Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Engineering
  4. Department of Electrical and Computer Engineering
  5. EE 4BI6 Electrical Engineering Biomedical Capstones
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/14421
Title: Motion Tracking Glove for Human-Machine Interaction: Grasp & Release
Authors: Shamsil, Arefin
Thilakshan,
Keywords: data glove;flex sensors;imu;accelerometer;gyroscope;arduino duemillanove microcontroller;hardware/software interface;serial communication channel;Biomedical;Electrical and Computer Engineering;Biomedical
Publication Date: 23-Apr-2010
Abstract: <p>A common problem seen among the lower extremity paralyzed individuals and the elderly with subsequently reduced movement abilities is that they must rely on others to do a simple task such as getting a glass of water from across the room. As a result of their physical limitations, they lose their independency and more so become burden for the others. Data Glove Controlled Dynamic Robotic Arm can virtually restore their movement abilities without them having to move from their place at all. Data Glove Controlled Dynamic Robotic Arm is composed of two major sophisticated systems that include the wearable Data Glove Dynamic Controller and the Wirelessly Moveable Robot Arm with built-in visual feedback system. In this project, a Data Glove has been designed with two flexor sensors, signal conditioning circuit, 3-axis accelerometer and 1-axis gyroscope IMU and Arduino Duemillanove ATmega328 microcontroller. In addition, a simulated stick figure virtual model of the Robot arm unit has been developed in Arduino-Processing IDE interface. For the implementation of the Data Glove controller, the flex sensors has been mounted on the index finger and thumb of the data glove. These sensors are variable resistors that outputs decreased resistance value when bent. Connecting these sensors through a signal conditioning circuit, two analog voltage signals are extracted that range between 0V-5V. Thus, when the user bends a finger, a corresponding analog voltage is generated. Feeding these analog inputs to the microcontroller ADC subunit, digital representation of the signals can be obtained. Based on the digital value corresponding to specific analog voltage outputs from the finger sensors, the microcontroller can be programmed to control the speed and planar rotational position of the servo motor linking the gripping fingers of the robot.</p>
URI: http://hdl.handle.net/11375/14421
Identifier: ee4bi6/20
1019
1594964
Appears in Collections:EE 4BI6 Electrical Engineering Biomedical Capstones

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.69 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue