Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12916
Title: Pore-size Dependence of Ion Diffusivity in Dye-sensitized Solar Cells
Authors: Ma, Yiqun
Advisor: Xu, Gu
Department: Materials Science and Engineering
Keywords: mesoporous materials;mass transport;iodide/triiodide redox couple;TiCl4 post-treatment;surface diffusion;Semiconductor and Optical Materials;Semiconductor and Optical Materials
Publication Date: Apr-2013
Abstract: <p>The pore-size dependence of liquid diffusivity in mesopores has been a controversial topic. It is especially meaningful in dye-sensitized solar cells (DSSCs) because the triiodide ion diffusivity is closely related to the cell performance. By applying electrochemical measurements, the pore-size dependence of ion diffusivity in DSSCs was investigated based on TiO<sub>2</sub> thin films of variable pore diameters. The alternation of pore-size was achieved by the epitaxial growth of TiO<sub>2</sub> after TiCl<sub>4</sub> post-treatments. From the trend of normalized diffusivities, the respective valid regimes of pore-size dependent and independent diffusion were determined, which were separated by the transition point located at 5-7 nm. In addition, my results have showed that the DSSC fabrication processes, e.g., dye loading, TiCl<sub>4</sub> post-treatment will not lead to the transition of diffusion behaviors. Furthermore, the unexpected drop of diffusivity after one TiCl<sub>4</sub> treatment is attributed to the involvement of surface diffusion in untreated TiO<sub>2</sub> matrix.</p>
URI: http://hdl.handle.net/11375/12916
Identifier: opendissertations/7761
8820
4039852
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.48 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue