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Abstract

Functional data analysis is a field in statistics that analyzes data which are depen-

dent on time or space and from which inference can be conducted. Functional data

analysis methods can estimate residuals from functional regression models that in

turn require robust univariate density estimators for error density estimation. The

accurate estimation of the error density from the residuals allows evaluation of the

performance of functional regression estimation. Kernel density estimation using

maximum likelihood cross-validation and Bayesian bandwidth selection techniques

with a Gaussian kernel are reproduced and compared to least-squares cross-validation

and plug-in bandwidth selection methods with an Epanechnikov kernel. For simu-

lated data, Bayesian bandwidth selection methods for kernel density estimation are

shown to give the minimum mean expected square error for estimating the error den-

sity, but are computationally inefficient and may not be adequately robust for real

data. The (bounded) Epanechnikov kernel function is shown to give similar results as

the Gaussian kernel function for error density estimation after functional regression.

When the functional regression model is applied to a chemometric data set, the local

least-squares cross-validation method, used to select the bandwidth for the functional

regression estimator, is shown to give a significantly smaller mean square predicted

error than that obtained with Bayesian methods.
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Nomenclature

ESE estimated square error

FNWKE functional Nadaraya-Watson kernel estimator

i.i.d. independently and identically distributed

ISE integrated square error

kNN k-nearest neighbours

MCMC Markov chain Monte Carlo

MESE mean estimated square error

MISE mean integrated square error

MSE mean square error

MSPE mean square predicted error

NPKDE nonparametric kernel density estimator

NWKE Nadaraya-Watson kernel estimator

SKDE Shang kernel density estimator
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SNR signal-to-noise ratio
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Chapter 1

Introduction

Functional data analysis (FDA) is a field in statistics that comprises methods from

parametric and nonparametric statistics, functional analysis, computational statis-

tics, and curve smoothing. FDA allows data that are a function of space or time

to be analyzed, and inference to be conducted on them. The contributions in this

thesis were motivated by the need to advance FDA methods for analysis of com-

plex sets of data representing continuous functional phenomena. For example, FDA

methods have been applied to enhance understanding of phenomena in many diverse

disciplines, including criminology, economics, archaeology, and neurophysiology (see

Ferraty and Vieu, 2006; Ramsay and Silverman, 2005); and more recently meteorol-

ogy, chemometrics, earthquake and demographics forecasting, earthquake prediction,

gene expression, linguistics, and medicine (see Shang, 2013).
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1.1 How are data functional?

Data are considered functional if there is a nonrandom quantity on which a measure-

ment depends (e.g., time, space, temperature, wavelength, etc.). What makes data

functional is the correlation between a data point and its neighbouring points. Each

“string” of data, within which points are highly correlated with respect to a measur-

able nonrandom quantity, is called a “data curve” or simply a “curve”. Functional

models can be used to determine how curves relate to other quantities and to perform

inference that naturally accounts for high correlation and dimensions (Ferraty and

Vieu, 2006). For example, Figure 1.1 shows the heights of 10 girls taken at 31 different

ages from the “growth” data set in the fda R package (Ramsay and Silverman, 2005).

The study contains 310 recorded observations, or data points, but there is correlation

in that each girl can only grow taller. Therefore, there are 10 functional observations

with a girl’s height being a function of her age. FDA smoothing techniques are useful

for estimating each curve, quantifying the differences between curves, and trying to

find relationships between a set of curves and other data.

2
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Figure 1.1: The growth of 10 girls measured at 31 different ages. Since the girls were

not measured at the exact same age, for example Girl A’s height is measured at 3

months and 5 days while Girl B’s height is measured at 3 months and 9 days, open

circles are used for height measurements at every age. This data set can be found in

the fda R package (Ramsay and Silverman, 2005).

Data curves can be used as explanatory data for a response variable. The relation-

ship between explanatory and response data in the functional setting was analyzed

for linear relationships (Hastie and Tibshirani, 1993; Ramsay and Silverman, 2005),

3
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subsequently, nonlinear relationships were estimated with functional polynomial re-

gression models (Yao and Müller, 2010; Horváth and Reeder, 2012), functional addi-

tive regression models (Müller and Yao, 2008; Febrero-Bande and González-Manteiga,

2013; Fan and James, 2013), and nonparametric functional regression models (Ferraty

and Vieu, 2006; Ferraty et al., 2010). Emphasis in this thesis is placed on analysis

using a functional regression model which obtains an estimate of the relationship

between a functional variable and a scalar response.

Residuals are calculated from the difference between fitted values of a regression

operator and observed response data, and are used as substitutes in error density

estimation for the unavailable regression errors (Efromovich, 2005). A nonparamet-

ric error density estimate is used to assess the suitability of specified error density

assumptions as well as to obtain nonparametric prediction intervals (Akritas and

Van Keilegom, 2001). If the data are simulated or come from a real data set, where

the error density has a challenging distribution (e.g., bimodal), then nonparametric

density estimation is favoured over parametric density estimation. Nonparametric

density estimation allows for the data to drive the estimation rather than attempting

to specify the shape through a parametric model (Silverman, 1998). A misspecifi-

cation during the process of parametrically specifying the error density estimation

may lead to inaccurate conclusions about the regression estimator’s predictive inter-

val. Therefore, sound nonparametric error density estimation using the residuals is

paramount for evaluating the predictive capabilities of a regression estimator.

4
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1.2 Scope

The objective of the research presented in this thesis is to evaluate different band-

width selection methods and kernel functions for univariate error kernel-form density

estimation, after functional regression estimation between functional explanatory and

scalar response data has been conducted. Chapter 2 describes the methodology of

functional regression and univariate kernel-form error density estimation, Chapter 3

presents a simulation study with simulated and real data using methods described

in Chapter 2, and Chapter 4 contains conclusions and possible future work for error

density estimation in functional regression.

5



Chapter 2

Methodology

This chapter will describe the different components of FDA that will be used for

results detailed in Chapter 3. First, the functional regression model is presented.

Second, nonparametric functional regression estimation is described using a func-

tional Nadaraya-Watson kernel estimator with different bandwidth selection meth-

ods. Third, a Monte Carlo simulation algorithm for a bootstrap bandwidth selection

method is described. Fourth, a Bayesian method for regression estimation and er-

ror density estimation is described. Fifth, the Monte Carlo simulation algorithm is

modified for use in a two-stage cross-validation procedure, as well as two Bayesian

procedures for calculating a functional regression estimate and a kernel-form error

density estimate. Last, well-established methods for calculating kernel-form error

density estimation using maximum likelihood cross-validation and Bayesian band-

width selection methods are described. These methods are compared to a proposed

least-squares cross-validation bandwidth selection method. Performance under the

Gaussian kernel function for error density estimation is compared to that for the

(bounded) Epanechnikov kernel function. Chapter 3 contains results obtained with

6
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each of these bandwidth estimation methods and kernel functions.

2.1 Functional regression models

To begin with, the functional regression model that will be used for simulations must

be selected. The two models that will be discussed are the functional linear and

nonlinear models. The functional linear model is described first, and then extended

to the functional nonlinear model. The chemometric data set that the functional

nonlinear model will be deployed upon is also described.

2.1.1 Functional linear regression model

The functional linear model (Ramsay and Silverman, 2005) with scalar response data

Y , time t ∈ (0, 1), explanatory functional data X (t), and error ε is written as

Y = α +

∫ 1

0

ρ(t)X (t)dt+ ε. (2.1)

This is a parametric model with regression parameters α and ρ (Ferraty and Vieu,

2006). The explanatory functional data are estimated as curves using X (ti) =∑K
k=1 ckφk(ti) with basis functions φk and their associated weights ck. The key to

fitting a linear model is sound estimation of the parameters α and ρ, while an addi-

tional minimization problem is required to estimate the weight functions ck for the

curves.

The choice of basis functions (e.g., B-splines, Fourier series, etc.) is based on the

features of the curve data set, such as the periodicity of the data. For example, a

curve data set records measurements of temperature at different times during one

7
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year. There are 30 different years and, therefore, 30 functional observations. These

data have a period of one year and a Fourier series basis is the suggested basis for

this type of data (Ramsay and Silverman, 2005). A B-spline basis is suggested for

nonperiodic data (Ramsay and Silverman, 2005) and was used for the heights of girls

data set presented in Figure 1.1.

2.1.2 Functional nonlinear regression model

Another approach to FDA extends the parametric functional linear regression model

to a nonparametric nonlinear functional regression model (Ferraty and Vieu, 2006).

This section considers nonlinear models that may improve the accuracy and robust-

ness of the regression estimator. The functional nonlinear regression model is defined

as

Y = m(X ) + ε, (2.2)

where Y is a scalar response, X is a data curve, m(X ) = E[Y |X ] is a regres-

sion operator, and ε is an error term. A functional data set of N observation

curves χ1, χ2, . . . , χN is to a “nonfunctional” or real-valued data set of observations

x1, x2, . . . , xN as the functional random variables X1,X2, . . . ,XN are to the real-valued

random variables X1, X2, . . . , XN . The fixed curve χ in the functional setting is anal-

ogous to the fixed point x in the real-valued setting.

A well-adapted space for the infinite dimensional space E for functional data is

defined through a semi-norm and semi-metric (Ferraty and Vieu, 2006). A semi-norm,

defined in the context of this thesis, is a map that assigns a nonnegative size or length

to a curve. A semi-metric, defined in the context of this thesis, is a function that

8
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gives the nonnegative distance between two curves. The choice of semi-norm || · ||

must by definition satisfy

∀(λ, x) ∈ R× E, ‖λx‖ = |λ|‖x‖, (2.3)

∀(x, y) ∈ E × E, ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (2.4)

Note that this is equivalent to a norm, except that the condition ‖x‖ = 0 ⇒ x = 0

does not need to be satisfied. The semi-metric d(·, ·) determined by semi-norm || · ||

must by definition satisfy

∀x ∈ E, d(x, x) = 0, (2.5)

∀(x, y, z) ∈ E × E × E, d(x, y) ≤ d(x, z) + d(z, y). (2.6)

The semi-metric d(·, ·) is equivalent to a metric, except that the condition d(x, y) =

0 ⇒ x = y does not need to be satisfied. Some suggested semi-metrics are based on

a derivative of the estimated curves, on principal component analysis, or on partial

least-squares (Ferraty and Vieu, 2006). Functional data that appear to be continuous

or “smooth” allows for the choice of semi-metric to be based on the derivatives of the

data curves. The equation for semi-metrics of the pth derivative of observation curves

χi and χj is

d(χi, χj) =

√∫ (
χ
(p)
i (t)− χ(p)

j (t)
)2
dt. (2.7)

Vertical differences in data curves, as seen below in the chemometric data set in Figure

2.1, are known errors in measurement. The interest lies in comparing a change in

9
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absorbance to a change in wavelength. It can be difficult to shift the curves vertically

to compare features like maxima or minima. By choosing p = 2 for the order of

the derivative in Equation (2.7), the distance between curves can be based on the

acceleration of the absorbances. To be able to take a derivative of a curve, smooth

continuous basis functions are needed that appropriately estimate each data curve. A

B-spline method (de Boor, 1978; Schumaker, 1981) can be used to smooth data. Each

data curve χi = (χi(t1), χi(t2), . . . , χi(tJ))> is estimated by B-spline basis functions

{B1, . . . , BB} using the minimization problem (Ferraty and Vieu, 2006)

β̂i =
(
β̂i1, . . . , β̂iB

)
= arg inf

(α1,...,αB)∈RB

J∑
j=1

(
χi(tj)−

B∑
b=1

αbBb(tj)

)2

. (2.8)

The estimator for curve χi and its qth derivative is given by

χ̂i(·) =
B∑
b=1

β̂ibBb(·), (2.9)

χ̂i
(q)(·) =

B∑
b=1

β̂ibB
(q)
b (·). (2.10)

The B-spline approach for estimation of each data curve allows for easy calculation of

derivatives and is a natural partner to the derivative semi-metric in Equation (2.7).

A B-spline basis must be p-times continuously differentiable for the derivative semi-

metric (Ferraty and Vieu, 2006; Ramsay and Silverman, 2005).

2.1.3 Analysis of smooth data

A popular data set known as the tecator chemometric data set, provided by food

industry company Tecator, is often evaluated by functional regression methods. The

10
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tecator data set is ideal for present purposes because it has functional predictor

and scalar response spectrometric measurements. This data set is found at http:

//lib.stat.cmu.edu/datasets/tecator, and was originally analyzed using a neu-

ral networks approach (Borggaard and Thodberg, 1992). The data set was made with

a Tecator Infratec Food and Feed Analyzer using a range of infrared light measuring

a 100 channel spectrum of absorbances (between 850 and 1050 nm) on meat samples

with different protein, moisture, and fat content. The absorbance is − log10 of the

transmittance measured by a spectrometer. Figure 2.1 shows a portion of this data

set with 20 out of the total 215 curve observations and 100 evenly spaced wavelength

points.

11
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Figure 2.1: The absorbance of infrared light, as a function of the infrared light’s

wavelength, in meats with different protein, moisture, and fat content for 20 samples.

Data set retrieved from http://lib.stat.cmu.edu/datasets/tecator.

Using the nonparametric functional regression model, the regression operator m

that maps the functional explanatory data (absorbances are a function of wavelength)

to a real-valued response (protein, moisture, or fat content) can be estimated. After

smoothing using B-splines, one of the functional regression estimators that will be

described in Section 2.2 can be used to estimate the regression operator m(X ).

12
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2.1.4 Functional regression model summary

The following is a summary of the steps taken when estimating a functional model:

(1) Data are paired (Yi,Xi) for i = 1, . . . , N where N is the sample size.

(2) Xi ∈ E is the ith functional random variable.

(3) Yi ∈ R is the ith scalar response.

(4) The nonparametric functional regression model is Yi = m(Xi) + εi.

(5) The regression operator m is a smooth function, defined as m(Xi) = E[Yi|Xi],

and its estimate is written as m̂(Xi).

(6) The semi-metric d(·, ·) is the derivative semi-metric defined in Equation (2.7).

(7) The errors εi are assumed to satisfy E[εi] = 0 and E[ε2i ] 6= 0.

(8) The error εi is assumed to be independent of both the error εj (where j 6= i) and

the curve Xi.

(9) The residuals are given by ε̂i = Yi − m̂(Xi).

So far, the parametric linear and nonparametric nonlinear functional regression mod-

els and the chemometric data set of interest have been presented. Next, methods for

estimating the regression operator in the nonparametric functional regression model

are present.

2.2 Functional regression estimation

This section describes functional regression estimation with kernel methods. First,

kernel functions for the real-valued setting are extended to the functional setting.

Second, the Nadaraya-Watson kernel estimator for the real-valued regression setting

is extended to the functional setting with global and local cross-validation selected

13
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bandwidths. Third, an algorithm is described to calculate an optimal bandwidth for

functional regression using a bootstrap. Fourth, a Bayesian method that calculates an

optimal bandwidth for functional regression, and global and local selected bandwidths

for error density estimation, is described.

2.2.1 Kernel functions in the functional setting

A kernel local weighting transform ∆i for the real-valued setting with kernel function

K and bandwidth h for independently and identically distributed (i.i.d.) real-valued

sample X1, X2, . . . , XN , where Xi ∈ R, is given by

∆i = ∆i(x, h,K) =
1

h
K

(
x−Xi

h

)
. (2.11)

The bandwidth h is a smoothing parameter. The challenge, when using kernel weight-

ing for regression and error density estimation, is selecting an optimal bandwidth. The

selection of a bandwidth for kernels is dependent on the choice of semi-metric used to

calculate the difference between curves (Ferraty and Vieu, 2006). The multivariate

kernel weighting transform with random vectors X1,X2, . . . ,XN , where Xi ∈ Rq, is

given by

∆i =
1∏q

j=1 hj
K∗
(
x−Xi

h

)
, (2.12)

where K∗(u) is the product of q kernel functions defined as

K∗(u) = K1(u1)×K2(u2)× · · · ×Kq(uq) (2.13)
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for any vector u = (u1, u2, . . . , up)
> ∈ Rq.

Kernel functions and weightings can be extended from the multivariate real-valued

setting to the functional setting. To illustrate this, consider a random curve sample

X1,X2, . . . ,XN that lies in an infinite dimensional space E. The naive kernel local

weighting transform for the functional setting (Ferraty and Vieu, 2006) can be written

as

∆i =
1

V (h)
K

(
d(χ,Xi)

h

)
, (2.14)

where the semi-metric d(·, ·) is chosen to the derivative semi-metric in Equation (2.7),

and V (h) is the volume of a ball B with radius h and centred at χ, defined as

B(χ, h) = {χ′ ∈ E : d(χ, χ′) ≤ h}. (2.15)

The topology of the ball’s surface is induced by the chosen semi-metric d(·, ·). The

volume of the ball V (h) allows for the normalization of the kernel function in the

functional space E. However, the calculation of V (h) requires a measure on the

functional space E, and there is no universally accepted reference measure for E like

the Lebesque measure for the Euclidean space R (Ferraty and Vieu, 2006). To free the

normalization from this choice, it has been suggested that the normalization factor be

based on the probability distribution of the functional random variable Xi (Ferraty

and Vieu, 2006) given by

∆i =
K
(
d(χ,Xi)

h

)
E
(
K
(
d(χ,Xi)

h

)) . (2.16)
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Basing the weighting on Xi in this way allows for the data to fully drive the smoothing.

In the univariate real-valued setting, a kernel function K is symmetric, so that

K(t) = K(−t). However, in the multivariate and functional setting, a kernel func-

tion is restricted to be asymmetric, with K(t) > 0, since d(·, ·) is defined to be

strictly nonnegative (Ferraty and Vieu, 2006). The choice of kernel function K for

the chemometric data set is often the asymmetric quadratic kernel (Benhenni et al.,

2007; Ferraty et al., 2008, 2010; Shang, 2013) defined as

K(u) =
3

2
(1− u2), u ∈ (0, 1). (2.17)

2.2.2 The Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator (NWKE) is used to estimate a nonparametric

regression operator for real-valued data (Nadaraya, 1964; Watson, 1964). The NWKE

ĝ(x) for the regression operator g(x) = E[Y |x] with paired data {(Xi, Yi)}i=1,...,n lying

in the space Rq × R for the regression model Yi = g(Xi) + ε is given by

ĝ(x) =

∑n
i=1 YiK

∗ (x−Xi

h

)∑n
i=1K

∗
(
x−Xi

h

) , (2.18)

where K∗
(
x−Xi

h

)
is a product of q asymmetric kernel functions given in Equation

(2.13) and h = (h1, h2, . . . , hq) are global bandwidths. The key to nonparametric

estimation of the regression operator using kernel functions is to select a bandwidth

h that minimizes an approximation to the mean square error (MSE). Data-driven

bandwidth selection methods have been described for the real-valued setting, such

as the local constant least-squares cross-validation bandwidth selection method (Li

and Racine, 2007). This method for optimizing bandwidth vector (h1, h2, . . . , hq)
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minimizes the local constant least-squares cross-validation criterion given by

CVlc(h) =
1

n

n∑
i=1

(Yi − ĝ−i(Xi))
2M(Xi), (2.19)

where M(Xi) is some weight function and ĝ−i(Xi) is the leave-one-out kernel estima-

tor defined as

ĝ−i(Xi) =

∑n
j=1,j 6=i YjK

∗
(

Xi−Xj

h

)
∑n

j=1,j 6=iK
∗
(

Xi−Xj

h

) . (2.20)

Using a bandwidth vector optimized via cross-validation in the regression estimator

ĝ(Xi) defined in Equation (2.18), the residuals can be calculated using ε̂i = Yi− ĝ(Xi)

and an error density estimate can be calculated from the residuals.

2.2.3 Functional regression with a global cross-validated band-

width

The NWKE in Equation (2.18) can be extended to the functional regression setting.

Consider the univariate functional regression model where (Xi, Yi) ∈ E × R. The

extension of the NWKE to the functional setting (Helland, 1990; Ferraty and Vieu,

2006), or the functional Nadaraya-Watson kernel estimator (FNWKE), is written as

m̂(χ) =

∑n
i=1 YiK

(
d(χ,Xi)

h

)
∑n

i=1K
(
d(χ,Xi)

h

) , (2.21)

where bandwidth h is global to all fixed curves χ, and dependent on the curve sample

size n (Benhenni et al., 2007). For the FNWKE in Equation (2.21), the upper bounds
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on rates of convergence (Ferraty and Vieu, 2006, Chapter 6), the bias, variance, and

MSEs, and the asymptotic distribution (Ferraty et al., 2008) are all known.

The number of bandwidths to optimize has changed from q bandwidths (h1, h2, . . . , hq)

in the multivariate real-valued setting to one bandwidth h in the functional setting.

This is a direct result from the change in the space of the explanatory variable from

Rq to E. The local constant least-squares cross-validation optimized bandwidth ĥ

(Härdle and Marron, 1985) is given by

ĥ = arg min
h∈Hn

GCVx(h) = arg min
h∈Hn

{
n−1

n∑
i=1

(Yi − m̂−ih (Xi))2W (Xi)

}
, (2.22)

where W (Xi) is a weight function, Hn is a set of possible bandwidths, and m̂−ih (Xi)

is the leave-one-curve-out estimator defined as

m̂−ih (Xi) =

∑n
j=1,j 6=i YjK

(
Xi−Xj

h

)
∑n

j=1,j 6=iK
(
Xi−Xj

h

) . (2.23)

2.2.4 Functional regression with local cross-validated band-

widths

Local least-squares cross-validation is an extension of the global procedure in the

previous section (Benhenni et al., 2007; Ferraty and Vieu, 2006). A local bandwidth

refers to a bandwidth that changes depending on the fixed curve χ. The local band-

width cross-validation procedure has weight functions Wn,χ that depend on the fixed

curve χ and the sample size n. The local bandwidth ĥχ calculated using the local
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constant least-squares cross-validation procedure (Benhenni et al., 2007) is given by

ĥχ = arg min
h∈Hn

LCVχ(h) = arg min
h∈Hn

{
n−1

n∑
i=1

(Yi − m̂h
−i(Xi))2Wn,χ(Xi)

}
. (2.24)

The weight functions Wn,χ are given by

Wn,χ(Xi) =

1, d(χ,Xi) < h

0, otherwise.
(2.25)

If the bandwidth h is selected to include k data curves, this local cross-validation

procedure becomes a k-nearest neighbours (kNN) selected bandwidth hk for nonpara-

metric regression estimators. By choosing the number of neighbours for smoothing,

regression estimators adapt to local information in data.

For a kernel (or any) estimator m̂(χ) to be consistent, it must converge in prob-

ability to the underlying data generating process m(χ) that it is estimating as the

number of samples n grows indefinitely (Casella and Berger, 2002); that is,

lim
n→∞

P (|m̂(χ)−m(χ)| ≥ ε) = 0,∀ε > 0, χ ∈ E. (2.26)

It has been shown that for a kernel estimator to be consistent, the bandwidth h must

satisfy h → 0 and nh → ∞ as n → ∞ (Parzen, 1992). The rate of convergence is

how quickly the bandwidth converges to zero, relative to the sample size n (no faster

than o(n−1)), as n→∞. The estimator m̂(χ) is said to have a almost complete rate
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of convergence of O(un) to m(χ) (Ferraty and Vieu, 2006) if and only if

∑
n∈N

P (|m̂(χ)| > εun) <∞, ∀ε > 0, χ ∈ E. (2.27)

The kNN method in the functional setting has an almost complete rate of convergence,

a fully developed methodology for bandwidth selection as well as applications using

simulated and real data (Burba et al., 2009). The bandwidth h is calculated to include

k neighbouring data curves using the chosen semi-metric. The estimate m̂kNN(χ) for

the regression operator m(χ) using the kNN method is given by

m̂kNN(χ) =
n∑
i=1

Yiωi,n(χ), ωi,n(χ) =
K(Hn,k(χ)−1d(χ,Xi))∑n
i=1K(Hn,k(χ)−1d(χ,Xi))

, (2.28)

where K is an asymmetric kernel function and Hn,k(χ) is a positive random variable

given by

Hn,k(χ) = min

{
h ∈ R+ :

∑n
i=1 1B(χ,h)(Xi) = k

}
. (2.29)

The local bandwidth Hn,k(χ), which depends on the explanatory data (X1, . . . ,Xn),

is the minimum bandwidth to contain k data curves in the ball B(χ, h) in Equation

(2.15) centred at the fixed curve χ.

In a simulation involving smooth data with low variability similar to the chemo-

metric data set, the regression estimator with local bandwidths had a lower MSE, and,

therefore, estimates the regression operator m(χ) more accurately, than with a global

bandwidth (Benhenni et al., 2007). Local and global bandwidth selection methods

were applied to the chemometric data set in Figure 2.1 and it was observed that
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locally selecting the bandwidth between curves gave a lower mean square predicted

error (MSPE) than selecting it globally (Benhenni et al., 2007). The MSPE measures

the difference between an estimator’s predicted response and the true response.

2.2.5 Bootstrapping residuals

The purpose of this section is to look at an algorithm that can be used to select

an optimal bandwidth for functional regression and to obtain pointwise confidence

intervals of a regression estimator. The simulated explanatory and response data,

which are used for simulations in this thesis, are

Data : Xi(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2), (2.30)

Model 1 : m(Xi) = 10(a2i − b2i ) (2.31)

Model 2 : m(Xi) =

∫ π

0

t cos(t) (X ′i (t))
2
dt, (2.32)

where i = 1, . . . , N and N is the curve sample size, tj ∈ [0, π] for j = 1, . . . , 100 are

equispaced points, and ai, bi, and ci are independent random variables with a [0, 1]

uniform distribution. A simulation study was conducted (Ferraty et al., 2008, 2010)

using samples from the models in Equations (2.30), (2.31), and (2.32). One sample

of size n1 = 250 was used to train the FNWKE and a second sample of size n2 = 100

was used to test the estimator’s performance using NB = 1000 bootstrap replicates

and M = 100 Monte Carlo replicates. Different numbers of bootstrap and Monte

Carlo replicates were considered, but did not affect the results significantly enough
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to alter the conclusions (Ferraty et al., 2008). Bandwidths were selected from the set

h = h(χ) ∈ {h1, h2, . . . , h32} = H, (2.33)

using the kNN method for k = 1, . . . , 32 (Ferraty et al., 2008, 2010).

An algorithm using a “wild” bootstrap procedure to obtain a data-driven optimal

bandwidth was developed for the functional setting by Ferraty et al. (2008, 2010). The

asymptotic validity of the wild bootstrap in the functional setting is known (Ferraty

et al., 2010). The wild bootstrap procedure, with an automatic rule for selecting

a bandwidth in the FNWKE, was used on simulated and real data sets by Ferraty

et al. (2008). Before using the wild bootstrap procedure, the regression estimate and

residuals were calculated with the following algorithm:

1. Generate the simulated curves Xi where i = 1, . . . , N using Equation (2.30) and

the simulated regression operators m(Xi) using Equation (2.31) or (2.32).

2. Generate εi from a Gaussian distribution with different signal-to-noise ratios (SNR),

i.e. var (εi) = SNR× var({m(Xi)}i=1,...,N).

3. Compute Yi = m(Xi) + εi.

4. Replicate Steps 1–3 for s = 1, . . . ,M for M = 100 Monte Carlo replications to

generate (X s
i , Y

s
i ).

5. Compute N estimates of m̂s
h(X ) for each Monte Carlo replicate.

6. Estimate the error density f̂true(ε̂) using a univariate kernel density estimator from

{m̂s
h(χ)−m(χ)}.

The wild bootstrap procedure (Härdle, 1989; Härdle and Marron, 1991) is used to

bootstrap the errors, which are real-valued random variables (Ferraty et al., 2010).
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The wild bootstrap algorithm is as follows:

1. Estimate the regression operator m̂b(χ) with some fixed bandwidth b not equal to

h and calculate residuals {ε̂i,b = Yi − m̂b(Xi)}.

2. Draw n i.i.d. random variables Vi that are independent of {(Xi, Yi)}, where E[Vi] =

0 and E[V 2
i ] = 1.

3. Calculate {εbooti = Viε̂i,b}i=1,...,n and define Y boot
i = m̂b + εbooti .

4. Calculate the bootstrapped regression estimate m̂boot
h,b (χ) =

∑n
i=1 Y

boot
i K(h−1d(Xi,χ)∑n

i=1K(h−1d(Xi,χ))
.

5. Construct a new regression operator m̂s
b(χ) under a fixed bandwidth b.

6. Construct B = 1000 bootstrap estimates m̂boot
h,b (χ) from Steps 1–4.

7. Estimate the bootstrapped error density f̂boot(ε̂) using a univariate kernel density

estimator from {m̂boot1
h,b (χ)− m̂b(χ), m̂boot2

h,b (χ)− m̂b(χ), . . . , m̂boot1000
h,b (χ)− m̂b(χ)}.

There are a few options for the distribution of the Vi, such as the Rademacher distri-

bution with outcomes ±1
2

and probability 1
2

for each outcome, or a sum of two Dirac

distributions (Härdle and Marron, 1991; Ferraty et al., 2008) given by

Vi =


−
√

(5)+1

2
, with prob.

√
(5)+1

2
√

(5)
,

√
(5)+1

2
, with prob.

√
(5)−1

2
√

(5)
.

(2.34)

Bandwidth selection is calculated from the wild bootstrap by choosing the bandwidth

using

hopt(X ) = arg min
h∈H

(
NB∑

boot=1

m̂boot
h,b − m̂b(χ)

)
. (2.35)

The purpose of the bootstrap methodology also includes producing pointwise confi-

dence intervals for the regression operator. Confidence intervals describe how well
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the model is fitting the data, but prediction intervals describe a range for which the

next realization of the response will fall with a specific probability. Since the de-

velopment of the functional bootstrap, methods using two-stage cross-validation (to

be discussed in Section 2.3) and Bayesian methods have been developed to calculate

prediction intervals from error density estimation for functional regression.

2.2.6 Bayesian methods for functional regression estimation

Bayesian methods can be used to estimate the functional regression operator and

error density using an algorithm (Shang, 2013) similar to the algorithm that uses the

wild bootstrap procedure. Bayesian estimation methods have been shown to perform

as well as or better than two-stage cross-validation for estimating both the functional

regression operator and the real-valued error density (Shang, 2013). A Bayesian

Markov chain Monte Carlo (MCMC) algorithm can be used to select bandwidths

for the regression and error density estimates. The optimal regression estimator and

density estimator bandwidths (hn, bn) are selected by maximizing the kernel likelihood

of y = (y1, y2, . . . , yn)>. This method for maximizing the kernel likelihood could

be accomplished by directly applying kernel methods. However, there is no known

literature for asymptotic support of this method and it is outside the scope of this

thesis.

For the Bayesian approach to maximizing the likelihood, the error density can be

approximated (Jaki and West, 2008, 2011) by the leave-one-out estimator as

f̂−i(ε̂i; bn) =
1

n− 1

n∑
j=1,j 6=i

1

bn
φ

(
ε̂i − ε̂j
bn

)
, (2.36)

24



M.Sc. Thesis - John R.J. Thompson McMaster - Mathematics & Statistics

where φ(·) is a standard Gaussian density function and ε̂i = Yi − m̂(X ;hn) is the ith

residual. This density estimator can be adapted for a local bandwidth c(1 + cε|ε̂j|)

assigned to ε̂j (Shang, 2013) and is given by

f̂(ε̂i; c, cε) =
1

n− 1

n∑
j=1,j 6=i

1

c(1 + cε|ε̂j|)
φ

(
ε̂i − ε̂j

c(1 + cε|ε̂j|)

)
. (2.37)

Note that only bn will be used for the bandwidth of the error density for simplicity

of notation. The posterior distribution of h2n and b2n is approximated by

π(h2n, b
2
n|y) ∝ L̂(y|hn, bn)π(h2n)π(b2n). (2.38)

Since the regression model in Equation (2.2) assumes that the errors and the regression

operator are uncorrelated, we can assume that each of the estimator bandwidths are

uncorrelated (Shang, 2013). The kernel likelihood is given by

L̂(y|hn, bn) =
n∏
i=1

[
1

n− 1

n∑
j=1,j 6=i

1

bn
φ

(
ε̂i − ε̂j
bn

)]
. (2.39)

Prior densities are assumed to be inverse Gamma distributions with hyperparameters

αh = αb = 1.0 and βh = βb = 0.05 (Shang, 2013; Geweke, 2010) given by

π(h2) =
(βh)

αh

Γ(αh)

(
1

h2

)αh+1

exp

(
−βh
h2

)
, (2.40)

π(b2) =
(βb)

αb

Γ(αb)

(
1

b2

)αb+1

exp

(
−βb
b2

)
. (2.41)

An MCMC algorithm is given below (Shang, 2013) with an adaptive block random-

walk Metropolis algorithm (Garthwaite et al., 2010) to optimize the bandwidths θn =
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(h2n, b
2
n):

1. Specify the starting point θ(0)
n ∈ U(0, 1) and adaptive tuning parameter τ (0).

2. Calculate θ(k)
n = θ(k−1)

n + τ (k−1)ε, where the error has standard Gaussian distri-

bution.

3. Accept θ(k)
n with probability min

{
π(θ

(k)
n |y)

π(θ
(k−1)
n |y)

, 1
}

.

4. Set the tuning parameter τ (k) using a stochastic search algorithm (Robbins and

Monro, 1951).

5. Repeat Steps 2–4 M + N times, discarding M results to allow transients to

wear off, and estimate the optimal bandwidths as ĥn = 1
N

∑M+N
k=M+1 h

(k)
n and

b̂n = 1
N

∑M+N
k=M+1 b

(k)
n .

The kth tuning parameter (Robbins and Monro, 1951) is given by

τ (k) =

τ
(k−1)(1 + 1−p

k
), if θ(k)

n is accepted,

τ (k−1)(1 + p
k
), if θ(k)

n is rejected,
(2.42)

where p = 0.234 is the optimal acceptance probability for drawing multiple parameters

(Roberts and Rosenthal, 2009). Using these methods, bandwidths can be calculated

that are simultaneously optimal for functional regression and error density estimation.

The objective of this thesis is to compare the performance of regression estimates using

Bayesian versus cross-validation bandwidth selection methods.

26



M.Sc. Thesis - John R.J. Thompson McMaster - Mathematics & Statistics

2.3 Estimation of error density from functional re-

gression residuals

The ability to estimate error density for functional regression models is as important

as the ability to estimate the regression operator (Shang, 2013). Error density esti-

mates are used (1) to assess the adequacy of error distribution assumption (Shang,

2013), (2) to test the symmetry of the residual distribution (Neumeyer and Dette,

2007), (3) to quantify statistical inference, prediction, and model validation (Muh-

sal and Neumeyer, 2010), and (4) to determine the density of the response variable

(Escanciano and Jacho-Chávez, 2012). The cumulative distribution function for the

error density is used in the calculation of the prediction interval. Consequently, the

Bayesian and cross-validation approaches to kernel-form error density estimation in a

nonparametric functional regression model with functional predictors and scalar re-

sponses have been investigated (Shang, 2013). The contributions in this thesis extend

that investigation to improve nonparametric error density estimation for functional

regression. The goal is to prescribe guidelines that may increase the accuracy of

error density estimation in challenging data sets such as the chemometric data set

introduced earlier.

There is a proposed functional adaptation for using a two-stage cross-validation

bandwidth selection method to estimate the error density (Samb, 2011). The first

stage uses the FNWKE with a least-squares cross-validated bandwidth to estimate

the functional regression operator. The second stage uses the univariate kernel density

estimator on the residuals with a maximum likelihood cross-validated bandwidth for

error density estimation. For the first stage, the functional regression estimate m̂(Xi)
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is calculated using the FNWKE and least-squares cross-validation with the leave-one-

curve-out estimator m̂−ih (Xi) given by

m̂−ih (Xi) =

∑n
j=1,j 6=i YjK0

(
d(Xj ,Xi)

h0

)
∑n

j=1,j 6=iK0

(
d(Xj ,Xi)

h0

) , (2.43)

where K0 is the asymmetric quadratic kernel function with bandwidth h0 for esti-

mating the regression operator m(χ) and d(·, ·) is the derivative semi-metric. With

an estimate of the regression operator m̂(Xi), the residuals can be calculated using

ε̂i = Yi − m̂(Xi). The error density estimator is given by

f̂n(ε) =
1

Nh1

N∑
i=1

K1

(
ε̂i − ε
h1

)
, (2.44)

with symmetric kernel K1 (Shang, 2013). The bandwidth h1 is optimized using a

second stage cross-validation or Bayesian bandwidth selection method (Shang, 2013).

The algorithm for estimating the functional regression operator and error density

(Shang, 2013) is very similar to the previous algorithm that used a bootstrap proce-

dure in the functional setting (Ferraty et al., 2008, 2010):

1. Generate the simulated curves {Xi} using Equation (2.30), where i = 1, . . . , N ,

and calculate the simulated regression operators m(Xi) using Equation (2.31) or

(2.32).

2. Generate simulated errors εi from a Gaussian distribution with different SNRs, i.e.

var (εi) = SNR× var({m(Xi)}i=1,...,N).

3. Compute the simulated responses Yi = m(Xi) + εi.

4. Replicate Steps 1–3 for s = 1, . . . ,M for M = 100 Monte Carlo replications to
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generate (X s
i , Y

s
i ).

5. Compute N estimates m̂s
h(X ) for each Monte Carlo replicate.

6. Calculate the MSE by averaging over all Monte Carlo replicate square errors

(m̂s
h(X )−m(X ))2.

This algorithm is used for the simulation study of this thesis. In the simulation study,

the kernel-form error density estimator is applied to the residuals using different

bandwidth selection methods and kernel functions, which are described in the next

section.

2.4 Univariate kernel-form density estimation

2.4.1 Existing bandwidth selection methods and kernel func-

tion

In this section, bandwidth selection methods and kernel functions are described for

kernel-form density estimation from the residuals of functional regression (Shang,

2013). The kernel used for error density estimation for the two-stage cross-validation

and global and local Bayesian methods is a standard normal Gaussian kernel K1(t) =

1√
2π
e−

t2

2 , t ∈ R for the kernel density estimator in Equation (2.44) (Shang, 2013).

Maximum likelihood cross-validation is given by maximizing the leave-one-out log

likelihood function for bandwidth h (Li and Racine, 2007) defined as

L =
n∑
i=1

lnf̂−i(Xi), (2.45)

29



M.Sc. Thesis - John R.J. Thompson McMaster - Mathematics & Statistics

where the leave-one-out density estimator f̂−i(Xi) is given in Equation (2.20). The

equation for the optimal bandwidth from maximum likelihood cross-validation with

a standard normal Gaussian kernel is

hopt = maxh∈H

[
1

N

N∑
i=1

ln

(
1√

2πh(N − 1)

N∑
j=1,j 6=i

exp

{
−1

2

(
ε̂i − ε̂j
h

)2
})]

, (2.46)

where N is the curve sample size and number of residuals, and H is the set of possible

bandwidths where H is in the interval (0, 10) (Shang, 2013). It is known that like-

lihood cross-validation is poor at estimating fat-tailed distributions (Li and Racine,

2007; Hall, 1987a,b). However, the error density for the simulated data in Chapter 3

will be from a Gaussian distribution which is a thin-tailed distribution, and, therefore,

likelihood cross-validation is an appropriate bandwidth selection method. Since the

distribution of the error f(ε) for the simulated data is known, the integrated square

error (ISE) can be used to evaluate the performance of the error density estimate and

is approximated by

ISE(f̂) =

∫ 5

−5
[f(ε)− f̂(ε)]2dε

≈ 10

n

n∑
i=1

[
f

(
−5 +

i− 1

n/10

)
− f̂

(
−5 +

i− 1

n/10

)]2
, (2.47)

where the density is discretized into n = 10, 000 equally spaced points. The estimated

error density f̂(εi) was calculated at each discrete point with a Gaussian kernel, given
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by

f̂(εi) =
1

Nh

N∑
i=1

K

(
1

h

[
εi − ε̂j√

var(ε̂)

])

=
1

Nh
√

2πvar(ε̂)

N∑
i=1

exp

−1

2

(
1

h

[
εi − ε̂j√

var(ε̂)

])2
 . (2.48)

This estimator will be referred to as the Shang kernel density estimator (SKDE).

The algorithm for the second stage of the two-stage cross-validation procedure is

calculated from the residuals as follows:

1. Calculate M = 100 Monte Carlo replications of N estimated residuals {ε̂si =

ysi − m̂s
i}i=1,...,N,s=1,...,M .

2. Estimate the error density using a univariate kernel estimator.

3. Calculate the ISE using Equation (2.47) for each replication and average over all

replications to calculate the mean integrated square error (MISE).

Shang (2013) obtained results using simulations for local cross-validation versus Bayesian

methods with N = 50, 250, and 1000 curve sample sizes and 0.1, 0.5, and 0.9 SNRs.

For functional regression estimation, they showed that Bayesian and cross-validation

bandwidth selection methods performed similarly. For error density estimation, they

showed that Bayesian bandwidth selection methods gave a lower MISE for large curve

sample sizes than cross-validation. When the methods were applied to the chemo-

metric data set, they found that Bayesian bandwidth selection methods gave a lower

MSPE and thus more accurately predicts a response outcome than cross-validation.
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2.4.2 Univariate kernel-form density estimation using the np

R package

Accurate univariate kernel-form error density estimation is essential for evaluating

the performance of functional regression estimation. The np R packages has func-

tions for kernel estimation of multivariate continuous and ordered or unordered factor

data with many different data-driven bandwidth selection procedures (Hayfield and

Racine, 2008) and theoretical and practical support (Li and Racine, 2007). For sim-

ulations, the kernel-form density estimator found in Equation (2.44) is used and will

henceforth be referred to as the nonparametric kernel density estimator (NPKDE).

The (bounded) Epanechnikov kernel function (Silverman, 1998) will be investigated

and is defined as

K1(t) =
3

4
√

5

(
1− 1

5
t2
)
, |t| <

√
5. (2.49)

In this thesis, three different bandwidth selection methods will be explored: a local

constant least-squares cross-validated bandwidth, a maximum likelihood least-squares

cross-validated bandwidth, and the Bayesian method global plug-in bandwidth. Lo-

cal constant least-squares cross-validation optimizes bandwidth by minimizing the

following criterion (Li and Racine, 2007):

CVf (h) =
1

n2h

∑
i

∑
j

K̄

(
Xj −Xi

h

)
− 2

n(n− 1)h

∑
j=1

∑
i=1,j 6=i

K

(
Xj −Xi

h

)
, (2.50)

where K̄(v) =
∫
K(u)K(v − u)du is a two-fold convolution kernel. Maximum like-

lihood cross-validation uses the same method described for Equation (2.45). For
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comparison, the Bayesian optimized global bandwidth is used as a plug-in bandwidth

in the density estimator in Equation (2.44) to evaluate its performance in comparison

to cross-validation. To compare the effectiveness of each bandwidth selection method,

the mean estimated square error (MESE) of the error density estimator is calculated,

as given by

MESE(f̂) =
1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2
, (2.51)

where Xi, i = 1, . . . , n is a sample of the residuals, and the error density function f

is known for simulated data. Results from previous research (Shang, 2013) are repro-

duced in Section 3.1.1 for validation. The effects of the aforementioned bandwidth

selection procedures and Epanechnikov density function for error density estimation

are investigated in Sections 3.1.2 to 3.1.5. These methods are then applied to the

chemometric data set in Section 3.2.

2.5 Methodology summary

The functional nonlinear regression model was selected for smooth data using a semi-

metric based on a derivative of the estimated curves. The FNWKE was selected

to estimate the functional regression operator, with bandwidth selected using local

cross-validation or Bayesian bandwidth selection methods. An algorithm for func-

tional regression and for calculating residuals to be used for error density estima-

tion was described. Two univariate kernel density estimators were described using

different bandwidth selection methods, and the Epanechnikov and Gaussian kernel

functions.
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Chapter 3

Simulation Study

This chapter presents results obtained with the methods and algorithms described

in Chapter 2. Bayesian methods are found to outperform cross-validation for error

density estimation for simulated data. The (bounded) Epanechnikov kernel is found

to perform as well as the Gaussian kernel function for cross-validated and global

Bayesian bandwidths. These methods are then applied to the chemometric data set,

on which the two-stage cross-validation methods outperform Bayesian methods for

regression estimation. All calculations are made using the programming language R

(R Core Team, 2014).

All of the following simulations were performed using the high-fructose-corn-syrup

machine of the Computer Science Club at the University of Waterloo. The computa-

tion times are relative to this machine, where the parallel R package (R Core Team,

2014) allows the simultaneous use of the 64 processor cores using parallel computation

for simulations. The system specifications are as follows:

• 4× AMD Opteron 6272 (2.1 GHz, 16 cores each, 64 total cores)
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• 192 GB RAM with shared memory

• Supermicro H8QGi+-F motherboard quad 1944-pin socket

• 500 GB Seagate Barracuda hard drive

• Supermicro case Rackmount CSE-748TQ-R1400B 4U

3.1 Selecting bandwidths using two-stage cross-

validation and Bayesian methods for simulated

data

This section presents simulation results, first reproducing results found by SKDE

studies (Shang, 2013). Second, results obtained with the error density bandwidth us-

ing maximum likelihood cross-validation, least-squares cross-validation, and Bayesian

plug-in bandwidth in the NPKDE are presented and compared with results obtained

with the SKDE. Last, results obtained with Epanechnikov and Gaussian kernel func-

tions using least-squares cross-validation and Bayesian global plugin bandwidths in

the NPKDE are compared.

3.1.1 Simulating functional data and reproducing previous

results

Figure 3.1 shows a sample of N = 250 simulated explanatory curves from the model

in Equation (2.30) in Section 2.2.5, and the simulated scalar response data is calcu-

lated using Equation (2.31). The simulated error ε in the nonparametric functional

regression in Equation (2.2) is generated from a Gaussian distribution described in
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the algorithm in Section 2.3 with a 0.1 SNR.
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Figure 3.1: Simulation of N = 250 sample curves for the model in Equation (2.30)

Table 3.1 shows that the simulation results reproduce previous results (Shang,

2013) using the SKDE in Equation 2.48. Table 3.2 shows the computation-intensive

nature of the Bayesian bandwidth selection methods versus the relatively short cross-

validation bandwidth selection method.
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Table 3.1: Comparison of MISE for Model 1 with SNR 0.1 using the SKDE for 100
Monte Carlo replicates.

Sample Size Cross-Validation Bayesian Global Bayesian Local
50 0.0632 0.0408 0.0388

250 0.0171 0.0094 0.0089
1000 0.0075 0.0030 0.0028

Table 3.2: Comparison of calculation times in minutes for Model 1 with SNR 0.1
using the SKDE for 100 Monte Carlo replicates.

Sample Size Cross-Validation Bayesian Global Bayesian Local
50 0.08 19.00 45.04

250 0.40 425.34 478.79
1000 4.76 8795.88 13329.28

3.1.2 Maximum likelihood and least-squares cross-validated

bandwidth selection

This section presents simulation calculations obtained with the maximum likelihood

and least-squares cross-validated bandwidth selection methods outlined in Sections

2.4.1 and 2.4.2, respectively, for error density estimation. Table 3.3 presents results

that show cross-validated bandwidths from Section 2.4.2 in the NPKDE in Equation

(2.4.2) give a smaller MESE than the cross-validation method in Section 2.4.1 for the

SKDE in Equation (2.48) for small sample sizes. For larger sample sizes, the SKDE

increasingly gives a smaller MESE than the NPKDE. Table 3.4 presents results that

show that the Bayesian plug-in bandwidth from Section 2.2.6 in the SKDE in Equation

(2.48) gives a smaller MESE than both cross-validation bandwidths in Section 2.4.2

in the NPKDE from Equation (2.44).

37



M.Sc. Thesis - John R.J. Thompson McMaster - Mathematics & Statistics

Table 3.3: Comparison of MESE of the error density for Model 1 with SNR 0.1: max-
imum likelihood and least-squares cross-validation (MLCV and LSCV, respectively)
with 10 Multistarts and a Gaussian kernel. This table is for two-stage cross-validation
bandwidth selection only.

Sample Size SKDE Two-Staged NPKDE MLCV NPKDE LSCV
50 0.0632 0.0611 0.0573

250 0.0171 0.0178 0.0180
1000 0.0075 0.0091 0.0091

Table 3.4: Comparison of MESE of the error density for Model 1 with SNR 0.1: max-
imum likelihood and least-squares cross-validation (MLCV and LSCV, respectively)
with 10 Multistarts and a Gaussian kernel. This table is for Bayesian regression es-
timation only. The SKDE was calculated with a Bayesian plugin bandwidth and the
NPKDE was calculated with two-stage cross-validation.

Sample Size SKDE Bayesian Global NPKDE MLCV NPKDE LSCV
50 0.0408 0.0646 0.0596

250 0.0094 0.0170 0.0171
1000 0.0030 0.0059 0.0058

3.1.3 Bayesian plug-in bandwidth

The Bayesian bandwidth selection method from Section 2.2.6 can be used as a plug-in

bandwidth in the NPKDE in Equation (2.44). Table 3.5 shows results obtained with

global Bayesian plug-in bandwidth from Section 2.2.6 in the NPKDE from Equation

(2.44) in comparison to the SKDE in Equation (2.48). For the FNWKE with a

Bayesian global bandwidth, Table 3.5 shows that the Bayesian plug-in bandwidth in

the NPKDE gives a smaller MESE than cross-validated bandwidths in the NPKDE

from Table 3.4. However, using the Bayesian plug-in bandwidth in the NPKDE shows

that it does not perform as well as the Bayesian plug-in bandwidth in the SKDE.
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Table 3.5: Comparison of MESE of the error density for Model 1 with SNR 0.1:
Bayesian plug-in bandwidth with a Gaussian kernel.

Sample Size SKDE estimator NPKDE estimator
50 0.0408 0.0679

250 0.0094 0.0149
1000 0.0030 0.0052

3.1.4 Epanechnikov kernel function

This section presents the effect of using the Epanechnikov kernel function in Equation

(2.49) in place of the Gaussian kernel function. Table 3.6 presents results obtained

with Gaussian and Epanechnikov kernel functions for two-stage cross-validation, with

the second stage being least-squares cross-validation from Section 2.4.2 for the NPKDE

in Equation (2.44). The kernel functions in this estimator give very similar MESEs for

a cross-validated bandwidth at all sample sizes. For a Bayesian plug-in bandwidth in

the NPKDE, Table 3.7 shows that the Epanechnikov kernel function gives very simi-

lar MESEs to the Gaussian kernel function at all sample sizes. This shows that there

is no apparent difference between using a bounded or unbounded kernel function for

error density estimation. These results are to be expected, since the driving force

behind sound kernel density estimation is bandwidth selection, not kernel function

selection.

Table 3.6: Comparison of MESE of the error density for Model 1 with SNR 0.1:
least-squares cross-validation with 10 Multistarts and an Epanechnikov or Gaussian
kernel. This is for the two-stage cross-validation only.

Sample Size Epanechnikov Gaussian
50 0.0613 0.0611

250 0.0175 0.0178
1000 0.0090 0.0091
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Table 3.7: Comparison of MESE of the error density for Model 1 with SNR 0.1:
least-squares cross-validation with 10 Multistarts and an Epanechnikov or Gaussian
kernel. This is for the global plug-in bandwidth only.

Sample Size Epanechnikov Gaussian
50 0.0660 0.0679

250 0.0148 0.0149
1000 0.0051 0.0052

3.1.5 Methodology comparison

The relative performance of each bandwidth selection procedure for regression and

error density estimation is shown using comparative box and whisker plots in Figures

3.2 to 3.7 (see Table 3.1.5 for an acronyms reference). Figure 3.2 shows that the SKDE

gives smaller estimated square errors (ESEs) than the NPKDE. As the sample size

increases in Figures 3.3 and 3.4, all the error densities being estimated from Bayesian

global functional regression can be seen to give smaller ESEs than cross-validation

functional regression.

Figures 3.5, 3.6, and 3.7 present only error densities produced from Bayesian

functional regression estimation. As the sample size increases, it can be seen that the

SKDE consistently gives smaller ESEs than the NPKDE. It can also be seen that each

method of selecting the bandwidth for the NPKDEs gives very similar results, with

Bayesian plug-in bandwidth choosing the more optimal bandwidth than the other

methods.
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Figure 3.2: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian and two-stage cross-validation methods with curve sample
size N = 50 and M = 100 Monte Carlo replicates (refer to Table 3.1.5 for definitions
of the acronyms SHTS, etc.).
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Figure 3.3: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian and two-stage cross-validation methods with curve sample
size N = 250 and M = 100 Monte Carlo replicates (refer to Table 3.1.5 for definitions
of the acronyms SHTS, etc.).
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Figure 3.4: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian and two-stage cross-validation methods with curve sample
size N = 1000 and M = 100 Monte Carlo replicates (refer to Table 3.1.5 for definitions
of the acronyms SHTS, etc.).
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Figure 3.5: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian methods only with curve sample size N = 50 and M = 100
Monte Carlo replicates (refer to Table 3.1.5 for definitions of the acronyms SHBG,
etc.).

44



M.Sc. Thesis - John R.J. Thompson McMaster - Mathematics & Statistics

SHBG SHBA MLBG MLBA LSBG LSBA GAPI EPPI

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

0
.0
2
5

0
.0
3
0

E
S
E

Figure 3.6: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian methods only with curve sample size N = 250 and M = 100
Monte Carlo replicates (refer to Table 3.1.5 for definitions of the acronyms SHBG,
etc.).
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Figure 3.7: Comparison of the estimated squared errors of nonparametric kernel
methods for the Bayesian methods only with curve sample size N = 1000 and M =
100 Monte Carlo replicates (refer to Table 3.1.5 for definitions of the acronyms SHBG,
etc.).
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Table 3.8: Acronyms for comparative box and whisker plots

Acronym Bandwidth selection method Kernel function Functional regression
bandwidth selection
method

SHTS SKDE maximum likelihood cross-
validation

Gaussian Cross-validation

SHBG SKDE Bayesian global plug-in Gaussian Bayesian Global
SHBA SKDE Bayesian local plug-in Gaussian Bayesian Local
MLTS Maximum likelihood cross-

validation
Gaussian Cross-validation

MLBG Maximum likelihood cross-
validation

Gaussian Bayesian Global

MLBA Maximum likelihood cross-
validation

Gaussian Bayesian Local

LSTS Least-squares cross-validation Gaussian Cross-validation
LSBG Least-squares cross-validation Gaussian Bayesian Global
LSBA Least-squares cross-validation Gaussian Bayesian Local
EPCV Least-squares cross-validation Epanechnikov Cross-validation
EPPI SKDE Bayesian global plug-in Epanechnikov Bayesian Global
GAPI Bayesian global plug-in Gaussian Bayesian Global
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3.2 Application to the chemometric data set

In this section, functional regression is performed on the chemometric data set using

functional cross-validation and Bayesian bandwidth estimation methods, and the er-

ror density estimators are applied to the predicted residuals. The chemometric data

set tecator, described in Section 2.1.3, has 215 paired curves and responses, which

are split into a training set of the first n1 = 160 data pairs and an evaluation set of

the last n2 = 55 data pairs. This method is used in previous work by Ferraty et al.

(2010); Shang (2013), and is extended below to shuffling the data before splitting into

two separate sets. Table 3.9 shows that for the original sample, cross-validation gives

a smaller MSPE than Bayesian methods for fat, protein, and moisture.

Table 3.9: Comparison of MSPE of the residuals after training each method on the
first 160 observations and evaluating on the final 55 observations.

Fat Protein Moisture
Two-Stage CV 5.3679 2.5687 4.2822

Bayesian Global 176.8856 9.3990 103.3482
Bayesian Local 176.8896 9.3990 103.3505

The residuals and estimated error densities for two-stage cross-validation, Bayesian

global, and Bayesian local regression estimation are shown in Figures 3.8, 3.9, and

3.10, respectively. Figure 3.8 shows the predicted residuals from predicting the last 55

observations for two-stage cross-validation. In these cases, the SKDE is oversmooth-

ing the data compared to the NPKDE. Figure 3.9 and 3.10 show Bayesian global

and local regression estimation residuals. The SKDE is undersmoothing the data in

comparison to the NPKDE.
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Figure 3.8: Comparison of error density estimators for residuals calculated from the
FNWKE with a cross-validated bandwidth. The SKDE is shown in comparison to
using the NPKDE with an Epanechnikov kernel and least-squares cross-validated
bandwidth. A histogram estimator is used for reference. A standard Gaussian density
with maximum likelihood estimates for the mean and standard distribution is used
for comparison.
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Figure 3.9: Comparison of error density estimators for residuals calculated from the
FNWKE with a Bayesian global bandwidth. The SKDE is shown in comparison
to using the NPKDE with an Epanechnikov kernel and least-squares cross-validated
bandwidth. A histogram estimator is used for reference.
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Figure 3.10: Comparison of error density estimators for residuals calculated from
the FNWKE with a Bayesian local bandwidth. The SKDE is shown in comparison
to using the NPKDE with an Epanechnikov kernel and least-squares cross-validated
bandwidth. A histogram estimator is used for reference.
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3.2.1 Shuffled samples

To show that this is not just a single sample result, the data are shuffled 100 times

and for each shuffle, split into a training set of the first n1 = 160 data pairs and an

evaluation set of the last n2 = 55 data pairs. Averaging over the shuffles, Table 3.10

shows that Bayesian methods have a consistently higher MSPE than cross-validation

for estimating the regression operator.

Table 3.10: Comparison of MSPE of the residuals after shuffling the data 100 times.
The regression estimator for each method is trained on the first 160 observations and
evaluated on the final 55 observations per shuffle.

Fat Protein Moisture
Two-Stage CV 7.0864 2.7086 5.7874

Bayesian Global 160.9720 9.0352 97.1804
Bayesian Local 160.9722 9.0352 97.1804

52



Chapter 4

Conclusions and Recommendations

For simulated data, Bayesian plug-in bandwidth selection methods in the SKDE

have been shown to best estimate the error density. For the NPKDE, Bayesian global

bandwidth selection methods for error density estimation have been shown to give a

slightly smaller MESE than cross-validation methods.

For all sample sizes, the (bounded) Epanechnikov and Gaussian kernel functions

have been shown to give a similar MESE for both two-stage cross-validation and

Bayesian global plug-in bandwidths in the NPKDE. This was expected as the band-

width selection method is a more significant factor than kernel selection in accurate

density estimation.

For the FNWKE calculated with Bayesian compared to two-stage cross-validation

methods, the significant reduction in the MESE for error densities is likely caused by

a better estimate of the regression operator, and by not the bandwidth selection

method for the error density estimator. However, there is no need to re-select the

error density bandwidth using cross-validation after Bayesian functional regression

since it simultaneously calculates functional regression and error density bandwidths.
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For the chemometric data set, estimating the FNWKE using cross-validated band-

widths was shown to give a significantly lower MSPE than using Bayesian bandwidths.

The same Bayesian bandwidth estimation model was used for simulated and real data.

The Bayesian bandwidth selection method was shown to be adequate for simulated

data, but may have not chosen the best prior distributions for the bandwidths that

cause the functional estimates to be inadequate for this real data set.

The small number of Monte Carlo replicates and curve samples, due to the compu-

tationally intensive nature of the Bayesian method, do not allow strong conclusions to

be drawn from results presented in this thesis. To illustrate how time consuming each

method is, consider a sample of 50 curves that has 50×100 = 5, 000 sample points and

a sample of 1000 curves that has 100,000 sample points. A core minute/day/year/etc.

is the total time a single core would take to run a simulation. The local Bayesian

method took approximately 1.6 core days or 22.5 minutes on one core for one repli-

cation for 50 curves, and 66 core weeks or 2.4 seconds on one core for one replication

for 1000 curves. The cross-validation method took approximately 4 core minutes or

2.4 seconds on one core for one replication for 50 curves, and approximately 4.0 core

hours or 2.4 minutes on one core for one replication for 1000 curves. For a simulation

of 1000 Monte Carlo replicates, 1000 curves for Bayesian methods could take more

than one core year of computation time. For the same simulation, cross-validation

methods would take approximately 1.6 core days. This implies that while Bayesian

methods have better performance for estimating functional regression and error den-

sity, the computational trade-off is significant. The choice is whether or not to invest

computation time into calculating Bayesian methods. Each calculation is made using

an Opteron core processor, where a more powerful core processor will likely lead to
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shorter computation time.

4.1 Recommendations for future work

Based on the results presented in this thesis, some recommendations arise for future

work:

• Advances in the asymptotics of local linear cross-validation for functional re-

gression have been recently developed (Rachdi et al., 2014) and would be an

interesting comparison to Bayesian bandwidth selection methods.

• Another aspect of functional nonparametric methods is the optimal knot place-

ment for B-splines. Little discussion on knot placement for functional regression

was found in the course of a literature review. Simultaneous optimization for

B-spline basis, knot placement, and bandwidth for functional regression seems

to be an area deserving of attention.

• Theoretical and applied maximization of the kernel likelihood using kernel meth-

ods directly is another area deserving of attention and worthy of future investi-

gation.

Other aspects that could usefully be addressed include:

• Investigating the kNN bandwidth estimation for error density estimation (Li

and Racine, 2007) of the residuals from functional regression.

• Extending the simulations of this thesis to different SNRs.
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• Exploring larger sample sizes (> 1000 curve samples) and Monte Carlo sim-

ulations (> 100 replicates) in both functional regression and real-valued error

density estimation for all bandwidth estimation methods.

• Exploring different density estimators for the error density (Shang, 2013) such

as iterative methods (Müller and Wang, 1990; Jones et al., 1991).

• Investigating Bayesian methods for simulated data where the simulated error is

non-Gaussian.

• Using different symmetric kernel functions for error density estimation in the

Bayesian MCMC method such as the (bounded) Epanechnikov kernel.
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Appendix A

R packages and Functions for

Functional Data Analysis

This appendix outlines the different packages and functions used in R for calculations.

The R script files for all calculations in this thesis are available upon request.

A.1 The fda R package

The fda R package is the starter FDA package for smooth functional data with theo-

retical (Ramsay and Silverman, 2005) and practical support (Ramsay et al., 2009). It

is an excellent starting point for experimenting with the functional linear regression

model for FDA. There are functional data applications, with practical examples, to

introduce the use of the package to beginner practitioners, including how to specify

a basis, build functional data objects, apply smoothing methods, present analysis

methods for different kinds of functional data, and work with curve registration and

regression analysis.
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A.2 The fda.usc R package: functions for the fda

package

The package fda.usc for statistical computing in FDA (Febrero-Bande and Oviedo de

la Fuente, 2012) has functions for nonparametric functional regression and basis rep-

resentation for the fda R package. There are functions that come naturally from non-

parametric functional regression such as functional linear models and semi-functional

partial linear models. The package provides methods for exploring functional data,

conducting analysis, curve outlier detection, functional analysis of variance, and more.

This package also contains the tecator data set shown in Figure 2.1.

A.3 The “npfda” R functions

These functions are provided on the website http://www.math.univ-toulouse.fr/

staph/npfda/ with theoretical (Ferraty and Vieu, 2006) and practical (http://www.

math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/npfda-help-files.pdf) sup-

port. Many useful routines are included, such as calculating semi-metrics between

curves, determining optimal bandwidth, and using different regression techniques in

the functional setting. These functions were used to calculate the optimal bandwidths

for functional regression using cross-validation and all FNWKEs. Note that this is

not a formal package and is not maintained on the CRAN website.
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A.4 The np R package: nonparametric kernel den-

sity estimation for mixed data types

The np package (Hayfield and Racine, 2008) is used for nonparametric kernel density

estimation during simulations. This package provides many functions for calculating

the nonparametric kernel smoothing methods for continuous and ordered or unordered

discrete data types with theoretical support (see Li and Racine, 2007). The kernel

smoothing methods include univariate density estimation for continuous and discrete

data types, mixed data type multivariate regression, mixed type conditional density

estimation, and so on.

A.5 The parallel R package: parallel computation

The parallel R package (R Core Team, 2014) is used for parallel computation using

R on computers with shared memory between cores. Since R is designed to use only

one core per R session, this package uses different methods, such as spawning or

forking, to allow for simultaneous multi-core usage. Parallel computation is based

around the idea of a master that communicates jobs to workers who all perform the

same calculation, with parameters as instructed by the master. This is useful for large

simulations for computers with a large number of cores. There exist other packages for

communication between computers that do not have shared memory, such as Rmpi

(Yu, 2002) for R and npRmpi (Hayfield and Racine, 2008) for the np R package.
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