Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/14051
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPelton, Robert H.en_US
dc.contributor.advisorBrennan, John D.en_US
dc.contributor.advisorCarlos Filipe, Fred Caprettaen_US
dc.contributor.authorWang, Jingyunen_US
dc.date.accessioned2014-06-18T17:06:09Z-
dc.date.available2014-06-18T17:06:09Z-
dc.date.created2014-04-02en_US
dc.date.issued2014-04en_US
dc.identifier.otheropendissertations/8881en_US
dc.identifier.other9960en_US
dc.identifier.other5431268en_US
dc.identifier.urihttp://hdl.handle.net/11375/14051-
dc.description.abstract<p>This thesis describes solutions to many of the challenges in the development of paper-based biosensors. Coupling techniques in analytical biochemistry with knowledge of paper science and technology, advances are described in the areas of: the influence of paper surface chemistry on bioactivity; optimizing bioactive ink formulation; the printing of paper supported microfluidic channels; and, the characterization of complex sensors based on printed sol-gel material layers.</p> <p>The stability of paper-immobilized antibodies under various conditions was first studied using both untreated filter paper and PAE-treated paper. Antibody stability decreased with increasing temperature and relative humidity. Paper treated with PAE had no significant influence on antibody stability under the experimental conditions. The experimental result was also encapsulated in an empirical equation to predict the impact of printing and coating operations on antibody activity.</p> <p>The influence of paper sizing agent (AKD) on the adsorption and inactivation of antibody was also investigated. The preliminary study showed that the small amount of AKD improved the antibody adsorption on paper and also did not interfere antibody activity. Therefore, packaging papers containing sizing agents can be used as a substrate for antibody immobilization.</p> <p>Two strategies to fabricate hydrophobic barriers were developed, based on sol-gel derived MSQ material. The first method is based on ink-jet printing a highly basic solution onto MSQ-impregnated filter paper to re-exposing the cellulose and producing a hydrophilic patterned region. The second method is direct ink-jet printing of MSQ onto paper to outline the hydrophobic walls bordering the hydrophilic channels. The resistance of the barriers to surfactants and organic solvents was tested. The functionality of MSQ-based devices was further demonstrated by using a colorimetric assay for <em>E. coli </em>detection.</p> <p>Multiple-stage inkjet printing of sol-gel based bioink onto porous filter paper for enzyme immobilization was characterized by various methods. Confocal microscope and SEM/TEM images confirmed the formation of sol-gel and enzyme composite material on the paper fibers without cracking. The protease assay proved that the entrapment of enzyme molecules improved with the increasing amount of the sol-gel derived material printed on paper. The top layer of sol-gel ink was found to play a major role in protection against enzyme proteolysis, while the bottom layer of sol-gel ink was found to be necessary to prevent the potential inhibition of enzyme by the cationic polymer.</p>en_US
dc.subjectPaper-based Biosensoren_US
dc.subjectAntibody Stabilityen_US
dc.subjectSol-gel Bio-inksen_US
dc.subjectEnzyme Entrapmenten_US
dc.subjectCoating Morphplogyen_US
dc.subjectOther Chemical Engineeringen_US
dc.subjectOther Chemical Engineeringen_US
dc.titlePRINTING AND CHARACTERIZATION OF INKS FOR PAPER-BASED BIOSENSORSen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.18 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue