertical axis representing y∞, cf. (3.6). In Figure 4.3a we see that the
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(a) wakeless potential flow (Γ = 0)

(b) Γ = 1.9663

Figure 4.2: Particle trajectories for different initial conditions x0 = [0, y0]T in the wakeless
potential flow (a), the Föppl flow with different circulations (b,c,d) and the Kirchhoff flow
(e). The x’s represent the particle positions at unit time intervals, whereas the o’s correspond
to the particle positions at t = 0, at which the cylinder, recirculation bubble for Föppl flow
and the cavity for Kirchhoff flow are also indicated.
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(c) Γ = 3.595

(d) Γ = 8.8357

Figure 4.2: (Continued, see previous caption for details)
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(e) Kirchhoff flow

Figure 4.2: (Continued, see previous caption for details)

dependence of the drift ξ on the vortex circulation Γ is not monotonous regardless of

the initial position of the particle. Moreover, in a certain range of Γ there are two

initial positions y0 such that the corresponding drift ξ(y0) is equal to the drift in the

wakeless flow. While for sufficiently large circulations the drift ultimately increases

as compared to the wakeless flow (corresponding to Γ = 0), for small values of Γ the

drift is actually reduced. In other words, for every y0 > 1 there exists a particular

circulation Γ0 > 0 such that the Föppl flow has the same drift ξ as the wakeless

flow. This circulation is a nonmonotonous function of the distance y0 from the flow

centerline. In addition to confirming these observations, Figure 4.3b shows that drift

ξ(y0) is a decreasing function of y0 which exhibits two distinct asymptotic regimes

(see Chapter 5 for more details on this).

It turns out that, regardless of the initial position x0 = [0, y0]T , in the Kirchhoff

flow drift (3.1) is unbounded. This is evident from Figure 4.4 showing an extrapolation
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using formula (4.1) of the velocity component ux(t) following the particle trajectory

for large positive and negative times. We observe that, while for positive times the

asymptotic behavior is characterized by the exponent β = −1.1172, for negative times

the exponent is β = −0.5092 implying that ux(t) is not in fact integrable. Although

for brevity in Figure 4.4 the data was shown for one trajectory only (corresponding

to y0 = 5) analogous results we also obtained for other trajectories. Thus, the drift

data is not shown for the Kirchhoff flow in Figure 4.3.

Finally, in Figure 4.5, we show the dependence of the total drift area D on the

vortex circulation Γ computed using the three methods discussed in Chapter 4.1, all

of which show excellent agreement. We see that the total drift area exhibits a well-

defined minimum which is a manifestation of the competing effects observed in Figure

4.3a. The smallest drift area D = 2.93 is achieved for Γ = 1.97, whereas for Γ = 3.6

drift area is approximately D = π, the same as in the wakeless potential flow. The

particle trajectories corresponding to these two cases are shown in Figures 4.2b and

4.2c.
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Figure 4.3: Dependence of drift ξ on (a) the vortex circulation Γ for initial particle posi-
tions y0 ∈ {1.001, 1.002, . . . , 1.01, 1.02, . . . , 1.1, 1.2, . . . , 2.0} (larger y0 corresponding to lower
curves), (b) the initial distance y0 and (c) the distance y∞ from the flow centerline measured
at infinity, cf. (3.6), for the circulation values indicated in the legend.
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(a) t < 0, β = −0.5092.
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(b) t > 0, β = −1.1172.

Figure 4.4: Behavior of the velocity component ux following the trajectory of the particle
located at y0 = 5 at t = 0 in Kirchhoff flow for large (a) negative and (b) positive times (solid
line); the dashed line represents the power-law fit (4.1) with the exponent values indicated
in the captions.

Figure 4.5: Total drift area D in the Föppl flows as a function of the vortex circulation
Γ evaluated based on definition formula (3.8) (empty circles), added-mass formula (3.9)
(crosses) and Taylor’s theorem (3.12)–(3.13) (dashed line).
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4.3 Discussion

The particle trajectories in Föppl and Kirchhoff flows are quite different (cf. Figures

4.2b-d and 4.2e). In Föppl flow for certain values of Γ and y0 the particle trajecto-

ries exhibit a secondary loop corresponding to the instant of time when the particle

change direction to circumnavigate the recirculation bubble. An interesting, and per-

haps somewhat unexpected, finding is that while for large values of circulation Γ the

presence of the recirculation region in Föppl flow increases the total drift area, an

opposite effect occurs for smaller values of Γ (Figure 4.3a). The increase of the total

drift area for large Γ can be understood by analyzing the particle trajectories in the

context of changes to the flow topology. Inspection of Figure 4.2a, corresponding to

the wakeless potential flow, reveals that the largest displacement occurs when the

particle is close to one of the stagnation points (front or rear). The presence of the

wake vortices in Föppl flow introduces another stagnation point (see Figure 2.1c) in

the neighborhood of which particles can be trapped and dragged for a long time.

This effect is illustrated in Figure 4.6 where we show several particle trajectories in

the neighborhood of the separation point where the boundary of the recirculation

zone meets the obstacle. Symbols on the trajectories mark positions at equal time

intervals, indicating that the particles closer to the separation point are trapped there

for a longer time. Passage near this separation point corresponds to the dragging of

the particle before the second loop in the trajectories shown in Figures 4.2b-d. There

are some interesting similarities and differences with respect to the wake effects on

the drift in Stokes flows reported in [8]. In both cases the drift of an individual par-

ticle decays as y−3
0 when the particle’s position becomes large, cf. (5.2). This is a

consequence of the fact that both the Föppl flow considered here and the Stokesian
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swimmer flow studied in [8] have a dipolar far-field representation (even though the

spatial dimensions are different). On the other hand, in contrast to the behavior

observed here, in the Stokes case a significant reflux (negative particle displacements)

was observed resulting in a negative total drift volume corresponding to large wake

sizes. This negative displacement which was observed for particles far from the obsta-

cle shows that there are some differences in the far-field representation of velocity in

3D Stokesian and 2D inviscid flows that affects drift. More specifically, in the Stoke-

sian case, the sign of the far-field depends on the distinction whether the swimmer

(i.e. obstacle) is a pusher or a puller. However, when computing the drift assuming

the far-field expansion of the velocity, this distinction only affects the less significant

terms, and the net result is that the drift is negative.

In regard to Kirchhoff flow we demonstrated that drift ξ of individual particles is

in fact not bounded and, consequently, the total drift area is not defined either. This

finding should not be surprising, given that Kirchhoff flow has an infinite open wake

(and hence can be “seen” by the particles as a moving body of an infinite extent). We

note that another instance in which an unbounded total drift volume was found was

the Stokes flow past a spherical droplet [41]. Since like Kirchhoff flow and in contrast

to the Stokesian swimmers analyzed in [8], this flow is characterized by a finite drag,

we may by analogy conjecture that unbounded total drift area is a feature of steady

flows in unbounded domains which exhibit a nonzero drag.
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Figure 4.6: Neighborhood of the stagnation point (marked with a large dot) where the
recirculation zone separatrix (dashed line) separates from the obstacle boundary (thick solid
line). Particle trajectories are shown with thin solid lines with markers indicating positions
at equal time intervals.
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Chapter 5

Asymptotic Analysis

In this section we derive expressions characterizing the drift when the parameters

take some limiting values. The asymptotic study of the drift in the wakeless potential

flow as y0 → 1 and y0 → ∞ is presented in [1], and our approach will build on this

analysis.

As was discussed in Section 4.2, the drift of a particle in Föppl flow depends on

two parameters, namely, the vortex circulation Γ and the initial distance y0 between

the particle and the flow centerline.

A first, trivial, observation is that in the limit Γ → 0 the drift of the wakeless

potential flow is obtained uniformly in y0. Here we will consider the limit y0 →

∞. Since the required transformations are rather complicated, requiring the use of

symbolic algebra tools (Maple), for brevity below we will only highlight the key steps.

We start by taking the Taylor expansion of the velocity component ux in equation

(3.5) about the initial position of the particle x0 = [0, y0]T and truncate it at the

order O(‖x − x0‖2). This is justified by the observation, cf. Figure 4.2, that for

large y0 the particle trajectories are close to being circular and in the proximity of x0
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Our goal will be to integrate this expansion with respect to time, cf. (3.1), but first

we have to substitute for x(t) and y(t) to make the expansion a function of t only.

In the limit y0 → ∞ the trajectories x(t) can be approximated with the solutions

x̃(t) = [x̃(t), ỹ(t)]T of system (3.5) in which the right-hand side is evaluated at x0,

i.e., dx̃(t)/dt = u([0, y0]T , t), which is written out as

dx̃

dt
=

t2 − y2
0

(t2 + y2
0)2

+
Γ

2π

[
− y0 − y1

(−t− x1)2 + (y0 − y1)2
+

y0 − y1
x21+y21

(−t− x1
x21+y21

)2 + (y0 − y1
x21+y21

)2

+
y0 + y1

(−t− x1)2 + (y0 + y1)2
−

y0 + y1
x21+y21

(−t x1
x21+y21

)2 + (y0 + y1
x21+y21

)2

]
, (5.1a)

dỹ

dt
=− 2ty0

(t2 + y2
0)2

+
Γ

2π

[
−t− x1

(−t− x1)2 + (y0 − y1)2
−

−t− x1
x21+y21

(−t− x1
x21+y21

)2 + (y0 − y1
x21+y21

)2

− −t− x1

(−t− x1)2 + (y0 + y1)2
+

−t− x1
x21+y21

(−t− x1
x21+y21

)2 + (y0 + y1
x21+y21

)2

]
. (5.1b)

Relations (5.1a)–(5.1b) are integrated analytically for x̃(t) and ỹ(t) and, before the

resulting expressions are substituted in the series expansion of ux, they are expanded

in a Taylor series with respect to Γ which is assumed small. Noting (2.4) and relations

y1 = (r2
1 − 1)/(2r1) and r1 =

√
2
√
x4

1 − x2
1 + 1 + 2x2

1 − 1 /
√

3, this expansion can be

re-expressed only in terms of x1, which is the downstream coordinate of the Föppl

vortex. Finally, integrating the resulting expression from t = −∞ to t = ∞ and

keeping only the leading-order term in y0, we obtain the following approximation to

the drift

ξ =
π

2y3
0

[
1 + 64(x1 + 1)4 + 192((x1 + 1)5 + (x1 + 1)6)

]
+O((x1 + 1)7) (5.2)

valid for y0 → ∞ and x1 → −1 (equivalently, Γ → 0). As is evident from this
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Figure 5.1: Dependence of drift ξ on (a) the circulation Γ for y0 = 1000 and (b) the initial
particle position y0 for Γ = 0.38023; solid lines represent the actual data whereas the dashed
lines correspond to asymptotic formula (5.2).

relation, the presence of the Föppl vortices introduces a correction to the expression

π/(2y3
0) characterizing the drift in the wakeless potential flow in the limit y0 → ∞

[1]. Asymptotic relation (5.2) is compared to the actual data for Γ → 0 in Figure

5.1a and for y0 → ∞ in Figure 5.1b showing a very good agreement in both cases.

Analysis of the drift in the presence of the Föppl vortices in the limit y0 → 0 is more

complicated and is beyond the scope of the present study.
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Chapter 6

Conclusions and Outlook

In this study we presented a comprehensive analysis, based on careful numerical com-

putations supported in some regimes by asymptotic analysis, of the effects of vortex

wakes on the Darwinian drift induced by steadily translating obstacles. We focused

on the Föppl and Kirchhoff flows featuring, respectively, a closed and open wake,

which were compared to the wakeless potential flow used as a reference. We also dis-

cussed three different approaches to the computation of the total drift area, with the

method based on Taylor’s theorem leading to a decomposition of D into a “universal”

part and a “flow-specific” part, in analogy with the decomposition established in [8]

for the Stokes flow.

We demonstrated that in the case of Föppl flow, particles close to the obstacle

follow trajectories featuring a second loop. In addition, these findings show that in

general, the total drift area increases with the size of the wake, except for a particular

interval when Γ is small, for which the drift area decreases when compared with the

wakeless case. Meanwhile, by extrapolating the numerical data for horizontal velocity,

we have shown that drift in the case of Kirchhoff flow is unbounded.
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We may estimate the drift area using formula (4.4) for cases when the size of the

wake is smaller than or comparable to the size of the cylinder (which is what we may

expect in many practical situations). If we consider the range Γ ∈ [0, 7], we find

that the relative difference between the total drift areas in the Föppl flow and in the

wakeless potential flow, i.e., D and D1, is approximately −7% when the drift area

achieves its minimum (see Figure 4.5) and 65% when Γ ≈ 7. In Figure 6.1 we can see

that for the representative wakes shown in Figure 4.2b–c, which are of relatively small

size, D1 may be a good approximation for the actual total drift area D. However,

for values greater than Γ ≈ 4.5, the relative difference exceeds 10%. Therefore, in

practice, when attached vortices are present and are large enough, it may be useful

to take into consideration their effects on the drift area. We add that, as discussed

in Introduction, this analysis is based on the idealized concept of the total drift area

and in practical settings, depending on the actual travel times of the obstacle, it may

be advisable to consider partial drift.

We expect that the results reported here may help improve the accuracy of mod-

eling efforts concerning biogenic mixing, such as those reported in [7]. Calculation

of quantities such as the mean squared displacement or the effective diffusivity as in

[3, 8] for Föppl flow requires a careful consideration of the quantity of particles that

interact with the body and the wake and may be considered as a useful subject of

future studies. In addition, there are a number of open questions which may deserve

further study concerning, for example, the drift induced by pairs or larger groups

of moving obstacles (in the context of the potential flow theory, such flows can be

studied using the formalism based on the Schottky-Klein function [42]), or obstacles
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Figure 6.1: Relative difference between the drift area in the Föppl flow (D) and in wakeless
potential flow (D1) as a function of the circulation Γ.

with asymmetric wakes as were recently reported in [43]. The problem of identify-

ing the shape of the obstacle which will produce a prescribed drift will lead to some

interesting shape-optimization problems.
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Appendix A

Added Mass

Added mass is a concept related to objects that are in motion in a fluid. For instance,

when calculating physical quantities such as the force, energy or momentum of a body

immersed in a fluid, the added mass takes into account the additional effort that is

required to not only push the body, but also the surrounding fluid which imposes an

additional resistance. One area of application where the concept of added mass is

particularly useful is in ocean engineering and naval construction [44]. For a general

overview of added mass, see [1, 45, 46]. As discussed in Chapter 3.2, due to Darwin’s

theorem, the total drift area can be obtained by calculating the added mass. In this

appendix, we will present an overview of added mass in the context of 2D potential

flows which will provide a useful background in understanding how to calculate the

total drift area according to equation (3.9) and (3.12).

Suppose that an object with mass m which is immersed in a fluid has an accel-

eration a corresponding to some applied force F. Since the object is surrounded by

a fluid with density ρ, a part of the work applied to the system to accelerate the

object is necessarily distributed amongst the fluid, which itself is also accelerated. To
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account for this effect, we may consider an equivalent system which is in a vacuum

such that F = (m + m′)a, where m′ ∈ R and (m + m′) is called the added mass.

Thus, we see that by considering a system where the mass of the object is increased

by some amount, m′, we can take into account the additional effort that is required

to accelerate an object in the presence of a fluid. For arbitrary geometries of the

object, however, the added mass is not necessarily a single scalar quantity since it

will depend on the direction of acceleration. That is, an acceleration in one direction

may yield an added mass effect in another direction due to the specific object geom-

etry. For this reason, in its most general case in three-dimensions, the added mass

which we will denote A, is a 6 × 6 tensor referred to as the added mass tensor with

components Aαβ, where α, β = 1, 2, 3 refer to the linear components along the Carte-

sian coordinate system and α, β = 4, 5, 6 refer to the angular components along the

Cartesian planes. Using the added mass tensor, we may write F = Aa. In this thesis,

we are interested in the 2D case with no body rotations such that we are limited to

α, β = 1, 2.

For an object in motion with velocity U = [U1, U2]T , U1, U2 ∈ R, in a potential

fluid, there is a scalar potential φ, cf. (1.8), which characterizes the flow. Since

Laplace’s equation (1.9) and the boundary condition (1.4) are linear, we may decom-

pose the potential into components corresponding to the x and y directions. That is,

we may introduce the vector potential φ := [φ1, φ2], such that

φ = Uφ = U1φ1 + U2φ2. (A.1)
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Then, the added mass tensor is given by

Aαβ = −ρ
∮
C

φα
∂φβ
∂n

ds, (A.2)

where C is a closed contour along the body which is in contact with the fluid and the

quantity ∂φβ
∂n

denotes the normal derivative where the normal vector at the surface of

the object, n = [n1, n2]T , points away from the object’s interior. For a potential fluid,

the added mass tensor is symmetric, such that Aαβ = Aβα [46]. Due to the boundary

condition (1.4), we may simplify (A.2) by writing

∂φβ
∂n

= ∇φβ · n = nβ. (A.3)

Then, we get that the added mass is equal to

Aαβ = −ρ
∮
C

φαnβds. (A.4)

It should be noted that this is the origin of the formula (3.9) used when computing

the added mass and total drift area for Föppl flow in Chapter 3.2.

As an example, we may consider the uniform motion in some arbitrary direction of

a circular cylinder with unit radius in a fluid. First, to obtain the scalar potential φ, we

may start with the equation for the complex potential in uniform flowW (z) = Ue−iαz

where U is the flow speed and α is the direction. Using the Milne-Thomson Circle

Theorem from Chapter 1.3 and after changing the frame of reference to where the

fluid flow is zero at infinity, we get that the scalar potential for the moving cylinder
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is

φ =
U cosα

r
cos θ′ +

U sinα

r
sin θ′. (A.5)

Since U was defined as the flow velocity, which is equal to the magnitude of the

cylinder’s velocity but opposite in its direction, we have that the object is in motion

with velocity U = [U1, U2]T = [−U cosα,−U sinα]T . Thus, now introducing the

vector potential φ, we have that

φ = U1

(
−cos θ′

r

)
+ U2

(
−sin θ′

r

)
= U · φ, (A.6)

where φ =
[(
− cos θ′

r

)
,
(
− sin θ′

r

)]
. Thus, using (A.4) with ρ = 1, we find that the added

mass tensor is equal to πI2 where I2 is the identity matrix of size 2. Note that the

added mass tensor does not depend on the particular velocity of the object.

In calculating the total drift area when the cylinder’s motion is in the x direction

only, we are interested in the A11 element of the added mass tensor. Note that the

total drift area for the wakeless potential flow given by D1 = π matches the result

obtained in the example above.
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