Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13635
Title: Growth, Characterization and Simulation of InAs Quantum Wires on Vicinal Substrates
Authors: Scullion, Andrew
Advisor: Botton, Gianluigi
Thompson, David
Hoyt, Jeffrey
Department: Materials Science and Engineering
Keywords: quantum wires;heteroepitaxy;vicinal;off-cut;kinetic Monte Carlo;simulation;Semiconductor and Optical Materials;Semiconductor and Optical Materials
Publication Date: Apr-2014
Abstract: <p>The heteroepitaxial growth of InAs self-assembled quantum wires on vicinal substrates is investigated. InGaAlAs lattice-matched to InP was first deposited onto an InP(001) substrate with and without a 0.9 degree off-cut toward the (110) direction, followed by the deposition of a strained layer of InAs. Dense InAs quantum wires were successfully grown on both nominally flat and vicinal substrates in order to observe the effect of the presence of atomic steps. The off-cut angle was chosen based on the wire spacing on a flat substrate to serve as a template for their nucleation and improve their size distribution for use as 1.55 um wavelength lasers required by the telecommunications industry. The results have shown a modest but statistically significant improvement in the width of their size distribution. In addition, a kinetic Monte Carlo simulation including full strain calculations was developed to further understand the nucleation process. The model developed here disproves the idea that InAs quantum wires are aligned towards the (-110) direction due to diffusion anisotropy. The simulation of the formation of quantum wires similar to those observed experimentally has been achieved and the Stranski-Krastanow growth mode is demonstrated.</p>
URI: http://hdl.handle.net/11375/13635
Identifier: opendissertations/8471
9537
4766858
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
34.76 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue