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Abstract

We present an alternative proof of the existence theorem of Böhm using ideas from

the study of gradient Ricci solitons on the multiple warped product cohomogeneity

one manifolds by Dancer and Wang. We conclude that the complete Ricci-flat metric

converges to a Ricci-flat cone. Also, starting from a 4n-dimensional HPn base space,

we construct numerical Ricci-flat metrics of cohomogeneity one in (4n + 3) dimensions

whose level surfaces are CP 2n+1. We show the local Ricci-flat solution is unique (up

to homothety). The numerical results suggest that they all converge to Ricci-flat Ziller

cone metrics even if n = 2.
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Introduction

A Riemannian metric ĝ on M̂ is called Einstein if its Ricci tensor is a multiple of the

metric, i.e. Ric(ĝ) = λ · ĝ. If λ = 0, the metric is called Ricci-flat. If we require

ĝ to be invariant under a Lie group G acting properly on M̂ with principal orbits of

codimension one, then the PDE Ric(ĝ) = λ · ĝ becomes an ODE on I together with

appropriate boundary conditions to ensure that we have a smooth metric. The position

of a singular orbit of the G-action gives an irregular singular point of this ODE.

Ricci-flat metrics are high dimensional Euclidean signature analogues of solutions of

Einstein’s equation in vacuo. Ricci-flat manifolds often have special holonomy group,

which is the group of linear transformations arising from parallel transport along closed

loops. Important cases are Calabi-Yau manifolds and hyperkähler manifolds, which play

an important role in theoretical physics such as in superstring theory and the study of

gravitational instantons.

In this article we consider only complete non-compact cohomogeneity one Ricci-flat

manifolds. The first mathematicians to study these were Calabi, Page, and Bérard

Bergery. In 1975 Calabi [Cal75] constructed cohomogeneity one non-positive Kähler

Einstein metrics on certain complex line bundles over compact Kähler manifolds. Later,

in [Cal79] he constructed a complete hyperkähler metric on T ∗CPn of cohomogeneity

one. After Yau constructed the first examples of closed Ricci-flat Kähler manifold which

are not flat, the physicist D. Page [Pag78] constructed the first compact example of

an inhomogeneous non-Kähler positive Einstein metric. The first systematic study of

cohomogeneity one Einstein metrics was carried out by Bérard Bergery [BB81], who

provided a theoretical setting for Page’s work. More recently, [WW98] and [DW98] have

used the construction due to [Cal75] and [BB81] to obtain large families of Kähler as

well as non-Kähler Einstein manifolds.

Here, we are interested in the existence of complete Ricci-flat metrics on two types of

non-compact cohomogeneity one manifolds. The principal orbit in the first case is a

multiple product manifold; in the second case the principal orbit is CP 2n+1 and the

singular orbit is HPn. The first family of complete, non-compact Ricci-flat metrics

viii



of cohomogeneity one was found by Böhm [Böh99] as a result of further study of the

dynamic properies of the cohomogeneity one Einstein equations.

In this thesis, we will present an alternative proof of this existence theorem of Böhm

using ideas from the study of steady gradient Ricci solitons on the same underlying

manifolds by Dancer & Wang. The interest in the second family originated from the

construction of an explicit complete G2-holonomy metric on a certain vector bundle

over S4 by [BS89] and [GPP90]. In this thesis we examine this example and its high

dimensional analogues.

Now we turn to our main results. Let G be a compact Lie group acting on M̂ with

cohomogeneity one. Let P = G/K be the multiple warped product principal orbit type

and let ĝ be a G-invariant metric on M̂ . We can write

ĝ = dt2 + g(t) (0.1)

where g(t) is a smooth curve of G-invariant metrics on P . The cohomogeneity one

Ricci-flat equation for ĝ is given by an ordinary differential equation for g(t) [EW00].

We introduce a variable to change the ODE to a non-singular polynomial dynamical

system. We were inspired by a Lyapunov function found in [DHW13]

F :=

∑r
i=1(X2

i + Y 2
i )− 1

n(
∑r

i=1

√
diXi)

2∏r
i=1 Y

2di
n

i

(0.2)

in our new variables. Using this function, the geometry of the Ricci-flat system is

especially well understood. We then consider the Lie group triple (G,H,K)=(Sp(n +

1), Sp(n)Sp(1), Sp(n)U(1)). We use two Einstein metrics on CP 2n+1 to construct two

Ricci-flat cones. For n > 1, our numerical solutions converge to the Ziller cone metric,

not the other, which verifies the general Convergence Theorem 11.1 in [Böh99]. For

n = 1, we conclude there is a unique (up to homothety) Ricci-flat 7-dimensional metric.

So, the Ricci-flat 7-dimensional metric must have G2 holonomy.

The content of this article is as follows. In Chapter 1 we derive the warped prod-

uct cohomogeneity one Ricci-flat equation and state the smoothness condition for lo-

cal solutions, following [EW00]. In Chapter 2 we give an alternative proof of Böhm’s

extistence theorem (Theorem A [Böh99]) using the new variables. In Chapter 3, we

apply the new variables to the Ricci-flat equations for the cohomogeneity one manifold

(G,H,K)=(Sp(n+ 1), Sp(n)Sp(1), Sp(n)U(1)) and describe the two homogeneous Ein-

stein metrics on CP 2n+1, following [Zil82]. In Chapter 4 we give numerical solutions for

the above two Ricci-flat equations and discover that the geometry of the principal orbits

converges to the geometry of the Ziller cone metric.



Chapter 1

Cohomogeneity one Riemannian

manifold

In this dissertation, we investigate two families of Ricci-flat manifolds. In the first case,

M̂ is a multiple warped product over an interval, which is the example discussed in

[DW09]. In the second case, let M̂ be of cohomogeneity one with respect to an isometric

group Sp(n + 1)-action whose principal orbit P is CP 2n+1 and whose singular orbit Q

is HPn, For n=1 the explicit Ricci-flat solution was found in [GPP90] and when n > 2

the general convergence theorem for the Ricci-flat solution was found in [Böh99].

1.1 Homogeneous spaces

A connected Riemannian manifold (M, g) is said to be homogeneous if its full isometry

group I(M, g) acts transitively on M . I(M, g) is a Lie group. Throughout this disser-

tation, let G ⊂ I(M, g) be a connected compact subgroup which still acts transitively

on M . Then the Riemannian manifold (M, g) is called G-homogeneous. Moreover,

let x ∈ M and K denote the isotropy group at x. Then M can be identified with

the homogeneous manifold G/K. Furthermore, since G consists of isometries, it must

acts effectively on G/K (and the corresponding linear isotropy representation of K in

Gl(TxM) is faithful, i.e. injective) ([Bes87], 7.11, 7.12). The Riemannian metric g can

be considered as a G-invariant metric on G/K.

Let us consider the Lie group triple (G,H,K) where G is a Lie group and H,K two

compact subgroups of G with K ⊂ H. Following the notation of ([Bes87], 9.79), let g be

the Lie algebra of G and h ⊃ k the corresponding subalgebras for H and K. We choose

once and for all an AdG(H)-invariant complement p− to h in g, and an AdG(K)-invariant

1



Chapter 1. Cohomogeniety one Riemannian manifold 2

complement p+ to k in h. Then p = p+ ⊕ p− is an AdG(K)-invariant complement to k

in g. An AdG(H)-invariant scalar product (., .) on p− defines a G-invariant Riemannian

metric gQ on Q = G/H, and an AdG(K)-invariant scalar product on p+ defines a

H-invariant Riemannian metric gH/K on H/K. Finally, the orthogonal direct sum of

these scalar products on p = p+ ⊕ p− defines a G-invariant Riemannian metric gP on

G/K = P .

1.1.1 Adjoint representation and isotropy representation

Let G/K be a homogeneous space and the projection be π : G → G/K, π(g) = gK.

Let X ∈ g and exp tX be the corresponding one-parameter subgroup. The differential

dπe : g→ To(G/K), where o = π(e) = K can be computed in the following way,

dπe(X) =
d

dt
(π ◦ exptX)

∣∣∣
t=0

=
d

dt
((exptX)K)

∣∣∣
t=0

.

From ker dπe = k and dπ is onto, we obtain the canonical isomorphism

g/k ∼= To(G/K).

Since G is a compact Lie group, then by the averaging procedure, there exists an

AdG(K)-invariant complement p of k in g. As an immediate consequence of the above

isomorphism, we have the canonical isomorphism

p ∼= To(G/K).

With this isomorphism, we can show that the isotropy representation of K in To(G/K)

is identified with the restriction of the adjoint representation of K on g to p. In fact, it

suffices to show that the following diagram is commutative:

p
AdG(k)−−−−−→ p

dπe|p
y ydπe|p

To(G/K)
(dτk)o−−−−→ To(G/K)

For details see the proof of Proposition 4.5 in [Arv03].

1.2 Basic structure of a cohomogeneity one manifold

In this chapter we discuss the basic structure of cohomogeneity one isometric actions.

For more detail we refer the reader to [Bre72], [Zil09], [DW11] [WZ86] and [EW00].
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First of all, there exists a maximum orbit type G/K for G on M (i.e, K is conjugate

to a subgroup of each isotropy group and is itself an isotropy group). The union of the

orbits of type G/K is open and dense in M and its image in M/G is connected. We refer

to [Bre72] page 179 for the proof. An orbit of maximum orbit type is called a principal

orbit. If P ≈ G/K is a principal orbit and Q ≈ G/H is any orbit, K is conjugate to

a subgroup of H and we may assume that K ⊂ H. Then there is an equivariant map

P → Q, which is a fiber bundle projection G/K → G/H with fiber H/K. If dim P >

dim Q, then Q is called a singular orbit.

Let G be a compact Lie group acting by isometries on an (n+ 1)-dimension connected

Riemannian manifold (M̂, ĝ) with cohomogeneity one, i.e. the codimension of the prin-

cipal orbit is one. Choosing a principal point p ∈ M̂ , let P = G · p be a principal orbit

(homogeneous space) with isotropy group K = Gp. Pick a singular point q ∈ M̂ ; then

Q = G/H is a singular orbit with isotropy group H = Gq. In this dissertation, we will

only consider the case, M/G = I = [0,+∞). Denote the orbit projection by

π : M̂ → M̂/G = I.

Then the inverse image of (0,+∞) consists of the principal orbits, and π−1(0) is the sin-

gular orbit Q. Choose a geodesic γ(t) : I → M̂ , parametrized by arclength, intersecting

all principal orbits orthogonally. Then, there is an equivariant diffeomorphism

Φ : I̊ × (G/K) −→ M0 (1.1)

(t, g ·K) 7−→ g · γ(t)

where M0 ⊂ M̂ is the open and dense subset consisting of all points lying on prin-

cipal orbits, K denotes the principal isotropy group of γ(t) and I̊ = (0,∞). Then,

Pt = Φ(t, G/K) = G/Gγ(t) is the principal orbit passing through γ(t). The connected

homogeneous space P = G/K is an abstract copy of the principal orbits and has dimen-

sion n.

1.2.1 Cohomogeneity one metric

We now discuss how to describe cohomogeneity one Riemannian metrics on M̂ . Following

from the map (1.1), for each t ∈ (0,∞), γ(t) corresponds to constant isotropy group K

and the induced metrics on G/K form a one-parameter family of G-invariant metrics

g(t). the pullback of the metric ĝ|M0 is

Φ∗(ĝ) = dt2 + g(t)
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and g(t) can be viewed as a family of G-invariant metrics on G/K along the geodesic

γ(t).

We identify p with the tangent space G/K at γ(t), t ∈ I̊ and AdG(K)|p can be identified

with the isotropy representation. As we discussed in section 1.1, if G is compact, we

can firstly choose an appropriate Ad(K)-invariant inner product h on p. Then, we

decompose p into its h-orthogonal real AdG(K)-irreducible subspaces,

p = p1 ⊕ p2 ⊕ · · · ⊕ pr,

where p1 ⊕ p2 ⊕ · · · ⊕ pk = p+
∼= T (H/K) and pk+1 ⊕ pk+2 ⊕ · · · ⊕ pr = p− ∼= T (G/H).

The set of G-invariant metrics g(t) on G/K can be identified with the set of AdG(K)-

invariant inner products <,>t on p. If the pi’s are pairwise inequivalent AdG(K)-

representations, by Schur’s Lemma, <,>t |pi = g2
i (t)h|pi , for some functions g2

1, . . . , g
2
r .

In this dissertation, we will assume the actions of AdG(K) on the pi’s are inequivalent

to each other, so that such a decomposition is unique up to ordering and the pi’s are

orthogonal to one another automatically, that is,

g(t)|p v<,>t= g1(t)2h |p1⊥ g2(t)2h |p2⊥ ... ⊥ gr(t)2h |pr . (1.2)

Remark 1.1. Conversely, given an AdG(K)−invariant metric <,>t along the unit speed

geodesic γ(t), t ∈ (0,+∞), we can recover the metric on M̂0 using the G-action.

1.3 Cohomogeneity one Ricci-flat equation

Following the notation of [EW00] and [DW11], we will denote by ∇̂ and R̂ic respectively

the Levi-Civita connection and the Ricci tensor of the Riemannian manifold (M̂, ĝ). Let

∇ and Ric denote the objects for (Pt, gt), for a given time t. N = dΦ( ∂∂t), is the unit

(G-equivariant) normal field along Pt. We let L(t) be the shape operator of the orbit

Pt = Φ({t} × P ), which is defined by

L(t)X = ∇̂XN

for any vector field X ∈ TPt. We then can view L(t) as a one-parameter family of

(gt-symmetric) endomorphisms on TP via Φ. We have, for X,Y ∈ TP and t ∈ (0,+∞),

ġ(t)(X,Y ) = 2g(t)(L(t)X,Y ),

where . denotes d/dt. Note that by G-invariance, the trace trLt (mean curvature) is

constant along Pt for a fixed t, as shown in [EW00]. Using the Gauss and Codazzi
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equations together with the Riccati equation for L, one obtains for X,Y ∈ TP ,

R̂ic(X,Y ) = Ric(X,Y )− tr(L)g(L(X), Y )− g(L̇(X), Y ),

R̂ic(N,N) = −tr(L̇)− tr(L2),

R̂ic(X,N) = −tr(X¬d∇L),

where d∇L is the TP -valued 2-form on P which is the covariant exterior derivative of

L regarded as TP -valued 1-form on P , and ¬ denotes the interior product. We denote

by r(t) the Ricci endomorphism of TP for metrics g(t). Then g(r(X), Y ) = Ric(X,Y ).

Similary, r̂ denotes the Ricci endomorphism for metric ĝ.

For ĝ to be an Ricci-flat metric (i.e. the Einstein constant is zero), we have

Proposition 1.2. The Ricci-flat condition for the metric ĝ on M0 is given by

ġ = 2gL (1.3a)

L̇ = −(trL)L+ r (1.3b)

tr(L̇) = −tr(L2) (1.3c)

tr(X¬d∇L) = 0 (1.3d)

for all X ∈ TP .

Remark 1.3. If we take the trace of (1.3b) and use (1.3c), we obtain the equation for

conservation law by

s− (trL)2 + tr(L2) = 0, (1.4)

where s(t) = tr(r(t)) denotes the scalar curvature of g(t).

1.3.1 Ricci-flat equations for multiple warped product

We next consider the case where M̂ is a multiple warped product over an interval,

following the notation and approach of [DW09].

Let M̂n+1 be multiple warped product manifold with compact Lie group G-acting by

isometries which has a open dense set I × P foliated by diffeomorphic hypersurfaces

Pt of real dimension n. In this dissertation, we set G = SO(d1 + 1) × G2 × · · · × Gr,
H = SO(d1 + 1)×H2×· · ·×Hr and K = SO(d1)×H2×· · ·×Hr. The hypersurface Pt

along the unit speed geodesic γ(t) is Sd1×G2/H2×· · ·×Gr/Hr. Each homogeneous space

(Gi/Hi, hi), with compact Lie group Gi acting by isometries, is an isotropy irreducible

manifold with positive Einstein constants λi and dimension di. The singular orbit Q =

G/H = G2/H2 × · · · ×Gr/Hr.
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The metric ĝ on the open dense set of M̂ can be described in the form

dt2 +
r∑
i=1

g2
i (t)hi. (1.5)

The Ricci endomorphism r(t) of TPt for metrics g(t) is given by g(r(X), Y ) = Ric(X,Y ).

So for a multiple warped product manifold,

r(t) = diag
(λ1

g2
1

Id1 , . . . ,
λr
g2
r

Idr
)
, (1.6)

where Idi denotes the identity matrix of size di. di=dim(pi) for i = 1, ..., r.

The shape operator is given by

L(t) = diag(
ġ1

g1
Id1 , · · · ,

ġr
gr

Idr).

So (1.3b) in the Ricci-flat equations becomes the system on I̊ × P
− g̈1
g1

+ ġ1
2

g21
− (d1ġ1g1

+ ...+ dr ġr
gr

) ġ1g1 + λ1
g21

= 0,

...

− g̈r
gr

+ ġr2

g2r
− (d1ġ1g1

+ ...+ dr ġr
gr

) ġrgr + λr
g2r

= 0.

(1.7)

By Proposition 3.18 in [BB81], we know if the summands in the decomposition of p = p1⊕
p2⊕· · ·⊕pr are pairwise distinct, then R̂ic(X,N) = 0 is automatically true. In addition,

by the remark of Lemma 2.4 and Corollary 2.6 in [EW00] and [Bac86], we know if (1.3d)

is satisfied, then (R̂ic(N,N))v2 is constant in time. Here, v(t) denotes the volume

distortion of g(t). Therefore, if we can prove that ĝ is smooth, then limt→0 v(t) = 0, and

so R̂ic(N,N) = 0 i.e. (1.3c) is satisfied too.

Remark 1.4. In the multiple warped product manifold I × Sd1 ×M2 × · · · ×Mr, with

metric dt2 +
∑r

i=1 g
2
i (t)hi, if (Mi, hi) are inhomogeneous, then the resulting equations

are equivalent to those coming from the above cohomogeneity one manifolds. This is

because in the derivation of the Einstein equation (cf. Lemma 2.4 [EW00]), we only use

the geometry of an equi-distant family of hypersurfaces. Therefore the paper [DW09],

which discusses more general cases, was using the same equation and the same way of

changing the variables.
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1.3.2 The Ricci endomorphism when principal orbit is G/K with 2

distinct irreducible summands

Suppose the principal orbit is P = G/K and we choose a diagonal metric g1(t)2h |p1⊥
g2(t)2h |p2⊥ · · · ⊥ gr(t)

2h |pr . If we denote gi(t)
2 = xi(t), then we may use equation

(1.3) in [WZ86] for the scalar curvature of Pt:

S =
1

2

∑
i

dibi
xi
− 1

4

∑
ijk

[
k

ij

]
xk
xixj

. (1.8)

In this formula, for each i, bi is defined by B|pi = bih|pi , where B is the negative of

the Killing form of G, and di=dim(pi), and

[
k

ij

]
=
∑
h([eα, eβ], eγ)2, where the sum is

taken over {eα}, {eβ}, {eγ}, h -orthonormal bases for pi, pj , pk respectively.

Let Ai = 1
2

(
dibi − 1

2

[
i

ii

]
−
∑

j 6=i

[
j

ij

] )
as in [WZ86]. Then, when r = 2 and k⊕ p1 is a

subalgebra of g, we have

S =
A1

x1
+
A2

x2
− 1

4

[
2

11

]
x2

x2
1

− 1

4

[
1

22

]
x1

x2
2

. (1.9)

Because of Schur’s lemma, we let the Ricci tensor be given by

Ric =

(
r1Id1 0

0 r2Id2

)
.

Using the first variation formula for the Einstein-Hilbert action and personal discussion

with Dr. Wang, we get

r1 = −x
2
1

d1

∂S

∂x1
=
A1

d1
− 1

2d1

[
2

11

]
x2

x1
+

1

4

1

d1

[
1

22

]
x1

x2
2

, (1.10)

r2 = −x
2
2

d2

∂S

∂x2
=
A2

d2
− 1

2d2

[
1

22

]
x1

x2
+

1

4

1

d2

[
2

11

]
x2

x2
1

. (1.11)

So, the Ricci endomorphism r(t) is given by

r(t) =

(
r1
x1
Id1 0

0 r2
x2
Id2

)
. (1.12)
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1.4 Smoothness condition around a singular orbit

It is natural to ask:“What conditions must the above metric <,>t satisfy in order for ĝ

on M0 to extend to a smooth metric on M̂ ?” A necessary and sufficient condition was

given by Eschenburg and Wang in [EW00] Lemma 1.1.

We need to look at the structure near the singular orbit of the cohomogeneity one

manifold more closely to present the smoothness criterion. We follow the notation of

([EW00]).

The normal bundle of Q = G/H, H = Gq, is equivariantly diffeomorphic to

E = G · V = G×H V.

where V = TqM̂/TqQ = Rk+1 is the normal space at q ∈ Q. Then H acts on G× V by

(h, (g, v))→ (gh−1, hv). Here h act on V linearly via the slice representation, because h

preserves Tq(G/H), acts orthogonally. By the slice theorem (§ II.5 [Bre72]), the H-action

is also cohomogeneity one, so H acts transitively on the unit sphere Sk = H/K ⊂ V ,

where K ⊂ H ⊂ G. Moreover, the principal orbit G/K can be identified with the unit

sphere bundle G×H Sk.

Also by the slice theorem, a tubular neighbourhood of the singular orbit Q = G/H can

be described as

Br(Q) = π−1[0, r) = G×H Dr = E′ ⊂ E

Dr is a disk of radius r in the slice V . Therefore, given a G-invariant Riemannian

metric ĝ0 on E, ĝ0|E′ can be transplanted to the metric ĝ on a tubular neighbourhood

Br(Q) ⊂ M̂ and vice versa.

Therefore, we need to identify the smooth, G-invariant symmetric tensors on E, i.e.

a ∈ C∞(S2TE). Since E = G · V , we can restrict our attention to H-invariant a ∈
C∞(S2TE|V ) (cf. [EW00]).

Let p− be an Ad(H)-invariant complement of h in g, which can be identified with the

tangent space TqQ. Let π : E → Q be the bundle map, then the tangent bundle TE

splits into horizontal and vertical parts: TE ∼= π∗E⊕π∗TQ. These two pullback bundles

are trivial on V and H-invariant, so we have TE|V = V ×(V ⊕p−), Therefore, the tensor

field a is determined by some H-equivariant smooth mapping

a : V → S2(V ⊕ p−).
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We can write a in “polar coordinates” at : Sk → S2(V ⊕ p−), which is determined by

the single value at(v0) ∈ S2(V ⊕ p−)K , for a fixed v0 ∈ Sk, since H acts transitively.

Here we choose K = Hv0 = Gv0 .

Next, we introduce the vector space W of all smooth H-equivariant maps L : Sk →
S2(V ⊕ p−). For a fixed v0 ∈ Sk, we define the evaluation map to be: ε : W →
S2(V ⊕ p−)K , ε(L) = L(v0). Let Wp ⊂W be the subspace consisting of restriction of all

maps to unit sphere of H-equivariant homogeneous polynomials of degree p. (see page

113 of [EW00].)

Lemma 1.1 ([EW00]). Let t→ at(v0) : R+ → S2(V ⊕ p−)K be a smooth curve (i.e. at

zero, the right-hand derivatives of all orders exists and are continuous from the right)

with Taylor expansion (at zero) at ∼
∑

p apt
p. Then the map a defined by

a : V \{0} → S2(V ⊕ p−), a(v) = a|v|

( v
|v|

)
has a smooth extension to 0 if and only if ap ∈ ε(Wp) for all p > 0.

Remark 1.5. Following by [EW00], we will assume that the representations of K on p−

and V have no equivalent irreducible factors. Then S2(V ⊕ p−)K = S2(V )K ⊕S2(p−)K .

Therefore,

at(v0) = (x̃+, x−) : [0,∞)→ S2(V )K ⊕ S2(p−)K .

Remark 1.6. p+, the Ad(K)-invariant complement of k in h can be identified with

tangent space TSk at v0, (i.e. v⊥0 ). Tv0V = R{v0}⊕ p+. Finally, the tangent space of P

(the unit normal bundle around Q) at point v0 can be viewed as p = p+ ⊕ p−. So the

diagonal metric dt2+ <,>t= dt2 + g(t)|p is really our at(v0) = (x̃+, x−).

Remark 1.7. For a non-compact manifold M̂ with a cohomogeneity one action, with

orbit-space [0,∞), one can always just use G and subgroups K and H to recover its

structure. It makes sense to denote (M̂, ĝ) as (G,H,K, ĝ) in the future.

1.4.1 The initial value problem in the multiply warped product case

Lemma 1.2. Consider a multiple warped product G-manifold described in section 1.3.1.

H1 = SO(d1 + 1) acts on V = Rd1+1 orthogonally. p+ corresponds to the tangent space

of Sd1 = SO(d1+1)
SO(d1) at v0 and p− corresponds to tangent space at eH of the singular orbit

Q = G2/H2 × · · · × Gr/Hr. If we fix the background metric h|p+ which gives constant

curvature 1 of the sphere Sd1. Then, the metric ĝ on M0 = I̊×Sd1×G2/H2×· · ·×Gr/Hr

is smooth if and only if gi are smooth in t, g1(t) is odd, gi(t) is even for i > 1 and

ġ1(0) = 1.
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Proof. Choose “Cartesian coordinates” (y1, y2, . . . yd1+1) for V . Given a smooth curve

of metrics along the geodesic

x = (x̃+, x−) : [0, r)→ S2(V )K ⊕ S2(p−)K ,

the Taylor expansion expansion of x in a neighbourhood of zero is

x(t) v
∞∑
p=0

xpt
p,

where t =
√
y2

1 + y2
2 + · · ·+ y2

d1+1. By lemma 1.1 of [EW00], x is smooth if and only

if xp ∈ ε(Wp), which means that xp is an H-equivariant homogeneous polynomial with

values in S2(V ⊕ p−)K of degree p on the sphere Sd1 . Denote by SpV to be the vec-

tor space of degree p homogeneous polynomials on V . Hom(SpV, S2(V ⊕ p−))H =

Hom(SpV, S2V )H⊕Hom(SpV, S2p−)H⊕Hom(SpV, V ⊗p−)H Since H is a product group,

its representation on V is inequivalent to representation on p−, so the last space is zero.

So,

Hom(SpV, S2(V ⊕ p−))H = Hom(SpV, S2V )H ⊕Hom(SpV, S2p−)H . (1.13)

Since H1 = SO(d1 + 1), the representation on S2V of H decomposes to 1 ⊕ U2, where

U2 is irreducible. As is well known (see, e.g., [FH91] Exercise 19.21, p.296) when p is

odd,

SpV = Up ⊕ Sp−2V = Up ⊕ Up−2 ⊕ Sp−4V = · · · = Up ⊕ Up−2 ⊕ · · · ⊕ U3 ⊕ U1 (1.14)

where the Ui are irreducible and inequivalent to one another for i = 2, 3, ..., p. Those

Ui are also inequivalent to U2 and 1 = U0. By Schur’s Lemma Hom(Ui, U2)H = 0

Hom(Ui,1)H = 0 for all i > 1. This implies Hom(SpV, S2V )H = 0.

In addition, H acts on V by the representation ρd1+1 ⊗ 1, where ρd1+1 is the standard

representation of SO(d1 + 1). ρd1+1 is irreducible implies ρd1+1 ⊗ 1 is irreducible. (1 is

trivial representation). Similarly, if we let η denote the representation of H2×H3×· · ·×
Hr on p−, then, H acts on S2(p−) by the representation 1⊗S2(η), which is inequivalent

to the representation on V .

Suppose H decompose S2(p−) into irreducible summands N1 ⊕ · · · ⊕Nk. Then

Hom(V, S2(p−)) = Hom(V,N1 ⊕ · · · ⊕Nk) ∼= ⊕ki=1Hom(V,Ni). (1.15)

Here both V and Ni are inequivalent irreducible representation of H. Therefore, if

fi ∈ Hom(V,Ni) is a H-equivariant map, then fi = 0 for all i by Schur’s lemma. Hence,
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Hom(V, S2(p−))H = 0. Similarly, Uj and Ni are inequivalent to one another too, for all

i and j, so Hom(SpV, S2(p−))H = 0.

Therefore, Hom(SpV, S2(V ⊕ p−))H = 0. Therefore xp = 0 for all odd p.

Next since we know SevenV = Up ⊕ Up−2 ⊕ · · · ⊕ U4 ⊕ U2 ⊕ 1, and S2V = U2 ⊕ 1, then

by Schur’s Lemma, Hom(SevenV, S2V )H ∼= R⊕ R.

So, x is a even function. This means x± are even.

One the other hand, ĝ can be described in “cylindrical coordinates”about Q, by the map

Φ : [0, r)× P → E′,Φ(t, v) = tv,

where P is viewed as the unit normal sphere bundle of Q. So the pullback of metric ĝ

onto (0, r)× P is

Φ∗(ĝ) = dt2 + g(t),

where

g(t) =

x̃+(t)︷ ︸︸ ︷
t2x+(t)⊕x−(t), (1.16)

is a G-invariant metric on P . Compare this with the equation (1.2) So we haveg1(t)2h1 = x+(t) = x̃+(t)
t2

,

g2(t)2h2 + · · ·+ gr(t)
2hr = x−(t).

Then g1 must be odd and gi must be even for i = 2, 3, ..., r.

Notice that in (1.16), the t2 comes from the fact, ∂
∂θ = te1 where e1 = ∂

∂y1
is a vector

in “Cartesian coordinates” of Euclidean space V . Using e1 we form a orthonormal basis

for V respect to the Euclidean metric x̃+(0) = I. Finally,

x̃+(0) = I ⇔ ġ1(0) = 1.

1.5 Existences of local solutions

Theorem 1 ([EW00]). Let G be a compact Lie group, H a closed subgroup with an

orthogonal linear action on V = Rk+1 which is transitive on the unit sphere Sk, and

E = G ×H V be the vector bundle over Q = G/H with fiber V . Denote by p− an

ad-invariant complement of h in g. Let v0 ∈ Sk have isotropy group K. Assume that

as K-representations, V and p− have no irreducible sub-representations in common.
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Then, given any G-invariant metric gQ on Q and any G-equivariant homomorphism

L1 : E → S2(T ∗Q), there exists a G-invariant Einstein metric on some open disk bundle

E′ of E with any prescribed sign (positive, zero, or negative) of the Einstein constant.

Remark 1.8. Since E = G · V , a G-equivariant homomorphism L1 is determined by

a H-equivariant map α : V → S2(T ∗qQ). We will identify T ∗qQ and TqQ = p− by gQ.

Then the H-equivariant map α : V → S2(p−) vanishes, because Hom(V, S2(p−))H = 0

(cf. proof of Lemma 1.2). So the G-equivariant homomorphism L1 : E → S2(T ∗Q) is

trivial.

Let q ∈ Q and N1, ..., Ndi+1 be an orthonormal basis of V = (TqQ)⊥ ∼= Rdi+1. The

second fundamental form at q along the normal vector Nj is given by H-equivariant

mapping

α : V → S2(p−)

Nj → αNj (X,Y )

where αNj (X,Y ) =< ∇̂XY −∇XY,Nj >.

Next, let LNj be the shape operator of Q along normal Nj given by LNjX = ∇̂XNj .

then we have following relation expressing the shape operator associated to the second

fundamental form, that is:

< ∇̂XNj , Y >= −αNj (X,Y ), where X,Y ∈ TqQ. (1.17)

Lemma 1.9. For the multiple warped product manifold in 1.3.1, the second order dif-

ferential equations (1.7) have up to homothety an r− 2 parameter family of solutions in

a neighbourhood of the singular orbit.

Proof. The singular orbit, Q = M2×· · ·×Mr, Mi = Gi/Hi for i = 2, . . . r has G-invariant

metric given by

g2
2(0)h2 + g2

3(0)h3 + · · ·+ g2
r (0)hr, (1.18)

where gi(0) 6= 0 for 2 6 i 6 r. By Remark 1.8, all of the second fundamental forms of Q

must vanished. By the above equation (1.17), the shape operator of the singular orbit

Q at q must vanish too, i.e.

ġi(0) = 0 for all 2 6 i 6 r (1.19)

by ġ = 2gL. By Theorem 1, there is an r−1 parameter family of local Ricci-flat metrics

on t ∈ [0, t0) satisfying the system (1.7).
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In addition, Ric(λ2ĝ)=Ric(ĝ) = 0. This implies if ĝ = dt2 + g(t) is a Ricci-flat metric

then λ2ĝ = ds2 +λ2g( sλ) is also a Ricci-flat metric where s = λt. Therefore, by Theorem

1, given an initial value G-invariant metic gQ ∼ g2
2(0)h2 + g2

3(0)h3 + · · · + g2
r (0)hr we

have a Ricci-flat metric on t ∈ [0, t0), which will be same as the Ricci-flat metric on

s ∈ [0, t0
g22(0)

) starting from the initial value
g22(0)

g22(0)
h2 +

g23(0)

g22(0)
h3 + · · · + g2r(0)

g22(0)
hr. Without

loss of generality, we can fix g2
2(0) to be 1. Hence, we have up to homothety an r − 2

family of local Ricci-flat metrics.

Let h1(s) = λ2g1( sλ). Then dh1
d s = dh1

d t
d t
d s = λġ1

1
λ = ġ1. This implies that ġ1(0) = 1 ⇔

dh1
d s (0) = 1.



Chapter 2

An alternative proof of Böhm’s

existence theorem

In this chapter, we shall give an alternative proof of Böhm’s theorem that there exists an

r − 2 parameter family of complete Ricci-flat metrics on the multiple warped products.

Theorem 2 (Theorem 6.1 [Böh99]). Let l > 0 and let G1/K1, G2/K2, . . . , Gl+1/Kl+1

be non-flat compact isotropy irreducible homogeneous spaces and let k > 2. Then

M̂ = Rk+1 ×G1/K1 ×G2/K2 × · · · ×Gl+1/Kl+1 (2.1)

carries an l-dimensional family of Ricci-flat metrics.

Notice that in our notation, r = l+ 2. In order to prove Theorem 2, first of all, inspired

by [DW09], we transform equation 1.7 to a new first order system whose right hand side

is given by polynomials. Then we find all of the stationary points of the new dynamical

system. We are interested in two of the stationary points and trajectories which connect

them. The first stationary point corresponds to the smooth initial values while the second

stationary point represents the Ricci-flat cone solution. The question is how can we prove

there exist complete Ricci-flat solutions such that they theoretically converge to this

point. Since our manifolds fit into the more general framework of Eschenburg and Wang

[EW00], there exist local smooth solutions of the Ricci-flat equation, which correspond

to smooth G-invariant Einstein metrics on a tubular neighbourhood of Q. They give

the new dynamical system local solutions. We extend the local solutions to global

solutions. Finally, we find the corresponding cone solution of the cohomogeneity one

Ricci-flat equation is a global attractor by modifying the Lyapunov function introduced

by [DHW13].

14
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2.1 A polynomial system

Since the Ricci-flat equation (1.7) is singular at t = 0, we introduce new variables to

change the Ricci-flat equation to a polynomial system.

When pi are pairwise inequivalent, the shape operator is given by

L(t) = diag(
ġ1

g1
Id1 , · · · ,

ġn
gn

Idn),

where Im denotes the identity matrix of size m. So

lim
t→0

trL = +∞,

due to the smoothness condition g1(0) = 0, ġ1(0) = 1.

Applying the Cauchy–Schwartz inequality to (1.3c) we have

(trL). 6 − 1

n
(trL)2, (2.2)

and so we know that trL is non-increasing and the equality holds precisely at times

where when n(trL2) = (trL)2.

Lemma 2.1 (Proposition 3.2 [Böh99]). Let M̂n+1 be a complete Ricci-flat cohomogeneity

one Einstein manifold whose principal orbit is not a torus. Then there exists no principal

orbit P which is minimal, that is,

trL > 0 ∀t > 0.

Proof. This proof is different from Böhm’s proof.

By smoothness, we know that trL > 0 for all small t. In order to derive a contradiction,

assume that trL(t0) = 0 at some t0 > 0. As trL is non-increasing by(2.2), then there

are only two cases.

Case one: Mean curvature of the principal orbit P remains a constant 0, i.e.

trL ≡ 0, for ∀t > t0.

Case two: Mean curvature becomes negative after t0. In another words, there exists

t1 > t0 and a > 0, such that

trL 6 −a, for ∀t > t1. (2.3)
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If case one is true, then

(trL̇) = 0, for ∀t > t0. (2.4)

On the other hand by (1.3c), it follows that tr(L2) = 0 for ∀t > t0. Therefore, L ≡ 0 for

∀t > t0. By (1.3b), rt = 0 for ∀t > t0. So G/H has a G-invariant Ricci-flat metric. By

[AK75], the Ricci-flat metric is actually flat. Since G is compact, (G/H, g) has to be a

torus. This contradicts our assumption that G/H is not a torus. So, case one cannot

be true.

Now, suppose case two is true. Then

v̇

v
= (log v). = trL 6 −a, for ∀t > t1,

by (2.3). Integrating the above, one gets,

log v |tt1=

∫ t

t1

(trL)dt 6 −a(t− t1).

So,
v(t)

v(t1)
6 e−a(t−t1).

i.e.

v(t) 6 v(t1)e−a(t−t1).

Therefore the volume of M̂ , given by
∫∞

0 vdt =
∫ t1

0 vdt +
∫∞
t1
vdt < ∞. However, this

contradicts Yau’s Theorem (Theorem 7 [Yau76]) i.e. the volume of (M̂, ĝ) must be

infinity. Thus case two cannot be true either.

Therefore, trL > 0 for ∀t > 0.

Remark 2.2. Since trL is positive for ∀t > 0, trL is also a strictly decreasing map via

inequality (2.2). We can then introduction a new independent variable by

d

ds
:=

1

trL

d

dt
. (2.5)

We use a prime to denote differentiation with respect to s.

2.1.1 For multiple warped product

Following [DW09] we introduce the new dependent variables,

Xi =

√
di

trL

ġi
gi
, (2.6)

Yi =

√
diλi
gi

1

trL
. (2.7)
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for i = 1, ..., r. Notice that

r∑
j=1

X2
j =

−tr(L̇)

(trL)2
=

tr(L2)

(trL)2
, (2.8)

r∑
j=1

Y 2
j =

tr(rt)

(trL)2
. (2.9)

We obtain from the Ricci-flat system (1.3) the following system in our new variables.

X ′i = Xi(

r∑
j=1

X2
j − 1) +

Y 2
i√
di
, (2.10a)

Y ′i = Yi(

r∑
j=1

X2
j −

Xi√
di

). (2.10b)

From above system we get X ′iXi + Y ′i Yi = 0, so

r∑
j=1

(X2
j + Y 2

j ) = C, (2.11)

where C is a constant. From Remark 1.3, we know the conservation law of the Ricci-flat

system is s− (trL)2 + tr(L2) = 0. Applying (2.8) and (2.9) to this equation we get

r∑
j=1

(X2
j + Y 2

j ) = 1. (2.12)

In the following, we let L =
∑r

j=1(X2
j + Y 2

j ). From [DW09] (Remark 2.14) if we take

the derivative with respect to s, we have

u′ =
r∑
j=1

√
diXi − 1, (2.13)

In the Ricci-flat case, u′ = 0. We may define the quantity

H :=

r∑
j=1

√
diXi, (2.14)

so that in the Ricci-flat case, H ≡ 1.

2.1.2 Invariant of conservation law and H

Lemma 2.3. The sphere L = 1 is invariant under the flow of the vector field (2.10).
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Proof. Since ∇(L − 1) = (2X1, 2Y1, 2X2, 2Y2, ..., 2Xr, 2Yr), and by (2.10)

XiX
′
i = X2

i (
r∑
j=1

X2
j − 1) +

XiY
2
i√
di

= −X2
i (

r∑
j=1

Y 2
j ) +

XiY
2
i√
di
, (2.15)

YiY
′
i = Y 2

i (
r∑
j=1

X2
j −

Xi√
di

). (2.16)

It follows that

∇(L − 1) · (X ′1, Y ′1 , X ′2, Y ′2 , ..., X ′r, Y ′r )

= 2
r∑
i=1

(XiX
′
i + YiY

′
i )

= −
r∑
i=1

X2
i

r∑
j=1

Y 2
j +

r∑
i=1

XiY
2
i√
di

+

r∑
i=1

Y 2
i

r∑
j=1

X2
j −

r∑
i=1

XiY
2
i√
di

= 0.

(2.17)

Therefore, {L = 1} is invariant under the flow (2.10).

Lemma 2.4. The hypersurface H =
∑r

j=1

√
djXj = 1 is invariant under the flow of

the vector field (2.10).

Proof. H is a constant. Hence H′ =
∑r

j=1

√
djX

′
j = 0.

Since ∇(H− 1) = (
√
d1, 0,

√
d2, 0, ...,

√
dr, 0), so

∇(H− 1) · (X ′1, Y ′1 , X ′2, Y ′2 , ..., X ′r, Y ′r )

=
r∑
j=1

√
djX

′
j

= 0.

(2.18)

Therefore, H− 1 is invariant under the flow of (2.10), and so is H.

Remark 2.5. In the paper [DW09], the authors have studied the the existence of Ricci

soliton structures on multiple warped products. The equation are the same ones here. In

[DW09], the conservation law for a non-trival steady soliton is
∑r

j=1(X2
j +Y 2

j ) = C where

C < 1, and the Lyapunov function
∑r

j=1(X2
j + Y 2

j ) < 1. But as considering the Ricci-

flat (in steady soliton) case, all the solution curves lie in the corresponding conservation

law sphere
∑r

j=1(X2
j + Y 2

j ) = 1 where C = 1. So, first of all, Ricci-flat solutions will

not be the Ricci soliton solution. Secondly we cannot use the same Lyapunov function

and similar arguments Proposition 3.7 [DW09] to derive the Ricci-flat trajectories’s long

time behaviour.
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2.2 Stationary points

Proposition 2.6. Let A := {i|Yi 6= 0}. For an arbitrary (possibly empty) subset A =

{m1, ...ml} ⊂ {1, ..., r}, all the equilibrium points of the first order ode system (2.10a)

and (2.10b) lying in {L = 1} are given by

(i) WhenA = ∅, {Yi = 0, for all∀i,
∑r

j=1X
2
j − 1 = 0,H ≡ 1},

(ii) if A 6= ∅, {Xi = 0, Yi = 0, fori /∈ A,Xk =
√
dk∑l

i=1 dmi

, Yk =

√
(
∑l

i=1 dmi−1)dk∑l
i=1 dmi

, for k ∈ A}.

Proof. A stationary point corresponds to zeros of the vector field given by (2.10). We

have

Xi(
r∑
j=1

X2
j − 1) +

Y 2
i√
di

= 0, (2.19a)

Yi(

r∑
j=1

X2
j −

Xi√
di

) = 0. (2.19b)

If Yi = 0 for all i = 1, ...r and Xi 6= 0 for some i, then (2.19) implies
∑r

j=1X
2
j = 1 ⇔

A = ∅, otherwise X1 = · · · = Xr = 0 holds.

If Yk 6= 0 for k ∈ A implies that
∑r

j=1X
2
j − 1 6= 0. And by (2.19b)

∑r
j=1X

2
j −

Xk√
dk

= 0

and Xk 6= 0 for k ∈ A. Solving these equations we have Xk =
√
dk∑l

i=1 dmi

. By (2.19a), we

know that
√
dk∑l

i=1 dmi

( 1∑l
i=1 dmi

− 1) +
Y 2
k√
dk

= 0. So Yk =

√
(
∑l

i=1 dmi−1)dk∑l
i=1 dmi

.

Remark 2.7. Consider the manifold I ×M1 × ... ×Mr where (M1, h1) is the sphere

with constant curvature 1 metric. Recall the smoothness conditions

g1(0) = 0, gi(0) > 0.(i > 1), (2.20)

ġ1(0) = 1, ġi(0) = 0.(i > 1). (2.21)

They correspond in the new variable (Xi, Yi) (2.6-2.7) to the conditions

X1 =
1√
d1
, Xi = 0.(i > 1), (2.22)

Y1 =

√
d1 − 1√
d1

, Yi = 0.(i > 1). (2.23)

The most interesting stationary point is when |A| = r,

{Xi =

√
di
n
, Yi =

√
di(n− 1)

n
for, ∀i}. (2.24)
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This critical point corresponds to the Ricci-flat cone (see example in Propostion 2.11).

In this chapter, we will prove that this point is a global attractor by showing it possesses

a Lyapunov functional.

2.3 The Ricci-flat cone of a positive Einstein metric

Proposition 2.8. A manifold (Nn, gN ) is Einstein with constant λ = n − 1 iff the

corresponding cone (C+N
n, gc) is Ricci-flat, where C+N

n = R+ × Nn is equipped with

the metric gc = dt2 + t2gN .

Proof. We can view C+N
n as a family of equidistant hypersurfaces. gc = dt2 + t2gN

implies that g1(t) = t. Assume (C+N
n, gc) is Ricci-flat. Then we can apply the Ricci-flat

equation (1.3) on it.

Lt =
ġ1

g1
In =

1

t
In. (2.25)

Now,

R̂ic(N,N) = −tr(L̇)− tr(L2) = −(− n
t2

)− n

t2
= 0. (2.26)

The Ricci tensor of the metric gc on (C+N
n, gc) will be

R̂ic(X,Y ) = rt − (trL)L− L̇

= rt −
n

t

1

t
In − (− 1

t2
)In

= rt +
1− n
t2

In.

(2.27)

If R̂ic ≡ 0, then rt = n−1
t2

In for all t. Set t = 1 ⇒ r1 = (n − 1)In and t2gN = gN .

Therefore (C+N
n, gc) is Ricci-flat ⇔ (Nn, gN ) is Einstein with constant λ = n− 1.

2.3.1 Cone metric corresponding to the stationary point - the hyper-

surface Sd1 ×Nd2

Lemma 2.9. Suppose that (Sd1 , h1) and (Nd2 , h2) are two Einstein manifolds, with

Einstein constant λ1 = d1 − 1 and λ2 = d2 − 1, respectly. Then on the hyper-surface

Sd1 × Sd2, there exists a Einstein metric h, such that Ric (h) = (d1 + d2 − 1)h.

Proof. If there exist constants a and b such that Ric(ah1) = (d1+d2−1)(ah1), Ric(bh2) =

(d1 + d2 − 1)(bh2), then

Ric(ah1) = Ric(h1) = (d1 − 1)h1 =
d1 − 1

a
ah1 = (d1 + d2 − 1)(ah1),
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Ric(bh2) = Ric(h2) = (d2 − 1)h1 =
d2 − 1

b
bh2 = (d1 + d2 − 1)(bh2).

This implies that a = d1−1
d1+d2−1 and b = d2−1

d1+d2−1 . Define a metric h on Sd1 × Sd2

h = ah1 ⊕ bh2 =
d1 − 1

d1 + d2 − 1
h1 ⊕

d2 − 1

d1 + d2 − 1
h2. (2.28)

Therefore, Ric(h) = Ric (ah1 ⊕ bh2) = (d1 + d2 − 1)(ah1 ⊕ bh2) = (d1 + d2 − 1)h.

Corollary 2.10. A cone (R+ × Sd1 × Sd2 , dt2 + t2h) is Ricci-flat if h = d1−1
d1+d2−1h1 ⊕

d2−1
d1+d2−1h2.

Proof. By Lemma 2.9.

Proposition 2.11. If we create a cone whose metric is dt2 + t2h = dt2 + t2 d1−1
d1+d2−1h1 +

t2 d2−1
d1+d2−1h2, then this metric corresponds to the point

(X1, Y1, X2, Y2) = (
√
d1

d1+d2
,
√
d2

d1+d2
,

√
d1(d1+d2−1)

d1+d2
,

√
d2(d1+d2−1)

d1+d2
) (2.29)

on the conservation law L = 1.

Proof. As before if we also denote the cone metric as dt2 + g1(t)2h1 + g2(t)2h2, then g1(t) = t
√

d1−1
d1+d2−1 ,

g2(t) = t
√

d2−1
d1+d2−1 , ġ1(t) =

√
d1−1

d1+d2−1 ,

ġ2(t) =
√

d2−1
d1+d2−1 .

Therefore,

trL = d1
ġ1

g1
+ d2

ġ2

g2
= d1

1

t
+ d2

1

t
=
d1 + d2

t
. (2.30)

By the change of variable (2.7)

X1 =

√
d1

trL

ġ1

g1
=

√
d1

d1 + d2
, (2.31)

X2 =

√
d2

trL

ġ2

g2
=

√
d2

d1 + d2
, (2.32)

Y1 =

√
d1(d1 − 1)

trL

1

g1
=

√
d1(d1 − 1)

t
√

d1−1
d1+d2−1

1
d1+d2
t

=

√
d1(d1 + d2 − 1)

d1 + d2
, (2.33)

Y2 =

√
d2(d2 − 1)

trL

1

g2
=

√
d2(d2 − 1)

t
√

d2−1
d1+d2−1

1
d1+d2
t

=

√
d2(d1 + d2 − 1)

d1 + d2
. (2.34)
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Remark 2.12. For above proposition, when we take the multiple warped product man-

ifold to be R3 ×N4, where d1 = 2 and d2 = 4, then

(X1, Y1, X2, Y2) = (
√
d1

d1+d2
,
√
d2

d1+d2
,

√
d1(d1+d2−1)

d1+d2
,

√
d2(d1+d2−1)

d1+d2
) = (

√
2

6 ,
1
3 ,
√

10
6 ,

√
5

3 ).

In the next chapter (Figure 4.2), we will see that the numerical results actually converge

to above point as s→ +∞.

2.4 Local solution for Xi, Yi

Recall the change of variables

dt =
1

trL
ds =

1∑r
i=1 di

ġi
gi

ds. (2.35)

By lemma 1.9, there exists smooth local solutions (gi, ġi) on [0, t1) for some small t1 > 0.

Hence, for a small number b > 0, gi 6= 0 for all i on (0, b) and trL =
∑r

i=1 di
ġi
gi
> 0 and

is finite. We denote the function s− s0 =
∫ t
t0

dτ
trL) as

s = φ(t), on (0, b), where s0 = φ(t0).

t0 cannot be taken to zero, corresponding s0 is finite and trL(s0)=trL(s(t0))=trL(t0) is

finite too. Since ds
dt > 0, φ is invertible. Thus, t = φ−1(s).

Lemma 2.13. When t→ 0, then s→ −∞.

Proof. On the interval (0, b) we can integrate ds = trLdt because of the finiteness of

trL.

s(t)− s0 =

∫ t

t0

ds

=

∫ t

t0

r∑
i=1

di
ġi
gi
dτ

=

r∑
i=1

di loggi(τ)
∣∣∣t
t0

=

r∑
i=1

diloggi(t)− loggi(t0) (2.36)
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where gi(t0) > 0 is finite for all i, and by choosing an arbitrary t0 ∈ (0, b), s0 is finite

too.

Since g1(0) = 0 and gi(0) > 0 are finite for i > 2, s(t)→ −∞ when t→ 0.

Corollary 2.14. The ode system(2.10) has an r− 2 parameter family of solutions γ(t)

s.t. lims→−∞ γ(s) = ( 1√
d1
, 0, . . . , 0,

√
d1−1
d1

, 0, . . . , 0).

Proof. By the local existence Lemma 1.9, if gi, ġi satisfies the smoothness condition

(2.20) then there exists a local smooth solution (gi, ġi) of the ode system 1.7 on (0, t0].

The change of coordinates

Xi =

√
di∑r

i=1 di
ġi
gi

ġi
gi
, (2.37)

Yi =

√
diλi∑r

i=1 di
ġi
gi

1

gi
. (2.38)

transforms the local smooth solutions of 1.7 to smooth solution of 2.10 on (−∞, s0].

2.4.1 Property at Initial Point {X1 =
1√
d1
, Y1 =

√
d1−1√
d1

, Xi = Yi = 0, (i 6= 1)}

Linearising the Ricci-flat equation (2.10) at the stationary point {X1 = 1√
d1
, Y1 =

√
d1−1√
d1

, Xi = Yi = 0, (i 6= 1)}, we obtain a system whose matrix has a 2×2 block

A1 =

(
3
d1
− 1 2

√
d1−1
d1√

d1−1
d1

0

)

corresponding to X1, Y1. The remaining entries are diagonal

A2 =

(
1
di
− 1 0

0 1
di

)

corresponding to Xi, Yi, (i > 1) [DW09]. The eigenvalues of A1 are 1
d1
− 1 and 2

d1
, the

corresponding eigenvectors being v1 = (1,
√
d1−1

1−d1 , 0, ..., 0)> and v2 = ( 2√
d1−1

, 1, 0, ..., 0)>.

The eigenvalues of Ai are 1
di
− 1 and 1

di
and the corresponding eigenvalues are vi =

(0, ..., 0, 1, 0, ..., 0)>, i ≥ 3. At the point p0, 2.22, a normal vector of the sphere is
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N = (X1, Y1, X2, Y2, ...) = ( 1√
d1
, d1−1√

d1
, 0, ..., 0). So we have

< v1, N > = 0,

< v2, N > 6= 0,

< vi, N > = 0 (∀i > 3).

Thus, there are r − 1 eigendirections corresponding to positive eigenvalue 1
d1

, and r

eigendirections corresponding to negative eigenvalue 1
d1
− 1. By the Hartman-Grobman

Theorem, there is an r− 2 parameter family of solutions starting from the point p0 and

lying in the sphere L = 1.

2.5 Long term existence

Our next Theorem 3 shows that the local solution Xi, Yi can be extended to [s0,+∞).

Theorem 3. Each γ(s) = (Xi(s), Yi(s)) extends to a trajectory defined on (−∞,∞)

and Xi(s), Yi(s) are smooth in s.

Proof. Assume that the solution of the initial problem only exists for finite time s ∈
(−∞, s∗), where s∗ = sup {s|∃ solution curve on (−∞, s)}. Notice that the trajectory

lies on the unit sphere, which is a compact set. Therefore, the right hand side of equations

(2.10) are bounded and Lipschitz continuous on [γ(s∗) − δ, γ(s∗) + δ] for some δ > 0.

So by the local existence theorem [Har02], there exists a solution of the initial value

problem on (s∗− ε, s∗+ ε), where ε > 0. This contradicts the definition of s∗. Therefore,

the solution exists globally.

Remark 2.15. Notice that our system (2.10) and the soliton system ([DW09] (2.7)

(2.8) ) are exactly the same in the steady case. This is because the equations (1.7) for

gi involve gi and u, but in the steady case the Xi, Yi equations (2.10) do not explicitly

involve u.

One might want to ask whether the trajectories we found in L = 1 are steady soliton

trajectories with u̇ 6= 0.

Luckily, this is not the case. From the Remark 2.14 of [DW09], we know the complete

Ricci-flat trajectories lie in L = 1. And if u̇ 6= 0 and ε = 0, then C is non-zero, so L 6= 1,

which is a contradiction.
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Therefore, the r − 2 parameter family of trajectories Xi, Yi contained in L = 1 and

starting from the stationary point ( 1√
d1
,
√
d1−1√
d1

, 0, . . . , 0) are Ricci-flat solutions which

correspond to the r − 2 parameter family of local smooth Ricci-flat solutions gi, ġi by

Lemma 1.9.

2.5.1 Recovering gi from Xi, Yi

Let γ(s), −∞ < s <∞ be one of the solution curves of (2.10).

Theorem 4. On the trajectory, Yi > 0 on (−∞,+∞) for all i.

Proof. Since we have a smooth local solution under the condition (2.20) on (0, t1), gi(t) =

li(finite, non zero) for all i on (0, b], b < t1. Then the definition of Yi (2.7) implies that

Yi > 0 for −∞ < s < φ(b).

Now from the equation (2.10b) and Xi 6 1 we know

d

d s
Y 2
i > −

2√
di
Y 2
i . (2.39)

By a standard comparison argument it follows if Yi(s∗) > 0 then Yi > 0 on [s∗,+∞)

[DW09].

Definition 2.16. On [s0,+∞), define

η(s) = Ce
−

∫ s
s0

∑
X2

i dx
,

where C > 0 is a constant and

t(s) =

∫ s

s0

dσ

η(σ)
. (2.40)

Then d t = d s
η(s) .

Define

gi(t) =

√
diλi

η(s)Yi
(2.41)

for s ∈ [s0,+∞).

Lemma 2.17. η(s) = trL and the positive constant is C = trL(s0).
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Proof.

d gi
d t

=
d gi
d s

η(s) =
√
diλiη(s)

(
− η′(s)

η(s)2Yi
− Y ′i
η(s)Y 2

i

)
=

√
diλi

( η′
ηYi
− Y ′i
Y 2
i

)
= −

√
diλi
Yi

(
−
∑
i

X2
i + (

∑
i

X2
i −

Xi√
di

)
)

=

√
diλi
Yi

Xi√
di

=
√
λi
Xi

Yi
.

This implies that
ġi
gi

=

√
λiXi

Yi

ηYi√
diλi

= η
Xi√
di
.

By H =
∑

i

√
diXi = 1, we have

∑
i

di
ġi
gi

= η(
∑
i

√
diXi) = η.

Therefore, η = trL and C = trL(s0).

Lemma 2.18. On the trajectory
∑r

i=1X
2
i >

1
n and equality holds if and only if Xi =

√
di
n , for all 1 6 i 6 r.

Proof. By the Cauchy-Schwartz inequality

r∑
i=1

X2
i

r∑
i=1

√
di

2
> (

r∑
i=1

√
diXi)

2 = 1. (2.42)

So
∑r

i=1X
2
i >

1
n . The equality holds if and only if Xi = λ

√
di for some real constant λ.

With the condition
∑r

i=1

√
diXi = 1, we get λ = 1

n so Xi =
√
di
n for all i.

Lemma 2.19. When s→ +∞, then t→ +∞.

Proof. By Lemma 2.18,
∑r

i=1X
2
i >

1
n . Hence,

η(s) 6 Ce−
∫ s
s0

1
n

dx
= Ce−

s−s0
n = Ce

s0
n e−

s
n .

Integrating

d t =
d s

η(s)
=

1

C
e
∫ s
s0

∑
X2

i dx
d s >

1

Ce
s0
n

e
s
n d s, (2.43)

we obtain

t(s)− t0 =

∫ s

s0

d t >
∫ s

s0

1

Ce
s0
n

e
x
n dx =

1

nCe
s0
n

(e
s
n − e

s0
n ).

Since nC > 0 and e
s0
n > 0 are constants, t→ +∞ when s→ +∞.
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Since s0 must still correspond to t0, for the above integration, we still denote on [s0,+∞)

t = φ−1(s), and s = φ(t).

2.6 Convergence of the solutions

Definition 2.20. We define the sets

D := {(X1, Y1, . . . Xr, Yr)|Y1 > 0, Y2 > 0, ..., Yr > 0}, (2.44)

E := {(X1, Y1, . . . Xr, Yr)|
r∑
i=1

X2
i + Y 2

i = 1,

r∑
i=1

√
diXi = 1}. (2.45)

By invariant flow Lemma 2.3 and 2.4 and Theorem 4, at certain small time t0 > 0 i.e.

s 6= −∞ the r − 2 parameter local smooth solution must all lie in E for all t because of

the Einstein condition.

2.6.1 Lyapunov function

We now state Lyapunov’s stability theorem:

Theorem 5 ([HS74] Page 193 Theorem 1). Let x̄ ∈ W ⊂ Rn be an equilibrium for

x′ = f(x), where f : W → Rn is a C1 map. Let V = U → R be a continuous function

defined on a neighborhood U ⊂W of x, differentiable on U−x̄, where V̇ : U → R defined

by V̇ (x) = DV (x)(f(x)), such that

(a) V (x̄) = 0 and V (x) > 0 if x 6= x̄;

(b) V ′ 6 0 in U − x̄.

Then, x̄ is stable. Furthermore, if also

(c) V ′ < 0 in U − x̄.

then x̄ is asymptotically stable.

Inspired by [DHW13] (page 49) and C.Bohm’s work (cf. [Böh99] page 142 function (8)),

on the set D ∩ E , where Yi > 0 for ∀i, we define

F :=

r∏
i=1

Y
− 2di

n
i ·

r∏
i=1

d
di
n
i =

r∏
i=1

(
Yi√
di

)−
2di
n . (2.46)
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F is finite. Let V = F− n2

n−1 . We define the directional derivative of V along the solution

curve by

V ′ : D ∩ E → R

x 7−→ V ′(x) =
d

ds

∣∣∣
s=s0
V(ϕsx)

where ϕsx is the trajectory of (2.10) passing though x ∈ D ∩ E when s = s0.

In the following, we will apply Lyapunov stability theorem to the function V.

Theorem 6. Let x̄ = {(X1, Y1, ..., Xr, Yr)| Yi√di =
√
n−1
n and Xi =

√
di
n for all i} ∈ D ∩ E

be the equilibrium for the Ricci-flat equation (2.10).

Then,

(a) V(x̄) = 0 and V(x) > 0 if x 6= x̄;

(b) V ′ 6 0 in D ∩ E − x̄.

(c) x̄ is stable.

Proof. Part (a): It is equivalent to show that the function F on D ∩ E has a unique

minimum n2

n−1 at the point Yi√
di

=
√
n−1
n and Xi =

√
di
n for all i.

First of all, we introduce the inequality,
∏n
k=1 a

qk
k 6

∑n
k=1 qkak, where ak, qk > 0 for all

k, and
∑n

k=1 qk = 1. The equality holds iff ak are identical with each other for all k,

(see [HLP88] page 17). Apply the this inequality to 1
F . Then

r∏
i=1

(
Y 2
i

di
)
di
n 6

r∑
i=1

di
n

Y 2
i

di

=
1

n

r∑
i=1

Y 2
i

=
1

n
(1−

r∑
i=1

X2
i ) (by the conservation law)

6
1

n
(1− 1

n
).

(2.47)

So

F > 1∏r
i=1(

Y 2
i
di

)
di
n

>
1

1
n(1− 1

n)
=

n2

n− 1
(2.48)

and the equality holds iff {Y
2
i
di

=
Y 2
1
d1

for all i and
∑r

i=1X
2
i = 1

n}. In this case
∑r

i=1 Y
2
i =

1− 1
n implies Yi√

di
=
√
n−1
n for all i. By lemma (2.18), we know Xi =

√
di
n for all i.
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Part(b): Notice that V ′ = F ′ is defined as the directional derivative of V along the

trajectory (2.10).

Since 0 < Yi < 1 on D ∩ E , we have F > 0 by definition.

In addition,

F ′

F
= (logF)′ = −

r∑
i=1

2di
n

(logYi/
√
di)
′ = −

r∑
i=1

2di
n

Y ′i
Yi
. (2.49)

From the Ricci-flat equation (2.10) we have
Y ′i
Yi

=
(∑r

j=1X
2
j

)
− Xi√

di
. so

diY
′
i

Yi
= di

∑r
j=1X

2
j−√

diXi. Since H =
√
diXi = 1, we obtain

r∑
i=1

di
Y ′i
Yi

=
r∑
i=1

di
( r∑
j=1

X2
j

)
−

r∑
i=1

√
diXi = n

r∑
i=1

X2
i − 1. (2.50)

So by Lemma 2.18,

F ′

F
= −2(

r∑
i=1

X2
i −

1

n
) 6 0. (2.51)

Therefore V ′ = F ′ 6 0. F ′ = 0 holds iff and only if for all i,Xi =
√
di
n .

Part(c): Using (a) and (b), by Lyapunov stability theorem 5, the equilibrium point x̄ is

stable.

Proposition 2.21. The trajectory converges to x̄ as s tends to +∞.

Proof. Recall that the omega limit set of the trajectory is the set

Ω = {(X∗, Y ∗) : ∃sk → +∞ with (X(sk), Y (sk))→ (X∗, Y ∗)}.

As our trajectories lie in
∑

iX
2
i + Y 2

i = 1, a compact set, we know from the theory

([Per01] § 3.2) that Ω is a non-empty, connected, compact set that is invariant under

the flow of our equations. Moreover

lim
s→+∞

F(γ(s)) = µ > 0.

This implies Ω ⊂ {F = µ}, where µ is a constant.

Now if Ω contains a point (X∗, Y ∗) with Xi 6=
√
di
n , we see from (2.51) that F ′ < 0 at

this point, so F < µ. However, this contradicts the flow-invariance of Ω. Hence Ω is

contained in the set Xi =
√
di
n , (i = 1, ..., r). Furthermore, if Ω contains a point with

Yi 6=
√
n−1
√
di

n we see from (2.10a) that some X ′i 6= 0, so after the flow Xi 6=
√
di
n which

implies F ′ < 0 and F < µ again contradicting flow-invariance.

Hence Ω = {(X∗, Y ∗)|Xi =
√
di
n , Yi =

√
di(n−1)

n , i = (1, . . . , r)}, and the limiting value
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µ = n2

n−1 , showing that our r − 2 parameter family of smooth solution curves do indeed

converge to the x̄.

2.6.2 The geometric meaning of asymptotic solutions on multiple warped

product

For a product manifold Nn = M1 × · · · ×Mr, the cone metric of C+N
n is dt2 + t2gN

where gN = λ1
n−1h |p1 + · · ·+ λr

n−1h |pr . If we denote the cone metric as dt2 + g1(t)2h |p1
+ · · ·+ gr(t)

2h |pr , then 
g1(t) = λ1

n−1 t,
...

gr(t) = λr
n−1 t.

Therefore,

trL =

r∑
i=1

di
ġi
gi

=

∑r
i=1 di
t

. (2.52)

By an argument similar to Lemma 2.9 and Proposition 2.8, we know that R+ ×M1 ×
· · · ×Mr with metric dt2 + t2gN is a Ricci-flat cone.

Lemma 2.22. When t� 0, trL v C
t , where C is a positive constant.

Proof. By (2.8), ( 1

trL

).
= − trL̇

(trL)2
=

r∑
i=1

X2
i .

When t→ +∞,
∑

iX
2
i = 1

n a constant, therefore

1

trL
v

1

n
t.

Theorem 7. Our Ricci-flat metrics are asymptotically conical. More precisely, the

metric corresponding to our trajectory is,

ĝ v dt2 + t2g∞

as t → +∞, where g∞ = λ1
n−1h |p1 + · · · + λr

n−1h |pr is the product Einstein metric on

M1 × · · · ×Mr.

Proof. For all i

giġi =
Xi

Y 2
i

√
diλi

trL
.
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As s→ +∞, by Theorem 6, Xi →
√
di
n and Yi →

√
di(n−1)

n for all i and by Lemma 2.22

trL v C
t , hence,

1

2
(g2
i )
. = giġi v

λi
n− 1

t. (2.53)

So,

gi(t) v

√
λi

n− 1
t, (2.54)

as s→ +∞.



Chapter 3

Ricci-flat system for the triple

(Sp(n + 1), Sp(n)Sp(1), Sp(n)U(1))

Let G = Sp(n + 1), H = Sp(n) × Sp(1), and K = Sp(n) × U(1), then CP 2n+1 ∼=
Sp(n+ 1)/(Sp(n)× U(1)) admits two Sp(n+ 1)-invariant Einstein metrics [Zil82], and

Sp(n+ 1)/(Sp(n)× Sp(1)) = HPn. We have the natural fibration

CP 2n+1 −→ HPn

with fibre H/K = Sp(1)/U(1) = S2. H = Sp(n)× Sp(1) has a non-effective orthogonal

representation on the slice V = R3 ∼= ImH with cohomogeneity one, i.e., it acts transi-

tively on the unit sphere S2 ⊂ V . Thus the Sp(n+ 1)-invariant metrics can be obtained

by changing the standard metric on CP 2n+1 in the direction tangent to the fibre S2 and

scaling the metric on the base. Similar to Chapter 2, we can derive its Ricci-flat system.

Then by using the two homogeneous Einstein metrics of CP 2n+1 [Zil82], we can create

two Ricci-flat cones with cross section CP 2n+1. Our numerical results show that there

is a Ricci-flat solution that converges asympotically to for all to the Ziller metric.

32
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3.1 Computing the isotropy representation

We refer to [BtD95] for the definition of symplectic groups. Sp(n) is identified with the

subgroup of U(2n) consisting of the matrices of the form

A =



a11 −b11 . . . . . . a1n −b1n
b11 a11 . . . . . . b1n a1n

...
...

...
...

an1 −bn1 . . . . . . ann −bnn
bn1 an1 . . . . . . bnn ann


∈ U(2n).

By [BtD95] page 9, a unitary matrix A ∈ U(2n) is symplectic if and only if ATJA = J

where J ∈ U(2n) is given by

J = diag(E,E, ..., E), E =

(
0 −1

1 0

)
.

The group Sp(n;C) consists of all 2n× 2n matrices A with complex entries that satisfy

the condition ATJA = J , and the compact symplectic group Sp(n)=Sp(n;C) ∩ U(2n).

The Lie algebra sp(n) of the symplectic group Sp(n) is {X ∈ gl(2n,C) : X + X∗ =

0 andXTJ + JX = 0}. The conditions X + X∗ = 0 andXTJ + JX = 0 imply that X

has the form

X =


h11 A12 . . . A1n

−A∗12 h22 . . . A2n

...
...

−A∗1n −A∗2n . . . hnn

 ,

where

hii =

(
ixi −γi
γi −ixi

)
Aij =

(
aij −bij
bij aij

)
, xi ∈ R, aij , bij , γi ∈ C.

If we choose the background bi-invariant metric of sp(n+1) to be h(X,Y ) = −2trace(XY ),

then sp(n+ 1) is spanned by the orthonormal basis

{λk}2n
2+5n+3

k=1 = { 1
2
√

2


0

Fjk

−F ∗jk
. . .

0

 , 1
2


0

. . .

Ejj

0


2n+2×2n+2

: Ejj =
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(
i 0

0 −i

)
or

(
0 −1

1 0

)
or

(
0 i

i 0

)
Fjk =

(
i 0

0 −i

)
or

(
1 0

0 1

)
or

(
0 −1

1 0

)
or

(
0 i

i 0

)
}. Con-

sider the Ad(K)-invariant decomposition sp(n + 1) = k ⊕ p with h(k, p) = 0. Embed

U(1) ↪→ Sp(1) ' SU(2) by sending eiθ →

(
eiθ 0

0 e−iθ

)
. Then u(1) ⊂ sp(1) by mapping

ix→

(
ix 0

0 −ix

)
. The Lie algebra of the subgroup K is

k = sp(n)× u(1) =
{

sp(n)

ix 0

0 −ix

∣∣∣x ∈ R
}
.

Then

p = g/k =
sp(n+ 1)

sp(n)× u(1)
=


0 C

−C∗
0 −γ̄
γ 0

 .

where C is a 2× 2n complex matrix with quaternionic structure. The Ad(K) represen-

tation on p has an h-orthogonal Ad(K) invariant decomposition p = p1 ⊕ p2 such that

Ad(K)|pi are irreducible. To see this we first recall.

Lemma 3.1. Let G be a compact or semisimple Lie group. If we have a complex

irreducible representation W and its dual W ∗ of G, Then W ⊕W ∗ ∼= V ⊗ C, where V

is a real irreducible representation of G.

Lemma 3.2 ([Sam90] page 105 ). Let g be the direct sum of two semisimple algebras g1

and g2. Then any finite-dim, complex irreducible representation Φ of g is equivalent to

a tensor product of complex irreducible representations Φ1 and Φ2 of g1 and g2.

Lemma 3.3. Consider the cohomogeneity one space given by the triple G = Sp(n +

1), H = Sp(n)Sp(1), K = Sp(n)U(1). If we choose an AdG|H-invariant complement p2

to h in g and an AdG|K-invariant complement p1 to k in h, then the AdG|K invariant

decomposition p1 ⊕ p2 is a sum of inequivalent irreducible real representations.

Proof. Recall the standard representation νn of Sp(n) on C2n, let φ denote the standardnon-

trivial 1-dim complex representation of U(1). φ∗ is the representation of U(1) on the

dual space. Recall also that AdSp(n) ⊗ C = S2νn. We compute

AdSp(n+1) ⊗ C|H = S2(νn ⊕ ν1) ∼= S2(νn)⊕ S2(ν1)⊕ (νn ⊗ ν1), (3.1)

(νn ⊗ ν1)|K = νn ⊗ (φ⊕ φ∗) ∼= (νn ⊗ φ)⊕ (νn ⊗ φ∗) ∼= (νn ⊗ φ)⊕ (νn ⊗ φ)∗. (3.2)
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Recall H is the product of two simple groups Sp(m) and Sp(1), νn is complex irreducible

and φ is one dimensional hence irreducible. So νn ⊗ φ is complex irreducible by Lemma

3.2. Therefore there exists a real irreducible representation V1 such that the (νn ⊗ φ)⊕
(νn ⊗ φ)∗ ∼= V1 ⊗ C by Lemma 3.1. Similarly,

(S2νn ⊕ S2ν1)|K = S2νn ⊕ S2(φ⊕ φ∗)
∼= S2νn ⊕ S2φ⊕ S2(φ∗)⊕ (φ⊗ φ∗)
∼= S2νn ⊕ (S2φ⊕ (S2φ)∗)⊕ (φ⊗ φ∗)
∼= S2νn ⊕ (φ⊗ φ∗)⊕ V2 ⊗ C.

(3.3)

We have φ ⊗ φ∗ ∼= 1 and S2φ = φ ⊗ φ. Since C ⊗ C = C is one dimensional complex

vector space, φ ⊗ φ must be complex irreducible. Then V2 is real irreducible in the

last line of (3.3) by Lemma 3.1. The first two summands form the complexified adjoint

representation of K, simply because

AdK ⊗ C = AdSp(n) ⊗ C⊕AdU(1) ⊗ C = S2νn ⊕ φ⊗ φ∗. (3.4)

Therefore, the pi in the AdG|K-invariant decomposition p1 ⊕ p2 (complement to k in g)

are individually irreducible.

More explicitly,

p1 =

 0 −γ̄
γ 0

 , p2 =


0 C

−C∗
0 0

0 0

 .

The real dimension d1=dim(p1) = 2, and d2=dim(p2) = 4n. By the section 1.1.1. This

is the isotropy representation of G/K.

3.2 Scalar curvature function of Sp(n+1)/Sp(n)U(1)

Lemma 3.4. There is a unique bi-invariant metric on Sp(n+ 1) up to scalar multipli-

cation. S2νn is irreducible.

Lemma 3.5. The scalar curvature formula of an invariant metric x1h |p1⊥ x2h |p2 on

the homogeneous space Sp(n+1)
Sp(n)U(1) is given by

S =
2

x1
+

2n(n+ 2)

x2
− nx1

2x2
2

. (3.5)
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Proof. Let B be the negative of the Killing form of sp(n+1). Then B(X,X) > 0, except

when X = 0. Let basis element λ1 be

λ1 =
1

2


i 0

0 −i


(2n+2)×(2n+2)

B(λ1, λ1) = −trace(adλ1 ◦ adλ1)

= −
2n2+5n+3∑

i=1

h(adλ1 ◦ adλ1(λi), λi)

= −
2n2+5n+3∑

i=1

h([λ1, [λ1, λi]], λi)

= n+ 2.

Since h(λ1, λ1) = −2trace(λ1 · λ1) = 1, by Lemma 3.4, B|pi = bih|pi , with

bi = n+ 2, ∀i = 1, 2.

We know by the definition given in [WZ86],

[
k

ij

]
=
∑

(Aγαβ)2, Aγαβ = h([pα, pβ], pγ).

[p1, p1] ∈ k implies that

[
2

11

]
= 0 and

[
1

11

]
= 0. So by the symmetric property of

[
k

ij

]

in all 3 indices, we only need to compute

[
1

22

]
.

Choose the h-orthonormal basis of p1 to be

{λ2, λ3} = {1

2

 0 −1

1 0

 ,
1

2

 0 i

i 0

},

the h-orthonormal basis of p2 to be

{ek} = { 1

2
√

2


...

Ci
...

. . . −C∗i . . .

 , Ci =

(
i 0

0 −i

)
or

(
1 0

0 1

)
or

(
0 −1

1 0

)
or

(
0 i

i 0

)
}
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It is easy to compute that
∑
h([ek, el], λ2)2 + h([ek, el], λ3)2 = 2n. So

[
1

22

]
= 2n.

Therefore, by the formula (1.8), the scalar curvature of the invariant metric is

S =
1

2

2∑
i=1

dibi
xi
− 1

4

∑
ijk

[
k

ij

]
xk
xixj

=
1

2
(
2(n+ 2)

x1
+

4n(n+ 2)

x2
)− 1

4
(2n

x1

x2
2

+ 2n
x2

x1x2
+ 2n

x2

x2x1
)

= (
n+ 2

x1
+

2n(n+ 2)

x2
− (

nx1

2x2
2

+
n

x1
))

=
2

x1
+

2n(n+ 2)

x2
− nx1

2x2
2

.

Lemma 3.6. For the cohomogeneity one manifold M̂ , where the principal orbit is the

homogeneous space Sp(n+1)
Sp(n)U(1) with an invariant metric x1h |p1⊥ x2h |p2, its Ricci-flat

equation restrict to on the principal part M0
∼= I̊ × P is given by

2 g̈1g1 + 4n g̈2g2 = 0,

− g̈1
g1
− ġ21

g21
− 4nġ1ġ2

g1g2
+ 1

g21
+ n

4
g21
g42

= 0,

− g̈2
g2
− (4n−1)ġ22

g22
− 2ġ1ġ2

g1g2
+ n+2

2g22
− 1

4
g21
g42

= 0.

(3.6)

Proof. Let Ricci tensor of the homogeneous metric be given by

Ric =

(
r1I2 0

0 r2I4n

)
.

Then by (1.10) and (1.11),

r1 = −x
2
1

d1

∂S

∂x1
= 1 +

n

4

x2
1

x2
2

,

r2 = −x
2
2

d2

∂S

∂x2
=
n+ 2

2
− 1

4

x1

x2
.

The Ricci endomporphism r(t) is given g(r(X), Y ) = Ric(X,Y ), where g is the invariant

metric x1h |p1⊥ x2h |p2 , so

r(t) =

(
r1
x1

I2 0

0 r2
x2

I4n

)
=

( 1
x1

+ n
4
x1
x22

)I2 0

0 (n+2
2x2
− 1

4
x1
x22

)I4n

 . (3.7)
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If we denote g2
1 = x1 and g2

2 = x2 then by ġ = 2gL, (1.3a), (1.3b) and (1.3c) , we know

the shape operator is

L =

(
ġ1
g1

I2 0

0 ġ2
g2

I4n

)
(3.8)

and the Ricci-flat equation is the system (3.6), which Ric( ∂∂t , X) is missing.

3.3 Initial value and local existence

By Theorem 1, given any Sp(n+1)-invariant metric gQ on Q = HPn and any Sp(n+1)-

invariant homomorphism L1 : E → S2(T ∗HPn), there exists an Sp(n + 1)-invariant

Ricci-flat metric on some open disk bundle E′ of E. Since E = Sp(n+ 1) ·V , Sp(n+ 1)-

equivariant homomorphism L1 is really determined by a linear Sp(n)Sp(1)-equivariant

homomorphism α : V → S2(T ∗qHPn). We will identify T ∗qHPn and TqHPn by gQ.

Therefore T ∗qHPn = TqHPn = p−. So if we fix an Sp(n + 1)-invariant metric gQ on

HPn, then the question of how many Sp(n+1)-invariant Einstein metric on E′ becomes

the enumeration of Sp(n)Sp(1)-equivariant linear maps α.

Lemma 3.7. Consider the Lie group triple (Sp(n + 1), Sp(n)Sp(1), Sp(n)U(1)) with

cohomogeneity one structure in Theorem 1. If the actions of H = Sp(n)Sp(1) on V = R3

by SO(3) is inequivalent to the irreducible H-irreducible H-representations in S2(p−).

Then, Sp(n+ 1)-equivariant homomorphism L1 : E → S2(T ∗HPn) must be trivial.

Proof. We only need to show that, the action of H on V is inequivalent to any irreducible

H sub-representations in S2(p−).

1 ⊗ AdSp(1) is the representation of H = Sp(m) × Sp(1) on V = R3. Here, action of

Sp(m) on V is trivial and action of Sp(1) on R3 ∼= ImH can be viewed as SO(3) acting

on R3, which is transitive on the unit sphere S2 = H/K = Sp(1)/U(1) ⊂ R3.

1 ⊗ AdSp(1) is irreducible because H is a product of two simple groups Sp(m) and

Sp(1), and both 1 and AdSp(1) are irreducible so their tensor product is an irreducible

representation of H by Lemma 3.2.

By the computation (3.1) we did in Lemma 3.3, νm ⊗ ν1 is the isotropy representation

of H on p−. So S2(νm ⊗ ν1) is the representation of H on S2(p−).

S2(νm ⊗ ν1) = (S2νm ⊗ S2ν1)⊕ (Λ2νm ⊗ Λ2ν1)

= [AdSp(m) ⊗ C]⊗ [AdSp(1) ⊗ C]⊕ [(1⊕ Λ0)⊗ 1]

= [AdSp(m) ⊗ C]⊗ [AdSp(1) ⊗ C]⊕ [1⊗ 1]⊕ [Λ0 ⊗ 1].
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Since Sp(1) acts on Λ2C by multiplication by det(q) = 1, Λ2ν1 must be trivial. Also, we

used the fact

Λ2νm =

1⊕ Λ0 m > 1

1 m = 1

where Λ0 is an irreducible representation. This implies Λ0⊗1 is irreducible. Moreover, a

tensor product of trivial representations is still irreducible. Finally, notice that AdSp(m)⊗
C is irreducible for all m, so [AdSp(m) ⊗C]⊗ [AdSp(1) ⊗C] is irreducible by Lemma 3.2.

Therefore, S2(νm ⊗ ν1) decomposes into three irreducible parts but none of them is

equivalent to 1 ⊗ AdSp(1). Using Schur’s lemma and an argument similar to the proof

of Lemma 1.2, we see that Hom(V, S2(p−))H = 0.

Lemma 3.8. For the Lie group triple (Sp(n+1), Sp(n)Sp(1), Sp(n)U(1)) with cohomo-

geneity one structure in Theorem 1, the second order differential equations (3.6) have

up to homothety a unique local Ricci-flat metric.

Proof. For the Lie group triple (G,H,K) = (Sp(m+ 1), Sp(m)×Sp(1), Sp(m)×U(1)),

the metric on M0 has the form dt2 + g1(t)2|hp+ + g2(t)2|hp− where we assume that, the

metric on Q is given by g2(0)2|hp− . Here, p+ = p1, p− = p2 and r = 2. By Lemma 3.7,

all of second fundamental forms of Q must vanish. So the shape operator of the singular

orbit Q at q must vanish too, i.e.

ġ2(0) = 0

by ġ = 2gL. By Theorem 1, there is an r − 1 = 1 parameter family of local Ricci-

flat metrics. In addition, Ric(λ2ĝ)=Ric(ĝ) = 0. This implies if ĝ = dt2 + g(t) is a

Ricci-flat metric then λ2ĝ = ds2 + λ2g( sλ) is also a Ricci-flat metric where s = λt.

Moveover, let h1(s) = λ2g1( sλ). Then dh1
d s = dh1

d t
d t
d s = λġ1

1
λ = ġ1. This implies that

ġ1(0) = 1⇔ dh1
d s (0) = 1. Therefore, the Ricci-flat metric on t ∈ [0, t0) given by g2

2(0)h|p−
is same with the Ricci-flat metric on s ∈ [0, t0

g22(0)
) given by h|p− . Without loss of gener-

ality, we can fix g2
2(0) to be 1. Hence, we have up to homothety a unique local Ricci-flat

metric.

Remark 3.9. In particular, if we choose initial values given by x̃+(0) = I+, x−(0) = I−,

then g1(0) = 0 g2(0) 6= 0

ġ1(0) = 1 ġ2(0) = 0
(3.9)

which is our necessary smoothness condition.
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Lemma 3.10. If we choose the background metric for sp(n+ 1) to be

< X,Y >= −2 tr(X,Y ), (3.10)

then H
K = Sp(1)

U(1) = S2 has constant sectional curvature 1.

Proof. For the chosen background metric, we can choose the orthonormal basis for p+ =

sp(1)/u(1) to be

{e1 =
1

2

(
0 −1

1 0

)
, e2 =

1

2

(
0 i

i 0

)
},

the orthonormal basis for sp(1) to be

{e0 =
1

2

(
i 0

0 −i

)
, e1, e2}. (3.11)

Let B be the negative Killing form for sp(1) . By the scalar curvature formula in [Bes87]

(7.39),

S =
1

2

∑
α

B(eα, eα)− 1

4

∑
α,β

< [eα, eβ]p+ , [eα, eβ]p+ >

=
1

2
(B(e1, e1) +B(e2, e2))− 1

4
(< [e1, e2]p+ , [e1, e2]p+ > + < [e2, e1]p+ , [e2, e1]p+ >)

=
1

2

(
−

2∑
i=0

< [e1, [e1, ei]], ei > −
2∑
i=0

< [e2, [e2, ei]], ei >
)

− 1

4

(
<

1

2

(
−i 0

0 i

)
p+

,
1

2

(
−i 0

0 i

)
p+

> + <
1

2

(
i 0

0 −i

)
p+

,
1

2

(
i 0

0 −i

)
p+

>
)

=
1

2

(
− < [e1, [e1, e0]], e0 > − < [e1, [e1, e2]], e2 > − < [e2, [e2, e0]], e0 >

− < [e2, [e2, e1]], e1 >
)
− 0

=
1

2
(1 + 1 + 1 + 1)− 0

= 2,

which is the scalar curvature of the constant sectional curvature 1 metric on S2.

3.4 The n = 1 case

By starting from HPn, we can construct metrics of cohomogeneity one in (4n + 3)

dimensions with principal orbit CP 2n+1. When n = 1, the cohomogeneity one manifold
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has dimension 7. The authors [BS89] and [GPP90] independently found an explicit

solution corresponding to a metric with G2 holonomy. In our notation, for an invariant

metric dt2 +g1(t)2h |p1⊥ g2(t)2h |p2 to have holomomy means that g1(t) and g2(t) satisfy

the first order system 
ġ1
g1

+ ġ2
g2

= −
√

2 k
g1
,

ġ2
g2

= − kg1√
2g22
.

(3.12)

It is easy to check that when k2 = 1
2 , the first order ode system (3.12) is a subsystem of

Ricci-flat condition (3.6) with n = 1.

Lemma 3.11 ([BS89] also [GPP90]). The Lie group triple G = Sp(2), H = Sp(1)Sp(1),K =

Sp(1)U(1) has a unique (up to homothety) complete smooth G2 holonomy metric.

Proof. The system (3.12) becomes ġ1 = −
√

2k + kg12√
2g22

,

ġ2 = − kg1√
2g2
.

(3.13)

Plugging (3.13) into (3.6), then, we have k2 = 1
2 . When k = − 1√

2
, ġ1(0) = −

√
2(− 1√

2
)−

g1(0)2

2g2(0)2
= 1. But if k = 1√

2
, ġ1(0) = −

√
2( 1√

2
) + g1(0)2

2g2(0)2
= −1. So, k has to be − 1√

2
in

order satisfy our smoothness condition.

So, {
ġ1 = 1− g12

2g22
,

ġ2 = g1
2g2
.

(3.14)

Then, dg1
dg2

= 2g2
g1
− g1

g2
⇒ g1g2dg1 = (2g2

2 − g1
2)dg2 ⇒

g1g2dg1 + (g1
2 − 2g2

2)dg2 = 0. (3.15)

Call P = g1g2, R = g1
2 − 2g2

2. Then, ∂P
∂g2

= g1 6= ∂R
∂g1

= 2g1. We can use integrating

factor µ = e
∫
ϕ(y)dy, where ϕ(y) =

Pg2−Rg1
−P =

∂g1g2
∂g2

− ∂(g1
2−2g2

2)
2g1

−g1g2 = g1−2g1
−g1g2 = 1

g2
. So, µ =

e
∫

1
g2

dg2 = C1e
ln g2 = C1g2. Multipling (3.15) by µ, we obtain C1g1g2

2dg1 + C1(g1
2g2 −

2g2
3)dg2 = 0. So, there is a smooth function f(g1, g2) such that df = C1g1g2

2dg1 +

C1(g1
2g2−2g2

3)dg2 = 0. Integrating, f(g1, g2) =
∫

df = C1
1
2g1

2g2
2−C1

1
2g2

4 +C2. Since

df = 0, f is a constant function, i.e. g1
2g2

2 − g2
4 = C.⇒

g1 = ±

√
C + g2

4

g2
2

, ġ2 = ±1

2

√
C + g2

4

g2
4

. (3.16)
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By the smoothness condition g1(0) = 0, we have g1(0) = ±g2

√
1 + Cg2

−4 ⇒ C =

−g2(0)4 ⇒

g1(g2) = ±g2

√√√√1−

(
g2(0)

g2

)4

, (3.17)

In order that g1 is real, we must have

g2 > g2(0) > 0. (3.18)

So, dt
dg2

= 2
√

1
1+Cg2−4 = 2

√
1

1−(g2(0)/g2)4
> 0, i.e. t = T (g2) =

∫
2
√

1
1−(g2(0)/g2)4

dg2 is

monotone increasing. By the inverse function theorem. dg2
dt = 1

2

√
1− (g2(0)/g2)4 > 0,

so the inverse function g2 = B(t) is monotone increasing too. Therefore, g2 → g2(0) as

t→ 0 implies that t→ 0 as g2 → g2(0).

On the other hand, when g2 →∞, dt
dg2

= 2
√

1
1−(g2(0)/g2)4

→ 1, so t→∞.

We still need to verify that ġ2(0) = 0. This is indeed true, as ġ2(0) = g1(0)
2g2(0) = 0, when

g1(0) = 0, g2(0) > 0.

Hence, we have the following one-parameter global solutions of (3.14)

g1(g2) = ±g2

√
1− (

g2(0)

g2
)4, (3.19)

t(g2) =

∫ g2

g2(0)
2

√
1

1− (g2(0)
r )4

dr. (3.20)

where g2 > g2(0) > 0. The solution satisfes our smoothness conditions for 2-dimensional

second order Ricci-flat system(3.6).

Proposition 3.12. The Lie group triple G = Sp(2), H = Sp(1)Sp(1),K = Sp(1)U(1)

has unique (up to homothety) global Ricci-flat metric of cohomogeneity one and this

metric has G2 holonomy.

Proof. By Lemma 3.8, there is a unique (up to homothety) Ricci-flat metric on t ∈ [0, t1)

satisfing the smoothness condition

g1(0) = 0, ġ1(0) = 1, g2(0) > 0, ġ2(0) = 0.
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Since a G2 holonomy metric is Ricci-flat, by uniqueness, this local solution must have G2

holonomy. By Lemma 3.11, this G2 holonomy metric exists for all t ∈ [0,+∞). Hence,

the Ricci-flat metric is defined for all time.

3.5 Einstein metrics on the principal orbit

From ([Bes87] 4.23) and [Zil82], we know there are only two Sp(n+1) invariant Einstein

metrics on the hypersurface CP 2n+1 = Sp(n+1)
Sp(n)U(1) . If the metric on the principal orbit is

x1h |p1 +x2h |p2 , then the two homogeneous Einstein metrics are given byx1 = 2
2n

2n+1 ,

x2 = (1
2)

1
2n+1 ,

(3.21)

and, x1 = ( 2
n+1)

2n
2n+1 ,

x2 = (n+1
2 )

1
2n+1 .

(3.22)

They are neither isometric nor homothetic.

Definition 3.13. Let (M, g) and (N ,ǧ) be two Riemannian manifolds. Let π : M → N

be a Riemannian submersion. The canonical variation gt of the metric g on N in defined

by

gt � p+ = tg � p+, (3.23)

gt � p− = g � p−, (3.24)

gt(p+, p−) = 0. (3.25)

where p+ is the vertical distribution (the tangent spaces to the fibres), and p− is the

horizontal distribution. In the following we let M be CP 2n+1 with the Fubini-Study

metric and N be HPn. π is the map that takes a complex subspace to the corresponding

quaternion line.

Following the notation by the Main Technical Lemma [Bes87] (9.74), when t = 1, it

gives the standard metric on CP 2n+1. When t = 1/(n + 1) gives a second Einstein

metric on CP 2n+1, called the Ziller metric [Zil82]. For the first pair of solution (3.21)

x1
x2

= 22n/2n+1

2−1/2n+1 = 2, and for the second pair of solutions (3.22)
x′1
x′2

=
2

n+1

2n/2n+1

2
n+1

−1/2n+1 = 2
n+1 .

So
x′1
x′2

=
1

n+ 1

x1

x2
. (3.26)



Chapter 3. Ricci-flat system for the triple (Sp(n+ 1), Sp(n)Sp(1), Sp(n)U(1)) 44

Therefore, the second pair of solution (x′1, x
′
2) (3.22) is the Ziller metric and the first

pair of solution (x1, x2) (3.21) is the Fubini-Study metric.

3.6 Change variables

In order to obtain numerical solutions and understand the asymptotic behavior, we

change the variables to simplify the Ricci-flat system as in the multiple warped product

situation.

Let

Xi =

√
di

trL

ġi
gi
, (3.27)

Yi =

√
di
gi

1

trL
. (3.28)

for i = 1, 2 and d1 = 2, d2 = 4n. Notice that

r∑
j=1

X2
j =

−tr(L̇)

(trL)2
=

tr(L2)

(trL)2
, (3.29)

r∑
j=1

Y 2
j =

tr(rt)

(trL)2
. (3.30)

We obtain from the Ricci-flat system (3.6) the following equations in our new variables.

X ′1 = X1(
r∑
j=1

X2
j − 1) +

Y 2
1√
2

+

√
2

64n

Y 4
2

Y 2
1

, (3.31a)

X ′2 = X2(
r∑
j=1

X2
j − 1) +

(n+ 2)Y 2
2

4
√
n

−
√
n

16n2

Y 4
2

Y 2
1

, (3.31b)

Y ′1 = Y1(
r∑
j=1

X2
j −

X1√
2

), (3.31c)

Y ′2 = Y2(

r∑
j=1

X2
j −

X2√
4n

). (3.31d)

The conservation law is

Y 2
1 +

(n+ 2)Y 2
2

2
− 1

16n

Y 4
2

Y 2
1

+X2
1 +X2

2 − 1 = 0. (3.32)

Notice that the quadratic form is no longer positive definite. So,the conservation law no

longer gives a compact hypersurface in phase space.
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Proposition 3.14. The equilibrium points (X1, X2, Y1, Y2) of the first order ode system

(3.31) lying in (3.32) are given by
( √

2
2+4n ,

√
4n

2+4n ,
1√
2

√
4n+1

(2n+1)2(n+1)
,
√

2n(4n+1)
(2n+1)2(n+1)

)
,( √

2
2+4n ,

√
4n

2+4n ,
1
2

√
2(n+1)2(4n+1)

(2n+1)(2n3+7n2+5n+1)
,
√

2n(4n+1)(n+1)
(2n+1)(2n3+7n2+5n+1)

)
, and

(
1√
2
, 0, 1√

2
, 0
)

.

Proof. A stationary point corresponds to zeros of vector field given by (3.31). Assume

B = Y 2
1 +

(n+2)Y 2
2

2 − 1
16n

Y 4
2

Y 2
1

, so B +X2
1 +X2

2 = 1.

If X2 = 0 and Y2 = 0, then by solving (3.31) we get

X1 =
1√
2
, Y1 =

1√
2
.

If X2 = 0 and Y2 6= 0, we can derive a contradiction. If X2 6= 0 and B = 0, we also get a

contradiction. Therefore, if X2 6= 0, B must be non-zero, i.e. Y2 6= 0 and Y1 6= 0. Then,X2
1 +X2

2 − X1√
2

= 0,

X2
1 +X2

2 − X2√
4n

= 0,
(3.33)

which implies X1 = X2√
2n

. Through (3.31), we obtain Y 2
1 = 1

4nY
2

2 or Y 2
1 = n+1

4n Y
2

2 . Plug

these into (3.32), so Y1 = 1√
2

√
4n+1

(2n+1)2(n+1)
,

Y2 =
√

2n(4n+1)
(2n+1)2(n+1)

,
(3.34)

or, Y1 = 1
2

√
2(n+1)2(4n+1)

(2n+1)(2n3+7n2+5n+1)
,

Y2 =
√

2n(4n+1)(n+1)
(2n+1)(2n3+7n2+5n+1)

.
(3.35)

Remark 3.15. The smoothness conditions are

g1(0) = 0, g2(0) > 0. (3.36)

ġ1(0) = 1, ġ2(0) = 0. (3.37)

In the new variable (Xi, Yi) the above initial values determine the equilibrium point

(X1, X2, Y1, Y2) = (
1√
2
, 0,

1√
2
, 0). (3.38)
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3.7 Ricci-flat cone solutions

In Chapter 2 Lemma 2.9, we formed a Ricci-flat cone using the product Einstein metric

and showed that it corresponds to one of the equilibrium points of the Xi, Yi-system.

Now we turn our attention to the cohomogeneity one manifold whose hypersurfaces

are CP 2n+1. By discussions in section 3.5 and Proposition 2.8, we can use the two

homogeneous Einstein metrics on CP 2n+1 to form two Ricci-flat cones C+CP 2n+1 =

R+ × CP 2n+1. Since (CP 2n+1, gE) is Einstein, Ric(gE) = ΛgE ,

Ric(λgE) = Ric(gE) = ΛgE =
Λ

λ
(λgE). (3.39)

By Proposition 2.8, the cone (R+×CP 2n+1, gc) gc = dt2 + t2λgE is Ricci-flat if and only

if Λ
λ = m− 1, where m = 4n+ 2.

Proposition 3.16. For the two homogeneous Einstein metrics gFS (3.21) and gZ (3.22)

of CP 2n+1, the corresponding cone metrics dt2 + t2λgE correspond to the following equi-

librium points in the Xi, Yi space:

(X1, X2, Y1, Y2) = (
√
d1

d1+d2
,
√
d2

d1+d2
, 1√

2

√
4n+1

(2n+1)2(n+1)
,
√

2n(4n+1)
(2n+1)2(n+1)

),

(X1, X2, Y1, Y2) = (
√
d1

d1+d2
,
√
d2

d1+d2
, 1

2

√
2(n+1)2(4n+1)

(2n+1)(2n3+7n2+5n+1)
,
√

2n(4n+1)(n+1)
(2n+1)(2n3+7n2+5n+1)

),

respectively. Both of these two points lie on the conservation law hypersurface L = 1.

Proof.

Λ =
Sg

4n+ 2
=

2
x1

+ n(2n+4)
x2

− n
2
x1
x22

4n+ 2
. (3.40)

plugging the first pair of solution (Fubini-Study metric) (3.21) into the equality (3.40),

we get

λ =
Λ

4n+ 2− 1

=
Sg

(4n+ 2)(4n+ 1)

= (
2

2
2n

2n+1

+
n(2n+ 4)

(1/2)
1

2n+1

− n

2

2
2n

2n+1

(1/2)
2

2n+1

)
1

(4n+ 2)(4n+ 1)

=
(2n+ 1)(n+ 1)

(4n+ 2)(4n+ 1)
2

1
2n+1

(3.41)
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So,

λgE =

(
λx1h |p1 0

0 λx2h |p2

)

If we denote the cone metric as dt2 + t2λgE , then by section 2.3.1, g1 = t
√
λx1, g2 =

t
√
λx2, trL = 2+4n

t , since d1 = 2, d2 = 4n.

By the change of variable (2.7)

X1 =

√
d1

trL

ġ1

g1
=

√
d1

d1 + d2
, (3.42)

X2 =

√
d2

trL

ġ2

g2
=

√
d2

d1 + d2
, (3.43)

Y1 =

√
d1

trL

1

g1
=

√
2

2+4n
t

1

t
√
λx1

=
1√
2

√
(4n+ 1)

(2n+ 1)2(n+ 1)
, (3.44)

Y2 =

√
d2

trL

1

g2
=

√
4n

2+4n
t

1

t
√
λx2

=

√
2n(4n+ 1)

(2n+ 1)2(n+ 1)
. (3.45)

Similarly, plugging the second pair of solutions (Ziller metric )(3.22) into the equality

(3.40), we get

λ =
Sg

(4n+ 2)(4n+ 1)

= (
2

(2/n+ 1)
2n

2n+1

+
n(2n+ 4)

(n+ 1/2)
1

2n+1

− n

2

(2/n+ 1)
2n

2n+1

((n+ 1/2)
2

2n+1

)
1

(4n+ 2)(4n+ 1)

=
2n3 + 7n2 + 5n+ 1

(4n+ 2)(4n+ 1)
2

1
2n+1 ,

(3.46)

and,

X1 =

√
d1

trL

ġ1

g1
=

√
d1

d1 + d2
=

√
2

2 + 4n
, (3.47)

X2 =

√
d2

trL

ġ2

g2
=

√
d2

d1 + d2
=

2
√
n

2 + 4n
, (3.48)

Y1 =

√
d1

trL

1

g1
=

√
2

2+4n
t

1

t
√
λx1

=
1

2

√
2(n+ 1)(4n2 + 5n+ 1)

4n4 + 16n3 + 17n2 + 7n+ 1
, (3.49)

Y2 =

√
d2

trL

1

g2
=

√
4n

2+4n
t

1

t
√
λx2

=

√
2n(4n2 + 5n+ 1)

4n4 + 16n3 + 17n2 + 7n+ 1
. (3.50)

Remark 3.17. When n = 1, the second solution corresponds to Y1 =
√

2
3 Y2 = 2

3 .

X1 =
√

2
6 , X2 = 1

3 , which is the point to which our solution converges (see Figure(4.7)).
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Numerical solutions

4.1 Warped product R3 ×N 4, N 4 is an Einstein manifold

By 2.10, when r = 2, d1 = 2 and d2 = 4, the Ricci-flat system becomes

X ′1 = X1(X2
1 +X2

2 − 1) +
Y 2
1√
2

X ′2 = X2(X2
1 +X2

2 − 1) +
Y 2
2√
4

Y ′1 = Y1(X2
1 +X2

2 − X1√
2
)

Y ′2 = Y2(X2
1 +X2

2 − X2√
4
)

The conservation law is given by

X2
1 +X2

2 + Y 2
1 + Y 2

2 = 1. (4.1)

The solution lies in the conservation law hypersurface and the vector field is tangent to

the conservation law’s hypersurface. We use (4.1) to solve for X1 and plug into above

dynamic system. We obtain
X ′2 = X2(−Y 2

1 − Y 2
2 ) +

Y 2
2√
4

Y ′1 = Y1(1− Y 2
1 − Y 2

2 −
√

1−X2
2−Y 2

1 −Y 2
2√

2
)

Y ′2 = Y2(1− Y 2
1 − Y 2

2 − X2√
4
)

(4.2)

We will use the ode45 solver in Mathlab to solve the above ode system (4.2). The

ode45 solver uses Dormand-Prince pairs (DOPRI5). The local truncation error is O(h5)

[DP80], which implies that its global truncation error is O(h4).

48
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We take the initial values nearby the point (X1, X2, Y1, Y2) = ( 1√
2
, 0, 1√

2
, 0), for example

at s0 = 0,

(X2, Y1, Y2) = (0,
1√
2
, 0.001). (4.3)
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0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
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X2

Y
2

Figure 4.1: Starting from ( 1√
2
, 0, 1√

2
, 0)

Table 4.1: Asymptotical point for R3 ×N4 - initial (0, 1√
2
, 0.001), s0 = 0

X1 X2 Y1 Y2

s→ −∞ 1√
2

0 1√
2

0

s→ +∞
√

2
6

1
3

√
10
6

√
5

3

s∗ = 100 >> 0 0.3334 0.5270 0.7453

e 3.8779× 10−5 1.3264× 10−5 1.6187× 10−5

The global truncation error is e =
∣∣(Xi, Yi)−numercial results(Xi(s∗), Yi(s∗))

∣∣.
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Figure 4.2: R3 ×N4
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Figure 4.3: R3×N4, X2Y1 plane
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Remark 4.1. From the picture, the solutions starting near the initial value (X2, Y1, Y2) =

(0, 1√
2
, 0) appear to converge to (X2, Y1, Y2) = (1

3 ,
√

10
6 ,

√
5

3 ). Moreover, by examing the

picture of trajectories near (1
3 ,
√

10
6 ,

√
5

3 ), this point looks asymptotically stable. This

obstervation is compatible with Theorem 6.

4.2 Example Sp(n+ 1), Sp(n)Sp(1), Sp(n)U(1)

As n = 1, we solve (3.13) with initial values g1(0) = 0, ġ1(0) = 1, g2(0) > 0, ġ2(0) = 0 by

ode 45 solver

0 50 100 150 200 250 300 350 400 450 500
0
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200
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300
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b

Figure 4.5: Sp(2)/Sp(1)U(1)

Table 4.2: The slope at t >> 0, if n = 1

Initial value b(0) 70 60 50 40 30 20 10

Slope dg1
dg2

at t = 76 0.9996 0.9998 0.9999 0.9999 1 1 1

Remark 4.2. While n = 1, the Fubini-Study metric in (3.21) is x1 = 2
2
3 and x2 =

2−
1
3 and Ziller metric in (3.22) is x1 = x2 = 1. So by section 3.7 the Ziller cone
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Figure 4.6: Vector field a, b axis for n = 1 case

(R+ ×CP 2n+1)’s metric gc = dt2 + t2λh|p1 + t2λh|p2 , where g1(t) = g2(t). On the other

hand, in the Figure 4.5, a = g1 and b = g2, and the numerical solutions of subsystem

(3.14) have the slope dg1
dg2
v 1 for t >> 0 (see Table 4.2). So we conclude the one

parameter family (3.19) of solutions converges to the cone over the Ziller metric.
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Figure 4.7: n=1

For general case, the trajectory lies in the hypersurface given by the conservation law.

Using this surface to solve for X1, we have

X1 =
√

1−X2
2 −A (4.4)

where A = Y 2
1 +

(n+2)Y 2
2

2 − 1
16n

Y 4
2

Y 2
1

. Without loss of generality, we take X1 > 0. Then the

Ricci-flat system restricted to X2, Y1, Y2 becomes
X ′2 = X2(−A) +

(n+2)Y 2
2

4
√
n
−
√
n

16n2

Y 4
2

Y 2
1

Y ′1 = Y1(1−A−
√

1−X2
2−A√

2
)

Y ′2 = Y2(1−A− X2√
4n

)

(4.5)

The initial value for this system which satisfies the smoothness condition is given by

(X1, X2, Y1, Y2) = ( 1√
2
, 0, 1√

2
, 0) as s→ −∞.
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Taking the above system (4.5) with initial values near the above point, say (X2, Y1, Y2) =

(0, 1√
2

+ 0.001, 0.01) ≈ (0, 0.7081, 0.01) and s0 = 0, the ode45 solver gives the following

asymptotical numerical solution.

0

0.2

0.4

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(0,1/sqrt(2),0)

Sp(n+1)/Sp(n)xU(1), n=2

Y1

(n=2, x2 = (1/5)*sqrt(2), y1 = (9/110)*sqrt(2)*sqrt(11), y2 = (6/55)*sqrt(3)*sqrt(11))

X2

Y
2

Figure 4.8: n=2, Initial(0, 0.7081, 0.01)
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Figure 4.11: n=4
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Figure 4.12: n=5

Table 4.3: Asymptotical point for (Sp(n+ 1), Sp(n)Sp(1), Sp(n)U(1))

X1 X2 Y1 Y2

Ziller metric n = 1
√

2
6

1
3

√
2

3
2
3

numerical 0.3333 0.4714 0.6667

error 1.5709× 10−5 5.1886× 10−6 5.5572× 10−6

Ziller metric n = 2
√

2
10

√
2

5
9
√

22
110

6
√

33
55

numerical 0.2829 0.3838 0.6267

error 2.8775× 10−5 5.1894× 10−6 6.6544× 10−6

Ziller metric n = 3
√

2
14

√
3

7
2
√

2×13×19
133

2
√

2×39×19
133

numerical 0.2475 0.3342 0.5789

error 3.0038× 10−5 5.2377× 10−6 4.6476× 10−6

Ziller metric n = 4
√

2
18

2
9

5
√

2×17×29
522

2
√

2×85×29
261

numerical 0.2223 0.3008 0.5380

error 4.4283× 10−5 6.5752× 10−6 5.4050× 10−6

Ziller metric n = 5
√

2
22

√
5

11

√
2×21×41

451
6
√

35×41
451

numerical 0.2033 0.2760 0.5040

error 5.6049× 10−5 7.8158× 10−6 5.5697× 10−6

where the global truncation error e =
∣∣(Xi, Yi)− numercial solution (Xi(s∗), Yi(s∗))

∣∣ and

we take s∗ = 400 >> 0 to get the above numerical solution.

Remark 4.3. We compare the points in the numerical solutions of system (4.5) to

the Ziller metric for s large, and n = 1, 2, 3, 4, 5. We find that the Ricci-flat solution

converges to the cone over the Ziller metric rather than the cone over the Fubini-Study
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metric. For n > 3, this corroborates with Theorem 6.4 and the Convergence Theorem

11.1 of [Böh99]. The case n = 1 and n = 2 are not covered in Theorem 6.4 of [Böh99].

But the case n = 1 can be solved explicitly; according to [BS89] and [GPP90], this

manifold has holonomy type G2.
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