Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/15245
Title: FUNCTION OF YJEE AND RIBOSOME ASSEMBLY FACTORS
Authors: Mangat, Chand S.
Advisor: Brown, Eric
Department: Biochemistry
Keywords: YjeE;Escherichia coli;Chemical Biology;Ribosome biogenesis;cold-shock;Biochemistry;Molecular Biology;Biochemistry
Publication Date: Oct-2012
Abstract: <p>Using the model organism <em>Escherichia coli</em>, we discuss herein two novel antimicrobial targets: namely, the protein YjeE and the process of ribosome assembly.</p> <p>YjeE is essential for viability and widely conserved amongst bacterial pathogens and has no human homologue. We searched for a small molecule probe of the function of YjeE to help circumvent the inadequate genetic tools that are available for studying this protein. Sensitive methods for detecting ligand binding were optimized; however, this effort yielded no inhibitors. A second approach to studying the function of YjeE was the development of a reporter using a promoter that is directly upstream of <em>yjeE </em>in <em>E. coli</em>. The activity of this promoter was tested in the presence of small molecules of known function and in diverse gene deletion backgrounds. YjeE found to be linked to the inhibition of DNA and protein translation as well as central metabolism and respiration. These interactions prompted experiments that revealed YjeE to be dispensable under anaerobic conditions.</p> <p>Many antibiotics target ribosomal protein synthesis; however, no current antibiotics target the process of ribosome biogenesis. In order to identify new biogenesis factors, the non-essential fraction of the <em>E. coli </em>genome was screened for deletions that gave rise to cold-sensitive growth. We found that genes associated with ribosome function were the most represented cold sensitive factors amongst the genes of known function. We identified and present here two new putative ribosome biogenesis factors, <em>prfC</em> and <em>ychF</em>, which had phenotypes associated with ribosome assembly defects.</p>
URI: http://hdl.handle.net/11375/15245
Identifier: opendissertations/7247
8303
3222705
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Access is allowed from: 2014-08-15
7.91 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue