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Abstract

The heteroepitaxial growth of InAs self-assembled quantum wires on vicinal sub-

strates is investigated. InGaAlAs lattice-matched to InP was first deposited onto

an InP(001) substrate with and without a 0.9◦ off-cut toward the (110) direction,

followed by the deposition of a strained layer of InAs. Dense InAs quantum wires

were successfully grown on both nominally flat and vicinal substrates in order to

observe the effect of the presence of atomic steps. The off-cut angle was chosen

based on the wire spacing on a flat substrate to serve as a template for their

nucleation and improve their size distribution for use as 1.55 µm wavelength lasers

required by the telecommunications industry. The results have shown a modest

but statistically significant improvement in the width of their size distribution.

In addition, a kinetic Monte Carlo simulation including full strain calculations

was developed to further understand the nucleation process. The model developed

here disproves the idea that InAs quantum wires are aligned towards the (1̄10)

direction due to diffusion anisotropy. The simulation of the formation of quan-

tum wires similar to those observed experimentally has been achieved and the

Stranski-Krastanow growth mode is demonstrated.
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Chapter 1

Introduction

1.1 Overview

The electronic band gap is typically an intrinsic property of a semiconductor which

separates two continuous bands of allowable electron energy states called the

valence band and the conduction band. This separation allows for the functioning

of devices such as transistors, solar cells, diodes and lasers. It is important however

to be able to modify the properties of semiconductors for different applications.

The use of III-V semiconductors allows us to control the lattice constant and band

gap by producing alloys with varied proportions of group III elements such as Al,

Ga and In, and group V elements such as P, As and Sb. However, this has only a

relatively small effect on the density of states outside the band gap.

Quantum well structures provide more control over the band gap which is useful

for controlling the absorption spectrum of solar cells and the emission wavelength

of diodes and solid state lasers. Additionally, quantum confinement provides us

with the ability to modify the density of states of devices in a favorable way. 2-

dimensional quantum wells1 are now fairly easy to produce through the sequential

deposition of lattice-matched semiconductor layers using standard chemical or

1The convention used here is as follows: 2D (layers or wells), 1D (wires) and 0D (dots)
quantum potential wells provide confinement in 1, 2 and 3 dimensions.
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physical deposition techniques. Although even with atomically sharp interfaces the

quality of lasers made using such structures is limited by the stepwise density of

states due to the quantum confinement in only one dimension. This problem can

be resolved by fabricating structures with confinement in more dimensions such as

quantum wires and quantum dots.

The desirable size of these structures is on the order of 10 nm and, due to the

limitations of electron beam lithography in terms of spatial resolution as well as

scalability, the production of structures through self-assembly is a promising method

but needs to be better understood for its reliable use in industry. In the case of

semiconductor epitaxy, self-assembled structures can be produced via a strain relief

mechanism known as the Stranski-Kranstanow growth mode whereby 3-dimensional

islands form during the deposition of a material on a lattice-mismatched substrate.

Given that the bandgap of the deposited layer is smaller than (and within) that

of the substrate, isotropic islands form quantum dots and elongated islands form

quantum wires as they provide quantum confinement.

Due to a combination of bandgaps and lattice mismatch, the InAs/InP system

is well suited to the production of quantum wire or quantum dot lasers with a

wavelength around 1.55 µm which is important for fiber optic telecommunication.

This wavelength corresponds to a minimum in the absorption spectrum of SiO2[1].

Although these quantum structures can be grown fairly reliably, the linewidth

of the lasers they produce is greatly limited by their uneven size distribution or

heterogeneity. In the case of quantum wires, even though each individual wire may

produce a narrow spectrum, the spectrum produced by all the wires together may

be broad if they all have different sizes. The spectrum is essentially convolved by

their size distribution.

It has been shown in some studies that the size distribution of quantum wires

can be improved by growing them on vicinal substrates but others show no

improvement. Furthermore, the off-cut angle of the substrates in these studies

is somewhat arbitrary. In this work, the effect of growing InAs quantum wires

on vicinal substrates is investigated. InP(001) substrates with an off-cut angle of

0.9◦ toward the (110) direction covered by a lattice-matched InGaAlAs alloy for

quantum confinement were used. The angle of the off-cut was chosen to match the

2
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spacing of InAs quantum wires grown on nominally flat substrates with the intention

of assisting their nucleation. The effect of the off-cut, the growth temperature

and the Al content of the confinement layer was investigated. Furthermore, a

kinetic Monte Carlo model of adatom diffusion including full strain calculations

was developed in order to gain further insight into the nature of self-assembled

heterostructures.

1.2 Fundamentals of Quantum Structures

Heterostructures are geometrical arrangements of different semiconductor materials.

Those in which a small bandgap material is surrounded by a larger bandgap

material are quantum heterostructures sometimes referred to as quantum wells2.

Low energy electrons within the conduction band of these wells are trapped and

their spatial confinement allows them to only occupy particular energy levels

above the conduction band edge. This phenomenon is described by the solution

of Schrödinger’s time independent equation (1.1) [2]. In this equation, ~ is the

reduced Planck constant, m∗e is the effective mass of the electron, ∇2 is the Laplace

operator, ψ is the time independent wavefunction, V is the potential energy the

electron is subjected to and E is its total energy.

− ~2

2m∗e
∇2ψ + V ψ = Eψ (1.1)

For a one-dimensional infinite potential well of width a as defined in equation

(1.2), the allowable energy states are given by expression (1.3) for positive integer

values of n and for a three-dimensional well the energy levels are given by equation

(1.4). Vc represents the energy of the conduction band edge.

2The term quantum well can be a bit ambiguous since any quantum structure has a potential
well although the term is typically used to indicate a 2D quantum layer or film.
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V (x) =

{
Vc 0 < x < a

∞ otherwise
(1.2)

En = Vc +
~2n2π2

2m∗ea
2

(1.3)

Enx,ny ,nz = Vc +
~2π2

2m∗e

(
n2
x

a2
x

+
n2
y

a2
y

+
n2
z

a2
z

)
(1.4)

If the well is small in all three dimensions as in the case of a quantum dot, that

is, ax, ay and az are small, the density of states consists of very sharp peaks. If one

of these dimensions is large, let’s say ax for a quantum wire along the x-direction,

then the spacing between energy levels for different values of nx is small and the

density of states is approximately continuous. This one-dimensional structure will

have a density of states with peaks which follow E−1/2. If two of the dimensions

are large, the density will have a staircase shape and finally for a bulk material the

density of states is proportional to E1/2. These functions are illustrated in figure

1.1.

(a) Quantum dot. (b) Quantum wire.

(c) Quantum well. (d) Bulk.

Figure 1.1: Density of states for confinement in different dimensions.
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The density of states in the valence band is similar but inverted3 and scaled

vertically due to a different electron effective mass. Because the spectral linewidth

of a light emitting device such as a solid state laser is directly dependent on the

convolution of the density of states of the conduction and valence band, under

ideal conditions quantum dots are the most desirable structure. However this is

only the case if it is possible to produce dots of uniform size, that is, with a narrow

size distribution. This has proven to be a difficult task using self-assembled growth

techniques [3]. Although quantum wires provide less quantum confinement and

therefore a broader density of states, the ability to control their size distribution

seems more accessible using vicinal substrates [4] and for this reason they are the

topic of interest for this thesis. Furthermore, despite a modest improvement of

the density of states of quantum wires over a quantum well compared to that

of quantum dots, laser devices using wires have shown an improvement in their

threshold current density and the insensitivity of their output wavelength to

temperature [5].

1.3 Fundamentals of Molecular Beam Epitaxy

Epitaxy refers to the deposition of an ordered material layer onto a substrate. In the

field of semiconductors, there exist many different methods of depositing thin films

of material such as metalorganic chemical vapor deposition (MOCVD), sputtering

and molecular beam epitaxy (MBE) which each have their own advantages and

drawbacks. Chemical vapor deposition consists of exposing a heated substrate to

a reactive gas which decomposes into another gas and the atom being deposited.

For example, a metalorganic compound such as trimethylgallium ((CH3)3Ga) can

be ”cracked” on the substrate to deposit Ga while releasing methane gas (CH4)

and a compound such as arsine (AsH3) can react to deposit As while releasing

H2. This technique is well suited to commercial applications since it allows

simultaneous deposition on many substrates by filling a vacuum chamber with such

gases. Sputtering is a physical vapor deposition (PVD) technique which relies on

producing a plasma above a target material such as metallic gallium, causing ions

3The density of states is roughly flipped about middle of the band gap so that it increases
with lower energy for a bulk material.
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to bombard its surface and eject Ga atoms. This target is aligned geometrically

with the substrate where the Ga atoms are deposited. The chamber in which this

takes place can be filled with a gas such as N2 in order to form GaN for example.

Unlike CVD, this method requires a line of sight between the substrate and the

source but can be a more economical way of performing thin film deposition.

MBE is a deposition technique where the elements of interest are deposited

using quite literally a molecular or atomic beam. For the deposition of metals

(Al, Ga, In, etc.), the substrate is exposed to a (typically molten) metallic source

heated inside a crucible called an effusion cell as illustrated in figure 1.2. The

metal evaporates and the escaping vapor travels straight towards the substrate and

condenses onto it as indicated by the rightmost arrow. Group V species (P, As,

Sb) are deposited in the form of a molecular beam by cracking a gas such as arsine

(AsH3) in a cracker cell which is also in line with the substrate as indicated by the

other arrow. Unlike vapor at normal pressure which travels through convection,

the pressure inside an MBE chamber is such that it undergoes molecular flow.

Figure 1.2: An MBE chamber.

We can easily estimate the vacuum required for molecular flow which occurs

when the mean free free path of evaporating atoms is greater than the distance

between their source and the substrate. Assuming that gas atoms act as hard

spheres with a radius equal to the Bohr radius a0, their cross section4 is given by

σ = π(2a0)2. For there to be less than one collision over distance of L = 1 m, the

pressure needs to be less than roughly 0.1 Pa as demonstrated in equation (1.7)

4The radius used for σ is 2a0 because this is the maximum distance between two atoms for
there to be a collision.
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using the ideal gas law.

PV = NkBT (1.5)

P =
NkBT

V
=
NkBT

σL
(1.6)

=
1 atom · 1.38 · 10−23 · 300

3.5 · 10−20 · 1
≈ 0.1Pa (1.7)

Although a particularly high vacuum is not required for the operation of MBE,

an ultra-high vacuum (UHV ∼ 10−9 Pa) is used in order to provide excellent thin

film purity by removing any unwanted contaminants because the properties of

semiconductors is extremely sensitive to small concentrations of impurities. On

top of this, the walls of the chamber are cooled with liquid nitorgen to help collect

any contaminants through condensation. The other important components of an

MBE chamber are the loading chamber, the insertion rod, the vacuum system and

the specimen holder. The loading chamber is where the substrate is inserted into

the apparatus. It is separated from the main chamber by a valve and is pumped

down to high vacuum before the sample is placed in the main MBE chamber in

order to greatly reduce contamination. The insertion rod is in a closed system and

is displaced magnetically outside by the operator. The vacuum system consists of

a turbo molecular pump (TMP) backed by a roughing pump in addition to the

cooled chamber walls which greatly improve the vacuum at very low pressures.

The sample holder heats the substrate to the desired temperature and a pyrometer

in conjunction with a thermocouple behind the sample are used in order to measure

and monitor the temperature during growth.

The important advantages of MBE over other thin film deposition methods

is that it provides excellent control over the amount of material deposited and

produces very pure thin films which is excellent for research. The deposition rate

of group V elements is directly controlled by the flow rate of the hydride gas such

as arsine5 and the deposition rate of metals is determined by their partial pressure

inside their respective effusion cells which increases with temperature. Unlike in

CVD where a gas can take some time to fill and evacuate the deposition chamber,

using MBE, the beam can be blocked and unblocked by a shutter to quickly stop

5The flow must of course be calibrated for the geometry of the chamber.
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and start the deposition process. This allows for sub-monolayer control over the

amount of deposited material. Although MBE is (currently) difficult to scale up

for commercial purposes, it was chosen for the scientific investigations in this thesis

due to its great precision.

The growth of III-V semiconductors is performed under conditions where the

equilibrium phase is a mixture of the desired stoichiometric compound (such as

GaAs) and a gaseous form of the group V element6 [6]. This means that the

deposition rate of the group V element is greater than that of the group III

element and any excess of the former beyond the amount required to produce the

stoichiometric compound simply evaporates. This is referred to as the group V

overpressure and a value of interest is the V/III ratio which must be maintained

above 1 under normal growth conditions. Otherwise, a lower ratio leads to the

formation of metallic beads which is usually undesirable.

Additionally, the surface reconstruction, that is the arrangement of atoms on the

substrate surface during growth using MBE, depends on the V/III ratio as well as

other growth conditions such as temperature and the nature of the III-V compound.

Under the conditions used in this work, the expected surface reconstruction on a

(001) surface is the (2× 4) structure based on the surface phase diagram in [7] or

more precisely the β2 (2× 4) based on Moll’s work [8, 9]. This has an influence on

the surface energy of different crystal facets and plays an important role in the

model developed in chapter 3.

1.4 Transmission Electron Microscopy

When dealing with structures as small as quantum wires or nearly any thin film,

precision devices such as the transmission electron microscope (TEM) are required

for any structural characterization. The two principal imaging modes used here to

characterize cross-sectional samples are dark field (DF) imaging which can provide

good composition contrast and annular dark field (ADF) high resolution scanning

6However, one can argue that MBE growth is not performed under thermodynamic equilibrium
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transmission electron microscopy (HRSTEM) which provides atomically resolved

micrographs7 also with compositional contrast. These are the primary methods

used since the most important distinguishing feature of the wires with respect

to the surrounding material is their composition and composition distribution.

Features such as dislocations or changes in crystal structure are simply not present

and contrast in atomically resolved spectral images using electron energy loss

spectroscopy (EELS) is difficult to obtain for III-V semiconductors because of the

broad shape of the core-loss peaks of their constituents.

A dark field image is obtained in conventional TEM (CTEM) by placing an

aperture in the objective plane of the microscope just below the sample where

its diffraction pattern is first produced as illustrated in figure 1.3. The image on

the fluorescent screen or the CCD camera is then only formed by the electrons

diffracted in the chosen direction corresponding to the diffraction spot selected

using the aperture. This allows the observation of various contrast mechanisms

which depend on the crystal structure of the specimen. To a good approximation

for a thin sample, the image intensity is determined by the absolute square of

the structure factor |F (hkl)|2. This factor is proportional to the amplitude of the

electron wave at a particular scattering angle related to the (hkl) plane in question

and is directly proportional to the Fourier transform of a unit cell in the direction

of this plane. Equations (1.8) through (1.11) show how the structure factor is

obtained for a crystal with an unit cell electron density function ρ(~r).

F (hkl) ∝ F [ρ(~r)]hkl (1.8)

= F [
N∑
j

ρj(~r) ∗ δ(~r − ~rj)]hkl (1.9)

=
N∑
j

fj(θ) exp(i2π~khkl · ~rj) (1.10)

=
N∑
j

fj(θ) exp(i2π(hxj + kyj + lzj)) (1.11)

Here F denotes a (3-dimensional) Fourier transform, j is the index of the N

7The terms ”micrograph” and ”image” are used interchangeably throughout this work.
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Figure 1.3: Microscope configuration for conventional dark field imaging.

atoms in the unit cell, ρj is the electron density function of an individual atom,

δ(~r − ~rj) is a Dirac delta function centered at the atomic position ~rj and fj(θ) is

the atomic form factor of the jth atom. The diffracted angle θ is given8 by θ = λ/d

where d is the spacing of the (hkl) plane or d = a/
√
h2 + k2 + l2 in the case of a

cubic lattice with a lattice constant a and λ is the wavelength of the electron beam.

The III-V semiconductors in this work all have a zinc blende crystal structure

which is similar to that of diamond except that half the atoms are group III atoms

and the other half are group V atoms. Figure 1.4 shows the unit cell of a GaAs

crystal as well as the view along the (110) and the (1̄10) directions or zone axes.

Another way of defining this structure is using a face-centered cubic lattice with

two atoms at each lattice point, that is, lattice points at 000, 1
2

1
2
0, 1

2
01

2
, 01

2
1
2
, and at

each point there is a group III atom at 000 and a group V atom at 1
4

1
4

1
4
. As a result

the structure factor for the (002) spot is given by F (002) = 4 · (fIII(θ) − fV (θ))

8Using the small angle approximation since λ is usually much smaller than d.
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where fx(θ) is the atomic form factor of the group x atom for the appropriate

diffracted angle θ.

Figure 1.4: Zinc blende crystal structure.

What is important about this result is that the structure factor for the (002)

reflection is proportional to the difference between the atomic form factor of the

group III and group V atoms. This produces strong compositional contrast between

the materials used in this work. By using the approximation that the atomic

form factor for an element is its atomic number, we can estimate the relative

intensity (structure factor squared) of the different compounds in our samples.

The four main materials in our samples are InP, InAs, In0.53Ga0.37Al0.10As and

In0.53Ga0.27Al0.20As, and they should produce an intensity of 1, 0.222, 0.029 and

0.013 relative to InP, respectively. This means that in a (002) dark field image the

InAs quantum wires appear bright within a dark InGaAlAs boundary layer above

a bright InP substrate as shown in chapter 2.

Annular dark field STEM is similar to this imaging method in that only the

diffracted electrons are used to produce the image. However it involves scanning

the sample using a focused electron beam called a probe. As illustrated in figure

1.5, an electron beam is focused onto a particular part of the sample and a portion

of the diffracted beam is collected on an annular detector at the back focal plane

which is shaped like a disk with a large hole in its center. The portion that is

measured is determined by the size of the detector and the camera length9 which

can be adjusted given it is placed after the projector lenses. The theory behind

9The camera length is just a distance that describes the magnification of the diffraction
pattern.
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this imaging technique is that heavier atoms10 deflect electrons more strongly than

lighter atoms and so the amount of electrons collected by the annular detector

increases with the atomic number (Z) and the thickness of the sample. This leads

to what is referred to as mass-thickness contrast where the measured intensity is

roughly proportional to the square of the total mass (product of atomic mass and

thickness of the sample) exposed to the electron beam. An image of the sample is

rendered by rastering the beam over an area in a discrete manner where for each

beam position, the integrated intensity over the detector is measured.

Figure 1.5: Microscope configuration for annular dark field imaging.

Furthermore, with the help of aberration corrected microscopes, it is possible

to focus the beam to a probe which is smaller than the distance between the atoms

of interest. Given that the specimen is properly oriented along a zone axis, it is

possible to resolve individual atomic columns. Unlike high resolution TEM which

suffers from variable contrast which strongly depends on focal conditions[10], ADF

STEM provides a reasonably reliable and intuitive contrast mechanism, despite

10What is actually important is the charge of the nucleus but its weight is referred to for
convenience.
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effects such as channeling and beam spreading.

Channeling is a phenomenon where electrons become focused around atomic

columns as they travel through a crystal. The problem is that the density of

electrons can also oscillate between different columns as they traverse the sample

and this means that the intensity observed on the annular detector does not only

come from the column that the probe is on but others as well, depending on the

nature of the sample. Beam spreading is also important and is closely related to

channeling. Basically, due to the uncertainty principle, a large convergence angle

determined by the condenser lenses and condenser aperture (large uncertainty in

momentum) is required in order to form a very small probe (small uncertainty in

position) and such a beam will spread rapidly, effectively resulting in a narrow

depth of field. This implies that even though the probe may be very small at the

top of the sample (in focus) it may be quite broad as it leaves the sample even

without considering diffraction. Despite these potential drawbacks, with a thin

enough sample it is possible to achieve atomic resolution and measure properties

such as composition, strain and so on.
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Chapter 2

Quantum Wire Growth

2.1 Overview

When depositing a heteroepitaxial thin film, three main growth modes are possible

depending on the intrinsic properties of the deposited material and the substrate[3,

6]. Typically in an unstrained system where the two materials are lattice-matched,

the Frank-van-der-Merve growth mode occurs where the thin film is deposited layer

by layer. In this case, it is energetically favorable for the deposited material to form

a flat epitaxial layer. If the materials are not lattice-matched, the accumulation of

strain energy can lead to the two other modes. If the interfacial or bonding energy

between the two materials is weak, the Volmer-Weber growth mode occurs in which

the deposited material quickly agglomerates on the surface to form 3-dimensional

islands. If the bonding energy is strong enough however, the Stranski-Krastanow

(SK) mode dominates. In this mode, the deposited material initially forms a thin

layer called a ”wetting layer” and past a critical thickness, 3-dimensional islands

begin to form. This growth mode is the most common for strained semiconductor

heteroepitaxy and is illustrated in figure 2.1.

The critical thickness in this work refers to the amount of material measured in

monolayers that is deposited before the formation of 3-dimensional islands begins.
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Figure 2.1: Evolution of Stranski-Krastanow growth: 1. The initial material is
deposited and forms a wetting layer. 2. Strain energy accumulates. 3. Strain is
relieved through relaxation in 3D islands.

It does not refer to the thickness before the formation of dislocations. Its value is

affected by the amount of strain or lattice mismatch between the material being

deposited and the substrate, as well as other parameters such as deposition rate

and temperature. In the case where the lattice mismatch is greater, the thin film

is more strongly driven to form islands to relieve strain and the critical thickness

decreases. A faster deposition rate leads to a greater critical thickness but for an

unintuitive reason[11]. For a lower deposition rate, more diffusion occurs between

the deposited material and the substrate material, creating a more dilute but thicker

film. Although the fact that it is more dilute reduces the effective lattice-mismatch

of the thin film, the layer’s thickness has a greater effect on the appearance of

islands and reduces what is sometimes called the ”effective” critical thickness1.

Note that no bulk diffusion is required for this process but rather surface diffusion

is sufficient.

The average size of these islands is mainly determined by the bonding energy of

the deposited material, the lattice mismatch between it and the substrate, and the

stiffness of the material since islands form to relieve strain energy at the expense

of broken bonds. This means that stronger bonds lead to the formation of larger

islands and a higher Young’s modulus leads to smaller islands. This intuitive

effect is demonstrated in chapter 3. Of course, other growth parameters such as

deposition rate and temperature can affect their size as well but what is perhaps

most important about this relationship is that it indicates an intrinsic or ”natural”

island size for self-assembled structures. As for the preference of wire growth along

the (1̄10) direction over dot growth, this is caused by either effective anisotropic

1The effective critical thickness is the critical thickness based on the amount of material
deposited, not the actual thickness of the deposited film due to diffusion.
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bonding at the surface due to the surface reconstruction based on our findings or

by a ”trapping” mechanism discussed in [12]. We demonstrate in section 3.6.1 that

the seemingly intuitive argument involving faster surface diffusion along the (1̄10)

direction [13] is not the cause of the formation of wires.

2.2 Growth Conditions

Based on previous investigations of InAs quantum wire growth by a former Ph.D.

student, Dr. Kai Cui [14], self-assembled wires are best grown by depositing 3.5 to

5.6 monolayers (ML) of InAs at 520 ◦C at a deposition rate of 0.4 ML/s. These

parameters were therefore used as a guide for our own growths. Eight growth

experiments were conducted following the general growth profile illustrated in

figures 2.2 and 2.3 using the on site MBE chamber.

Figure 2.2: Quantum wire growth parameters
common to all experiments where T is the tem-
perature indicated in table 2.1. Additionally
the V/III ratio was 4.

Figure 2.3: 3-Dimensional render-
ing of the growth including sur-
face steps. (not to scale)

The experimental procedure consists of first cleaving the 2” InP wafers into

quarters. This is done by making a small scratch on the face of the wafer in the

middle of the large flat using a scriber. Figure 2.4 illustrates a wafer as it is received

by the manufacturer with a large flat and a small flat which are polished off by

the manufacturer in order to indicate the orientation of the substrate. Once the
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scratch has been made, pressure is carefully applied to the wafer until it cleaves

along the (110) direction. This is repeated along the perpendicular direction for

both halves of the wafer and the quarters are cleaned using a nitrogen duster.

Figure 2.4: InP wafer (actual size). Figure 2.5: Bandgap vs. lattice constant for
various semiconductors[15].

The quarter wafer is then placed in a holder and inserted into the loading

chamber of the MBE system. After evacuating this chamber, it is inserted into

the center of the main chamber where it is cleaned using a hydrogen plasma while

heated at 470 ◦C. An InP buffer layer is then deposited in order to ensure a pure

deposition surface by exposing the substrate to the molten In source and cracked

phosphine. The temperature of the metals and the pressure of the gases for a

desired deposition rate are all calibrated beforehand by growing test thin films

and performing X-ray diffraction measurements. A phosphorous overpressure2 is

maintained while the substrate is heated to the desired temperature.

The phosphorous is then evacuated from the chamber and the quaternary alloy

(InGaAlAs) is deposited at a rate of 1 ML/s by exposing the substrate to the

three metals and cracked arsine gas. The composition of this alloy is chosen to be

lattice-matched to InP based on the diagram in figure 2.5. This layer is referred to

as the barrier layer and is used to confine the carriers (both electron and holes)

within the InAs quantum wires. Although a lattice-matched material could be

made using only InGaAs, the aluminum content provides additional control over

the bandgap and band alignment. In fact, some aluminum is required to achieve

2The term ”overpressure” is used to denote a pressure greater than that required to maintain
group V atoms on the surface of the sample and to control the surface reconstruction.
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proper confinement of holes. Based on the parameters given in [16], the valence

band offset (VBO)3 of In0.53Ga0.47As is -0.594 eV which is nearly the same as

that of InAs which is quoted as -0.59 eV. In contrast, the valence band offset

of In0.53Ga0.37Al0.10As and In0.53Ga0.27Al0.20As is -0.74 eV and -0.79 eV. These

bandgaps are illustrated in figure 2.6. Also, the fact that AlAs and GaAs have a

very similar lattice constant can be practical since Ga and Al can be interchanged

to vary the bandgap without affecting the lattice constant nor the quantity of

In required. Regarding quantum structures, aluminum has a stronger bonding

strength which can also affect the formation of the self-assembled wires.

Figure 2.6: Band gap alignment of InGaAs and InGaAlAs compared to that of
InAs.

Following the quaternary alloy, InAs is deposited to form the quantum wires.

This was done by periodically opening and closing the shutter in front of the In

effusion cell to achieve the desired average deposition rate. In all experiments, 5 ML

of InAs were deposited over a period of 12.5 s for a deposition rate of 0.4 ML/s. The

V/III ratio used in these experiments, that is, the flux of the group V atoms (As)

over that of the group III atoms (In) was 4. This ratio is important for controlling

the surface reconstruction as well as the surface energy during epitaxial growth

using MBE. The wires are then covered by another barrier layer for confinement

and as indicated in figure 2.2, the procedure is repeated under the same conditions

but this time without covering the quantum wires. This capping layer is included

for characterization of the surface wires using either scanning electron microscopy

(SEM) or atomic force microscopy (AFM).

3The valence band offset defined in [16] is the valence band edge energy relative to that of
InSb.
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The parameters specified above were maintained for all growths and the pa-

rameters that were varied are listed in table 2.1. Eight growth experiments were

performed by changing: the temperature during the growth of both the quaternary

alloy and the InAs, the aluminum content of the quaternary alloy and whether the

substrate was nominally flat or off-cut.

Sample Growth # Temperature % Al off-cut
±0.1

A 1391 520 10 0.0
B 1392 520 10 0.9
C 1393 520 20 0.0
D 1394 520 20 0.9
E 1447 535 10 0.0
F 1448 535 10 0.9
G 1449 535 20 0.0
H 1450 535 20 0.9

Table 2.1: Variable growth parameters for all 8 experiments. The growth number
is included as a reference.

The growth temperature affects the surface diffusivity of the adatoms. At

higher temperatures, adatoms have more thermal energy which allows them to

move more frequently on a surface. Basically, they are able to ”hop” along the

surface more often per unit time. For a constant deposition rate, this can give

them a better opportunity to find lower energy adsorption sites before either being

buried by other incoming atoms or bonding to other adatoms to form islands.

The aluminum content, as mentioned above, modifies the band gap and provides

stronger bonding sites than gallium. Finally, each experiment was conducted on

either a nominally flat or a vicinal (off-cut) substrate.

The idea behind growth on off-cut substrates is to provide surface atomic steps

as uniform nucleation sites for the quantum wires and each experiment is repeated

on a nominally flat substrate for comparison. As illustrated in figure 2.3, our

intention was for one wire to nucleate at each surface step. In the case of InAs

grown directly on InP, it has been shown that some wires form directly at the

surface steps [17] and some work has shown an improvement in the size distribution

of quantum wires grown on vicinal substrates [4] but using an arbitrary off-cut

angle. For our experiments, we chose an off-cut angle of 0.9◦ as indicated in table
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2.1 based on two observations. Firstly, the average spacing of the wires from one

of Dr. Cui’s growths was measured by preparing a TEM wedge from one of his old

wafers. The separation of the wires was between 18 and 20 nm. Secondly, based

on observations from Salem’s work [4], the wires on the off-cut substrate were

narrower on average than on flat substrates. The off-cut angle in our experiments

was then chosen such that the length of the atomic steps or terraces is L = 18

nm, the lower end of our spacing measurements. If nucleation properly occurs at

the steps, this would hopefully favor the natural wire spacing observed on flat

substrates and lead to the growth of more uniform self-assembled quantum wires.

Finding the appropriate angle is a matter of simple geometry. Because of the

group V overpressure, the surface of the substrate is always covered by group V

atoms such as As and growth is exclusively limited by the group III atoms such

as In. For this reason, unlike for silicon or germanium, (100) off-cut substrates

have diatomic steps4 instead of monatomic steps as illustrated in figure 2.7. The

step height for InP is therefore half its lattice constant (h = 2.93 Å[18]) and the

required off-cut angle is given by atan(h/L) = atan(0.293/18) = 0.93◦.

Figure 2.7: Group IV semiconductors have monatomic step whereas III-V semicon-
ductors have diatomic steps under MBE growth conditions.

As for the direction of the off-cut, the polished surface was angled towards the

(110) direction as to provide surface steps along (1̄10) which is the orientation of

the quantum wires. Finally, the nominal InP (100) substrates were provided by the

MBE operator and the vicinal substrates were obtained from Wafer Technology

Ltd. in the U.K. with an off-cut angle of 0.9 ± 0.1◦.

4The diatomic steps are referred to as just atomic steps for simplicity.
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2.3 Sample Preparation

After growth in the MBE chamber, the wafer quarters must be cleaved, polished

and ion milled into proper TEM samples. The whole procedure is illustrated in

figure 2.8.

Figure 2.8: The various steps of TEM sample preparation. Blue lines indicate
cleaving, cutting or polishing and epoxy is shown as yellow.

The process begins by cleaving a quarter wafer into smaller pieces using a

scriber-mounted optical microscope. This is done by first placing the glossy side

of the quarter (the side which has wires) on the blue side of residue free sample

preparation plastic and aligning the whole under the scriber of the microscope. A

straight line is scratched onto the rough side of the wafer as indicated by step 1 in

figure 2.8 and the wafer is cleaved by covering it with the clear plastic layer and

carefully applying pressure on both sides of the line over a sharp edge such as the

edge of a microscope slide. The width of this piece is roughly 8 mm although the

exact dimensions are not important. Next, this long piece is cut into 1.6 mm wide

strips using a similar procedure as shown in step 2. The width of these strips is

important since it will influence the final length of the wedge sample which must

be placed on the 3 mm molybdenum ring and the tip of the wedge should ideally

be in the center of the ring. The value 1.6 is chosen as it is just a bit more than
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the radius of the ring and some of the material at the tip of the wedge will be lost

during its preparation.

Next, two of these 8 mm by 1.6 mm strips are glued together using a freshly

mixed 10 to 1 epoxy mixture (Epoxy Technology 353ND Kit part A & B), tightly

clamped using alligator clips and heated for about 10 minutes for the epoxy to set.

To verify that the glue has been sufficiently heated, an extra drop of epoxy can

be placed on one of the aligator clips and it should turn dark red when it is set.

The resulting glued strip is cut into ∼1.2 mm thick bars using a diamond wire saw.

These bars are now ready to be polished into wedges using the Allied High Tech

Products MultiPrepTM System.

The first side of the bar is polished flat by gluing it onto the appropriate small

metal holder using a polymer (CrystalbondTM 509 Thermo polymer) and for the

first side only, it is possible to polish two samples at once. The diamond lapping

films that are typically used for the polishing process are the 30 µm film (green)5,

the 9 µm film (blue), the 3 µm film (pink), the 1 µm film (purple) and finally the

0.5 µm film (white). To be on the safe side, it is recommended for each lapping

film to grind away 5 times the previous grit size. That is, 150 µm (5 · 30) using the

9 µm film, 45 µm (5 · 9) using the 3 µm and so on, although this is just a general

guideline. The loading pressure that is used for InP is usually around 100 g, that

is, the ”1” mark on the device. Each polishing step is executed using a lint free

tissue to wipe off the lapping film and under running water except for the last step

(0.5 µm) where a mixture of approximately 80% ethanol, 10% isopropanol and

10% ethane-1,2-diol (ethelene glycol) is used as a lubricant. The final thickness

after this step should be around 700 µm. After the final polish, the quality of the

polished side is inspected using an optical microscope to verify that no pits have

formed. The lubricating alcohol mixture is of great help at this point. If need be,

the polishing process using the 0.5 µm lapping film is repeated until the result is

satisfactory.

Once the first side is complete, the bar is removed from the metal holder by

heating it. While it is being heated, a Pyrex holder is polished flat using the 30

5The 30 µm film is optional and depending on the initial thickness of the bar, using the 9 µm
film from the start may be more convenient.
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µm film followed by the 3 µm film. The polished side of the specimen is glued onto

the Pyrex using the polymer and this part can be quite tricky. The specimen must

be pressed onto Pyrex hard enough to be even with it. If there is more glue on one

side than the other, it will be difficult to make a proper straight wedge. For this

reason, it is also important to make sure that the polymer is hot and fluid. Care

must be taken however in applying pressure onto the sample as not to scratch it

on the holder. Applying too much pressure can also leave too little glue to hold

the sample in place when polishing it. A small lip of the sample should be hanging

roughly 0.2 mm past the edge of the Pyrex. Then a similar polishing procedure

is followed as above. After using the 9 µm film, the sample should be around

200 µm thick and at this point a 2◦ tilt is applied to the holder by advancing the

tripod screw closest to the user by 1 mm. After using the 3 µm film for just a

few seconds, the wedge begins to form and at this point it is possible to see if the

sample needs to be tilted about its long axis. If the newly polished area is not

rectangular, that is, the edge of the sample is not parallel to the line between the

two different polished regions, the rightmost screw can be adjusted in increments

of about 0.05 mm to correct for this.

Once a thickness of 50 µm is achieved using the 3 µm film (at the thin end),

the 1 µm film is used. In this step, the sample is polished until the overhanging lip

of material breaks off from it and the protruding edge of the Pyrex holder begins

to be polished. As before, the 0.5 µm lapping film is then employed along with the

alcohol mixture until the sample is defect free near the glue line. Between two and

four thickness fringes should be visible at this point and the wedge can be removed

by placing the holder in a dish lined with filter paper and filled with acetone. The

holder should be placed in the same orientation as in the polisher (with the sample

”hanging” from the bottom). Once it has fallen away from the Pyrex, it can be

gently cleaned by removing the acetone and flushing with ethanol several times.

Finally, the sample is glued onto the molybdenum ring using a very small amount

of 10 to 1 epoxy. It is then left to cure overnight.

It is possible for the sample to be TEM ready at this point but typically ion

milling is required due to minor damage incurred during the cleaning process.

This was done using the Gatan precision ion polishing system (PIPSTM) which
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uses an Ar+ beam and the holder must be liquid nitrogen cooled to prevent the

formation of In droplets due to the evaporation of phosophorous from the InP6.

The ”double” beam modulator was used in order to prevent damage to the holder

and the rotation speed was set to 3 rpm. The accelerating voltage was set to 3

keV and the incidence angle was set to ±6◦.

Since the main purpose of ion milling is only to ”repair” the wedge, less than 5

minutes is usually all the time required. A noteworthy characteristic of the wedge

is that it is rippled after removal from the Pyrex mount and the undulations in the

wedge are quickly and noticeably removed during the ion milling process. Other

damage features such as small chips are usually ”ironed out” given that they are

small enough. Generally, however, less milling time is better since the quaternary

alloy is milled away more slowly than the substrate material and this produces an

undesirable bend around the region of interest.

Finally, additional milling using the Fischione NanoMill was performed on

some samples (liquid N2 cooled) using a 500 keV Ar+ beam and for HRTEM,

they were plasma cleaned for about 15 minutes with an O2 and H2 plasma using

a Gatan SolarusTM (Model 950) Advanced Plasma Cleaning System to remove

contamination.

2.4 Size Distribution Assessment Using SEM

One of the major disadvantages of cross-sectional TEM is that the investigated

area is much smaller than the sample of interest, in our case, an InP wafer quarter.

Due to the size and distribution of the quantum wires on the surface of wafer, it is

very difficult to get an accurate idea of their size distribution using TEM. A cross-

sectional specimen only allows us to observe a thin profile of a few dozen wires and

gives us little information about their 3-dimensional shape. As mentioned in section

2.2, the top layer of quantum wires was deposited specifically for this purpose and

using scanning electron microscopy (SEM), this section characterizes the shape of

6It is worth mentioning that the quantum wire region may remain protected from the In
droplets by the InGaAlAs layers.
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the quantum wires produced under the aforementioned growth conditions.

The way an SEM works is similar to STEM in that an electron beam is rastered

over the specimen and for each position, a detector collects electrons to produce the

intensity of a corresponding pixel in order to form an image. A secondary electron

detector in an SEM is used to collect relatively low energy electrons ejected from

the specimen near the impact area of the electron beam. Figure 2.9 illustrates

secondary electrons escaping the sample from four different areas and a secondary

electron detector in the top right corner7.

Figure 2.9: An electron beam ejecting secondary electrons in an SEM at four
different locations. The grid at the top right represents the secondary electron
detector.

The bulb-shaped volume at the bottom of the four beams represents the

interaction volume which is the volume from which secondary electrons are ejected

and the size of these regions depends on the energy of the incoming electron beam

(incident energy). This volume affects the actual resolution of the microscope as it

effectively smears out the ”response” of the sample. This mechanism also leads to

topographical contrast based on the incident angle of the beam and shadowing.

The first beam in figure 2.9 impinges on a flat part of the sample which is

perpendicular to its direction. The secondary electrons in this case will be ejected

isotropically and the charge collected by the detector, and therefore the intensity

in the micrograph, will be the same regardless of the location of the detector unless

7The secondary electron detector is actually behind the illustrated metal grid which is positively
charged to accelerate and attract these electrons.
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there is an object between this area and the detector such as the round particle

illustrated here. This leads to a shadowing effect where crevices seem darker than

large flat areas. The second beam hits a particle on the sample at a steep angle

and this allows for more secondary electrons to escape the interaction volume

(sideways). However, since the detector is on the opposite side of the particle, a

similar shadowing effect occurs here and the resulting measured intensity is low.

On the right side of the particle, the third beam again ejects many secondary

electrons and this time many of them can be detected which leads to a bright area.

All these shadowing effects result in an image which appears to be lit from the

direction of the detector which reveals good topographical contrast and images

which are intuitive to interpret.

In the case of our quantum wires, beam 4 illustrates how the brightness is not

much different from one side of the wire to the other due to their small size as well

as the shallowness of the edges which leads to little shadowing. More electrons

escape from the sides of the wires when the beam is on them than between them,

though and this provides contrast. Some anisotropy has been observed in some

images and this is pointed out below. Since this effect is small however, secondary

electron SEM images of our quantum wires are nearly 2-dimensional height profiles

which are great for image analysis.

2.4.1 SEM Observations

Figures 2.10a through 2.11d are secondary electron SEM images of samples A

through H taken with the FEI Magellan 400 XHR in secondary electron mode

using the through-lens detector. The magnification in each of these images is

200kx and this was chosen based on the amount of detail that was possible to

resolve, a reasonable acquisition time and a convenient number of pixels per wire

for image analysis. In all images, the scanning direction was aligned such that the

(1̄10) direction is vertical. This is not only a personal choice but also helped the

drift correction software properly track the sample as the images were acquired.

This correction usually consists of taking multiple images by scanning quickly,
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translating them in order to find the best match8 and adding them up. This

technique is useful for performing long acquisitions without suffering from blurring

due to any movement of the sample. This process accounts for the dark edges

around some of the images, notably in figure 2.10c.

Figure 2.10a is less sharp than the other 7 images due to residual astigmatism

but still allows us to visually distinguish the wires both horizontally as well as

their tips or ends. If we begin by comparing the first four images, we can see that

the wires all have similar characteristics. They are all generally aligned along the

same direction which is expected since they appear due to anisotropy between

the (110) and the (1̄10) directions, although some wire segments are tilted by up

to 20◦. All four substrates have what appear to be a few larger isotropic islands

or quantum dots either isolated from or as part of wires. At these locations it is

possible to observe that the bottom edge of the dots is slightly brighter than the

top edge which reveals a small amount of anisotropy due to the location of the

secondary electron detector, even though a through-lens detector is used. These

dots are not to be confused with the bright spots in figure 2.10a which appear

to be some form of contamination upon closer inspection. We can also see that

some wires are joined by Y-shaped intersections and sometimes even reconnect,

forming elongated loops. As for the size distribution, which is after all the main

aspect of interest, there is no clear visual improvement of samples B and D, which

were grown on vicinal substrates, over samples A and C. This is in contrast to the

apparent improvement observed in [4]. The wires do seem to be a bit more densely

packed in C and D compared to A and B as there are fewer exposed areas and

this could be explained by the increase in aluminum content which increases the

bonding strength of the substrate. However, given the amount of variability in the

next four samples (E through H), such conclusions may be unwarranted.

Figures 2.11a through 2.11d show much more variability. First of all, samples

E, G and H show many large exposed regions as well as a large number of dots

which was unexpected. The difference between samples E and F is the most

impressive but cannot be simply attributed to the off-cut angle of the latter,

especially considering the lack of distinction between samples G and H. Based on

8This can be done by finding the location of the global maximum of a 2D cross-correlation
between two images.
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(a) Sample A. (b) Sample B.

(c) Sample C. (d) Sample D.

Figure 2.10: SEM micrographs of the surface quantum wires at 200kx magnification.
These are the samples grown at 520◦C. Samples A and C were grown on a flat
substrate whereas B and D were grown on vicinal substrates. The aluminum
content in A and B is 10% and that in C and D is 20%.

experiments by other research groups, this coalescence may have occured during

the annealing9 process[19]. In their work, longer annealing periods lead to the

migration of the wire material toward large round islands or dots. The likely culprit

in our case is therefore an unintended difference in annealing conditions between

the different samples. The annealing time after the deposition of the buried wires

is well controlled since the quaternary alloy is deposited a precise amount of time

after the InAs deposition phase. There is much more discrepancy however in the

time that passes between the end of the deposition of the top layer of InAs and

when the substrate is cooled down to room temperature to be removed from the

chamber. Furthermore, considering that most of the dots observed here are either

vertically aligned with bare regions or connected to what seem to be shallower

9Annealing in this case is the process of keeping the substrate hot without depositing any new
group III material once the deposition is over.
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(fainter) wires, it is a reasonable hypothesis that the InAs has diffused from these

regions toward the dots. The fact that this occurred during the hotter (535◦C)

growths rather than the colder ones (520◦C) supports this theory since diffusion

occurs more readily at higher temperatures.

(a) Sample E. (b) Sample F.

(c) Sample G. (d) Sample H.

Figure 2.11: SEM micrographs of the surface quantum wires at 200kx magnification.
These are the samples grown at 535◦C. Samples E and G were grown on a flat
substrate whereas F and H were grown on vicinal substrates. The aluminum
content in E and F is 10% and that in G and H is 20%.

From the perspective of the bonding model developed in section 3.4 and from the

fact that the predicted surface energy[8] for the γ1̄11 is expected to decrease sharply

with an increase in the As chemical potential 10 µAs, the In bonds are expected to

be more isotropic once the deposition of In ceases. It is then reasonable to expect

the InAs to form more isotropic structures such as quantum dots. Additionally,

based on the TEM images presented in figures 2.16, 2.19, 2.17 and 2.20 of section

10The chemical potential µAs increases with either an increase of As overpressure or and
interruption of the group III pressure which causes γ1̄11 to decrease.
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2.5, the configuration of the buried wires and surface wires in sample F seem to

match well whereas those in sample E do not. Figure 2.19 shows a heterogeneous

undulated surface with flatter sections which may very well correspond to the bare

regions of figure 2.11a.

2.4.2 Wire Size Distribution

Despite the problematic SEM results for samples E, H and to some extent sample

G, all 8 images in figures 2.10 and 2.11 were analyzed in order to obtain the size

distribution, or more precisely the spacing distribution, of the grown quantum

wires. For this purpose, a script was written in MATLAB to automatically locate

the position of the wires and measure their spacing. The script performs this task

in a series of steps. The first objective as with many other image analysis tasks is

to produce a binary (black and white) image where the wires are highlighted. With

an ideal SEM image, this could be done using simple image segmentation where

the pixels of the image are categorized as above or below a trehshold value. Due

to noise this is not possible but this problem is resolved through the application of

a few Fourier filters.

Since we are looking for local brightness variation on the length scale of the width

of the wires and do not care about the overall brightness of large areas, we begin

by applying a 2D low frequency high-pass filter of the form I ′ = I − g(σ = 50) ∗ I
where I and I ′ are the image11 before and after the filter, g(σ) is a 2D normalized

Gaussian function with a standard deviation of σ and ∗ is the symbol used for

convolution12. The numerical values here are in pixels and only serve as a general

reference to convey a better understanding of the relative magnitude of the various

filters. Next, the mean value of the image is subtracted from every pixel to assure

that a threshold of 0 will affect all images in a similar way. A low pass filter is

then applied to the image to blur out the graininess and only keep the important

spatial frequencies of the wires. The image then becomes I ′ = g(5) ∗ I and as an

example, the result of these transformations is illustrated in figure 2.12 which is

11The image can be interpreted as a 2-dimensional function.
12The convolution is evaluated in reciprocal space to take advantage of the efficiency of the

fast Fourier transform (FFT).
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the Fourier filtered version of figure 2.10b. Once this is done, a treshold of 0 is

applied and the result is shown in 2.13.

Figure 2.12: Bandpass filtered version
of figure 2.10b for locating wires.

Figure 2.13: Binary image highlighting
the wires from figure 2.10b. The blue
horizontal line is a 10-pixel high band
over which wire separations are mea-
sured.

Using MATLAB’s image processing toolbox, the different wires can be separated,

counted and other properties such as their area and location can be determined.

However, due to the shape of the wires and how some have branches, analyzing

the regions of the binary image is not straightforward. For this reason, the image

was broken into 10-pixel high horizontal strips as part of our analysis as indicated

by the blue band in figure 2.13. Furthermore, since the thickness of the detected

wires can depend strongly on the filters that are used, the chosen threshold and

the general quality of the image, the separation between the middle of the wires

within these thin bands was measured instead. This proves to be a much more

reliable measurement as it does not depend on the width of the individual white

regions in figure 2.13 but rather their center within horizontal strips. However, one

problem with this method is that where there are vertical gaps between wires (past

the tips), the separation between the wires on both sides of this gap is measured

and this is an overestimate of the actual wire spacing. Fortunately, this turns out

to be a fairly small contribution as indicated by the tail of the following plots.

Figures 2.14 and 2.15 show the spacing distribution of all 8 samples based on

the SEM images above. The graphs include the mean and standard deviation13

for each of the curves and these represent the average spacing and its variability.

13Note that this is the standard deviation (width) of the distribution, not that of the mean.
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The curves in figure 2.14 are all fairly similar and two important observations

can be made. The first is that the wires grown on the substrates with the higher

aluminum content are on average narrower which is unexpected since aluminum

provides stronger bonds which intuitively would lead to larger wires based on the

balance between strain energy and bonding energy.

Figure 2.14: Spacing distribution of the wires from samples A through D.

The second important observation is that the size distribution of the wires

grown on the off-cut substrates is narrower than on the nominally flat substrates as

shown by the standard deviation for samples B and D compared to A and C. This

is in agreement with other work[4] done on substrates with a 2◦ off-cut, although

the difference in our case is not as substantial. Determining whether this difference

is significant is tricky however. The expression for the error on the width of a

Gaussian distribution14 is given in equation (2.1) [20]. In this expression, σσ is

the error on the width and σ is the measured value of the width or the standard

deviation. The difficult part of our analysis is to determine the value of n which

is the number of independent measurements. Technically the number of spacing

measurements made in our image analysis is on the order of 4000 to 6000 but this is

arbitrary since it depends on the chosen height (10 pixels) of the horizontal strips.

This value could be chosen differently and affect the number of measured wire

spacings, and each window is definitely not independent of its neighboring windows.

It is also clear that the total number of wires would greatly underestimate the

number of independent measurements since the spacing and width of a wire varies

significantly along its length.

14This is in fact the standard deviation of the standard deviation.
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σσ =
σ√

2(n− 1)
(2.1)

A reasonable value for n can be obtained by dividing the total area of the

analyzed images by a reasonable upper limit of the spacing distribution, squared.

That is, since most of the area under the curves in figure 2.14 is below about 30

nm, we can use as an upper limit of a total number of independent measurements,

n = w ·h/302 where w and h are the width and height of the image in nm. This gives

us roughly n ≈ 1600 and the error on the probability distribution width is therefore

σσ = σ/
√

2 · 1600. which is on the order of 0.12 nm for the values of σ above. This

means that the improvements of 7.0− 5.9 = 1.1 nm and 5.5− 4.9 = 0.6 nm are

significant and based on the measured statistics of the wire spacing distribution,

the growth on off-cut substrates has significantly improved the size distribution

of self-assembled quantum wires. Although significant, the improvement is still

modest and less than the desired outcome of this experiment.

The case is obviously different for samples E through H, however. Due to the

large amount of coalescence and bare regions in figures 2.11a, 2.11d and somewhat

in 2.11c, no important conclusions can be made regarding the spacing distribution

of the wires. Figure 2.15 shows the probability distribution of the wire spacing

plotted on the same scale as the plot for samples A through D for visual comparison.

We can see a distinct broadening of the H and E curves with respect to the two

others as a result of the coalescence as well as an increase in the average spacing,

both due to what is believed to be an annealing process.

2.5 TEM Characterization

Cross-sectional TEM allows us to characterize the buried wires which, after all, are

the more important ones. Using the (002) spot, dark field images can be obtained

which reveal strong compositional contrast as indicated by the equations in section

1.4. Figures 2.16 and 2.17 show dark field images of samples E and F obtained
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Figure 2.15: Spacing distribution of the wires from samples E through H.

using a Philips CM12 transmission electron microscope. The bright outer regions

are InP, the dark band is the two In0.53Ga0.37Al0.10As boundary layers and the

bright ”dashes” in the center are the cross-sections of quantum wires which run

parallel to the viewing direction (1̄10). The change in brightness between the top

and the bottom InP layers is mainly due to a slight bend in the samples from the

ion milling process. Preferential milling occurs near the edge of the sample near

the glue line and effectively erodes it. These intensity variations are a bit more

obvious in the lower magnification image of sample F in figure 2.18. In this image

the contrast is enhanced15 to more clearly show all the different deposited layers as

well as the vacuum above the sample. Glue is present above the top layer in some

samples while not in others depending on sample preparation and in this case it is

not.

In all these dark field images we can see that the spacing between the wires is

fairly regular although there is clearly some variability. It is important to keep in

mind that because we are nearly looking down atomic columns along the direction

of the wires, there may be more than one wire within the thickness of the sample

at a given 2D position in these images. This is most apparent in figure 2.23 in

the next section but may also explain the dark region near the center of the wide

wire in the top right corner of figure 2.17. Another important feature to notice in

these dark field images is the presence of bright streaks above the quantum wires.

Based on the contrast mechanism of dark field imaging using the (002) spot, these

15A gamma correction of γ = 1/2 was applied where the output image intensity is given by
IOut = IγIn.
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Figure 2.16: Cross-sectional dark field
image of sample E using the (002)
diffraction spot. This sample was grown
on a flat substrate and showed strong
wire coalescence on the surface.

Figure 2.17: Cross-sectional dark field
image of sample F using the (002)
diffraction spot. This sample was grown
on an off-cut substrate and show little
to no coalescence on the surface.

Figure 2.18: A gamma corrected lower magnification (002) dark field image of
sample F.(Off-cut, no surface coalescence)

brighter strips indicate a higher concentration of In and other work has confirmed

such higher concentrations of In using EELS [21]. These help in the alignment of

multilayer (stacked) quantum wires by producing a deposition surface with spatial

strain modulations and such modulations are predicted to provide preferential

nucleation centers for the lattice-mismatched material [22].

Figures 2.19 and 2.20 show bright field images of the surface of samples E and F
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under near zone axis condition which basically just provides strong mass-thickness

contrast. Two surfaces are visible in the first image since the glue line was thin

enough but not for the second. Some residual glue is present on both samples and

appears as light gray. The darker gray layer on all the surfaces is an amorphous

layers which was damaged during the ion milling process and the other dark regions

are of course the substrates (InGaAlAs and InP). What is important to notice

about these images as mentioned in the previous section is that the wires on the

surface of sample E are irregular and some flat regions can be seen whereas the

surface of sample F has much more regularly shaped wires in correspondence with

the SEM results in section 2.4. The fact that this important heterogeneity is

observed among the surface wires but not among the buried wires in sample E

further supports the idea that the coalescence was likely caused by annealing since

the buried wires would have been covered before any significant coalescence could

have taken place relative to the surface wires.

Figure 2.19: Cross-sectional bright field
image of sample E near the (1̄10) zone
axis. (Flat, strong surface coalescence)

Figure 2.20: Cross-sectional bright field
image of sample F near the (1̄10) zone
axis. (Off-cut, no surface coalescence)

2.6 HRSTEM Characterization

In order to verify whether the atomic steps16 act as nucleation centers as in-

tended, high resolution scanning transmission electron microscopy (HRSTEM) was

performed on wire samples grown on both nominally flat substrates and off-cut

substrates. As mentioned in section 1.4, annular dark field (ADF) images produced

using an aberration corrected microscope provides atomic resolution with reason-

ably intuitive mass-thickness contrast which is ideal for studying (buried) quantum

16Recall these are actually diatomic steps.
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wires since the main difference between the wire material and its surroundings is

its composition. Figures 2.21 and 2.22 show ADF-HRSTEM images of samples E

and F which were manually stitched together to cover a large field of view. The

images were obtained using an FEI Titan 80-300 STEM and both figures present a

single long image which is separated into three parts in order to fit on the page

with a reasonable resolution. The arrows indicate where the images are duplicated.

Figure 2.21: ADF-HRSTEM images of sample E stitched together to form a
continuous array of wires displayed over three rows. The arrows indicate the
duplicated regions. The bottom of the image is aligned with an atomic plane,
showing that the substrate was flat.

The first image was stitched together by only translating the 13 images acquired

to produce it. Due mainly to drift and possibly to the rotation of the sample between

frames17, there are slight discontinuities clearly visible at the seams between them.

The change in overall brightness can be attributed to either the bending of the

sample or discrepancies in the adjustment of focus and astigmatism. To some

extent it could be attributed to carbon contamination of the sample which is

a common problem in high resolution electron microscopy using high current

densities although after plasma cleaning, this was not too much of an issue during

the acquisition of these micrographs. Unlike in figure 2.21, the image in figure 2.22

17The sample was rotated to remain on zone axis and to compensate for the bending of the
wedge.
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Figure 2.22: ADF-HRSTEM images of sample F stretched, skewed and stitched
together to form a continuous array of wires displayed over three rows. The arrows
indicate the duplicated regions. The bottom of the image is aligned with an atomic
plane, showing the shallow off-cut angle.

was stitched after slightly rotating, stretching and skewing the 12 original images

in order to compensate for drift. The greatest amount of stretching applied to any

of the original images is around 5%.

The bottom of these panoramic images has been aligned with a single atomic

plane (001) in order to reveal the difference between sample E which is grown on a

nominally flat substrate and sample F which was grown on a 0.9◦ off-cut substrate.

The wires in the first image are flat whereas the angle measured on the second image

is roughly 1.0◦ as expected. This tilt can be observed by comparing the distance

between the bottom of the image and the wire in the top left and bottom right

corner of figure 2.22. This means that there are clearly atomic steps distributed

somewhere along this long micrograph although finding their exact location has

proven difficult. Work by Molina et al. [17] has shown that it is possible to find

the location of an InP surface step with respect to the location of an InAs wire.

Given that the step is straight enough over the thickness of the TEM specimen

(along the (1̄10) direction), the contrast between P and As may be strong enough
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to determine the exact location of the step given their atomic number difference of

33 − 15 = 18. In our case however, the contrast that is sought after is between

a column of In0.53Ga0.37Al0.10 and a column of pure In with an average atomic

number difference of only 49− (49 · 0.53 + 31 · 0.37 + 13 · 0.10) = 49− 38.7 = 10.3

since we are looking to distinguish the group III atoms18.

In a first attempt to identify the location of steps relative to that of the quantum

wires, line profiles over atomic planes at the base of the wires in various images

were examined in order to distinguish bright columns from darker ones but with no

success. Next, principal component analysis (PCA) was applied to each dumbbell

in the HRSTEM micrographs by writing another short MATLAB script and the

analysis of one image taken from sample F is shown in figures 2.23 through 2.25.

PCA applied to images consists of breaking them down from linear combinations

of individual pixel intensities into linear combinations of statistical trends of pixel

intensities such as shapes, for example. From a linear algebra perspective, it

consists of changing the basis or the multi-dimensional unit vectors by solving

for the eigenvectors of the problem. What is important to understand for its

application here is that it finds statistical trends such as the average intensity

profile of the dumbbells and variations between dumbbells in different areas of the

image.

Figure 2.23 shows an example of an analyzed image19. It is a particularly

interesting image since we can see the overlap of two wires on the left side indicated

by three distinct regions of different brightness: the dark boundary layer, a large

wire-shaped region of intermediate intensity and a bright region at the bottom right

of the larger wire. After applying PCA using the MATLAB function princomp,

the magnitude of the first principle component for each dumbbell is illustrated in

figure 2.24. Each circle is located above the center of a detected atomic dumbbell

and its brightness represents the magnitude of the first principle component. In

order to divide the dumbbells into separate populations, the k-means clustering

algorithm was applied using kmeans which basically finds linear combinations

18This is by no means a thorough comparison of the expected contrast but indicates that the
difference should be more subtle.

19The wire on the left side of this image is the same as the second wire in the middle row of
figure 2.22.
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of the principle components which most clearly categorize the distribution of

magnitudes. This typically rearranges the principle components into components

which are more physically relevant. After applying this clustering, the two distinct

populations of dumbbells are presented in figure 2.25 where (one would hope) the

white circles indicate In rich columns and the black circles indicate In deficient

columns. However, after thorough analysis and parameter adjustments, the location

of the atomic steps remains ambiguous and was not possible to be identified relative

to the position of the wires.

Figure 2.23: HRSTEM cross-sectional image of two quantum wires from sample F.
(Off-cut)

Figure 2.24: Principal component analy-
sis of figure 2.23 showing the magnitude
(contribution) of the first principal com-
ponent of each dumbbell.

Figure 2.25: Segregation of In rich
(white) and In deficient (black) dumb-
bells using PCA and k-means clustering.
No clear step is found.
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Chapter 3

Kinetic Monte Carlo

3.1 Overview

The self-assembled quantum wire growth experiments described and analyzed above

along with other experiments performed previously [14] give us an idea of the overall

effect of growth parameters such as temperature and off-cut angle and are essential

to improving growth of quantum structures. However, they give little insight as to

how such structures actually form on an atomic level. Due to the high temperature

(> 500◦C) and high vacuum (∼ 10−9 Pa) conditions, group V overpressure and

rapid growth (∼ 1 ML/s) during molecular beam epitaxy (MBE), it is difficult to

make any precise measurements during growth to get a good understanding of the

formation of the nanoscale structures of interest. Reflection high energy electron

diffraction (RHEED) is a technique that can be used to resolve the periodicity of

the surface reconstruction which is basically the crystal structure of the surface,

different from that of the bulk. Such a measurement gives poor spatial resolution

however and is more useful for understanding the overall condition of the substrate

surface. Scanning tunneling microscopy (STM) has been performed inside an MBE

chamber to study GaAs and InAs [23] with high resolution but this technique

requires quenching1 and therefore requires an interruption in the growth. Despite

1Quenching involves cooling a sample rapidly enough as to preserve the structure it had at
the high temperature of interest.
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not being able to provide a very continuous evolution of epitaxial growth, STM is

the technique which likely provides the most detailed view of what happens on the

surface during epitaxy.

However, in order to truly get an understanding of how the self-assembly

of quantum structures occurs and how growth parameters affect epitaxy on an

atomistic scale, we have resorted to computer simulations. The simulation of

atomic interactions is a very broad topic and various methods and models have

been developed. Density functional theory (DFT) is generally used to calculate

the energy of various atomic configuration and the transition energy between

different configurations through solving electronic densities (see [8, 24] for examples).

Molecular dynamics (MD) is another method which relies on classical dynamics

(Newtonian) to calculate the displacement of atoms which usually interact through

modeled potentials and van der Waals forces. Both of these computational methods

are very detailed but limited to simulating very short time scales (roughly the

nanosecond regime) and a fairly modest number of atoms which encompass events

such as adatom hopping. For simulating larger length and time scales of thin film

epitaxy on the order of seconds, kinetic Monte Carlo (kMC) is a great technique

which makes reasonable assumptions about atomic displacements.

The Monte Carlo method is a very general method of predicting the outcome

of nearly any stochastic system, that is, a system whose outcome relies on many

random events of reasonably well known probabilities. It is somewhat of a brute

force method used to simulate such random events rather than calculating an

analytic solution of the outcome, usually because a system of interest is very

complex. The method was thought of and first put to extensive use by Stanislaw

Ulam along with his colleagues near the end of the Second World War [25]. The idea

came about while he was ill and playing solitaire. Wanting to know the likelyhood

of winning a game of solitaire, he first looked for an analytic solution which would

involving finding the outcome of all 8 · 1067 possibilities. This however proved to

be a difficult task and he thought of another way of at least approximating the

likelihood of winning which was to play multiple games (shuffling the cards in

between of course) and simply to count how many times he won. The principle of

using random inputs is the basis of the Monte Carlo method.
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The method was then used to predict the outcome of nuclear interaction

events. Using a known statistical cross section from neutron scattering experiments

and theoretical calculations, the group of scientists at the Los Alamos research

laboratory simulated nuclear reactions inside a fissionable material. This consisted

of simulating the production of neutrons with a random location, velocity and

direction within a volume, and tracking it as it traverses material with a known

interaction probability. By simulating the interactions of a large number of particles

(neutrons in this example) it is possible to get an understanding of the expected

particle flux, energy deposition distribution or nearly any other quantity of interest

and the Monte Carlo method is a practical way of performing such calculations

for complex problems. The same simulation is simply performed over and over

using different random numbers to select which events occur and all the results

can be averaged to give a meaningful and statistically significant outcome without

having to deal with the complexities of predicting all possible outcomes. For this

reason the technique is currently being used in particle physics for predicting the

interactions between particles and often complex geometries. With today’s fast

and accessible computers, the Monte Carlo method is an amazingly convenient

tool which can be applied to a wide variety of different problems, such as a game

of cards.

Kinetic Monte Carlo specifically deals with the evolution of a single system

driven by random events rather than the repeated simulation of the same system

to measure multiple possible outcomes. In the context of epitaxy, we can simulate

the deposition of adatoms and their diffusion on the substrate surface fairly simply

by assuming that they make discrete jumps between surface lattice sites which is

fairly accurate based on DFT simulations and observations in HRTEM.

3.2 Surface Diffusion

A kinetic Monte Carlo simulation of adatom diffusion considering strain was

developed as part of this work, very closely based on one developed by Schulze

and Smereka [26, 27], and thoroughly described by Baskaran [28]. This section
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describes the basics of the diffusion model, section 3.3 briefly covers how strain

energy is calculated and section 3.4 describes in more detail the anisotropic bond

model that was developed for simulating the growth of quantum wires.

The atomistic diffusion model consists of a 3-dimensional cubic lattice of atoms

which represents the substrate and the deposited film. More specifically, since

III-V semiconductor growth is strictly limited by the deposition and diffusion of

the group III atoms, only these are considered. Although this approximation could

lead to important problems in simulating InAs grown on InP, only growth of III-As

materials are of interest in this work2 and the effect of the group V atoms can be

incorporated into the bonding model.

Each atom on the surface occupies a lattice site and is able to move in four

possible directions (+x,−x,+y,−y). The probability of each atom to move depends

on, to a first approximation, the number of neighboring atoms which can be between

0 and 4. This probability is expressed by a hopping rate R which is given by

an Arrhenius equation (3.1) where R0 is a base rate, n is the number of nearest

neighbors, EN is the bonding energy between surface atoms3, E0 is the activation

energy, kB is the Boltzmann constant and T is the substrate temperature in Kelvin.

R = R0 exp((nEN − E0)/kBT ) (3.1)

This is the simplest surface diffusion model and is illustrated in figure 3.1 where

the number nearest neighbors is indicated by the different color of the surface

atoms. Furthermore only atoms on the surface, that is, those not covered by

another atom, can move. This has two implications. The first is that atoms cannot

swap positions with each other and atoms can only move to where there is a free

space. This means that bulk diffusion is ignored which is a good approximation

given the growth temperatures investigated. The second is that no overhanging

structures can form. Models including overhangs have been developed to study

the formation of dislocations [29] but they are ignored here since our experimental

2This is not strictly the case since the deposition of InGaAlAs on InP is required for the
barrier layer and is simulated, but it is not by any means the focus of this work.

3This should normally be a negative value.
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results show no dislocations around the quantum wires. Based on this feature, the

model presented in this work is referred to as a solid on solid (SOS) model or even

a 2+1 dimensional model since atoms can only move on a surface (2D surface)

which extends in a third dimension (+1).

Figure 3.1: Each cube represents a group
III atom in the kMC model and its color
represents the number of nearest neigh-
bors it has. The atoms in purple are not
allowed to move.

Figure 3.2: Potential energy profile
as seen by the red atom.

The variable R0 physically represents the ”attempt frequency” which is how

often an atom tries to overcome the activation energy. The exponential term is

the likelihood that such an attempt will be successful and this depends on how

strongly bonded it is to its current lattice site. This is illustrated by the potential

energy profile in figure 3.2. The diagram shows the potential energy of the red

atom if it occupied the free white surface states. Here we can clearly see that the

potential energy is lower next to atomic steps due to an extra nearest neighbor

and even lower in pits since it would then be bonded to two additional atoms in

this 1+1D example. Since atoms move more frequently out of higher energy states

following equation (3.1), the state occupancy or probability distribution naturally

converges towards a Maxwell-Boltzmann distribution. Since the energy of surface

atoms decreases when they come next to each other, they tend to agglomerate and

this is what leads to the formation of islands, similar to water droplets sticking

together.
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3.2.1 Selection Algorithm

The way the simulation works is, given the hopping rate of all the surface atoms, a

single displacement event (which atom and in which direction) is chosen at random.

A rejection-free algorithm is used where the probability of an event being selected is

proportional to its hopping rate. An event is selected by first computing a running

sum of all the rates [0, R1, R1 +R2, ..., Rtotal], choosing a random value between 0

and Rtotal and determining where it lies among this list as illustrated in figure 3.3.

The example shown here is a considerable oversimplification where we assume only

three atoms are allowed to move in only one direction. In reality, each surface atom

has four separate rates for different directions, although they are generally equal

in a model with isotropic diffusion. This algorithm is referred to as rejection-free

since every selected event leads to the displacement of an atom. This is different

from earlier algorithms where a lattice site was chosen at random and whether the

selected atom moved or not depended on its hopping rate. This algorithm was

considerably slower than its rejection-free successor.

Figure 3.3: An event is selected at random among three possibilities.

Nonetheless, it is important to understand how time consuming this searching

process can be if it is not executed efficiently. For a 120 by 120 lattice of atoms,

this list contains 120 · 120 · 4 = 57600 elements and verifying this many inequalities

(is x > Rn?) would result in an impractically slow kMC simulation. For this reason,

a binary tree structure based on the AVL tree named after its inventors Adelson-

Velski and Landis[30] was implemented and is described in appendix A. This reduces

the search time from O(N) to O(log2(N)) which is a dramatic improvement. For

every simulation step, the simulation clock (total growth cumulative growth time)
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should be advanced by an exponentially distributed random number with a mean

of 1/Rtotal using equation (3.2). However, for simplicity and since only the overall

time distribution is of interest, our implementation only uses the mean (1/Rtotal)

as a time step.

∆t =
−1

Rtotal

ln(x) (3.2)

x = rand(0, 1) (3.3)

The mean of 1/Rtotal can be understood through simple examples. If only one

atom could move and had a hopping rate of R1 = 1 Hz, the average time between

steps would be 1 second ( 1
1Hz

). If two atoms had this same hopping rate, the

average time between steps would be halfed or 1
(2·R1)

= 1
2Hz

= 0.5 s since the total

event rate is now 2 Hz. Finally, if one atom has a hopping rate of R1 = 3 Hz

and the other R2 = 1 Hz, the total hopping frequency is 4 Hz and therefore the

average time between events is 0.25 s. Then in the general case, all the rates must

be added together as indicated in the equation above.

The algorithm therefore consists of first calculating the hopping rate of all the

surface atoms and adding them to the tree structure. After this initialization, an

event is selected randomly, the appropriate atom is displaced and the rates of

the surrounding atoms are updated. The displaced atom may have broken bonds

and made new ones which means that the rates of all the adjacent atoms must be

updated, including the newly covered and uncovered atom. This process is repeated

until the desired time has been reached. Additionally, a deposition rate is added

to the running sum. This is the rate at which atoms are deposited on the surface

during growth and is expressed by equation (3.4) where RML is the deposition rate

in ML/s and Nx and Ny are the dimensions of the simulated substrate surface in

atoms. The deposition of a new atom is naturally also one of the possible events.

Rdep = NxNyRML (3.4)
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3.3 Strain Calculation

Since strain energy is what drives the formation of 3-dimensional islands, its

inclusion in the kMC model is crucial. This is done by including an additional

strain energy term ES to equation (3.1). The improved rate model is shown in

equation (3.5). One of the earliest implementation of a strain energy term in a 2+1

dimensional model[31] uses a simplification where only atoms at the edge of (2D)

islands are affected by strain based on conclusions drawn from finite element strain

calculations. Full strain calculations in a 1+1 dimensional model were performed

in order to theoretically demonstrate how strain relaxation can occur without

dislocations[32] but due to limitations in computing power and perhaps more

importantly, computer memory, this was very difficult to do in 2+1 dimensions.

With the incredible developments in computer technology over the past couple

decades, it is now possible to undertake such problems as demonstrated by Schulze

and Smereka. In this work, the value ES is therefore calculated based on full strain

calculations performed over the cubic lattice of simulated atoms.

R = R0 exp((nEN + ES − E0)/kbT ) (3.5)

3.3.1 Strain Equation

Considering strain involves finding the equilibrium position of all the atoms in

the simulated lattice by numerically solving the differential equations that arise

from stress and strain. Before presenting the ball and spring model that is used in

our simulations, the differential equations of interest are derived in this section

to justify its validity. It is first worth defining some of the variables as well as

the convention that will be used here. Cartesian coordinates are used for obvious

reasons and the three orthogonal axes are x, y and z, and their respective unit

vectors are x̂, ŷ and ẑ. Displacements in these directions are given by the variables

U , V and W . The variable used for strain is ε and that for stress is σ.

The main governing equation of stress and strain under equilibrium is Cauchy’s

first law of motion (3.6) [33] (balance of linear momentum) where ρ is mass density,
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~v is velocity, t is time, ~∇ is the divergence operator, σ is the stress tensor and ~F

is an external force density [N/m3]. This is analogous to Newton’s second law of

motion (~F = m~a) but in a continuous case. Under equilibrium, the acceleration is

zero which means we only need to solve equation (3.7) which is time-independent.

The external force density ~F in our case will be related to the lattice mismatch

between different materials.

~∇ · σ + ~F = ρ
d~v

dt
(3.6)

~∇ · σ + ~F = 0 (3.7)

The stress tensor is defined in equation (3.8) which is equivalent to equation

(3.9)4 since σ = σ> due to the balance of angular momentum (Cauchy’s second

law of motion).

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (3.8)

σ =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (3.9)

In turn, its elements are related to strain by the matrix equation (3.10). Due

to the fact that the zinc blende crystal structure is cubic and has a F4̄3m space

group, the x, y and z directions are equivalent and so only three elastic constants,

C11, C12 and C44 are necessary. The stress strain relationship can therefore be

simplified to equation (3.11).

4The use of xz over zx may not be entirely consistent throughout this section but it is of no
importance since they are both equivalent.
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σ =



σxx

σyy

σzz

σyz

σzx

σxy


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





εxx

εyy

εzz

εyz

εzx

εxy


(3.10)

σ =



σxx

σyy

σzz

σyz

σzx

σxy


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





εxx

εyy

εzz

εyz

εzx

εxy


(3.11)

Next, we define ~∇ in (3.12) and apply it to the stress tensor. The result is the

three partial differential equations in (3.13) through (3.15) where Fx, Fy and Fz

are the three components the of external force density ~F .

~∇ =
[
∂
∂x

∂
∂y

∂
∂z

]
(3.12)

C11
∂εxx
∂x

+ C12
∂εyy
∂x

+ C12
∂εzz
∂x

+ C44
∂εxy
∂y

+ C44
∂εzx
∂z

+ Fx = 0 (3.13)

C11
∂εyy
∂y

+ C12
∂εzz
∂y

+ C12
∂εxx
∂y

+ C44
∂εyz
∂z

+ C44
∂εxy
∂x

+ Fy = 0 (3.14)

C11
∂εzz
∂z

+ C12
∂εxx
∂z

+ C12
∂εyy
∂z

+ C44
∂εzx
∂x

+ C44
∂εyz
∂y

+ Fz = 0 (3.15)

This however does not give us an expression in terms of atomic displacements.

Equations (3.16) and (3.17) define normal and shear strain with respect to dis-

placement. From here, we can obtain all three differential equations required to

solve strain in equilibrium by substituting these expression in the equations above.

Equation (3.18) shows the result in the x direction, and the expressions in y and z

are similar.
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εxx =
∂U

∂x
; εyy =

∂V

∂y
; εzz =

∂W

∂z
(3.16)

εxy =
1

2

(
∂U

∂y
+
∂V

∂x

)
; εyz =

1

2

(
∂V

∂z
+
∂W

∂y

)
; εzx =

1

2

(
∂W

∂x
+
∂U

∂z

)
(3.17)

C11
∂2U

∂x2
+ C12

∂2V

∂x∂y
+ C12

∂2W

∂x∂z
(3.18)

+
C44

2

(
∂2U

∂y2
+

∂2V

∂y∂x

)
+
C44

2

(
∂2U

∂z2
+

∂W

∂z∂x

)
+ Fx = 0

In order to apply this analytic equation to a discrete lattice of points such

as the one in our kMC model, it must be converted into a numerical equation

which can then be solved using an algorithm. For this we require a numerical

expression for derivatives which can be obtained from the definition of a derivative.

Three useful definitions are given in equations (3.19) through (3.21). The third is

exactly equal to the slope of a quadratic spline fit to three points5. Not only is

it a more accurate estimate but it is also symmetric which is a good feature for

numerically solving equations. Using these definitions, we can also express two

important second derivatives as demonstrated in (3.22) and (3.23).

df

dx
=
f(x+ ∆x)− f(x)

∆x
(3.19)

or =
f(x)− f(x−∆x)

∆x
(3.20)

or =
f(x+ ∆x)− f(x−∆x)

2∆x
(3.21)

d2f

dx2
=

d

dx

df

dx
=

df
dx
|x − df

dx
|x−∆x

∆x
(3.22)

=

f(x+ ∆x)− f(x)

∆x
−
f(x)− f(x−∆x)

∆x
∆x

=
f(x+ ∆x) + f(x−∆x)− 2f(x)

∆x2

5The derivative of a second order spline fitted to the three points, f(x0 −∆x), f(x0) and
f(x0 + ∆x), evaluated at x0, df(x)/dx|x0

, is equal to this expression
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d2f

dxdy
=

d

dx

df

dy
=

df
dy |x+∆x − df

dy |x−∆x

2∆x
(3.23)

=

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y −∆y)

2∆y
−
f(x−∆x, y + ∆y)− f(x−∆x, y −∆y)

2∆y

2∆x

=
f(x+ ∆x, y + ∆y) + f(x−∆x, y −∆y)− f(x+ ∆x, y −∆y)− f(x−∆x, y + ∆y)

4∆x∆y

=
f(+,+) + f(−,−)− f(+,−)− f(−,+)

4∆x∆y
(3.24)

=
f
(

+,+
−,−
)
− f

(
+,−
−,+
)

4∆x∆y
(3.25)

Since all these numerical expression will be applied to a regular grid with even

spacing between all points, ∆x will always represent the same distance, that is the

grid spacing in x, and this applies also for ∆y and ∆z. Additionally for compactness

and readability, equation (3.25) introduces a compact notation that will be used in

this section which is equivalent to equations (3.24) and (3.23). As a more general

example, the expression in (3.26) is equivalent to that in (3.27). This is nothing

but a shorthand notation for convenience.

f(x+ ∆x, y, z −∆z) + f(x−∆x, y + ∆y, z) (3.26)

= f
(

+,0,−
−,+,0

)
(3.27)

All that is left to do now is to make the appropriate substitutions in equation

(3.18) as shown in (3.28).
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C11

∆x2

(
U
(

+,0,0
−,0,0

)
− 2U(0, 0, 0)

)
(3.28)

+
C12

4∆x∆y

(
V
(

+,+,0
−,−,0

)
− V

(
+,−,0
−,+,0

))
+

C12

4∆x∆z

(
W
(

+,0,+
−,0,−

)
−W

(
+,0,−
−,0,+

))
+
C44

2

[
1

∆y2

(
U
(

0,+,0
0,−,0

)
− 2U(0, 0, 0)

)
+

1

4∆x∆y

(
V
(

+,+,0
−,−,0

)
− V

(
+,−,0
−,+,0

))]
+
C44

2

[
1

∆z2

(
U
(

0,0,+
0,0,−

)
− 2U(0, 0, 0)

)
+

1

4∆x∆y

(
W
(

+,0,+
−,0,−

)
−W

(
+,0,−
−,0,+

))]
+Fx = 0

This is the numerical differential equation which corresponds to Cauchy’s

first law of motion (3.7) under equilibrium. Interestingly all these terms can be

expanded into displacement differences of the form Un(±,±,±)−Un(0, 0, 0). Note

that +2V (0, 0, 0)− 2V (0, 0, 0) can be added to the first term of the second line and

so on. In this case, the whole equation can be interpreted as a balance of springs

between neighboring atoms. Their influence on each other is illustrated in figure

3.4. The middle diagram shows how the center atom moves to the right if its first

nearest neighbors move to the right. The rightmost diagram shows how it moves

to the right based on the vertical displacement of its second nearest neighbours.

Furthermore, the reciprocal case is also true. Since all the atoms affect each other

in order to come to equilibrium, a displacement of the center atom to the right will

affect its neighboring atoms in the same way illustrated here. Although only the

balance in x is considered here and is only illustrated in 2 dimensions, the same

applies in all directions.

Figure 3.4: A schematic illustration of atoms bound by springs. The two diagrams
on the right show how the x-displacement U is affected by the displacement in x
and y, U and V , of its neighboring atoms.

Next, we consider how equation (3.28) is used to implement a lattice mismatch.
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This is where Fx comes in. Firstly, since displacement is a value relative in

translation, the value of every element of the displacement field U(x, y, z) in

equilibrium is set to 0 for simplicity as opposed to having U(i, j, k) = i ∗∆x where

i, j and k are the indices of the discrete strain field. In our case, this represents

the relaxed InP lattice or another lattice-matched material and the equilibrium

distance between atoms is then 0 by default.

Lattice mismatch is introduced by setting the equilibrium distance between

certain atoms to be a value other than 0 such as 0.032∆x in the case of InAs since

the lattice mismatch between it and InP is 3.2%. This lattice mismatch term is

added to the value of every displacement difference (of the form U(±) − U(0)).

At this point, it is also possible to use a normalized system where U is a unitless

displacement field which is relative in magnitude. This is achieved by replacing U

by U∆x, V by V∆y and W by W∆z. As an example in one dimension, if an atom

on the left (x−∆x) was larger as illustrated below, equation (3.28) would become

equation (3.29) where mf is the relative mismatch between the middle and left

atoms and the extra ∆x term comes from the use of a normalized displacement

field.

C11

∆x2
∆x
(
U(x+ ∆x)− U(x) + (U(x−∆x)− U(x)−mf)

)
= 0 (3.29)

This leads to a displacement towards the right as indicated by the figure above.

The value of Fx here is therefore C11

∆x
mf . Since the reference lattice is InP, InP

”atoms” have a misfit or minimum energy separation of 0 and InAs ”atoms” have

a separation of 0.032. As an approximation, the relaxed distance between InP

and InAs ”atoms” is the average of these two values. The value used for mf is

therefore given by equation (3.30) where A and B are the two neighboring atoms

or compounds and a is the respective lattice constant.

mf(A,B) =
1

2

(
aA − aInP
aInP

+
aB − aInP
aInP

)
(3.30)
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3.3.2 Spring Model

For reasons of numerical stability, a different spring model from the one developed

above was implemented in the strain calculation portion of the kMC simulation.

The implementation in this work follows that of Schulze and Smereka. It consists

of Hookean springs between nearest neighbors with two spring constants, k1 and k2.

Similar to the above model, it is illustrated in figure 3.5 and defined in equation

(3.31).

Figure 3.5: A schematic illustration similar to 3.4 but of the implemented spring
model. The only different is how the displacement of the center atom is affected
by its second nearest neighbors in the middle diagram.

k1

(
U
(

+,0,0
−,0,0

)
− 2U(0, 0, 0)

)
(3.31)

+k2

(
V
(

+,+,0
−,−,0

)
− V

(
+,−,0
−,+,0

))
+ k2

(
W
(

+,0,+
−,0,−

)
−W

(
+,0,−
−,0,+

))
+k′2

[
U
(

+,+,0
+,−,0

)
+ U

(−,+,0
−,−,0

)
− 4U(0, 0, 0)

]
+k′2

[
U
(

+,0,+
+,0,−

)
+ U

(−,0,+
−,0,−

)
− 4U(0, 0, 0)

]
+Fx = 0

Under particular conditions, this simplified model is equivalent to the previous

one. The first condition is that the spacing in all dimensions is equal, that is,

∆x = ∆y = ∆z. This is the case for a cubic lattice. By applying the substitutions

in (3.32), (3.33) and (3.34), both equations (3.28) and (3.31) work out to be

equivalent. These approximations basically redistribute the influence of strain

among the nearest and second nearest neighbors. The first approximation simply

assumes that the displacement in x of the atom above the center one (y + ∆y) is

the average displacement in x of the two top corner atoms and the same is done for

the bottom corners. The approximation in (3.33) is similar but in the z direction.

The third is more of a fine adjustment where the displacement in x of the neighbor
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to the right (x+ ∆x) is replaced by a weighted average of the displacement of this

neighbor and the four second nearest neighbors to the right. The same is done for

the left neighbor, hence the U(−, 0, 0) term.

U
(

0,+,0
0,−,0

)
≈ 1

2

[
U
(

+,+,0
+,−,0

)
+ U

(−,+,0
−,−,0

)]
(3.32)

U
(

0,0,+
0,0,−

)
≈ 1

2

[
U
(

+,0,+
+,0,−

)
+ U

(−,0,+
−,0,−

)]
(3.33)

U
(

+,0,0
−,0,0

)
≈ 3

4
U
(

+,0,0
−,0,0

)
+

1

8

[
U
(

+,+,0
−,+,0

)
+ U

(
+,−,0
−,−,0

)
2

]
+

1

8

[
U
(

+,0,+
−,0,+

)
+ U

(
+,0,−
−,0,−

)
2

]
(3.34)

Under the second condition that C12 = C44, k2 and k′2 are the same given the

substitutions made above. This is a reasonable condition since C12 = 0.350 eV/Å
3
;

C44 = 0.285 eV/Å
3

for InP and C12 = 0.283 eV/Å
3
;C44 = 0.247 eV/Å

3
for InAs.

Additionally, using the approximation C11 ≈ 2C12 (C11 = 0.631 eV/Å
3

for InP and

C11 = 0.521 eV/Å
3

for InAs), the two spring constants in our model are related by

k2 = k1/4, making the straight springs 4 times as rigid as the diagonal ones.

The strain fields are then solved using the successive over-relaxation method

which can be demonstrated with a simple example. If we consider the 1-dimensional

case of the strain equation with no lattice mismatch, equation (3.31) is essentially

Laplace’s equation (3.35). The numerical solution can be determined by iteratively

solving this equation which is of the form in (3.37) where R is the residue, A is the

coefficient and x is the variable of interest. The value of x is therefore updated to

a newer value x+ using equation (3.38) and this is repeated multiple times over

the different elements of the strain field.

∂2U

∂x2
= 0 (3.35)

U
(

+
−

)
− 2U(0) = 0 (3.36)

R + Ax = 0 (3.37)

x+ = x− wR/A (3.38)

The variable w is a weighting factor called the over-relaxation factor. This value

must be greater than 1 in order for the solution to converge faster but must be less
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than 2 otherwise it diverges. The optimal value depends strongly on the problem it

is applied to and the size of the array being relaxed. In our implementation a value

of 1.75 was found to be optimal when solving over the whole lattice and 1.5 when

applied to a 3x3x3 subset. Figure 3.6 illustrates the successive over-relaxation

method with w = 1.5 and how it converges more quickly than the regular successive

relaxation method where w = 1. The boundary conditions are the fixed red points

and the blue points are the value of the quantity x at different indices i. The

diagonal line is the exact solution.

Figure 3.6: Comparison between the regular successive relaxation method and
the successive over-relaxation method which converges to the final solution more
quickly.

The case of strain in 3 dimensions is obviously more complicated than the

1D case in that it involves more terms, but the algorithm remains just as simple.

Whereas the residual for the displacement in x (U) is made up of only two terms in

equation (3.29), the 3-dimensional case requires 18 terms as indicated by equation

(3.31), that is, the displacement in x of an atom is influenced by the displacement

in x of 2 first nearest neighbors, 8 second nearest neighbors and the displacements

in y and z of these same 8 second nearest neighbors. Solving the strain fields U ,

V and W in a 3D lattice therefore requires up to 54 calculations for each lattice

point depending on the free lattice sites at the surface. If a vacancy is present

next to an atom, the difference term (k2U(+,+, 0)− k2U(0, 0, 0) for example) for

this vacancy is not added to the residual R nor is −k2 added to the coefficient A.

Additionally, it should be noted that for the solution to properly converge, the

coefficient A is incremented by twice the spring constant (−2k2) for second nearest

neighbors. Without this factor of 2 which effectively acts as an under-relaxation

constant, the solution would not converge at corers of the strain field.
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Once the equilibrium positions have been determined (within a defined residual

error), the elastic strain energy is calculated using the square of all the difference

terms based on Hooke’s law. From the 1-dimensional example (3.29), we get the

strain energy ES in equation (3.39). Since this energy is the result of the integral

of the force in x as seen in Hooke’s law (3.42), the ∆x in the denominator of (3.29)

cancels out and the factor of 1/2 appears. Since all the above equations deal with

force densities, an additional factor of v is required to compute the energy rather

than the energy density where v is the volume of the simulated ”cell”. In this case,

v is given by equation (3.40) where a is the lattice constant of InP and the factor

of 1/4 comes from the fact that there are 4 group III atoms per unit cell. Finally,

the spring constants k1 and k2 for the different materials are given by equation

3.43 where C11 is the stiffness constant of the material of interest and v remains a

quarter of the InP unit cell since the strain fields are normalized to InP. Based on

the values of C11 found in [18], the values of k1 for InP, InAs, GaAs and AlAs are

23.9, 19.7, 28.1 and 28.4 eV.

ES =
C11v

2

[(
U(x+ ∆)− U(x)

)2

+
(
U(x−∆x)−mf

)2]
(3.39)

v =
a3

InP

4
(3.40)

FHooke = kx (3.41)

EHooke =
k

2
x2 (3.42)

k1 = 4k2 =
3vC11

4
=

3a3
InPC11

16
(3.43)

This completes the kinetic Monte Carlo algorithm that is used to simulate

epitaxial deposition, surface diffusion and ultimately the formation of quantum

structures through strain relief. The step by step algorithm is as follows.

Initialization:

• Initalize constants such as bond strengths and elastic constants.

• Create an initial unstrained substrate which is usually either flat or made of
surface steps. This is a 3-dimensional lattice of integers representing group
III atomic species or vacuum.
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• Initialize the hopping rates of all atoms to 0 (by creating the tree structure
described in appendix A).

• Create displacement fields U , V and W , and set them to 0.

• Relax the substrate by solving the strain equations described in this chapter.

• Update the hopping rate for all surface atoms based on the number of nearest
neighbors and their local strain energy.

For every simulation step:

• Select an event randomly, based on hopping rates using the efficient binary
tree structure. This includes the deposition of a new atom.

• Increase the simulation time by 1/Rtotal.

• Move the selected atom or add a new atom to a random position on the
surface.

• Locally update strain around the atom.

• Every ∼1000 events, update strain globally using the expanding box method
(see section 3.5.3).

• Update the rates of atoms near the event.

This is repeated until either the thin film deposition is complete or the desired

annealing time has passed.

3.4 Bond Model

Although the algorithm above has been developed and used by other researchers,

what distinguishes our model is its application to the problem of understanding

InAs quantum wire growth as opposed to other heteoepitaxial systems such as Ge

on Si.
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The most important difference lies in the fact that we are investigating the

growth of III-V semiconductors rather than Si or Ge which has two major im-

plications. The first is that since only the group III atoms are considered when

modeling diffusion, we represent a unit cell using 4 atoms instead of 8 in the case

of elemental semiconductors. The second relates to anisotropy. As illustrated

in chapter 2, surface steps on compound semiconductors are diatomic instead of

monatomic in the case of elemental semiconductors. Because of this, the dangling

bonds of the group V atoms are in the same direction on every terrace whereas the

dangling bonds of group IV atoms alternate direction between each atomic terrace.

This arrangement is illustrated in figure 3.7 where the black lines indicated the

direction of dangling bonds.

Figure 3.7: Schematic illustration of how the presence of diatomic steps leads to a
global bonding anisotropy on the surface of III-V semiconductors.

This leads to a global anisotropy on the (001) surface of III-V semiconductors not

present in the case of elemental semiconductors where the anisotropy alternates from

terrace to terrace. The effect of this can be clearly observed using scanning tunneling

microscopy on vicinal Si(100) substrates where step edges alternate between smooth

and rough [34]. On the other hand in the case of III-V semiconductors, it is well

known that the anisotropic surface reconstruction produces faster diffusion in the

(1̄10) direction than the (110) direction [35] although as discussed in section 3.6.1,

this does not explain the preference of wire formation along the (1̄10) direction.

However the surface reconstruction must somehow be responsible for this alignment.

Knowing that anisotropy plays a key role in the formation of quantum wires,

we cannot settle on an isotropic bonding model where all neighboring atoms affect

the energy of a lattice site equally. For this reason, an anisotropic bonding model

was developed based on the equilibrium crystal shape of GaAs and InAs found in
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[8, 9]. First we approximate the crystal structure of the group III atoms to be cubic

instead of face centered cubic (FCC). This is illustrated in figure 3.8 where the

four Ga atoms in red are reconfigured to the four green atoms or simulated units.

Furthermore, because of their alignment along the (1̄10) and (110) directions, these

are chosen as the x and y axes in the simulation6. It is important to note that the

new unit cell (one atom per cell) is tetragonal with dimensions (L/
√

2, L/
√

2, L/2)

where L the lattice constant of the material such as 5.8687 Å for InP.

Figure 3.8: Rearrangement of the face-centered cubic distributed Ga atoms into a
tetragonal lattice.

Appendix B explains how particular surface energies can be emulated by varying

the strength of atomic bonds in different directions. The bonds that are used to

represent III-V semiconductors in this work are illustrated in figure 3.9 along with

their crystallographic directions. Only first and second nearest neighbor bonds are

considered as this still allows for bonds in the (111) and (1̄11) directions which is

important for faceting in these directions.

Because the purpose of this bonding model is to properly simulate the anisotropy

between the (110) and (1̄10) directions, the model includes 6 different bond energies

labeled a1, a2, a3, b1, b2, and c. a1 and a2 are distinct since they are the bonds

in these two directions. b1 and b2 are distinct since they are also preferentially

oriented toward either the (1̄10) or the (110) direction and the surface energies of

the (111) and (1̄11) facets are different from each other. a3 is distinct from a1 and

a2 since it is along the (001) direction. Finally, there is no distinction between the

four bonds labeled c since there is no preferential alignment along either of the

anisotropic directions.

6The y axis can be chosen to be the (110) or the x axis can be chosen to be (11̄0) to maintain
a right-handed system (ẑ = x̂× ŷ) since opposite directions are equivalent.
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Figure 3.9: Bond strength and crystallographic direction of first and second nearest
neighbor bonds.

Based on the equations derived in appendix B we can express various surface

energies in terms of these identified bonds. Equations (3.44) through (3.49) show

these relationships. Technically, all these equations should have a negative sign in

front of them since bond strengths are negative and surface energies are positive,

but for the sake of simplicity, the equations are left positive here even though the

values in tables 3.2 and 3.3 in sections 3.6.2 and 3.6.5 are negative. The expressions

for γ001, γ1̄10 and γ110 are based on the broken bonds of a flat surface since they

corresponds to the z, x and y directions in our model, respectively and surface

energies γ100, γ1̄11 and γ111 are based on equation (B.40) for a surface with steps

along one direction. lx, ly and lz are the dimensions of our tetragonal unit cell.

γ001 =
a3 + 2b1 + 2b2

2lxly
(3.44)

γ100 =
a1 + a2 + 2b1 + 2b2 + 2c

2lz
√
l2x + l2y

(3.45)

γ1̄11 =
a3 + a1 + 2b1 + 2b2 + 2c

2ly
√
l2x + l2z

(3.46)

γ111 =
a3 + a2 + 2b1 + 2b2 + 2c

2lx
√
l2y + l2z

(3.47)

γ1̄10 =
a1 + 2b1 + 2c

2lylz
(3.48)

γ110 =
a2 + 2b2 + 2c

2lxlz
(3.49)

These equations can be rewritten in terms of Γhkl which is the surface energy

per surface atom and the lattice constant L as shown in equations (3.50) through
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(3.55).

Γ001 = 2lxlyγ001 = L2γ001 = a3 + 2b1 + 2b2 (3.50)

Γ100 = 2lz

√
l2x + l2yγ100 = L2γ100 = a1 + a2 + 2b1 + 2b2 + 2c (3.51)

Γ1̄11 = 2ly
√
l2x + l2zγ1̄11 =

√
3/2L2γ1̄11 = a3 + a1 + 2b1 + 2b2 + 2c (3.52)

Γ111 = 2lx

√
l2y + l2zγ111 =

√
3/2L2γ111 = a3 + a2 + 2b1 + 2b2 + 2c (3.53)

Γ1̄10 = 2lylzγ1̄10 = L2/
√

2γ1̄10 = a1 + 2b1 + 2c (3.54)

Γ110 = 2lxlzγ110 = L2/
√

2γ110 = a2 + 2b2 + 2c (3.55)

From these equations we can come to a few conclusions even without numerical

values. Since γ001 = γ100 due to the symmetry of the crystal, Γ001 = Γ100 based

on our choice of axes. From equations (3.50) and (3.51), we can see that a3 =

a1 +a2 + 2c which implies that a3 bonds are significantly stronger than other bonds.

From equations (3.52) and (3.53) we can see that a1 − a2 = Γ1̄11 − Γ111. This is

what reveals the anisotropy of the crystal since the (1̄11) and (111) surfaces have a

different atomic configuration and consequently have different surface energies γ1̄11

and γ111. Because γ1̄11 is greater than γ111, a1 is a significantly stronger bond than

a2 and this is what leads to the formation of wires as opposed to dots. Moreover,

since γ1̄10 = γ110, Γ1̄10 = Γ110 and therefore a1 + 2b1 = a2 + 2b2. This reveals that

the bonds along the surface in the (1̄10) direction (a1) are stronger but the diagonal

bonds along that same direction are actually weaker. This promotes strong (111)

faceting as demonstrated in section 3.6.

Although our model employs anisotropic bond strengths in order to simulate

the formation of wires, this does not infer that bonds between group III atoms are

physically stronger along some directions rather than others. The anisotropic bond

model described here is used to simulate the effect that the surface reconstruction

has on the energetically favorable configuration of adatoms.

Another limitation to keep in mind is that without somehow explicitly consid-

ering the presence of the group V element, it is actually not possible to produce

a bond model which properly accounts for the full equilibrium crystal shape of
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III-V semiconductors. There are two ways to understand that. The first way is

to consider the (111) and the (111) facets. These are opposing facets yet they

have different surface energies. In order to obtain different surface energies using a

bonding model similar to ours, the bonds in the (111) direction and in the (111)

direction would need to be different. That means that if atom A is connected to

atom B via a (111) bond, it would have to be attracted to B with a different energy

than the B atom is attracted to it. This type of uneven attraction is not physically

possible. Another way of looking at it is to simply consider that based on the

geometry of the zinc blende structure, if quantum wires were to be grown on both

opposing sides of the substrate, the wires on the top would be perpendicular to

those on the bottom. This implies that on top, say if bond a1 is greater than a2,

then on the bottom the scenario is the opposite. However, since our model does

not allow for overhangs, it is not possible to have such problematic opposing faces

and so this does not need to be considered7

3.5 Other Details

3.5.1 Boundary Conditions

In order to simulate physical phenomena in a large (N-dimensional) space without

the interference of edge effects due to unrealistic boundary conditions, periodic

boundary conditions (PBC) are often applied to such problems. Some problems

actually involve periodic geometries (such as perfect crystalline lattices) and apply-

ing such boundary conditions is natural but in our case we simply cannot simulate

a very large substrate for computational reasons and periodic boundary conditions

are a convenient workaround.

Figure 3.10 illustrates simple periodic boundary conditions in two dimensions

where shapes overlap vertically and horizontally. We can clearly see how the

green square overlaps vertically and how the red triangle overlaps horizontally.

These conditions can be expressed mathematically by f(x+ Lx, y) = f(x, y) and

7Note that the opposing (110) and (110) facets do not have this problem.
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f(x, y + Ly) = f(x, y) where Lx is the periodicity in x, Ly is the periodicity in y

and f can be any function such as lattice site energy, displacement (strain) or atom

occupancy. Figure (3.11) illustrates a slightly more complicated case where the

vertical periodicity is accompanied by a horizontal shift, analogous to an oblique

lattice. These boundary conditions can be expressed by f(x+ Lx, y) = f(x, y) and

f(x, y + Ly) = f(x+ ∆x, y) were ∆x is the horizontal shift.

Figure 3.10: Simple 2D periodic
boundary conditions.

Figure 3.11: 2D periodic boundary
conditions with a horizontal transla-
tion.

To simulate a flat substrate, only the first type of PBC in x and y is necessary

to connect all four sides8. In order to study the effect of surface steps on epitaxial

growth however, there are two possible approaches. The first is to produce a stepped

substrate during the initialization of the simulation and apply the regular periodic

boundary conditions. The resulting geometry will effectively have a sawtooth shape

as illustrated in figure (3.12a) which will erode from surface diffusion. It is possible

to then simply ignore the results near the problematic edges as was done in [36].

However, this is problematic when simulating the deposition of many monolayers

of material as the effect of this edge will spread over a large portion of the simulated

substrate. For this reason, the boundary conditions illustrated in figure 3.12b were

implemented. They are expressed mathematically in 3 dimensions for an nx × ny
grid in equations (3.56) and (3.57) where Nsteps is the number of steps in the y

direction. This allows to simulate steps in the (110) and in the (1̄10) direction by

swapping the bond strengths a1 ↔ a2 and b1 ↔ b2 but not in the (100) direction or

8If you pay close attention to figure (3.1), the number of nearest neighbors was calculated
assuming periodic boundary conditions.

65



Master’s Thesis - A. Scullion; McMaster University - Materials Science and Engineering
Chapter 3. Kinetic Monte Carlo

(a) Regular periodic boundary conditions.

(b) Shifted periodic boundary conditions.

Figure 3.12: Two different types of periodic boundary conditions applied to an
off-cut substrate.

any intermediate directions (such as (210)). Finally, Dirichlet boundary conditions

are used on the bottom surface of the simulated substrate where the displacement

fields U , V and W are held at 0. This surface is around 20 monolayers below the

top surface in most simulations.

f(x+ nx, y, z) = f(x, y, z) (3.56)

f(x, y + ny, z) = f(x, y, z −Nsteps) (3.57)

3.5.2 Hopping Rate

Finding the bonding strength of surface atoms to the substrate and between each

other is obviously very important but two other important variables are the base

rate R0 and the activation energy E0 from equation (3.1). One of two models is

generally used in the literature for the value of R0. The first is equation (3.58) where

h is Planck’s constant. It is used in many kMC diffusion models [37--39] and is

based on the equipartition theorem [40]. Others use a constant that is independent

of temperature which either relies on simulation results[27], experimental findings

[41] or based on the transverse optical phonon frequency [42]. The importance

of this constant with respect to the model is to properly measure the amount of

time being simulated, that is, the amount of time ∆t that passes between each

simulation step. It is basically a direct constant of proportionality between adatom

displacements and the deposition rate to know how many adatoms to deposit after

1000 simulations steps for example.
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R0 =
2kBT

h
(3.58)

As for the activation energy, it is typically a positive value in the case where

the bonding energy to the surface is not already considered and would encapsulate

this bonding term. It would basically compensate for the fact that such a model

assumes that an adatom has the same energy level as vacuum which is of course not

physical. In our case, since we do consider the bonding energy to the substrate, E0

is actually a negative term that represents the difference in energy between vacuum

and the threshold level illustrated by the peaks in figure 3.2. The bonding energy

of an adatom on the flat substrate in our model is given by (a3 + 2b1 + 2b2) since

it is bonded to the atom directly beneath it (a3), two second nearest neighbors in

the (1̄11̄) and (111) directions (b1) and two second nearest neighbors in the (111̄)

and (111) directions (b2). As it turns out in our model, E0 is (realistically) lower

than the vacuum level. What is really important about this value however is how

it affects the hopping rate in relation to temperature. Although R0 and E0 can be

set somewhat arbitrarily to provide a proper time scale at a single temperature,

they must both be chosen carefully to properly simulate the time scale at a variety

of temperatures.

The values of R0 and E0 were determined based on reflection high energy

electron diffraction (RHEED) oscillations which indicate whether or not step flow

growth occurs[41] during homoepitaxial or unstrained growth. Step flow growth

occurs when the deposition rate is slow enough for a given material, substrate off-cut

and temperature so that all deposited adatoms migrate to a surface step without

forming 2-dimensional islands on the terraces. When islands do form, the substrate

surface becomes rough and the intensity of certain RHEED reflections becomes dim.

As the deposition of a monolayer is completed, the gaps between islands are filled

and the surface becomes fairly smooth again. This process is repeated as another

monolayer is deposited and so the intensity of the RHEED pattern oscillates. Under

conditions of step flow growth however, this oscillation never occurs since no islands

form and the substrate surface remains smooth throughout the deposition process.

Since the transition to step flow growth depends on surface diffusion which in turn
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depends on R0 and E0, RHEED oscillations can be simulated in order to effectively

calibrate our model based on experimental RHEED patterns from the literature.

RHEED oscillations can be simulated by using equations (3.59) and (3.60)

adapted from work by Grosse et al. [42]. Ix is the intensity of the RHEED

reflection along the x direction, nx and ny are the dimensions of the simulated

substrate, δa,b is the Kroneker delta9 and h(i, j) is the height of the substrate

at the location (i, j). This means that flat regions of the substrate result in a

high intensity whereas uneven regions result in a low intensity, similar to actual

RHEED pattern intensities. In their work, they determine the value of E0 for GaAs

and AlAs by simulating RHEED patterns and comparing them to experimental

patterns from homoeptiaxial growths at different temperatures. There is a critical

temperature past which oscillations no longer occur and this can be matched. The

same is done in this work to assure that reasonable values are used in our model.

Ix =
1

nxny

nx,ny∑
i,j

δh(i,j),h(i+1,j) (3.59)

Iy =
1

nxny

nx,ny∑
i,j

δh(i,j),h(i,j+1) (3.60)

The threshold energy determined in [42] for GaAs is E0 = 1.64 eV which, applied

to our model, gives us 1.64 = a3 + 2b1 + 2b2 +E0. Using this value and R0 = 2kBT
h

,

RHEED oscillation curves were obtained from homoepitaxial simulations to match

Grosse’s work and calibrate our model. Figure 3.13 shows the results of these

simulations at temperatures between 520◦C and 590◦C for a deposition rate of

0.2 ML/s on a 2◦ off-cut substrate (20 atom step length). In each simulation, 4

ML of material (GaAs) were deposited over a period of 20 s followed by a 20 s

annealing period. We can clearly see here that the oscillations are less prominent

and disappear at higher temperatures. The so called ”critical temperature” at

which the oscillations are no longer present seems to be between 580◦C and 590◦C

which matches Grosse’s findings, although the precise cutoff is ambiguous.

It is important to note that the simulated oscillations are generally quite noisy

9The Kroneker delta is equal to 1 if both indices are equal and 0 otherwise.
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Figure 3.13: Simulated RHEED oscillations at various temperatures for a deposition
rate of 0.2 ML/s on a 2◦ off-cut substrate followed by a 20 s annealing period at
the 20 s mark. Plots at different temperatures are artificially shifted vertically but
the scale is the same for each.

and variable compared to experimental measurements because of the small area

that is being simulated. The plots found here were generated using a 200× 200

grid (nx = ny = 200) which represents an 80 nm by 80 nm area. Furthermore,

unlike in other types of measurements, the amount of high frequency noise in these

plots is an underestimate of the actual variability of the data due to the stochastic

nature of this roughening process. We see the result of this if we compare the

520◦C plot to the 530◦C plot. The large oscillations are significantly clearer in the

latter than the former which is not the case in experiments and if the simulation

was performed again, this would likely be different. The sharpness of the first

trough and peak however changes quite consistently with increasing temperature

which can greatly help in determining the critical temperature. Finally, since

the experiments referred to in [42] were performed on substrates with a 2◦ off-cut

toward the (100) direction to avoid any anisotropic effects, our simulations were

performed using isotropic bonds such that a = (a1 + a2)/2 and b = (b1 + b2)/2 with

steps in the (110) direction (along the (1̄10) direction).

Figures 3.14 and 3.15 show the topography at different stages of growth of

the simulated substrates used to produce the RHEED plots at 520◦C and 590◦C.

Each of the subfigures are 200 by 200 pixel images where each pixel represents

an atom and lighter atoms are higher than darker ones. Figures 3.14a and 3.15a

show substrates after 0.5 ML of material has been deposited. At this stage for

the 520◦C case, the density of 2D islands is maximal and we can see that after
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1 ML (figure 3.14b), most of the gaps between these islands have been filled.

This explains why the substrate becomes smooth again and the RHEED intensity

increases. This is not the case for the growth at 590◦C where islands are sparse

since adatoms have enough time to reach step edges without coalescing. The

presence of very few islands also explains why the RHEED plots are more variable

at higher temperatures since the relative difference in roughness between 3 and 5

islands is much greater than that between 130 and 150 islands of more variable

size. Figure 3.14c shows how the distinction between stages of island formation

and filling becomes less apparent during growth and this explains why RHEED

oscillations level off. Finally, we can see the smoothing effect of annealing by

comparing figures 3.14c and 3.14d as well as 3.15c and 3.15d. In the former case

(520◦C) we can clearly see that the steps and the islands have become smoother

and some islands have even dissolved into the steps. After a long enough period

of time, all the islands would dissolve and this is a good indicator that molecular

beam epitaxy is indeed not in thermodynamic equilibrium since the surface atoms

have not yet reached their equilibrium energy state. The smoothing at 590◦C is

less obvious since it is already fairly smooth in figure 3.15c. We can see however

that the few islands present have disappeared after annealing.

For comparison with these results, figures 3.16 and 3.17 show simulated RHEED

oscillations under similar conditions (temperature range, annealing time, off-cut

angle, etc.) as above but for deposition rates of 0.1 ML/s and 0.4 ML/s. We can

see that the lower deposition rate leads to a lower critical temperature between

550◦C and 560◦C and the faster rate increases it above 590◦C.
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(a) Surface after 0.5 ML. (b) Surface after 1 ML.

(c) Surface after 4 ML (d) Surface after annealing.

Figure 3.14: Topography of GaAs homoepitaxy at different stages of growth at
520◦C. The same gray scale has been applied to all four images.
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(a) Surface after 0.5 ML. (b) Surface after 1 ML.

(c) Surface after 4 ML (d) Surface after annealing.

Figure 3.15: Topography of GaAs homoepitaxy at different stages of growth at
590◦C. The same gray scale has been applied to all four images.
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Figure 3.16: Simulated RHEED os-
cillations for a deposition rate of 0.1
ML/s.

Figure 3.17: Simulated RHEED os-
cillations for a deposition rate of 0.4
ML/s.
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3.5.3 Optimizations

Solving the strain equations presented above over a large 3-dimensional lattice

is very computationally intensive and is by far the most important bottleneck in

this type of simulation. In order to be able to simulate surface diffusion including

strain over a reasonable time scale, it is necessary to apply certain approximations

to optimize the strain calculations. Three important approximations were applied

in the implementation of our model.

The first applies to ”free” adatoms with which are adatoms with no first nearest

neighbors. Surface atoms which are not bonded to other atoms in the (1̄10) or

(110) direction, that is, have no a1 or a2 bonds, are ignored in the solution of the

strain equation. This is implemented by keeping track of two separate surfaces,

one of which has no free adatoms and is used to calculate strain and strain energy,

and of course the surface which includes all atoms. This speeds up the simulation

considerably since these free adatoms make up a large portion of the simulation

events or steps and when such a diffusion event occurs, no strain calculations are

required. A similar approximation is used by Schulze et al. [27] and their work has

shown that this optimization has little or no noticeable impact on their results.

The second approximation affects the frequency at which the strain field is

updated. Given that a single atom displacement has a proportionally very small

impact on the strain field of the simulated substrate and considering that the effect

of strain energy is a cumulative effect over a long range, it would be wasteful to

update the entire field for every hopping event. For these reasons, the strain field

is only updated locally between the vast majority of the simulation steps. After the

displacement of each atom, this local update consists of solving the strain equation

in a 3× 3× 3 grid around both the old position of the atom in question, that is,

where it is moving from, and around its new position. This sort of method has

been used since the development of one of the earliest kMC models including full

strain calculations to improve the algorithm’s efficiency [32]. Every 1000 or so

events however, the strain field is relaxed over a larger volume in order to maintain

the correct long range solution to the strain equation. This is not done by globally

updating the field but rather by using the expanding box method described in
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[28, 43]. This method consists of first solving the strain equation over a 5× 5× 5

grid or box for example, then expanding this domain to a 6× 6× 6 grid. If during

the first iteration of the over-relaxation algorithm over this larger domain, the

largest obtained residual is greater than a chosen threshold, the strain field over

the large grid is relaxed and the expansion process is repeated. This is done until

either a small enough residual is found after expanding the solution domain or the

box encompasses the entire strain field at which point the entire strain field is

relaxed.

The third approximation that is made concerns the calculation of the strain

energy. When an atom arrives at a bonding site and displaces its neighboring

atoms, the strain energy it brings to the thin film is stored among many other

atoms in its vicinity, not only its nearest neighbors. In order to properly account

for the total energy ES it brings to the system and how it affects the probability

with which it is expected to leave this site (rate R), we need to consider the total

strain energy of the substrate with this atom’s presence and without it. As one

would expect, this would require a large number of calculations. However, it is

possible to account for this total strain energy by simply calculating the local strain

energy of the atom, that is, the energy in the ”springs” between it and its nearest

neighbors10, and multiplying it by a constant of proportionality referred to as the

strain factor in our work. Figure 3.18 shows the difference in the total energy of

a 120 × 120 × 25 substrate with and without one of the surfaces atoms plotted

against the local strain energy of the same atom. To clarify, a full simulation was

first run in order to produce a substrate with quantum wires. Next the total strain

energy of all the atoms which make up the substrate was calculated. Then for each

of the 120 · 120 surface sites, the topmost atom was removed, the strain field of

the substrate was solved (relaxed) and the total strain energy of the substrate was

calculated again. The difference between these two values are then compared to

the local strain energy around each surface atom individually on the plot in figure

3.18.

The resulting plot is quite linear and has a slope of about 1.27. This basically

tells us that on average, the total strain energy contributed by an atom is 1.27

10This includes up to 6 first nearest neighbors and 12 second nearest neighbors depending on
nearby vacancies.
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Figure 3.18: The total strain energy contribution of surface atoms plotted against
their local strain energy. The full line is a linear fit to the data and the dotted is
the function y = x.

times the strain stored between it and its nearest neighbors. The slope obtained

from an earlier calibrations performed during the development of the kMC model

was closer to 1.3 and for this reason, a strain factor of 1.3 is used throughout this

work. To be explicit, this means that the effective spring constant used to calculate

strain energy in InAs is k1 = 25.6 eV instead of k1 = 19.7 eV.

3.6 Simulation Results

3.6.1 Equilibrium Island Shape

In order to demonstrate the influence that anisotropic bonds have on the equilibrium

crystal shape, or more precisely the equilibrium island shape, a simplified kinetic

Monte Carlo model was used to simulate annealing a 2-dimensional island with

various bonding configurations while ignoring strain. Similar to the simple model
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presented in figure B.2 from appendix B, the model used here consists of adatoms

which have horizontal and vertical bonding energies a and b between their first

nearest neighbors. Moreover, the substrate in these simulations was fixed and

unable to mix with the adatoms placed on its surface. Each simulation began with

a square island of atoms which were allowed to diffuse and over the simulation

period, the dimensions of this island were measured. Figure 3.19a shows the initial

square island used for all the simulations in this section. The size of the island

is initially 30 by 30 atoms and the size of the (periodic) substrate is 120 by 120.

Figure 3.19b shows a typical island shape during the simulation with a bond ratio

of 2:1. Finally, figure 3.19c shows the average shape of the island measured between

2 · 108 and 10 · 108 simulation steps.

(a) Initial shape of the sim-
ulated 2D island.

(b) Shape of the island af-
ter 6 · 108 simulation steps.

(c) Average island shape
between 2 · 108 and 10 · 108

simulation steps.

Figure 3.19: Simulated 2D island with a bond ratio of 2:1.

The height and width of the island were calculated using the vertical and

horizontal standard deviation of the position of each atom connected to it. The

ratio of these length measurements (aspect ratio) was recorded over the progress of

the simulation and the results of simulations performed with b : a ratios of 1:1, 2:1

and 3:1 are plotted in figure 3.20. The horizontal axis is the number of simulation

steps (adatom hops). Such numerous simulation steps were required to make sure

that the trends were stable and not just a random fluctuation and as can be seen

in this figure, the variability of the aspect ratio is rather large. We can observe a

clear trend where all three plots begin with an aspect ratio of 1 and converge near

the same ratio as that of their bond strengths. The average value of the curves for

bond ratios of 1, 2 and 3 after 2 · 108 simulation steps is 0.98± 0.11, 1.83± 0.17 and

2.68± 0.28, respectively. The second and third values are smaller than expected
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but this is likely due to the rounding of the island corners observed in figure 3.19c.

Nonetheless, these observations strongly support the theory developed in appendix

B.

Figure 3.20: Evolution of the size ratio of a 2D island for anisotropic bond ratios
of 1:1, 2:1 and 3:1.

A similar set of experiments were run to measure the effect of anisotropic

diffusion. In figure 3.21, the evolution of the aspect ratio of a 2D island was

recorded under three different conditions. The curve denoted by A was produced

by a simulation where the first nearest neighbor bonds were isotropic but the

diffusion constant R0 was 4 times greater in the vertical direction than in the

horizontal direction. Similarly to the isotropic bond case above, the average aspect

ratio was 1.01±0.09. Furthermore, plots B and C in figure 3.21 were both recorded

from a simulation with a bond ratio of 2:1 but with surface diffusion ratios of 4:1

and 1:4 respectively. The average aspect ratio was 1.83± 0.19 and 1.86± 0.17 for

the two cases. These results clearly show that the anisotropic shape of epitaxial

islands under conditions which are not kinetically limited depends on the anisotropy

of the energy configuration of adatom and not anisotropic diffusion. It is therefore

incorrect to state that InAs are aligned along the (1̄10) because of anisotropic

surface diffusion. However, under kinetically limited conditions, surface diffusion

can play a role in the shape of epitaxial islands.
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Figure 3.21: Evolution of size ratio of a 2D island. Simulation A had isotropic
bonds and a 4:1 diffusion ratio. Simulations B and C had anisotropic bonds (2:1)
and diffusion ratios of 4:1 and 1:4, respectively.

3.6.2 Bond Energies

Based on the surface energies given for the different facets of GaAs in [8], the

anisotropic bonding model was developed using the expressions for Γ001, Γ100, Γ1̄11,

Γ111, Γ1̄10 and Γ110 given in equations (3.50) through (3.55) of section 3.4. Since

we have 6 equations and 6 unknowns (a1, a2, a3, b1, b2 and c), the system should

have an exact solution. The problem however is that the solution of this system of

equations results in positive bond strengths for a1 and a2 which is nonphysical as it

causes surface atoms to repel each other. In order to resolve this problem, we are

required to add a supplementary constraint. Because based on our tetragonal model,

the furthest neighbor is actually along the c bond in the (100) direction, after much

experimentation a reasonable constraint was determined to be (a1 + a2)/2 = 4c.

This means that the diagonal c bond is 1/4 of the average strength of the a1 and

a2 bonds. This restriction is fairly arbitrary and many other restrictions could

have been applied but this one has produced reasonable results and allows for the

surface energies to correspond well with the ones in [8].

Table 3.1 shows the surface energy per surface atom Γ for the various crystal

facets based on the values given in Moll’s work as well as the surface energies which

result from our choice of bond strengths in table 3.2. Table 3.2 shows the bond

strengths obtained by solving the equations mentioned above exactly (ECS column)
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and those obtained after applying the additional constraint to c. Again based on

experimentation with a range of values, the surface energies extracted from the

plots in Moll’s work correspond to those predicted using a chemical potential of

µAs − µAs(bulk) = −0.23 eV. The choice of this value is solely based on simulations

run using a range of bonding energies, not on any relationship between the chemical

potential and the V/III ratio.

Γ (eV) ECS This Work
Γ001 1.89 1.85
Γ100 1.89 2.00
Γ1̄11 2.35 2.37
Γ001 2.12 2.13
Γ001 1.18 1.07
Γ001 1.18 1.07

Table 3.1: The surface energy per
surface atom for various facets based
on the equilibrium crystal shape of
GaAs in [8] and based on the bond
strengths in our model shown in table
3.2.

Bond (eV) ECS This Work
a1 +0.002 -0.385
a2 +0.237 -0.150
a3 -0.227 -0.521
b1 -0.357 -0.274
b2 -0.474 -0.391
c -0.233 -0.067

Table 3.2: First and second near-
est neighbor bond strengths of GaAs
based on the equilibrium crystal
shape in [8] and with the additional
constraint (a1 + a2)/2 = 4c.

These tabulated values however are not only the bond strengths for GaAs but

are directly related to the other compounds as well. The bond strengths for InAs

and AlAs were determined by comparing the (110) surface energies of these three

compounds, GaAs, InAs and AlAs. The values for these surface energies are found

in [24] and were obtained using density functional theory (DFT) calculations. The

two ratios used with respect to GaAs are 0.827 for InAs and 1.134 for AlAs. This

means that the a1 bond for InAs is equal to 0.827 times that of GaAs, and so on.

Finally, similar to the case for the inter-species mismatch, the bonds between GaAs

and InAs for example, have an energy of (1 + 0.827)/2 times that of GaAs.

3.6.3 The Effect of Strain

The size of 3-dimensional islands which form as a result of strain relaxation depends

mostly on the stiffness of the material being deposited, the mismatch between

it and the substrate, and the bonding strength between the atoms it is made of.
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This is intuitive since 3-dimensional islands form by sacrificing bonds between

neighboring atom. A rough surface has a larger surface area and therefore more

dangling bonds which is energetically unfavorable. It is also intuitive that for a

given bonding strength, a greater stiffness constant or spring constant (C11 or k)

will lead to the formation of smaller 3D structures and this is what is demonstrated

in this section.

The color map that is used to illustrate the kMC results here and in the next

sections is illustrated in figure 3.22 where the color indicates the species of the

atom or compound (red for InAs and blue for GaAs) and the lightness indicates the

relative elevation of different locations of the surface. The elevation is normalized

in each image unless specified otherwise which means that the lightness cannot be

directly compared across different images.

Figure 3.22: Color map used to indicate both the elevation and the nature of the
surface atoms in this and the following sections. The color indicates the species of
the compound and the lightness indicates its elevation.

Figure 3.23 shows the height profile of simulated isotropic 3D islands which were

all produced using the same bonding strengths but with different spring constants.

These simulations were performed on a 120 × 120 substrate of InGaAs. For

simplicity, the lattice mismatch of InAs with respect the substrate has been set to

0.032 and that of GaAs has been set to -0.032 so that In0.5Ga0.5As is deposited and

lattice-matched to the substrate. The substrate on which the InAs was deposited

consists therefore of 50% InAs (red) and 50% GaAs (blue). It is worth pointing

out that the red and blue substrate is exposed in these images between the islands.

The spring constants k1 that were used11 are 29.6, 39.4 and 59.1 eV. We can clearly

see that intuitively, the stiffer material leads to the formation of smaller islands.

There are a few more interesting features that are worth pointing out. Some of

these islands, especially in figure 3.23a, have an irregular shape and are oriented

11Recall that these are used with normalized displacements (strain field).
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along either the vertical or horizontal direction although on average there is no

systematic preference (given a large enough sample size). Although the majority

of the island edges in all three maps are faceted, it is particularly noticeable in

the third image with the smallest islands. Here we can observe facets along the

horizontal and vertical axes which are (111) facets12 and diagonally oriented facets

which correspond to (101) planes. The third image also contains islands with

(110) facets which are perpendicular to the substrate and parallel to the ”viewing

direction”. They seem to form mostly between islands which are next to each

other.

(a) Islands formed using a
weak spring constant.

(b) Islands formed using a
moderate spring constant.

(c) Islands formed using a
strong spring constant.

Figure 3.23: Simulated 3D islands grown using different spring constants.

3.6.4 The Effect of Bond Anisotropy

Section 3.6.1 shows that the aspect ratio of a 2-dimensional island under equilibrium

is directly determined by the ratio of the bond strengths in the two directions

of interest. However, this is not the case for a strained system and where new

island material is being deposited. In fact much greater aspect ratios than those

predicted by the ratio of bond strengths can occur. Anisotropic bonds promote

the formation of long islands which can coalesce and once they grow large enough,

they are ”locked into place” due to strain. That is, it would take a large amount

of energy and time for them to move or for their shape to change.

Figures 3.24a through 3.24e show the formation of islands given bond strengths

12Recall that the coordinate system we use is the (110) and (1̄10) crystallographic directions.
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with a varying degree of anisotropy. It should be noted that the spring constant

used here is k1 = 28.2 eV, including a strain factor of about 1.4. The bond ratio

was modified by applying the parametrization in equations 3.61 through 3.64. The

primed bonds (d′) are the bonds used for this demonstration and the non primed

bonds are the values from table 3.2 in section 3.6.2. The first two equations simply

change the ratio r between a1 and a2 while maintaining their average value. The

two other equations insure that the condition a1 + 2b1 = a2 + 2b2 from section 3.4

is satisfied.

a′1 =
a1 + a2

2
· 2r

1 + r
(3.61)

a′2 =
a1 + a2

2
· 2

1 + r
(3.62)

b′1 =
b1 + b2

2
− a′1 − a′2

4
(3.63)

b2 =
b1 + b2

2
+
a′1 − a′2

4
(3.64)

Figure 3.24a shows the isotropic case where irregularly shaped islands appear

with no systematic orientation. Already with a bond ratio of 1.25, we can see

an overall elongation in the vertical direction although there is a fair number of

horizontal branches and some islands are ”bulky”. From a bond ratio of 1.5 and

up, the islands are clearly elongated and this shows how the formation of long

wires does not required bonds that are substantially stronger in one direction than

the other. The three last images also have many features in common with the SEM

images in chapter 2. The main feature is of course that there are wires all aligned

towards the same direction. In these images and those in the following sections,

the vertical axis is the (1̄10) direction and the horizontal axis is the (110) direction.

An important observation is that the wires are very dense and there is very little

bare substrate remaining unlike during the growth of other strained systems such

as Ge on Si. Furthermore, just like in our experiments, the shape and size of the

wires is fairly variable and contains Y-shaped bifurcations and intersections. There

are no signs of regions with larger dot-like structures however like those observed

experimentally.
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(a) Bond ratio of 1. (b) Bond ratio of 1.25.

(c) Bond ratio of 1.5. (d) Bond ratio of 1.75.

(e) Bond ratio of 2.

Figure 3.24: Topogrpahy of 3D InAs structures formed using various ratios between
the a1 and a2 bond strenghts.
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3.6.5 Stranski-Krastanow Growth

Although the final results of growth simulations performed under various conditions

have been shown in the sections above, it is also important to understand the

process through which quantum wires form in the first place. The bonding model

used for the growth in this section is the one described in section 3.6.2, the growth

rate was set to 0.4 ML/s to match our experiments and the growth temperature

was 520◦C. The substrate once again is InGaAs as described earlier.

Figures 3.25 and 3.26 show the early stages of heteroepitaxial growth on a 120

by 120 atom substrate. The left image shows the surface after the deposition of

half a monolayer. We can clearly see the formation of long vertical islands due

to the strong bond anisotropy in our model. These 2D islands however do not

lead to the formation of 3D islands as they are part of the first wetting layer. The

image on the right shows the surface topography after the deposition of just over 1

ML. At this point, the substrate surface is covered by a flat layer of the deposited

material and there is no formation of 3D islands. For this system (InAs on InGaAs)

it is natural to expect a wetting layer of at least one monolayer since the bonding

strength between the deposited material and the substrate is greater than that to

itself. Notice here that the same color scale is used among images 3.25 through

3.31 which allows for direct comparison.

After the deposition of about 1.7 ML as illustrated in figure 3.27, the presence

of elongated islands is quite obvious but even at this stage it is uncertain whether

these will lead to the formation of 3-dimensional islands. As we can see in the next

figure, after 2 ML the top region of these ”wires” in the middle have coalesced but

”cracks” have formed in the first wetting layer at various locations. This is due to

an accumulation of strain between wide 2D islands which essentially eject some of

the atoms that lie between them.

By the time 2.5 ML have been deposited, it is safe to say that the formation of

3D islands has begun as we can see in figure 3.29. Here we can see several vertical

cracks which are misaligned. These cracks cause a large amount of strain to be

applied to the regions between them which can ultimately lead to them connecting
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Figure 3.25: 0.5 ML of InAs grown
on InGaAs after at a rate of 0.4 ML/s.
Elongated 2D islands form but do not
persist.

Figure 3.26: Just over 1 ML of InAs
grown on InGaAs after at a rate of
0.4 ML/s. A full wetting layer has
covered the substrate

Figure 3.27: 1.7 ML of InAs grown
on InGaAs after at a rate of 0.4 ML/s.
Long islands have formed above the
wetting layer due to the anisotropic
bonding model.

Figure 3.28: 2 ML of InAs grown on
InGaAs after at a rate of 0.4 ML/s. A
second wetting layer has almost fully
formed but fractures have appeared in
the first layer due to an accumulation
of strain.

as the growth continues. As we can see in 3.30, not all of them but many of the

cracks have connected in order to more properly define the borders of what appear

to be quantum wires. This illustrates well the Stranski-Krastanow growth mode

since during the initial growth, at least one full wetting layer is deposited before
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the formation of any 3-dimensional structures occurs. The next examples illustrate

a larger critical thickness.

Figure 3.29: 2.5 ML of InAs grown
on InGaAs after at a rate of 0.4 ML/s.
Many cracks have formed in the InAs
and are beginning to propagate.

Figure 3.30: 3 ML of InAs grown on
InGaAs after at a rate of 0.4 ML/s.
Some cracks in the deposited material
have connected to each other to form
wires.

The growth was continued up to a film thickness of 5 ML, followed by a 10 s

annealing period. For this simulated annealing process, we assume that the bond

strengths remain unchanged. In reality however, this is likely not the case due to

a change in the equilibrium crystal shape under no group III deposition, whether

or not the surface reconstruction changes. The final 2-dimensional height profile is

shown in 3.31 where we can see wires with some of the features mentioned in the

last section such as the splitting of wires and an uneven size distribution. Here we

can see that two of the ”fractures” on the right side of figure 3.30 have merged

and that certain regions of the underlying substrate have been exposed.

To illustrate the effect that bonding strengths have on the critical thickness

and the size of the wires, three additional simulations labeled S2 through S4 were

run using the energies shown in table 3.3 along with their corresponding surface

energies in table 3.4.
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Figure 3.31: Topography of the wires obtained after the deposition of 5 ML of
InAs on InGaAs followed by a 10 s annealing period.

Ebond (eV) ECS S1 S2 S3 S4
a1 +0.002 -0.385 -0.382 -0.382 -0.382
a2 +0.237 -0.150 -0.183 -0.203 -0.153
a3 -0.227 -0.521 -0.417 -0.337 -0.337
b1 -0.357 -0.274 -0.312 -0.337 -0.325
b2 -0.474 -0.391 -0.412 -0.427 -0.439
c -0.233 -0.067 -0.071 -0.073 -0.067

Table 3.3: First and second nearest neighbor bond strengths based on the equilib-
rium crystal shape in [8] and the ones used for the simulations in this section.

Γ (eV) ECS S1 S2 S3 S4
Γ001 1.89 1.85 1.87 1.87 1.87
Γ100 1.89 2.00 2.15 2.26 2.20
Γ1̄11 2.35 2.37 2.39 2.39 2.38
Γ001 2.12 2.13 2.19 2.21 2.15
Γ001 1.18 1.07 1.15 1.20 1.17
Γ001 1.18 1.07 1.15 1.20 1.17

Table 3.4: The surface energy per surface atom for various facets based on the
equilibrium crystal shape in [8] and based on the bond strengths used for the
simulations in this section.
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Simulation S2 has stronger bonds in both the a2 and b1 direction13 and as a

result in figure 3.33, the wires are wider as we would expect. Figure 3.32 shows

that fractures in the wetting layer begin to appear after 2.5 ML which is later than

the previous case and in the next case, this occurs after the deposition of 5 ML for

the third simulation S3 as we can see in figure 3.34, indicating that the critical

thickness has increased. As the substrate is annealed for 10 seconds, we can see in

figure 3.35 that the fractures have propagated. Presumably, these would lead to

the formation of full wires if a thicker film had been grown.

Figure 3.32: Results of simulation S2
after the deposition of 2.5 ML.

Figure 3.33: Results of simulation S2
after the deposition of 5 ML and a 10
s annealing period.

Finally, figure 3.36 shows the results of the fourth simulation, S4, where only

the strength of the bonds in the b1 and b2 directions has been increased. Although

this has little effect on the width of the wires, the area of the exposed substrate is

significantly greater and gives the wires an appearance more similar to those in

the SEM results in chapter 2.2. This may indicate that these bonding strengths

more accurately model the growth of InAs quantum wires. This section nicely

shows that although deriving bond strengths from the surface energies in the

literature has lead to formation of wires that are significantly smaller than those

observed experimentally, that is, about 25-30 atoms wide as opposed to 45-55, this

discrepancy can be attributed to a fairly small discrepancy in the bond strengths

and it is in fact possible to simulate the formation of wide quantum wires.

13The bonds in the c direction are also stronger as we continue to apply the restriction
c = (a1 + a2)/8.
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Figure 3.34: Results of simulation S3
after the deposition of 5 ML before
the annealing period.

Figure 3.35: Results of simulation S3
after the deposition of 5 ML and the
10 s annealing period.

Figure 3.36: Results of simulation S4 after the deposition of 5 ML and the 10 s
annealing period.

3.6.6 The Effect of Atomic Steps

Using the shifted periodic boundary conditions described earlier, growth can be

simulated on vicinal substrates with the desired number of steps. Given a deposition

rate that is slow enough, step flow can occur and all the deposited atoms would

migrate to step edges without forming 2-dimensional islands on the terraces. Under

ideal conditions, during heteroepitaxial deposition this should force the new material
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to first accumulate along the step and help the nucleation of the wires. Figure

3.37 shows an InGaAs substrate with perfectly straight steps with a length of 24

atoms. This value was chosen as the lower end of the width of the wires grown

with the bonding strengths described in section 3.6.2. The resulting wires from

the growth on this substrate are illustrated in figure 3.38. Somewhat surprisingly,

the wires actually grew perfectly aligned with the steps and this result has been

observed several times. This demonstrates clearly that the theory of improving the

size distribution of quantum wires using an off-cut substrate is at least plausible,

depending on the accuracy of our model. Figures 3.39 and 3.40 show the same

growth profile except on steps that are 30 atoms long, the upper end of the width

of the wires. Here we see that the wire distribution is fairly uniform except for one

defect. This may be due to a deposition rate which is a bit too slow to prevent the

formation of 2D islands on the terraces which can lead to the formation of 3D islands

away from the step edge. Naturally, improving the wire size distribution relies a

fair bit on achieving step flow growth. However, under normal circumstances as

demonstrated in section 3.5.2 the surface steps do not remain perfectly straight

and of even length through the deposition of lattice-matched material nor is it

likely for the substrate to arrive as such from the manufacturer. For this reason,

other wire growths were simulated after an initial deposition of 10 ML of InGaAs.

Figure 3.37: Topography of perfectly
straight 24-atom wide steps of In-
GaAs.

Figure 3.38: InAs quantum wires
grown on perfectly straight 24-atom
wide steps after the deposition of 5
ML.

Figures 3.41 through 3.44 show the results of such simulations. Each pair of
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Figure 3.39: Topography of perfectly
straight 30-atom wide steps of In-
GaAs.

Figure 3.40: InAs quantum wires
grown on perfectly straight 30-atom
wide steps after the deposition of 5
ML.

images is the result of the growth of 10 ML of InGaAs at 1 ML/s onto an off-cut

substrate with a step length of 24 atoms and 30 atoms, followed by a 10 second

annealing period. Then the deposition of 5 ML of InAs is performed at a rate of

0.4 ML/s followed by a final 10 s annealing period. The thickness of the deposited

ternary alloy was hopefully chosen large enough to achieve an equilibrium step

roughness in order to simulate the effect of depositing the relatively thick barrier

layer of InGaAlAs required for the confinement of the quantum wires. Although

step flow growth was not achieved in either of these simulations, the steps are fairly

smooth and mostly because of the annealing period as is shown below. The wires

in figure 3.42 are not very uniform whereas those in figure 3.44 are quite uniform.

This is an indication that it should be possible to improve the size distribution of

quantum wires by growing on off-cut substrates given that the step length and

therefore the off-cut angle is chosen correctly. It is important however not to jump

to conclusion too quickly given the small sample size here.

However, the right conditions must be met to have proper nucleation along the

step edges. The conditions described here (growth rates, temperature, etc.) are

based on our physical experimental conditions but are applied to 30-atom wide

steps which correspond to a 1.35◦ off-cut angle rather than a 0.9◦ angle. This does

not indicate that a greater off-cut angle should be used but that the experimental
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Figure 3.41: Topography of the 24-
atom wide stepped surface after the
deposition of 10 ML of InGaAs at 1
ML/s followed by a 10 s annealing
period.

Figure 3.42: InAs quantum wires
grown on 24-atom wide steps after
the deposition of 10 ML of InGaAs at
1 ML/s.

Figure 3.43: Topography of the 30-
atom wide stepped surface after the
deposition of 10 ML of InGaAs at 1
ML/s followed by a 10 s annealing
period.

Figure 3.44: InAs quantum wires
grown on 30-atom wide steps after
the deposition of 10 ML of InGaAs at
1 ML/s.

conditions may not be optimal for proper step-flow growth as they (almost) are

in these simulations. Perhaps more importantly, our model still requires refining,

considering that it only predicts the formation of (111) and (001) facets around the

cross-section of the quantum wires whereas the wires observed experimentally have
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significantly shallower facets as can be see in the micrographs of section 2.6. One

interesting observation to be made here however is that the steps become fairly

smooth after the annealing process. Figures 3.45 and 3.46 show the topography of

the substrate before the annealing process and we can see a remarkable difference.

This phenomenon is also demonstrated by the rapid rise in RHEED intensity

observed at the 20 s mark in figure 3.13 of section 3.5.2. This means that perhaps

a combination of annealing conditions and slow deposition could be applied after

the deposition of the relatively thick (around 170 ML for 50 nm) barrier layer

without having to reduce the overall deposition rate. It should be mentioned at this

point that the simulated RHEED intensities rise more quickly after the deposition

is halted than observed experimentally (see [42] or [41]), possibly indicating an

important discrepancy.

Figure 3.45: Rough surface immedi-
ately after the deposition of InGaAs
on 24-atom wide steps at 1 ML/s.

Figure 3.46: Rough surface immedi-
ately after the deposition of InGaAs
on 30-atom wide steps at 1 ML/s.

Nonetheless, these result are useful as they strongly indicate that the steps

grown under out experimental conditions were very unlikely to be straight. The

undulations in the steps would explain quite clearly why it is not possible to resolve

them using HRSTEM, the reason being that there are no discrete steps along the

entire thickness of the TEM sample, making it impossible to resolve a change in

intensity from one atomic column to the next.
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3.6.7 Buried Quantum Wires

With the intention of reproducing the fluctuations in In concentration above the

wires as seen in figure 2.16 from section 2.5, simulations were run where InGaAs

was deposited onto the InAs wires. Figure 3.47 shows an artificial (002) dark field

image generated from the results. This was done by summing the number of In

atoms nIn and the number of Ga atoms nGa in a 40 atom thick cross section and

using equation (3.65) where 49, 31 and 33 are the atomic numbers of In, Ga and

As, and N is the total number of atoms in the cross section (40), in order to obtain

the image intensity for each pixel. This is basically the average atomic number

of the group III atoms subtracted by the atomic number of the group V atoms

(As), squared, and is based on the contrast mechanism for the (002) spot described

in section 1.4 (I ∝ F 2(002) ∝ (fIII(θ) − fV (θ))2). We again assume that the

atomic form factor is equal to the atomic number of the atom which is a common

approximation [10].

I =

(
49nIn
N

+
31nGa
N

− 33

)2

(3.65)

The image does not reveal a particularly strong increase in In content above the

wire14 but does however show a strong depletion of In content between the wires.

This is due to the large amount of compressive strain between the wires where it

is very energetically unfavorable for the In atoms to stay, which is of course the

reason the wires formed in the first place. The GaAs however, with its smaller

lattice constant, compensates for this compressive strain and is much more likely

to remain in these crevices if it happens to migrate there. This leads to clear dark

bands between the wires where the concentration of In is low. Finally, figure 3.48

is the same image but blurred using a Gaussian filter with a standard deviation

of 1 pixel. This simply helps discern the intensity fluctuations. It is important

to mention that in order for enough diffusion to occur to allow this concentration

segregation, the ternary alloy was deposited onto the wires at a deposition rate of

0.04 ML/s which is much lower than the experimental rate. This likely reveals a

discrepancy in our model.

14Remember that brighter regions indicate a larger concentration of In.
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Figure 3.47: Artificial (002) dark field image obtained from the simulated deposition
of InGaAs on top of InAs wires.

Figure 3.48: Blurred version of figure 3.47 using a Gaussian filter with a standard
deviation of 1 pixel.
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Chapter 4

Conclusion

4.1 Conclusion

InAs quantum wires were successfully grown on InGaAlAs lattice-matched to InP

using molecular beam epitaxy following the ideal growth parameters determined

by my predecessor and former Ph.D. student, Dr. Kai Cui. The morphology of the

resulting nanoscale structures grown at the lower experimental temperature of 520◦C

was a dense array of flat elongated islands referred to as wires, based on observations

using secondary electron scanning electron microscopy (SEM). Although dense,

their shape and size were considerably variable. Many wires contained bifurcations

and some presented larger dot-like features adding to their irregularity. With

the intention of improving their size distribution, that is, narrowing their size

distribution in order to hopefully enhance their photoluminescent capabilities for

use in near infrared lasers required by the telecommunications industry, thin films

were grown on vicinal substrates. An angle of 0.9◦ towards the (110) direction

was selected for the off-cut of these substrates in order to favor uniform nucleation

on atomic steps with a length matching the average separation of wires grown

on nominally flat substrates which we refer to as the natural separation of the

wires. Based on the analysis of images obtained by SEM, a statistically significant

improvement or narrowing of the size distribution of the wires grown on off-cut

97



Master’s Thesis - A. Scullion; McMaster University - Materials Science and Engineering
Chapter 4. Conclusion

substrates was observed relative to those grown on nominal InP(001) substrates,

although the improvement was modest next to the anticipated results based on

work done by other researchers. The measured improvement in the first case was

from 7.0 ± 0.1 nm to 5.9 ± 0.1 nm and in the second case the narrowing was from

5.5 ± 0.1 nm to 4.9 ± 0.1 nm.

Other parameters such as the aluminum content of the quaternary boundary

layer on which the InAs quantum wires were grown and the temperature of the

growth were also varied to measured their effect. The SEM results revealed a

decrease in the average wire spacing from about 24.4 ± 0.1 nm to 21.3 ± 0.1 nm

with an increase of the aluminum content from 10% to 20% in the two compounds,

In0.53Ga0.37Al0.10As and In0.53Ga0.27Al0.20As. Although this result is interesting, it

is not the primary interest of this investigation. Experimental growths were also

conducted at a temperature of 535◦C to explore its effect. At this temperature,

some of the samples displayed unexpected behavior whereby the deposited material

began to coalesce and form larger dot structures while seemingly depleting the

InAs from the nearby wires. This effect was strong on two of the four samples

grown at this temperature and weakly pronounced on another, irrespective on

off-cut angle. This phenomenon was attributed to a possible undesired change

in the annealing conditions at the end of the growth since little attention was

paid to cooling down the sample quickly. This idea is supported by the fact

that the surface reconstruction is expected to change once the deposition of the

group III element (In) is halted which is likely to affect the energetically favorable

structure and the fact that this only occurred on the samples grown at the hotter

experiment temperature at which surface diffusion occurs more readily. Our theory

that this is caused by annealing is further supported by the observation of a

significant difference between the surface wires, grown for the sole purpose of SEM

characterization, and the buried wires , more relevant to the production of devices,

based on transmission electron microscopy (TEM) investigations. No significant

conclusions can be made based on the measured size distribution of the wires grown

at this temperature. An attempt was also made to identify the location of atomic

steps relative to the quantum wires grown of off-cut substrates using HRSTEM

but without success for reasons determined by simulations.
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In order to further understand the nucleation and assembly process of these

quantum wires, a kinetic Monte Carlo model was fully developed as part of

this work based on models from other research groups. The model consists of

a 2+1-dimensional1 solid-on-solid2 kinetic Monte Carlo simulation defined by a

3-dimensional cubic lattice of atoms. It makes use of the cubic lattice to represent

the group III atoms of a III-V compound semiconductor under the assumption

that epitaxial growth of such systems is strictly limited by the deposition of

group III atoms and that the effect of group V atoms can be incorporated into

the bond structure of these atoms. The algorithm features the simulation of

four distinct compounds, InAs, GaAs, InP and AlAs (although only the first

two are presented in this work), and incorporates full 3D strain calculations into

the atomic bonding model in order to properly simulate the formation of lattice-

mismatched 3D heterostructures which form through the Stranski-Krastanow strain

relief mechanism. Other features of the model include shifted periodic boundary

conditions for the proper emulation of the effect of surface steps on the growth

of thin films and an anisotropic bonding model calibrated using the equilibrium

crystal structure of GaAs to simulate the formation of quantum wires.

Using this model, we have demonstrated the principle of predicting the equilib-

rium shape of a structure based on a simple bond model whereby contradicting the

longstanding idea that InAs quantum wires form due to diffusion anisotropy. We

have to some extent demonstrated how our model is able to successfully simulate

the formation of InAs quantum wires as well as the effect of various parameters

on the outcome of our model. Such effects include that of the stiffness constant

on the average size of 3D heterostructures, the effect that bond anisotropy has

on the type of structure that is formed and the effect of bond strengths on the

dimensions of quantum wires. We’ve also observed how bond strengths affect the

critical thickness of the onset of 3D structure formation and to some extent the

effect of an off-cut substrate on the growth and control of quantum wires. Finally,

a preliminary demonstration of the concentration fluctuations of indium above

InAs wires is also presented in this work.

1This refers to the fact that the model considers the surface (2D) of a undulated (+1) substrate.
2A solid-on-solid model only considers the diffusion of the top-most atoms and does not allow

the formation of overhangs.
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4.2 Future Work

On the experimental side, there is still much work to do in order to greatly improve

the size distribution of self-assembled quantum wires as well as, consequently, their

photoluminescent properties. Although no photoluminescence measurements were

made as part of this work, we do intend on comparing the spectral output of our

various samples to see if the slight improvement in the spacing distribution of our

wires has resulted in an improvement in their light producing qualities.

As far as growth experiments are concerned, it would definitely be worthwhile to

perform the growth of quantum wires on vicinal substrates while observing RHEED

intensity fluctuations. This would allow one to ensure proper step flow growth

which could very well lead to an important improvement in the size distribution of

the wires. Other deposition schemes in the aim of producing straight and uniform

atomic steps should be investigated as well.

In order to get a better idea of what is happening on the surface of the substrate,

various different experiments could be performed. Scanning tunneling microscopy

(STM) seems like the most promising method to observe the distribution of the

group III atoms on the surface at different stages of growth. By measuring

the distribution of adatoms, it may be possible to improve the bonding model

based on the assumption that their energy distribution should follow a Boltzmann

distribution.

Grosse et al. have done some interesting work developing a kinetic Monte Carlo

(kMC) model of surface diffusion that actually uses a face centered cubic (FCC)

lattice which better matches the configuration of group III atoms in the zinc blende

crystal structure. Based on our readings, they have yet to apply strain calculations

to this model and this could potentially make much more realistic predictions

concerning the growth of InAs quantum wires along with other quantum structures.

They have also done work on combining kMC simulations with density functional

theory (DFT) calculations in order to produce a more accurate diffusion model. In

fact, they show that In atoms are often found in pairs on the substrate due to the

surface reconstruction and how it is easier for those pairs to stick to islands along
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the (1̄10) direction than the (110) direction because of how As atoms interact with

them and seem to ”lock” them into place. This observation could potentially be

incorporated into an anisotropic bonding model such as the one presented here.

Concerning improvements to our own model, the bonding strengths still required

a fair bit of testing in order to find ideal values which form quantum wires more

similar to those observed experimentally. The efficiency of the strain calculations

could certainly benefit from the implementation of a multigrid algorithm such as

the one described in [43]. The Fourier component of this algorithm may however

not be compatible with our simulations since we make use of shifted periodic

conditions whereas Fourier algorithms are typically only applied to systems with a

regular periodicity. Finally, the spring model developed here should be modified

to take into account the tetragonal shape of the unit cell we used in our model.

This could have a significant impact on the shape and size of the simulated InAs

quantum wires, and should be fairly simple to implement.

101



Appendix A

Tree Structure

In order to efficiently select an event among the tens of thousands of possibilities in

the kinetic Monte Carlo simulation in this work, it is necessary to store the list of all

possible events, more specifically their rates, in a data structure such as a binary tree.

As mentioned in section 3.2.1, a binary tree reduces the search time from O(N) to

O(log2(N)) which means that searching among a list of 120 ·120 ·4 = 57600 possible

hopping events for a 120 by 120 simulated surface should require approximately 16

comparison operations as opposed to 28800 on average using a simple list or array.

For this reason, a custom binary tree data structure was developed based on the

AVL tree [30]. This particular tree algorithm was chosen among others mainly for

its simplicity.

The binary tree is illustrated in figures A.1 through A.3. It consists of nodes

which are each connected to two other child nodes and a parent node. All the

nodes (except for the root node) are treated identically so that the entire algorithm

operates recursively. Although most of the operations described here apply to

binary trees in general, details such as keeping track of the sum of hopping rates

ksum are specific to this implementation. It is important to note that the variable

k is used for the rate instead of R to match the algorithm’s implementation.

When a binary tree is initialized, a first node called the root node is produced.

Like every node, it contains an identification number n which refers to a specific
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hopping direction of a particular atom (an event), a hopping rate k which relates

to that specific event and ksum which contains the recursive sum of all the rates of

the child nodes below it including its own value k. It also contains two ”pointers”1

which basically keep track of the identification numbers of the so called child nodes

to its left and to its right. If there are no nodes below a particular node, its left

and right pointers are simply -1. Figure A.1 illustrates the process of adding a

new node to the tree. For simplicity, in this work’s implementation of the binary

tree, new nodes are always added to the rightmost node of a tree. The addition of

a new node is indicated by the color blue in the following diagrams and changes

made to other nodes are highlighted in red. In this case, adding node number 2

(n = 2) changes the right pointer of node 1 and requires the running sum ksum to

be updated.

Figure A.1: The process of adding a new node to a binary tree.

In order for a binary tree to remain efficient, it must be balanced, otherwise it

will be nothing more than a list of nodes with right child nodes. A balanced tree is a

three that for each node, the height of the left branch is different than the height of

the right branch by no more than one. Figure A.2 shows the process of balancing a

binary tree after an additional node has caused it to become unbalanced. After the

addition of node 3, which affects the value of ksum of nodes 1 and 2 as well as the

right pointer of node 2, the height of the right branch of node 1 is 2 whereas that

of the left branch is 0. This difference of 2 indicates that the tree is unbalanced.

It can be balanced by shuffling pointers around as indicated in the figure. The

left pointer of node 2 becomes the root node and the root node’s right pointer is

cleared. After this rotation, the value of ksum for both nodes 1 and 2 must be

updated to remain accurate. This balancing process is applied whenever a new

node is added. Although there exist more sophisticated and efficient balancing

1Since the algorithm was implemented in Java, these pointers are actually the indices of
elements in an ArrayList.
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algorithms, that of the AVL tree is fairly easy to implement and since our binary

tree is used to look up values much more often than to add (and remove) nodes,

such an improvement in efficiency was deemed unnecessary.

Figure A.2: The process of balancing a small binary tree following the addition of
a new node.

Figure A.3 shows a similar balancing operation but performed on a larger tree

in order to demonstrate some of the extra shuffling that may be involved as well as

other implications of binary trees. Here we see that the addition of node 6 affects

the right pointer of node 5 as well as the value of ksum for all its parent nodes

up to the root node, that is, nodes 5, 4 and 2. Here we can see that once again,

the root node is unbalanced since the length of the right branch is 3 and that of

the left branch is 1. This operation is a bit more complex than the previous one

because when node 4 is rotated and gains node 2 as a left pointer, node 3 is left

parentless. For this reason, node 3 is assigned as the right pointer of node 2. Once

again, the running sums of node 2 and 4 must be adjusted after this rearrangement.

It is worth pointing out here that through these balancing operations, the order of

the nodes from left to right always remains the same and this is in fact the purpose

of most binary tree structures.

Lastly, it is important to understand not only how the tree is balanced but

how to search through it since this is its primary purpose. Just like in the case

of the running sum in figure 3.3, after choosing a random number x between 0

and Rtotal or ksum of the root node in this case, we need to find the value nearest

to x but greater than x. Using as an example the tree on the right side of figure

A.3, we know that if we pick a random value less than 3, the chosen event should

correspond to that of node 1 since 3 is the value of ksum of the leftmost node,
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Figure A.3: The process of balancing a larger binary tree following the addition of
a new node.

similar to the case of x < R1 in figure 3.3. If x is greater than 3 but less than 7,

event 2 should be chosen. If it is greater than 7 but less than 9, event 3 should be

chosen. If x is greater than 9 but smaller than 16, event 4 should be selected, and

so on. Although this problem could likely be solved in a number of different way,

our implementation is as follows.

Starting from the root node, if x is greater than ksum of the left node (which

is 0 if there is no left node) yet smaller than the sum of this value and the rate k

of the current node (root node), the current node is selected. If x is smaller than

ksum of the left node, the above logic is applied to the left node as if it were the

root node. The third case is if x is greater than the sum of ksum of the left node

and k of the current node, x is decrement by this sum (x′ = x− ksumLeft− k) and

above logic is applied to the right node using the value x′ as if it were the root

node. It can be quite tricky to wrap one’s head around this logic but it works.

Keep in mind however that this algorithm will fail if the value of x is ever greater

than ksum of the root node.

These two algorithms, that of balancing and of searching, provide a very

efficient way of selecting where a random number lies within a list of running

sums. One missing process however is the one of removing events (nodes) from
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the tree structure. For reasons of simplicity of implementation as well as avoiding

the risk of producing immobile atoms, the removal of nodes was not implemented

but rather buried atoms simply have a hopping rate of 0. In terms of efficiency,

the repercussions of this omission are fairly small since the number of searches for

120 · 120 · 4 · 50 = 2880000 possible events2 rather than 57600 only increases the

number of searches from log2(57600) = 16 to log2(2880000) = 21. The important

increase in memory requirements however is not negligible and has in fact caused

some issues which should be resolved at some point in the future.

2Assuming a substrate thickness of 50 atoms.
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Bonding and Surface Energy

In order to use the surface energy values given in [8, 9], it is important to understand

how bond strength or bond energy relates to surface energy. This section derives

the equation defining the surface energy with respect to the bond energies by using

simple 2-dimensional models and the Wulff construction.

First of all, the Wulff construction [44] is used to predict the size of different

crystal facets, that is, the equilibrium crystal shape (ECS), based on their surface

energy. The diagrams in figure B.1 illustrate how the construction works. The solid

black curve is a polar plot of the 1-dimensional surface energy γ and it contains

sharp dips at particular angles which lead to the formation of facets. The surface

energy of certain particular facet directions are indicated by γ01, γ10 and γ11. The

construction of the crystal shape is achieved in a similar way to a Wigner-Seitz

cell. For each point of the polar plot, a line is drawn perpendicular to the direction

from the center of the plot to this point as indicated by the construction lines in

the diagrams below. The minimum area (volume in 3D) within these boundaries

forms the equilibrium crystal shape.

The diagram on the left indicates the simplest case where the only two important

facets are the (10) and (01) facets. In this case we can observe that the length of the

top face (01) is proportional to γ10 and that of the right face (10) is proportional to

γ01, indicating that a lower surface energy leads to a larger face (relative to others).
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Figure B.1: 2D Wulff construction for two different materials.

If we build a simple bonding model consisting of a square lattice with bonds only

between first nearest neighbors as illustrated in figure B.2, we can calculate the

total bonding energy of a crystal of given dimensions.

Figure B.2: A square lattice with first nearest neighbor bonds of strength a and b.
Only horizontal and crystal facets are of importance.

Let a and b be the bonding energies in the x and y directions, respectively, and

the dimensions of a crystal to be x by y in atomic units as indicated in figure B.2.

The total number of horizontal bonds (not dangling) is then given by (x− 1)y and

the number of vertical bonds is given by (y − 1)x or 35 and 32 in the illustration.

The total bonding energy E is therefore given by equation (B.1) which can be

broken down into a bulk bonding energy term1 and a surface term.

E = (x− 1)ya+ (y − 1)xb (B.1)

= xy(a+ b)− xb− ya (B.2)

= Ebulk − xb− ya (B.3)

1The bulk term represents the bonding energy of the solid in the case where x� 1 and y � 1.
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To find the minimum energy configuration of x and y for a given area V = xy,

we express the total bonding energy E in terms of x (variable) and V (constant),

and find a minimum as shown in equations (B.5) through (B.8). At this point it is

worth noting that bond energies must be negative in order for the extremum below

to be a minimum and not a maximum, and this is physically accurate. It is also

worth mentioning that the following derivations could equally be done by keeping

the number of atoms N constant instead of the area V .

V = xy (B.4)

E = V (a+ b)− xb− V

x
a (B.5)

dE

dx

∣∣∣
V

= −b+
V a

x2
= 0 (B.6)

x =

√
V a

b
; y =

√
V b

a
(B.7)

x

y
=
a

b
(B.8)

The ratio above is between the number of atoms on the top face and the side

face but not necessarily the ratio of the facet lengths Lx and Ly unless the lattice

is cubic. The general case is shown in (B.10) where lx is the width of each atom

and ly is their height. This is directly related to the ratio of surface energies γ10

and γ01 as we can see from figure B.1. Knowing this ratio and the definition2 of

the surface energy in (B.11) where E(10)facet is the total surface energy of the (10)

facet, we can infer that E(10)bonds, the energy of the broken bonds per surface atom,

is equal to a. The broken bonds per surface atom on the other facet is then b. The

factor of two is related to the fact that a solid has two opposing faces, (10) and

(1̄0) for example.

2Keep in mind that the definition should actually have an additional negative sign since bonds
are negative and surface energies are positive but they are excluded to avoid confusion.
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Lx = lxx; Ly = lyy (B.9)

Lx
Ly

=
lxx

lyy
=
lxa

lyb
=
γ10

γ01

(B.10)

γ10 ≡
E(10)facet

L(10)facet

=
yE(10)bonds/2

lyy
=
E(10)bonds

2ly
(B.11)

γ01 ≡
E(01)facet

L(01)facet

=
xE(01)bonds/2

lxx
=
E(01)bonds

2lx
(B.12)

γ10

γ01

=
E(10)bonds2lx
E(01)bonds2ly

=
lxa

lyb
(B.13)

E(10)bonds = a; E(01)bonds = b (B.14)

γ10 =
a

2ly
; γ01 =

b

2lx
(B.15)

This teaches us two things. The first is how the surface energy can be directly

related to bond strengths which allows them to be determined using values of γ

from the literature as indicated by equation (B.15). The second is how to properly

count broken bonds on a facet. It may seem trivial in this simple case but it is

important not to consider the bonds parallel to the surface of interest even though

they would be broken if we were to remove an atomic layer atom by atom. Figure

B.3 highlights in blue the exposed bond on the (01) surface and in red the exposed

bond on the (10) surface. How to properly count surface broken bonds is less

obvious in the second case which follows.

Figure B.3: Broken bonds required for proper bond counting.

Figure B.4 shows a more complicated bonding model where horizontal and

vertical bonds both have an energy of a and diagonal bonds with an energy of

c. Because of this new bond, it is energetically favorable to have (11) facets in

addition to the (10) and (01) facets in the previous case. It should be noted that
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the vertical and horizontal bond strengths were chosen to be equal in order to

greatly simplify the problem which implies that γ10 = γ01.

Figure B.4: A square lattice with first and second nearest neighbor bonds of
strength a and c. Vertical, horizontal and diagonal facets must be considered.

Based on the problem above, it is fairly obvious how to properly count on the

(01) surface as indicated by the blue bonds in figure B.5. However, the case of the

(11) facet is less obvious. The red bonds should fairly obviously be considered but

the diagonal bond in green is ambiguous. Here we will demonstrate that all four

bonds should indeed be counted as broken on the (11) surface.

Figure B.5: Broken bonds that may be required for proper bond counting.

By symmetry3, the height and width of the ECS in units of atoms is the same

and denoted by x. The height of the missing corner is given by z which means

that the length of the (11) facet is z
√

2 for a cubic crystal(lx = ly). The bond

energy ignoring the missing corners is given by (B.16) and if we consider them the

expression becomes equation (B.18).

3Since the horizontal and vertical bonds are of equal strength, there is no distinction between
the two directions.
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Esquare = ax(x− 1) + a(x− 1)x+ 2c(x− 1)(x− 1) (B.16)

= 2ax(x− 1) + 2c(x− 1)2 (B.17)

E = 2ax(x− 1) + 2c(x− 1)2 − 4
(
az(z + 1) + cz2

)
(B.18)

= 2(a+ c)(x2 − 2z(z + 1))− 2ax− 4cx+ 2c+ 4cz (B.19)

As before, we need to find the expression for the minimum energy for a fixed

volume and extract a relationship between x and z. This is solved in equations

(B.20) through (B.27).

V = x2 − 2z(z + 1) (B.20)

E = 2(a+ c)V − 2ax− 4cx+ 2c+ 4cz (B.21)

x =
√
V + 2z(z + 1) (B.22)

E = 2(a+ c)V − (2a+ 4c)
√
V + 2z(z + 1) + 2c+ 4cz (B.23)

dE

dz

∣∣∣
V

=
−(2a+ 4c)

2

4z + 2√
V + 2z(z + 1)

+ 4c = 0 (B.24)

4c = (a+ 2c) · 4z + 2√
V + 2z(z + 1)

(B.25)

2c

a+ 2c
=

2z + 1

x
≈ 2z

x
for 2z � 1 (B.26)

z

x
=

c

a+ 2c
(B.27)

Relating x and z to the surface energies γ01 and γ11 is a bit trickier but still

approachable and demonstrated in the next equations. Assuming that the lattice

is cubic lx = ly, we can first determine the length of the top and diagonal faces, Lx

and Lz, relative to the surface energies γ10 = γ01 and γ11 by using the geometry

in figure B.1. The resulting expressions are in (B.28) and (B.29). Their ratio is

then expressed in (B.30)4. This ratio can also be expressed in terms of x and z in

equation (B.31).

4It is important to note that Lx and Lz here have the same constant of proportionality which
is why it is possible to express their ratio as it is done here.
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Lx ∝ 2(
√

2γ11 − γ01) (B.28)

Lz ∝ 2(
√

2γ01 − γ11) (B.29)

Lz
Lx

=
2(
√

2γ01 − γ11)

2(
√

2γ11 − γ01)
(B.30)

Lz
Lx

=

√
2z

x− 2z
=

√
2z/x

1− 2z/x
(B.31)

=

√
2 c
a+2c

1− 2 c
a+2c

=

√
2c

a+ 2c− 2c
=

√
2c

a
(B.32)

The ratios in (B.30) and (B.32) then allow us to relate bond strengths to surface

energies in (B.33). Using the definitions in (B.34) and (B.35) and knowing the

dangling surface bonds on the (01) facet from figure B.5, we can solve for E(11)bonds

and conclude that two a and two c bonds must be considered on the (11) facet as

indicated by equation (B.39).

Lz
Lx

=

√
2γ01 − γ11√
2γ11 − γ01

=

√
2c

a
(B.33)

γ01 ≡
E(01)bonds

2lx
=
a+ 2c

2lx
(B.34)

γ11 ≡
E(11)bonds

2
√

2lx
(B.35)

√
2c

a
=

√
2E(01)bonds/2lx − E(11)bonds/2

√
2lx√

2E(11)bonds/2
√

2lx − E(01)bonds/2lx
(B.36)

=

√
2(E(01)bonds − E(11)bonds/2)

E(11)bonds − E(01)bonds

(B.37)

=

√
2(a+ 2c− E(11)bonds/2)

E(11)bonds − (a+ 2c)
(B.38)

γ11 =
2a+ 2c

2lz
=

2a+ 2c

2
√
l2x + l2y

(B.39)

This means that to properly count broken bonds on a surface, all dangling

bonds including those not attached to the most obvious surface atoms must be

considered and bonds between surface atoms should be ignored. Although this
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derivation was all done in 2 dimensions, the 3-dimensional case is very similar

except that the average area per surface atom of a facet is used instead of the length

for calculating the 2D surface energy instead of a 1D surface energy. Figure B.6

shows the bond counting for a (011) facet of an orthorhombic crystal where first,

second and third nearest neighbors are considered and colored in red, green and

blue, respectively. The right side of the figure shows the two atoms of importance5,

one of which is hidden in the left diagram because it is buried. Both clearly have a

distinct broken bond configuration. Equation (B.40) defines the surface energy of

the (011) facet where the energies of first, second and third nearest neighbor bonds

are represented by the variables a, b and c, assuming that the bonds in all three

dimensions are equivalent in energy or strength.

Figure B.6: Crystallographic direction of all unique broken bonds on a (011) surface.
The two units on the right are those with unique broken bond configurations.

Figure B.7 shows the case for a (111) facet and the expression for the surface

energy is given in equation (B.41). It is worth pointing out that this expression

is in disagreement with the one found in [27] as we count an extra c bond, that

is, 6c rather than 5c. In this case there are three atom with distinct broken bond

configurations as indicated on the right side of the diagram. Note that the bottom

(110) bond could be placed just to the left of the (100) bond but that would required

a duplicate of the bottom atom from another ”unit cell”.

γ011 =
2a+ 6b+ 4c

2lx
√
l2y + l2z

(B.40)

γ111 =
3a+ 6b+ 6c

2
√
l2xl

2
y + l2xl

2
z + l2yl

2
z

(B.41)

5These two atoms are the only atoms with distinct broken bonds on the periodic facet.
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Figure B.7: Crystallographic direction of all unique broken bonds on a (111) surface.
The three units on the right are those with unique broken bond configurations.
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