Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/13207
Title: The Power of a Paradox: the Ancient and Contemporary Liar
Authors: Coren, Daniel
Advisor: Hitchcock, David
Griffin, Nicholas
Arthur, Richard
Department: Philosophy
Keywords: Liar paradox;Eubulides;Tarski's hierarchy of languages;Revenge of the liar;Paradox of the stone;Dialetheist solution;History of Philosophy;Logic and foundations of mathematics;Metaphysics;Philosophy of Language;History of Philosophy
Publication Date: Oct-2013
Abstract: <p>This sentence is whatever truth is <em>not</em>. The subject of this master’s thesis is the power, influence, and solvability of the liar paradox. This paradox can be constructed through the application of a standard conception of truth and rules of inference are applied to sentences such as the first sentence of this abstract. The liar has been a powerful problem of philosophy for thousands of years, from its ancient origin (examined in Chapter One) to a particularly intensive period in the twentieth century featuring many ingenious but ultimately unsuccessful solutions from brilliant logicians, mathematicians and philosophers (examined in Chapter Two, Chapter Three, and Chapter Four). Most of these solutions were unsuccessful because of a recurring problem known as the liar’s revenge; whatever truth is <em>not</em> includes, as it turns out, not <em>just</em> falsity, but also meaninglessness, ungroundedness, gappyness, and so on. The aim of this master’s thesis is to prove that we should not consign ourselves to the admission that the liar is and always will just be a paradox, and thus unsolvable. Rather, I argue that the liar <em>is</em> solvable; I propose and defend a novel solution which is examined in detail in the latter half of Chapter Two, and throughout Chapter Three. The alternative solution I examine and endorse (in Chapter Four) is not my own, owing its origin and energetic support to Graham Priest. I argue, however, for a more qualified version of Priest’s solution. I show that, even if we accept a very select few true contradictions, it should <em>not</em> be assumed that inconsistency inevitably spreads throughout other sets of sentences used to describe everyday phenomena such as motion, change, and vague predicates in the empirical world.</p>
URI: http://hdl.handle.net/11375/13207
Identifier: opendissertations/8028
9093
4436940
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.1 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue