Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13306
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorK., McKenzie Y.en_US
dc.contributor.authorZhou, Congen_US
dc.date.accessioned2014-06-18T17:03:35Z-
dc.date.available2014-06-18T17:03:35Z-
dc.date.created2013-09-09en_US
dc.date.issued2013-10en_US
dc.identifier.otheropendissertations/8125en_US
dc.identifier.other9227en_US
dc.identifier.other4566912en_US
dc.identifier.urihttp://hdl.handle.net/11375/13306-
dc.description.abstract<p>We present an alternative proof of the existence theorem of B\"ohm using ideas from the study of gradient Ricci solitons on the multiple warped product cohomogeneity one manifolds by Dancer and Wang. We conclude that the complete Ricci-flat metric converges to a Ricci-flat cone. Also, starting from a $4n$-dimensional $\mathbb{H}P^{n}$ base space, we construct numerical Ricci-flat metrics of cohomogeneity one in ($4n+3$) dimensions whose level surfaces are $\mathbb{C}P^{2n+1}$. We show the local Ricci-flat solution is unique (up to homothety). The numerical results suggest that they all converge to Ricci-flat Ziller cone metrics even if $n=2$.</p>en_US
dc.subjectRicci-flaten_US
dc.subjectcohomogeneity oneen_US
dc.subjectasymptotically conicalen_US
dc.subjectLyapunov functionen_US
dc.subjectGeometry and Topologyen_US
dc.subjectGeometry and Topologyen_US
dc.titleOn Complete Non-compact Ricci-flat Cohomogeneity One Manifoldsen_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.04 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue