Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16575
Title: A Monte Carlo Investigation of Smoothing Methods for Error Density Estimation in Functional Data Analysis with an Illustrative Application to a Chemometric Data Set
Authors: Thompson, John R.J.
Advisor: Racine, Jeffrey S.
Department: Statistics
Keywords: Nonparametric;Bayesian;Smoothing;Splines;Kernel;Spectrometric data
Publication Date: Jun-2015
Abstract: Functional data analysis is a eld in statistics that analyzes data which are dependent on time or space and from which inference can be conducted. Functional data analysis methods can estimate residuals from functional regression models that in turn require robust univariate density estimators for error density estimation. The accurate estimation of the error density from the residuals allows evaluation of the performance of functional regression estimation. Kernel density estimation using maximum likelihood cross-validation and Bayesian bandwidth selection techniques with a Gaussian kernel are reproduced and compared to least-squares cross-validation and plug-in bandwidth selection methods with an Epanechnikov kernel. For simulated data, Bayesian bandwidth selection methods for kernel density estimation are shown to give the minimum mean expected square error for estimating the error density, but are computationally ine cient and may not be adequately robust for real data. The (bounded) Epanechnikov kernel function is shown to give similar results as the Gaussian kernel function for error density estimation after functional regression. When the functional regression model is applied to a chemometric data set, the local least-squares cross-validation method, used to select the bandwidth for the functional regression estimator, is shown to give a signi cantly smaller mean square predicted error than that obtained with Bayesian methods.
URI: http://hdl.handle.net/11375/16575
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
thesisJRJT_Dec182014final.pdf
Open Access
The dissertation. 1.04 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue