Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15260
Title: A statistical framework to detect gene-environment interactions influencing complex traits
Authors: Deng, Wei Q.
Advisor: Paré, Guillaume
Canty, Angelo
Meyre, David
Department: Health Research Methodology
Keywords: genetic epidemiology;gene-environment interactions;variance heterogeneity;genetics;Applied Statistics;Bioinformatics;Biostatistics;Computational Biology;Genetics;Genomics;Statistical Methodology;Applied Statistics
Publication Date: Oct-2013
Abstract: <p>Advancements in human genomic technology have helped to improve our understanding of how genetic variation plays a central role in the mechanism of disease susceptibility. However, the very high dimensional nature of the data generated from large-scale genetic association studies has limited our ability to thoroughly examine genetic interactions. A prioritization scheme – Variance Prioritization (VP) – has been developed to select genetic variants based on differences in the quantitative trait variance between the possible genotypes using Levene’s test (Pare et al., 2010). Genetic variants with Levene’s test p-values lower than a pre-determined level of significance are selected to test for interactions using linear regression models. Under a variety of scenarios, VP has increased power to detect interactions over an exhaustive search as a result of reduced search space. Nevertheless, the use of Levene’s test does not take into account that the variance will either monotonically increase or decrease with the number of minor alleles when interactions are present. To address this issue, I propose a maximum likelihood approach to test for trends in variance between the genotypes, and derive a closed-form representation of the likelihood ratio test (LRT) statistic. Using simulations, I examine the performance of LRT in assessing the inequality of quantitative traits variance stratified by genotypes, and subsequently in identifying potentially interacting genetic variants. LRT is also used in an empirical dataset of 2,161 individuals to prioritize genetic variants for gene-environment interactions. The interaction p-values of the prioritized genetic variants are consistently lower than expected by chance compared to the non-prioritized, suggesting improved statistical power to detect interactions in the set of prioritized genetic variants. This new statistical test is expected to complement the existing VP framework and accelerate the process of genetic interaction discovery in future genome-wide studies and meta-analyses.</p>
URI: http://hdl.handle.net/11375/15260
Identifier: opendissertations/8100
9147
4513070
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Access is allowed from: 2014-08-26
2.81 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue