Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15256
Title: A Novel Approach to Detecting Listeria monocytogenes: Creating Species-Specific Ribonuclease (RNase)-Cleaved Fluorescent Substrate (RFS) by In Vitro Selection
Authors: Kanda, Pushpinder S.
Advisor: Li, Yingfu
Guarné, Alba
Burrows, Lori
Department: Biochemistry and Biomedical Sciences
Keywords: Ribonuclease;SELEX;Biosensor;Enzyme Kinetics;Listeria monocytogenes;Functional nucleic acid;Biochemistry;Biology;Biophysics;Molecular Biology;Biochemistry
Publication Date: Oct-2013
Abstract: <p>The food-borne pathogen, <em>Listeria monocytogenes</em>, is a global health concern as it has been responsible for multiple food contamination outbreaks over the past century. Current detection methods like the enzyme-linked immunoassays (ELISA), and polymerase chain reaction (PCR) take over 24 h to attain results, are costly, require specialized equipment and trained personnel. In this study we investigated the use of functional nucleic acid (FNA) to develop a rapid and cost-effective detection method for <em>L. monocytogenes</em>. We carried out in<em> vitro</em> selection in order to isolate a fluorescently labeled DNA-RNA hybrid strand that can be bound and cleaved by specific endoribonucleases (RNase) from <em>L. monocytogenes</em>. We termed these DNA-RNA hybrid strands RNase-cleaved fluorescent substrate (RFS). Since no past studies have isolated RNases from <em>L. monocytogenes</em>, we first identified the genes based on sequence similarities with well characterized RNases. We purified and characterized RNase HII, RNase III and RNase G. Since this study focused primarily on developing RFS for RNase HII, we performed an in depth <em>in vitro</em> biochemical analysis to characterize this enzyme. We found that RNase HII from <em>L. monocytogenes</em> plays an important role in DNA replication and repair. Furthermore, we obtained six sequence classes by <em>in vitro</em> selection which could interact with RNase HII. The key nucleotide regions involved with RNase HII interactions were identified. In the final study, we showed the sequences isolated by <em>in vitro</em> selection could also be used as a tool to study ribonuclease function and identify new interaction between enzyme and substrate.</p>
URI: http://hdl.handle.net/11375/15256
Identifier: opendissertations/8088
9108
4461304
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Access is allowed from: 2014-08-18
20.84 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue