Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15273
Title: Tissue Stabilization in MRI-Guided Breast Biopsy
Authors: Iranpanah, Behzad
Advisor: Sirouspour, Shahin
Patriciu, Alexandru
Jeremic, Aleksandar
Department: Biomedical Engineering
Keywords: Breast biopsy;Magnetic Resonance Imaging;Tissue stabilization;MR-compatibility;MR-guided breast biopsy;Compression plates;Biomedical Engineering and Bioengineering;Biomedical Engineering and Bioengineering
Publication Date: Oct-2013
Abstract: <p>Breast cancer is the most common form of cancer in women in the United States. Histopathological examination through breast biopsy is considered as the "Gold Standard" for a definitive diagnosis. Contrast-enhanced Magnetic Resonance Imaging (MRI) is often used for guiding the biopsy in those cases in which the tumor may not be detectable under Ultrasound or X-ray mammography. Stabilization of the breast tissue during the biopsy is critical for its success to ensure that the target would not be displaced due to the patient movement or tissue deformation. Conventionally, the breast tissue is immobilized by firmly compressing it between two parallel plates. However, high compression forces causes significant patient discomfort and can reduce the intake of the contrast agent, which negatively impact the image quality.</p> <p>This thesis introduces devices and control methodologies for active tissue stabilization in magnetic resonance imaging (MRI)-guided breast biopsy. Pneumatic and piezoelectric actuators have been considered for developing concept designs for MRI-compatible tissue stabilization devices. Only the pneumatic device has been prototyped and tested. The device is comprised of two pneumatically-actuated support plates that would stabilize the biopsy target movements during needle insertion. An optimized geometry for the support plates allows for a good degree of tissue stabilization without relying on large compression forces. The plate configuration can also be adjusted inside the magnet bore using pneumatic actuators driven by pressure-controlled valves that are placed in the MR control room. This capability allows for the compensation of the target displacement based on MR image feedback. When combined with a separate needle drive mechanism, this stabilization device would enable in-bore MR-guided breast biopsy in combination with an in-bore needle driver system. The proposed approach offers improved target stabilization at reduced compression force and patient discomfort, that may also enhance MR image quality as result of greater intake of contrast agent. The open-front design of the stabilization plates provides greater flexibility in selecting the needle insertion entry point, and active adjustment of the support plates based on MR feedback improves the targeting accuracy.</p> <p>A concept design for a MR-compatible needle driver mechanism using piezoelectric actuators is also proposed. Experiments performed on chicken breast tissue with a prototype of the device demonstrate the effectiveness of this mechanism in increasing needle targeting accuracy using two simple error correction strategies. Furthermore, MRI compatibility tests are carried out to asses the performance of the device inside MRI.</p>
URI: http://hdl.handle.net/11375/15273
Identifier: opendissertations/8217
9224
4565643
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Access is allowed from: 2014-09-08
5.13 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue