Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12897
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorThabane, Lehanaen_US
dc.contributor.authorVanniyasingam, Thuvarahaen_US
dc.date.accessioned2014-06-18T17:01:06Z-
dc.date.available2014-06-18T17:01:06Z-
dc.date.created2013-04-01en_US
dc.date.issued2013-04en_US
dc.identifier.otheropendissertations/7744en_US
dc.identifier.other8803en_US
dc.identifier.other3980497en_US
dc.identifier.urihttp://hdl.handle.net/11375/12897-
dc.description.abstract<p><strong>Background:</strong> Major adverse cardiac events, MACE – a composite endpoint of cardiac death and nonfatal myocardial infarction (MI) – are severe harmful outcomes that commonly arise after elective vascular surgeries. As current pre-operative risk prediction models are not as effective in predicting post-operative outcomes, this thesis will discuss the key results of an individual patient data meta-analysis that is based on data from six cohort studies of patients undergoing vascular surgery.</p> <p><strong>Objectives:</strong> The purpose of this thesis is to determine optimal thresholds of continuous covariates and create a prediction model for major adverse cardiac events (MACE), within 30 days after a vascular surgery. The goals include exploring the minimum p-value method to dichotomize cutpoints for continuous variables; employing logistic regression analysis to determine a prediction model for MACE; evaluating its validity against other samples; and assessing its sensitivity to clustering effects. The secondary objectives are to determine individual models for predicting all-cause mortality, cardiac death, and nonfatal MI within 30 days of a vascular surgery, using the final covariates assessed for MACE.<strong></strong></p> <p><strong>Methods: </strong>Both B-type naturietic peptide (BNP) and its N-terminal fragment (NTproBNP) are independently associated with cardiovascular complications after noncardiac surgeries, and particularly frequent after noncardiac vascular surgeries. In a previous study, these covariates were dichotomized using the receiver operating characteristic (ROC) curve approach and a simple logistic regression (SLR) model was created for MACE [1]. The first part of this thesis applies the minimum p-value method to determine a threshold for each natriuretic peptide (NP), BNP and NTproBNP. SLR is then used to model the prediction of MACE within 30 days after a patient’s vascular surgery. Comparisons were made with the ROC curve approach to determine the optimal thresholds and create a prediction model. The validity of this model was tested using bootstrap samples and its robustness was assessed using a mixed effects logistic regression (MELR) model and a generalized estimating equation (GEE). Finally, MELR was performed on each of the secondary outcomes.</p> <p><strong>Results:</strong>A variable, ROC_thrshld, was created to represent the cutpoints of Rodseth’s ROC curve approach, which identified 116pg/mL and 277.5pg/mL to be the optimal thresholds for BNP and NTproBNP, respectively [1]. The minimum p-value method dichotomized these NP thresholds as BNP: 115.57pg/mL (p</p> <p><strong>Discussion:</strong> One key limitation to this thesis is the small sample size received for NTproBNP. Also, determining only one cutpoint for each NP concentration may not be sufficient, since dichotomizing continuous factors can lead to loss of information along with other issues. Further research should be performed to explore other possible cutpoints along with performing reclassification to observe improvements in risk stratification. After validating our final model against other samples, we can conclude that MINP_thrshld, the type of surgery, and diabetes are significant covariates for the prediction of MACE. With the simplicity in only requiring a blood test to measure NP concentration levels and easily learning the status of the other two factors, minimal effort is needed in calculating the points and risk estimates for each patient. Further research should also be performed on the secondary outcomes to examine other factors that may be useful in prediction.</p> <p><strong>Conclusions: </strong>The minimum p-value method produced similar results to the ROC curve method in dichotomizing the NP concentration levels. The cutpoints for BNP and NTproBNP were 115.57pg/mL and 241.7 pg/mL, respectively. Further research needs to be performed to determine the optimality of the final prediction model of MACE, with covariates MINP_thrshld, type of surgery, and diabetes mellitus. <strong></strong></p> <p><strong><br /></strong></p>en_US
dc.subjectBiostatisticsen_US
dc.subjectmeta-analysisen_US
dc.subjectsystematic reviewen_US
dc.subjectcardiovascular epidemiologyen_US
dc.subjectlogistic regressionen_US
dc.subjectgeneralized estimating equationsen_US
dc.subjectBiostatisticsen_US
dc.subjectBiostatisticsen_US
dc.titlePredicting the occurrence of major adverse cardiac events within 30 days after a patient’s vascular surgery: An individual patient-data meta-analysisen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.03 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue