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Abstract  

 

Background: Major adverse cardiac events, MACE – a composite endpoint of cardiac 

death and nonfatal myocardial infarction (MI) – are severe harmful outcomes that 

commonly arise after elective vascular surgeries. As current pre-operative risk prediction 

models are not as effective in predicting post-operative outcomes, this thesis will discuss 

the key results of an individual patient data meta-analysis that is based on data from six 

cohort studies of patients undergoing vascular surgery.  

 

Objectives: The purpose of this thesis is to determine optimal thresholds of continuous 

covariates and create a prediction model for major adverse cardiac events (MACE), 

within 30 days after a vascular surgery.  The goals include exploring the minimum p-

value method to dichotomize cutpoints for continuous variables; employing logistic 

regression analysis to determine a prediction model for MACE; evaluating its validity 

against other samples; and assessing its sensitivity to clustering effects.  The secondary 

objectives are to determine individual models for predicting all-cause mortality, cardiac 

death, and nonfatal MI within 30 days of a vascular surgery, using the final covariates 

assessed for MACE. 

 

Methods: Both B-type naturietic peptide (BNP) and its N-terminal fragment 

(NTproBNP) are independently associated with cardiovascular complications after 

noncardiac surgeries, and particularly frequent after noncardiac vascular surgeries.  In a 

previous study, these covariates were dichotomized using the receiver operating 
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characteristic (ROC) curve approach and a simple logistic regression (SLR) model was 

created for MACE [1].  The first part of this thesis applies the minimum p-value method 

to determine a threshold for each natriuretic peptide (NP), BNP and NTproBNP. SLR is 

then used to model the prediction of MACE within 30 days after a patient’s vascular 

surgery.  Comparisons were made with the ROC curve approach to determine the optimal 

thresholds and create a prediction model.  The validity of this model was tested using 

bootstrap samples and its robustness was assessed using a mixed effects logistic 

regression (MELR) model and a generalized estimating equation (GEE).  Finally, MELR 

was performed on each of the secondary outcomes.   

 

Results: A variable, ROC_thrshld, was created to represent the cutpoints of Rodseth’s 

ROC curve approach, which identified 116pg/mL and 277.5pg/mL to be the optimal 

thresholds for BNP and NTproBNP, respectively [1].  The minimum p-value method 

dichotomized these NP thresholds as BNP: 115.57pg/mL (p<0.0001) and NTproBNP: 

241.7pg/mL (p=0.0001), and MINP_thrshld was the indicator variable of these cutpoints.  

No study provided data on both NP concentration levels.  The prognostic factors of 

MACE were assessed in a series of SLR models, using odds ratios (OR) and 

corresponding 95% confidence intervals (CIs) and p-values (p).  With MINP_thrshld 

having a slightly better association with MACE than ROC_thrshld, we proceeded with 

this indicator variable in our model formation.  It was concluded that the final model for 

MACE contained variables MINP_thrshld (OR=8.5, 95% CI:(5.03, 14.41), p<0.0001), 

the type of surgery (OR=2.5, 95%CI:(1.40, 4.60), p=0.0022), and diabetes mellitus 

(OR=2.1, 95%CI:(1.15, 3.71), p=0. 0151).  Our internal validation analysis proved this 
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model to be accurate, however using MELR and GEE, it was sensitive to methods that 

accounted for clustering effects.  In particular, diabetes was not a statistically significant 

covariate in both the MELR and GEE models.  A points system, ranging from 0 to 5, was 

also created to assist clinicians in determining individual patient risk.  Lastly, we applied 

the same covariates in our final prediction model of MACE to our secondary outcomes, 

as they are all cardiovascular related events experienced by vascular surgery patients.  

MELR models were used to account for clustering effects and MINP_thrshld remained 

consistently significant (p<0.05) in all outcomes, while diabetes mellitus was removed 

from the models.  The type of surgery was a statistically significant covariate for all-

cause mortality and nonfatal MI.  

 

Discussion: One key limitation to this thesis is the small sample size received for 

NTproBNP.  Also, determining only one cutpoint for each NP concentration may not be 

sufficient, since dichotomizing continuous factors can lead to loss of information along 

with other issues.  Further research should be performed to explore other possible 

cutpoints along with performing reclassification to observe improvements in risk 

stratification.  After validating our final model against other samples, we can conclude 

that MINP_thrshld, the type of surgery, and diabetes are significant covariates for the 

prediction of MACE.  With the simplicity in only requiring a blood test to measure NP 

concentration levels and easily learning the status of the other two factors, minimal effort 

is needed in calculating the points and risk estimates for each patient.  Further research 

should also be performed on the secondary outcomes to examine other factors that may 

be useful in prediction.   
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Conclusions:  The minimum p-value method produced similar results to the ROC curve 

method in dichotomizing the NP concentration levels. The cutpoints for BNP and 

NTproBNP were 115.57pg/mL and 241.7 pg/mL, respectively.  Further research needs to 

be performed to determine the optimality of the final prediction model of MACE, with 

covariates MINP_thrshld, type of surgery, and diabetes mellitus.   
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1.1 Background  

 Cardiovascular mortality, myocardial infarction, and cardiac arrest are all major 

adverse outcomes to commonly arise after elective noncardiac surgeries [28].  With 

cardiovascular disorders being the chief cause of death in the industrialized world, as 

individuals experience cardiovascular complications, their risk of death is expected to 

increase [27].  From vascular surgeries alone, patients are more likely to experience 

issues such as perioperative mortality and adverse cardiovascular outcomes [29].   A 

clinician’s decision-making process is dependent on his/her own knowledge of the risks 

of a surgery and current pre-operative cardiovascular management.  From selecting the 

most appropriate type of anesthesia to how to monitor a patient during and after surgery, 

many critical decisions must be made.  As current pre-operative risk stratification models 

are not as effective in predicting post-operative outcomes for vascular surgery patients, 

we need to improve upon our perioperative management to reduce such adverse events 

[10].  By better monitoring the pre-operative period of these patients, we can better 

determine post-operative risks of cardiac death or myocardial infarction (MI).    

 Details of the abbreviations and key variables used in this thesis are provided in  

Tables 1.1.1 and 1.1.2 (Appendix A), along with descriptions of each outcome assessed 

in the analyses in Table 1.1.3 (Appendix A).  

 

1.1.1 Current Guidelines of Risk Assessment 

Pre-operative risk estimation is essential in making decisions on testing and 

treatment methods [10]. Goldman and his team were the pioneers in developing a cardiac 

risk index for noncardiac surgeries in 1977 [9, 35].  Detsky applied modifications to this 
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in 1986 that lead to similar results in risk estimation [10].  Finally, Lee’s Revised Cardiac 

Risk Index (RCRI) was developed and displayed significant improvements.  It is now the 

leading clinical index for pre-operative cardiovascular risk stratification [31-34].  

The primary risk factors of the RCRI include a high-risk type of surgery, diabetic 

insulin therapy, a pre-operative serum creatinine level greater than 177�mol/Litre, and a 

history of congestive heart failure, ischaemic heart disease, or cerebrovascular disease 

[31].  Despite its popularity as a population-derived index for classifying patients into 

risk categories, the RCRI is not only unable to determine individual patient risk, it is also 

not very accurate in stratifying patients undergoing vascular surgeries [8, 10]. In a 

prospective observational study of 10,081 vascular surgery patients, the RCRI 

underestimated their post-operative cardiovascular events [36].  Evaluation of other 

markers, beyond the RCRI, will improve pre-operative risk stratification models in 

predicting adverse postoperative outcomes of noncardiac vascular surgery.  

 

1.1.2 Recent Approaches to Vascular Surgery Risk Assessment 

 Vascular surgeries include surgeries of the arteries and veins. Hormones, BNP and 

NTproBNP are independent prognostic markers of cardiovascular outcomes in vascular 

surgery [1, 40].  These natriuretic peptides (NP) are released into the blood by ventricular 

cardiomyocytes, due to the expansion of the atrial or ventricular wall [1, 41].  

Stratification of patients into low and high risk categories can be performed from 

observing their pre-operative NP concentration levels.  Not only will this assist the 

decision-making process of whether or not a vascular surgery is necessary for each 

individual patient, it will also allow for a better result in any pre-operative assessment 
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performed by physicians in determining the best type of perioperative management.  

Examination of these independent predictors will allow for more focus on the risks 

unique to each patient and will improve perioperative management to reduce such 

adverse events.   

This study runs parallel to an individual patient data meta-analysis, “The 

Predictive Ability of Pre-Operative B-Type Natriuretic Peptide in Vascular Patients for 

Major Adverse Cardiac Events”, a study conducted by Rodseth and colleagues [1].  Both 

BNP and NTproBNP were determined to be independently associated with cardiovascular 

complications after noncardiac surgeries [1].  Such events are particularly frequent 

among vascular surgery patients, given their high comorbidity burden.  Rodseth and his 

team determined thresholds of the NP concentrations by applying the ROC curve 

approach.  With this method, it was concluded that 116pg/mL is the optimal general 

cutpoint for BNP values with 66% sensitivity and 82% specificity.  The NTproBNP 

threshold was found to be 277.5pg/mL.  After applying these thresholds to 

reclassification, significant improvement was found in risk prediction.  The type of 

vascular surgery, history of coronary artery disease, congestive cardiac failure, 

cerebrovascular disease, diabetes mellitus, and renal failure (creatinine >2mg/dl) are all 

identified, along with the NP thresholds, as covariates of cardiac complications [1, 31].  

With BNP and NTproBNP now identified as significant predictors, questions still linger: 

Are these NP thresholds the most precise cutpoints?  What model can we now use to 

replace the RCRI in predicting adverse outcomes after vascular surgery? 

 

  



  5

1.2 Objectives  

This thesis is an individual patient data meta-analysis that is designed clinically to  

(i) determine optimal cutpoints for BNP and NTproBNP, (ii) determine a model to 

discriminate individuals into high and low risk groups of a MACE within 30 days of a 

vascular surgery, and (iii) produce a scoring system to assist physicians in classifying 

their patients into risk categories.  The statistical objectives are to (i) explore the 

minimum p-value method to dichotomize BNP and NTproBNP and make comparisons 

with the ROC curve approach, (ii) employ logistic regression analysis on the prognostic 

factors for predicting MACE, and (iii) examine the validity and robustness of the 

prediction model.  These statistical objectives are explained in a more detailed process in 

Table 1.2.1 (Appendix A) 

The secondary objectives are to determine individual models for predicting the 

secondary outcomes – all-cause mortality, cardiac death, and nonfatal MI – within 30 

days of a vascular surgery.  Details are provided in Table 1.2.2 (Appendix A).   

 

1.3 Scope of the Report  

 In the following chapters, I will discuss the statistical methods and results for 

dichotomizing pre-operative NP concentration levels and model formation, for MACE 

within 30 days after a vascular surgery.  These chapters will lead to an analysis of the 

results and related issues, followed by some concluding statements. 

 In Chapter 2, I explain the strategies applied to search, select, and assess the 

quality of the studies used in this thesis.  The primary and secondary outcomes along with 

their covariates can also be found in this section.  
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 Details of the statistical methods are specified in Chapter 3 as they are used to 

tackle the objectives of this thesis.  The minimum p-value method is applied to 

dichotomize BNP and NTproBNP; simple logistic regression (SLR) is used for modeling 

the prediction of each outcome; and insight into our validation, sensitivity analysis, and 

points system are provided. 

 The results of each stage of our analysis are presented in Chapter 4 with references 

to tables and figures, in the Appendices, to capture a more descriptive image of our 

assessments.  Comparisons are made with the original thresholds and prediction model 

concluded from Rodseth and his colleagues’ study [1], a final model is determined, 

multicollinearity is explored, and a points system is finalized.   

 Lastly, a discussion on the key findings lies in Chapter 5. Interpretations of our 

results, comparisons to similar studies, limitations and implications for clinical practice, 

and future research are included in this chapter. Concluding remarks are provided in 

Chapter 6. 
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Chapter 2  

 

Methods of Literature Review   
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2.1 Sources of Literature Search and Search Strategy  

This thesis uses data provided by Rodseth and his colleagues [1].  They conducted 

a literature search using electronic databases, MedLine (July 5, 2010) and Embase (week 

of June 21, 2010), with key words such as “natriuretic peptides”, “surgery or surgical 

procedures”, and various combinations of prognostic and diagnostic terms [2-4].  Only 

reports containing the largest of sample sizes and with the most thorough follow-ups 

were included to avoid the collection of overlapping data from various studies.  Other 

exclusions included congress reports, study populations from cardiac surgery, and studies 

where administration of BNP was utilized for interventional purposes.  After applying 

their exclusion criteria, studies were then selected based on pre-determined eligibility 

conditions [1]. 

 

 2.2 Study Selection  

 As this study focuses on noncardiac vascular surgery patients, only 10 of the  

1,648 citations found from Rodseth’s electronic search satisfied their eligibility criteria 

[1].  After three attempts of contacting the investigators, individual patient data was 

obtained from six studies (N=850; nBNP=632 and nNTproBNP=218).  Five provided 

information on pre-operative BNP concentration levels [16-20] and one on pre-operative 

NTproBNP concentration levels [21].  Data were also collected on age, gender, RCRI 

components and post-operative outcomes experienced within 30 days – from all studies.  

The RCRI components included were (i) type of noncardiac surgery performed, (ii) 

diabetes mellitus, (iii) a history of congestive heart failure, (iv) a history of 

cerebrovascular disease, (v) a history of coronary artery disease, and (vi) renal failure 
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(experienced creatinine levels ≥ 2mg/dl).  Finally, a master dataset was created compiling 

patients from all studies.  

Our final dataset contained 850 vascular patients of both open and catheter-based 

vascular surgery.  Patient characteristics have been broken down for each outcome: (a) 

MACE, (b) all-cause mortality, (c) cardiac death, and (d) non-fatal MI and can be found 

in Tables 2.1.1-2.1.4 (Appendix B). 

 

2.3 Study Quality Assessment 

To evaluate the study quality of this meta-analysis, Rodseth modified the Quality 

Assessment of Diagnostic Accuracy Studies (QADAS) checklist [5] to account for the 

prognostic nature of our six studies.  Adjustments included using “natriuretic peptide 

concentrations”, “all-cause mortality”, and “outcome” in replacement of “index test”, 

“target condition”, and “reference standard”, respectively.  Also, Criteria 3, 4, 7, and 13 

were removed, as they did not apply to this study.  Criterion 9 from the QADAS checklist 

was excluded for studies of in-hospital all-cause mortality.  Rodseth also tested for 

reporting accuracy by randomly selecting 20% of the individuals and comparing them 

with their originally provided datasets [1].  

  

2.4 Primary Outcome and Study Variables  

 The chief outcome of interest for this study is the occurrence of MACE within 30 

days after a vascular surgery.  The prognostic factors for this composite endpoint include: 

o  Age of patient (AGE, which is converted to AGE_thrshld) 

o  Brain-type natriuretic peptide (BNP) 
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o  N-terminal pro-B-type natriuretic peptide (NTproBNP) 

o  Type of vascular surgery (SURGERY_TYPE) 

o  History of coronary artery disease (Hx_IHD)  

o  History of congestive cardiac failure (CCF)  

o  History of cerebrovascular disease (CEREBRO_VASCULAR_DISEASE)  

o  Diabetes mellitus (DIABETES)  

o  Renal failure with creatinine levels >2 mg/dl (HIGH_CREAT)  

Details of these variables are found in Table 1.1.2 (Appendix A). 

 We apply the minimum p-value approach exclusively to continuous variables, BNP 

and NTproBNP, to determine their threshold values for MACE.  From this, an indicator 

variable (MINP_thrshld) is created to identify whether an individual’s pre-operative BNP 

or NTproBNP concentration levels are greater than the respective cutpoint values.  

Similarly, ROC_thrshld is created to represent cutpoints of BNP and NTproBNP 

identified by the ROC curve approach [49], performed by Rodseth [1].  These indicator 

variables are further explained in Section 3.3.   

  Using logistic regression analysis, Rodseth assessed the above listed covariates and 

identified ROC_thrshld, SURGERY_TYPE, and DIABETES as the statistically 

significant variables for MACE immediately after vascular surgery.  This study examines 

these factors with MACE and considers the other covariates listed above.  We also use 

the final predictors of MACE in our secondary analysis.   
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2.5 Secondary Outcomes and Study Variables  

 Secondary outcomes for this study include all-cause mortality, cardiac death, and 

nonfatal MI – each within 30 days after a patient’s vascular surgery.  The covariates 

identified in the final model for primary outcome, MACE, are the only study variables 

considered for these outcomes.  Since all of the events are cardiovascular-related 

problems, we assumed that the significant factors in determining MACE would also be 

thresholds and key variables in predicting these secondary outcomes.  
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Chapter 3  

 

Statistical Methods 
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3.1 Introduction  

 
To bring more ease to their decision-making process, categorizing continuous 

variables assists clinicians in their understanding and interpretation of statistical results.  

This metamorphosis can be performed using the minimum p-value method -- a systematic 

approach in determining thresholds for a continuous variable.  This chapter describes the 

initial graphical assessments performed, details of the minimum p-value method, and the 

features of the adjusted p-value formulae.  Our logistic regression analysis, sensitivity 

analysis, and validation analysis are also provided to explain our approach in finalizing a 

prediction model for the outcome, MACE.  To assist clinicians in interpreting our model, 

we created a point system and explain how to calculate risk estimates unique to each 

patient.   Finally, our method of exploring our secondary outcomes of all-cause mortality, 

cardiac death, and non-fatal MI is described.  A description of the different methods used 

in this thesis is provided in Table 3.1.1 (Appendix C) along with flowcharts in Figures 

3.1.1-3.1.5 (Appendix C), to provide a more descriptive image of each step of our 

analysis.   

For this thesis, statistical software RStudio 0.96.316 was used to determine these 

thresholds via the minimum p-value method.  Logistic regression analysis, sensitivity 

analysis, and validation analysis were all performed in SAS 9.3.   

 

3.2 Graphical Assessment 

To begin examining the pre-operative concentration levels of BNP and 

NTproBNP, we used boxplots to observe the range of our data and to search for outliers.  

Scatter plots of MACE against each NP were also created to see if a step function would 
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appear in either graph.  Since our outcome variable is binary, this step function would 

ideally display no occurrence of MACE (MACE=0) at low NP concentration levels and 

all occurrences of MACE (MACE=1) at high NP levels, as demonstrated below.   

In this “perfect” scenario, possible noise would only appear around the optimal 

cutpoints of the graphs.   However in our case, and in many real-world situations, such a 

step function does not exist.  To accommodate for our data, a range of potential cut points 

were systematically evaluated to determine thresholds for BNP and NTproBNP.   

 

3.3.1 The Minimum P-Value Method  

 For this thesis, we adopted the methodology and utilized the detailed R code 

provided by Glassman and Mazumdhar [6].  Aside from a portion of extreme values, the 

minimum p-value method assesses all of the observed data of the covariate as potential 

threshold values.  Evaluation is based on the cutpoint holding the largest chi-squared 

statistic and corresponding p-value.  We evaluate the predictive power of each potential 

cutpoint, ci, for dependent, binary variable, MACE.  This method is performed twice, 
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once for determining an optimal cutpoint for pre-operative BNP and once for pre-

operative NTproBNP.   

 Suppose there exists p potential cutpoints in a set c = {c1, c2, …, ci, … ,cp}, where  

i=1, …, p.  For each threshold, two bivariate groups are created:  

(1) Patients with NP levels ≤ ci and  

(2) Patients with NP levels > ci. 

These groups and outcome MACE are evaluated using chi-squared tests to determine the 

predictive ability of each cutpoint.  A table is created, computationally, to determine the 

test statistic and corresponding p-value of each ci.  The test statistic is evaluated based on 

a null hypothesis that the cutpoint under evaluation is not well defined -- there is no 

difference between the two groups.  Contingency tables were created for MACE and each 

potential cutpoint, ci, as seen below.    

 

Occurrence of a Major 
Adverse Cardiac Event 

Cutpoints 
NO MACE (k=0) YES MACE (k=1) 

c1=___ 

X ≤≤≤≤ c1 
(j=0) 

n00 
(Observed number) 

n01 
(Observed number) 

X > c1 
(j=1) 

n10 n11 

 

The chi-square statistic, p-value, and relative risk measure for each potential cutpoint 

were calculated for both NPs.  The cutpoint with the minimum p-value, or corresponding 

maximum chi-square value, was the best discriminator of patients into groups of high and 
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low risk.  As the chi-squared statistic can be influenced by sample size, it is best to also 

examine the relative risk for each potential threshold [6].  

 

3.3.2 The Corrected P-Value Approach 

The main criticism of the minimum p-value method is the inflation that arises in 

the Type I error rate [6, 46]; this error occurs when a test is a “false positive”.  In our case, 

we are testing for whether or not an individual will experience MACE within 30 days 

after vascular surgery. Since our meta-analysis is comprised of follow-up studies, we 

know the outcomes of each patient within this timeframe.  The individuals classified as 

high-risk and who do not experience MACE fall under the Type I error.  

To adjust for such inflation and ensure the minimum p-value is significant, a few 

correction formulae were proposed.  Mazumdhar and Glassman first identify Miller and 

Siegmund, who derived the first formula: 

��� � ���	 
� � �

� ��� �������������	

�������������� � 4  �
	

   ,            (1) 

where ��� is the adjusted p-value using the Miller and Siegmund formula [15], � is the 

standard normal probability density function, z is equivalent to the 
1 � "#�$  & � th 

percentile of the standard normal distribution, and ��'( is the determined minimum p-

value.  )*+, and )-'.- are the proportions of observed values below the lowest cutpoint 

and at or below the highest cutpoint considered, respectively.  

The second formula, by Altman et al. [23], is considered as a simplification 

formula.  Here, ) is set as ) � )*+, �  )-'.- = 5% or 10%.  These formulas are useful for 

small minimum p-values that lie between 0.0001 and 0.1 [6].  The respective formulas 

are as follows: 
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For )*+, � )-'.- � 5%, 

�1*23 � �3.13�678�1 � 1.65 ln��678		,              (2) 

For )*+, � )-'.- � 10%, 

�1*2�= � �1.63�678�1 � 2.35 ln��678		.              (3) 

 

The last correction formula we assess is the original Bonferroni correction 

formula.   It multiplies the minimum p-value by the number of potential cutpoints.  This 

formula, however, is not suitable for adjustment since the consecutive test statistics are 

not independent in the minimum p-value approach [6].  What is considered as appropriate 

is the revised version of the Bonferroni correction formula.  Lausen and Schumaker [48] 

developed a tailored version of the minimum p-value, pmodbon, which considers the 

relationship between neighbouring cutpoints.  Let )' be the proportion of observed values 

at or below the ith cutpoint, for p cutpoints, and the modified version is as follows: 

 

��+?@+( � �678  � ∑ B�)', )'D�	E��'F�                       (4) 

where                 B�)', )'D�	 � GHI �JKL
L �

M  NO�)', )'D�	 � 
�
L
P � 1� 
1���,��QR	S

T �U 
and                     O�)', )'D�	 � VW1 � �������QR	�����	��QRX. 

 

3.4 MINP_thrshld and ROC_thrshld 

Once the thresholds have been determined, MINP_thrshld is created to denote 

whether or not an individual’s pre-operative BNP and NTproBNP concentration levels 
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surpass their respective cutoff values.  In this meta-analysis, a total of six studies were 

used: five contained information on BNP while only one provided data on NTproBNP.  

Since no studies provided data on both pre-operative NP concentration levels, an 

indicator variable was created to represent the two cutpoints.  MINP_thrshld is described 

as follows: 

 

MINP_thrshld =  Y0,   if BNP _ `ab_defge�h �f ai�f�`ab _ ai�f�`ab_defge�h  1,   if BNP j BNP_thrshld or NTproBNP j NTproBNP_thrshld s  , 
 

where BNP is a patient’s actual BNP concentration level and BNP_thrshld is the BNP 

cutoff value determined by the minimum p-value method.  Similarly, NTproBNP and 

NTproBNP_thrshld are defined.   

The thresholds found using the minimum p-value method will then be compared 

to those from the ROC curve approach.  Since both methods use the same dataset, 

MINP_thrshld will be compared with ROC_thrshld, the indicator variable for Rodseth’s 

BNP and NTproBNP cutpoint values.  The BNP and NTproBNP cutpoints determined by 

Rodseth are 116pg/mL and 277.5pg/mL, respectively.  ROC_thrshld is defined as 

follows: 

ROC_thrshld =  Y0,   if BNP _ 116pg mL⁄  or  NTproBNP _  277.5��/z{; 1,   if BNP j 116pg mL⁄  or  NTproBNP j 277.5pg/mL . s   
Finally, the outcomes of interest, both primary (MACE) and secondary (all-cause 

mortality, cardiac death, and non-fatal MI) are all binary, response variables.  
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3.5 Logistic Regression Analysis  

To address one of our statistical objectives of which method is better at 

dichotomizing continuous variables, the ROC curve method or the minimum p-value 

method, we performed simple logistic regression analysis.  Rodseth has used SLR and 

identified ROC_thrshld, SURGERY_TYPE, and DIABETES as the significant predictors 

of his final model.  The best way to make comparisons and draw conclusions is to mimic 

this model and create a similar one that replaces ROC_thrshld with MINP_thrshld.  After  

this was performed, we moved on to determining a final prediction model for MACE 

within 30 days after a noncardiac vascular surgery.   

From an epidemiological standpoint, we want to use logistic regression to 

determine the probability that a disease/outcome will occur within a set time frame for an 

individual, where values of the independent covariates of interest are already measured 

for each patient.  From our literature review, we identified BNP and NTproBNP as 

independent predictors of MACE.  The remaining prognostic factors, as listed in Section 

2.4, are assumed independent for the purposes of our logistic regression analysis.  Our set 

study period is 30 days after a vascular surgery, with details of our patients’ 

characteristics taken prior to their surgery.  Our outcome is MACE and the independent 

variables initially assessed are MINP_thrshld, SURGERY_TYPE, and DIABETES.   

Statistically, the general form of an SLR model can be written as the 

probability,  }�~	,  of an event occurring (E=1) for an individual, given a set of k 

independent variables X=(X1, X2, … , Xk): 

}�~	 � b�E � 1|��, �&, … , �E	 � 1
1�����0� ∑ �������1 	, 
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where �0 and �i are unknown parameters, and estimated based on our sample of patients 

and variables Xi, with i ranging from 1 to k, covariates.  The parameters are estimated 

using maximum likelihood estimation.  In this form, }�~	  provides the estimated 

probability or predicted risk of a patient experiencing MACE, given the independent 

variables.   

The logit of the probability, }�~	, is a transformation of this form into a linear 

form: 

����d }�~	 � ln N }�~	1�}�~	U �  �= � ∑ �'�'E'F� , 

where 
M�~	

��M�~	 is the odds for a specific individual and �' is the change in the log odds 

when there is a unit change in �'.  We use PROC LOGISTIC in SAS 9.3 to create five 

logit models, explore the covariates, and determine a final prediction model of MACE.  

The ORs and corresponding 95%CIs and p-values of these SLR models (Models A1-A5), 

were assessed to make comparisons with Rodseth’s results and to establish the final, 

parsimonious model of MACE.  Model A1 used Rodseth’s final covariates; Model A2 

replaced Rodseth’s ROC_thrshld with MINP_thrshld; and Model A3, A4, and A5 

explored the inclusion of variables AGE_thrshld, HIGH_CREAT, and Hx_IHD.   

 

3.6 Validation Analysis 

To determine whether a prediction model and statistical inferences are subject to 

change with different samples, internal validation can be used.  With several methods to 

measure a model’s discriminative ability, calibration, and overall accuracy, a study was 

conducted to evaluate different methods of internal validation for logistic regression 

analysis.  It was concluded that among those assessed, split-sample validation was the 
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least efficient approach while bootstrapping provided stable and nearly unbiased 

estimates for a predictive logistic regression model [14].   

Bootstrap re-sampling, in simple terms, is sampling from sampled data.  Sampling 

with replacement takes place on the original dataset to produce a certain number of 

samples, all possessing the same size as the original sample set.  For our analysis, we 

created 1000 bootstrapped samples using Random-X bootstrapping in SAS 9.3.  This 

created new samples with different dependent (Y) and independent variables (X) where 

we fit a new model, each with different error terms [37].  Our random-X bootstrapping 

method bootstraps the independent and dependent variables together.  The ORs were 

calculated and recorded, along with the 95% CI and p-value for each covariate, in Table 

4.6.3 (Appendix E). The average area under the ROC curve was also determined to assess 

the accuracy of the bootstrap models in dichotomizing patients into high and low risk 

groups. This can be found under Table 4.7.1 (Appendix E). 

  
3.7 Sensitivity Analysis  

As this thesis is a meta-analysis of six combined studies, our data has a multi-

level structure: the study level and the patient level. Correlations, due to unobserved 

properties of studies, clinics, and patients, may exist at either of these levels.  Our 

primary method of analysis uses simple logistic regression, which assumes homogeneity 

across patients and studies.   

The purpose of this sensitivity analysis was to assess the robustness of our final 

model against methods that accounted for clustering effects.  After determining the best-

fit model, the final covariates were modeled against MACE using two different methods 
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to assess for sensitivity.   An MELR model (Model B) and a GEE (Model C) were created.

  

A random effects or mixed effects logistic regression model was produced using 

the final predictors from our primary analysis.  MELR considers clustering that could 

arise within- or between-studies and uses both fixed and random effects [30].  The fixed 

effects were the final covariates in our SLR model and STUDY is the random effect.  It is 

assumed that the error term and random effect follow a normal distribution with a mean 

of zero and PROC GLIMMIX in SAS 9.3 is used to generate this model.   

GEE adjusts for clustering within studies, however, it does not take into account 

correlations between studies [42].  PROC GENMOD is used in SAS to generate this 

model.   In GEE, an exchangeable correlation matrix, which assumes the correlation 

between responses within a study is constant, is used to test for within study clustering.  

This correlation structure is assumed across studies.  The models are compared based on 

their ORs, 95% CIs, and p-values.   

 

3.8 Points System 

When provided a statistical model, without background statistical knowledge, one 

may often feel perplexed by either the complexity of it or uncertainty of how to interpret 

it.  To provide a more user-friendly system for both clinicians and patients to determine 

individual risks, a scoring system can be created.  We use a points system described by 

Sullivan and his colleagues to break down our logistic regression model [7].    

 Our points system is based on the regression coefficients of our final model.  

After any continuous prognostic factors are transformed to binary or categorical variables, 
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a reference value, �'� , is assigned to each level, j, of each variable, i.  A base level 

(WiREF) of 0 is assigned to the least unhealthy level of each covariate.  The points can 

then be calculated for each jth level of the ith factor as  

          b���dg'� � �������������	
� .                    (5) 

The constant, B, is set as the number of regression units that represent one point in this 

scoring system.  Once a point is calculated for each level, different combinations are 

explored to determine all of the possible point totals for patient risk factor profiles.  

Finally, a risk estimate is calculated for each point total using the logistic regression 

formula, where we can approximate ∑ �'�'"'F�  from the logistic regression formula with 

`�b���d i�dO�	 and p covariates.  The approximation is shown below: 

� � 1
1 � ����0�∑ ����	���1      

                         � 1
1� ����0� �∑ ��� ������`�b���d i�dO�����1 	  . 

The details of these calculations are found in Tables 4.9.1-4.9.3 (Appendix E).  Since all 

of our final covariates are binary, we set WiREF=0 for all i.  Thus the following formula 

will be used to determine our risk estimates for each point total: 

         � � 1
1� ����0� �`
b���d i�dO��	  .           (6) 

  



 24

3.9 Secondary Analysis 

Our secondary analysis explores all-cause mortality, cardiac death, and non-fatal 

MI individually as they are all vascular surgery-related outcomes.  Since this is a meta-

analysis and clustering may arise among the data (and we are not making comparisons to 

other methods), we decided to create MELR models to predict each outcome within 30 

days after vascular surgery.  We assessed each model using a forest plot, ORs, and the 

corresponding 95% CI and p-values.   
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4.1 Key Demographics 

Bivariate analyses using t-tests for continuous variables and Pearson chi-squared 

(P. Chi) tests for categorical variables were performed on the individual covariates and 

MACE with details provided in Table 2.1.1 (Appendix B).  We identified age, RCRI class, 

coronary artery disease, congestive cardiac failure, diabetes, and renal insufficiency as 

individual significant predictors of MACE (α=0.05).  We continued this assessment for 

each of the secondary outcomes.   

For an all-cause mortality outcome, variables RCRI Class, congestive heart failure, 

diabetes mellitus, and creatinine were identified as significant factors (Table 2.1.2, 

Appendix B).  While exploring relationships with cardiac death, the noted prognostic 

factors were AGE, RCRI Class, congestive heart failure, and renal insufficiency (Table 

2.1.3, Appendix B).  Lastly AGE, RCRI class, coronary artery disease, and congestive 

heart failure were identified as significant covariates for non-fatal MI (Table 2.1.4, 

Appendix B).  It was no surprise that the RCRI class was significant for each outcome.  

In fact, this was expected, as it is currently the index used for risk stratification of 

vascular surgery patients.    

 

4.2 Preliminary Assessment of BNP and NTproBNP  

Preliminary assessment of the spread of the NP concentration levels is shown in 

the form of graphical displays in Figures 4.2.1 – 4.2.9 (Appendix D).  The boxplots 

revealed 10.8% (68 out of 632) patients as outliers for patients with BNP≥161.25pg/mL, 

and 9.2% (20 out of 218) for patients with NTproBNP≥1522pg/mL.  The individual 

scatter plots of the NP concentration levels reveal how close each concentration level is 
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to each other.  An ideal situation would reveal a step function in Figure 4.2.7 (Appendix 

D), indicating no incidence of MACE for low levels of NP and all occurrences of MACE 

at high levels.  In such circumstances where no step function or range of potential 

thresholds is revealed (Figures 4.2.8 and 4.2.9, Appendix D), a systematic approach of 

the minimum p-value can become quite useful.   

 

4.3 Dichotomization of BNP and NTproBNP Using the Minimum P-Value Method 

With the exception of 5% of outliers and values of 0pg/mL, to be set as extreme 

values, a total of 303 potential thresholds were considered for BNP (0pg/mL<BNP 

<2322.49pg/mL) and 204 for NTproBNP (21.5pg/mL<NTproBNP<1572pg/mL).  

Graphical displays of the chi-square statistics, p-values, and relative risks corresponding 

to each NP threshold value are shown in Figures 4.3.1-4.3.6 (Appendix D).  From these 

graphs we can see a more distinct BNP cutpoint, with an obvious kink in Figure 4.3.2, 

than in NTproBNP (Figure 4.3.5).   

Results of the minimum p-value method in dichotomizing the NP concentration 

levels are found in Table 4.3.7 (Appendix D).  A BNP cutpoint of 115.57pg/mL possessed 

the smallest p-value (4.39x10^-21), and the largest chi-square value of 88.79, with a 

relative risk (RR) of 2.09.   This RR is not the maximum of all of the potential cutpoints, 

however it does suggest that individuals with BNP levels beyond 115.57pg/mL are more 

likely to experience MACE than those with a lower value.  The p-value adjustment 

formulae all indicate the BNP cutpoint of 115.57pg/mL is statistically significant 

(p<0.05).   
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For NTproBNP, the optimal threshold was determined as 241.7pg/mL.  This held 

the smallest p-value of 0.001, possessed a maximum chi-square statistic of 10.98 from all 

of the assessed thresholds, and an associated RR of 3.33.  It indicates that a patient with a 

pre-operative NTproBNP level beyond 241.7pg/mL, is over three times more likely to 

experience MACE within 30 days after vascular surgery than if it was below this cutpoint.  

With the exception of palt510 at 10%, the remaining adjusted p-values show the determined 

NTproBNP threshold to be significant (α=0.05). 

 

4.4 Comparisons of the Minimum P-value Method and the ROC Curve Approach 

As we were unable to find studies that compared the minimum p-value method and 

ROC curve approach, we decided to make it one of our statistical goals to analyze the 

differences between the results of the two methods.  To begin drawing comparisons, a 

few definitions are in order.  Sensitivity is a measure of the precision of a diagnostic test 

in correctly detecting an outcome, while specificity measures how well individuals 

without an outcome are identified [22].  Accuracy, an overall measure of the ability of a 

diagnostic test in identifying individuals, is the ratio of the total number of correctly 

classified persons over all those assessed.  The sensitivity and specificity for 

MINP_thrshld (64.0% and 81.5%, respectively) is fairly close to the ROC_thrshld 

(61.3% and 83.4%, respectively). The mere 8.8% (75 out of 850) of patients in the entire 

dataset who experience MACE explains these low true positive and high true negative 

rates.  Since MINP_thrshld incorrectly classifies 1.7% more (14 out of 850) individuals 

as experiencing MACE than ROC_thrshld, there is only a minimal accuracy level 

difference (80% and 81.4%, respectively).    The variation is due to the higher 

NTproBNP cutpoint obtained from the minimum p-value method.   
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Overall, the ROC curve method and minimum p-value method provide very similar 

results in threshold determination.  Further comparisons of MINP_thrshld and 

ROC_thrshld and their associations with MACE are made in our logistic regression 

analysis.   

 

4.5 Assessing Prognostic Factors and Studies for MACE 

The individual patient data obtained from six studies were assessed by 

predetermined covariates [1, 10] for each outcome of MACE, all-cause mortality, cardiac 

death, and non-fatal MI, respectively reported in Tables 2.1.1-2.1.4 (Appendix B).   

The third level of SURGERY_TYPE, the “not specified” category, was removed prior to 

regression analysis as it contained only 0.5% (4 out of 850) of the data.  No patient found 

in this level experienced MACE and we felt that there was not enough information for 

this one level.  Also, Table 4.5.1 (Appendix E) displays the breakdown of each study and 

outcome. A similar situation existed for individual patient data obtained from Study 5 

[20], as it contained only three individuals.  Two out of its three patients (67%) 

experienced MACE, a much higher percentage than any of the other studies.   Removing 

Study 5 along with converting AGE into a binary variable (AGE_thrshld), with a cutpoint 

at 65 years, were in agreement with Rodseth’s methods prior to his logistic regression 

analysis.  Our exclusion of the third level in SURGERY_TYPE may cause slightly 

different results from his findings.   

We continued this investigation with only the variables identified as statistically 

significant for MACE from Section 4.1.  RCRI Class, however, was not considered for 

model formation as it uses its own RCRI Index to classify individuals into low, medium, 

and high-risk groups.  Since discrimination using the RCRI Index is poorer for vascular 
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surgery patients than other types of noncardiac operations [10], only the statistically 

significant components of RCRI were assessed.   

With BNP and NTproBNP having been identified as independent prognostic 

markers of cardiovascular outcomes in vascular surgery patients, literature has described 

a strong association between congestive cardiac failure (CCF) and these NP concentration 

levels [13, 41].  Strong correlations between covariates can cause inflation in the 

variances of the parameter estimates [26].  We assessed for collinearity between 

MINP_thrshld and CCF using the variation inflation factor (VIF) and tolerance level 

(TOL).  Evaluation was based on a TOL level of less than 0.01 and VIF of greater than 10 

to imply high multicollinearity.  TOL is the degree to which an independent covariate will 

vary that is not explained by the other independent factors [24].  The reciprocal of its 

value is the VIF, which is a measure of how much multicollinearity between covariates 

has affected the inflation of the variance of each coefficient [26]. A regression model with 

explanatory variables, CCF and MINP_thrshld, was created with outcome MACE.  The 

VIF and TOL between the two factors were 0.98 and 1.02, respectively. Despite this low 

association between the two covariates for this dataset, we decided not to include CCF in 

the prediction model to agree with the literature found.   
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4.6 Determining a Prediction Model for MACE  

For more of a “birds-eye view” of the logistic regression analysis performed in 

this thesis, a breakdown is provided in Table 4.6.1 (Appendix E) to better envision the 

processes that took place and their associated variables.   

A total of five SLR models (Models A1-A5) were first created to determine the 

most parsimonious model, with details provided in Table 4.6.2 (Appendix E).  We used 

the Akaike information criteria (AIC) and the area under the ROC curve (AUC) as the 

goodness-of-fit statistics; where the lower the AIC and the higher the AUC, the better a 

model fits our data. The ORs and corresponding p-values were also used to assess the 

association of each covariate with MACE.   We begin by comparing Model A1 and A2 to 

draw comparisons between ROC_thrshld and MINP_thrshld.   

At a first glance at Table 4.6.2 (Appendix E), we can see that there are no major 

differences between Model A1 and A2.  A closer look shows MINP_thrshld as not only 

slightly improving the model fit, but also strengthening the association between the other 

prognostic factors and MACE.  The AIC is lower, AUC is higher, and the ORs of each 

covariate are higher in Model A2 than in Model A1.  With this slight improvement, we 

decided to continue our SLR analysis with MINP_thrshld instead of ROC_thrshld.  We 

explore the inclusion of AGE_thrshld, HIGH_CREAT, and Hx_IHD individually in 

Models A3, A4, and A5. From assessing the p-values in each of these models, we see that 

none of these additional covariates are statistically significant  (α=0.05).  We can now 

conclude that Model A2 is our final model with prognostic factors MINP_thrshld, 

SURGERY_TYPE, and DIABETES.   
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4.7 Results of Internal Validation Analysis with Bootstrapping 

Once our final model was determined, internal validation was performed to assess 

its accuracy in discriminating patients into high and low risk groups of MACE, within 30 

days after a noncardiac vascular surgery.  To begin, we implemented a bootstrapping 

method to generate a total of 1000 samples, each with a size of 843 individuals (Study 5 

and SURGERY_TYPE=2 continued to be excluded). We then performed SLR on each of 

the 1000 samples, using covariates from Model A2, and recorded the average of the 

results under Model F.  The average of the ORs for each covariate were recorded in Table 

4.6.3 (Appendix E), under Internal Validation Analysis, along with 95%CI and p-values.  

From here, the bootstrapped ORs, 95% CIs, and p-values are very close to those of the 

original model, indicating the regressors are statistically significant and the model is 

accurate against other samples.  The average of the goodness-of-fit statistic, AUC, was 

also calculated (Table 4.8.1, Appendix E) and also very similar to the AUC of Model A2.  

Overall, Model F produces close results to Model A2.   

 

4.8 Results of Sensitivity Analysis 

As in any meta-analysis, clustering effects can always arise and affect one’s 

analysis.  To assess the robustness of Model A2 against such effects, we made 

comparisons between two different cluster-specific methods, MELR (Model B) and GEE 

(Model C).  The details are presented in the form of ORs, 95% CIs, and p-values in Table 

4.6.3 (Appendix E).   

ORs were used to determine the effectiveness and association of each predictor 

and MACE in each model.  The high OR for MINP_thrshld agrees with the literature [1, 

16-19] that BNP and NTproBNP are important biomarkers of MACE.  The 95% CIs for 



  33

Models B and C are larger than for Model A2 as they both take into account clustering 

effects.  Overall, there is some variation in the ORs, however the association of each 

effect to MACE is relatively close.  The p-values have indicated that the significance of 

DIABETES may be subject to clustering effects, with a p-value>0.05 for both Model B 

and C.  Figure 4.6.4 (Appendix E) displays a forest plot corresponding to the results in 

Table 4.6.3(Appendix E).  This plot illustrates the variation in ORs between the models 

by each covariate. From here, it can be seen that the confidence intervals of Models B 

and C for DIABETES intersect the vertical line, the line of no effect, also implying that 

this factor is not significant (α=0.05).  The MELR and GEE methods identify the 

existence of clustering effects and the influence on DIABETES in Model A2.  Since our 

final model, an SLR model, assumes homogeneity across both the patient and the study 

level, it identified DIABETES as a significant factor.   

An ROC curve was created for Model B and the AUC of 0.776 is recorded in 

Table 4.7.1 (Appendix E).  Despite clustering effects and DIABETES not being 

significant, there is minimal impact on the fit of the model with an AUC for Model A2 as 

0.777.  

 

4.9 The Point System 

A scoring system was developed using the estimates from Model A2 for risk 

factors MINP_thrshld, DIABETES and SURGERY_TYPE.  The final SLR model 

possessed baseline levels of (i) less than the NP (BNP<115.57pg/mL or 

NTproBNP<241.7pg/mL) thresholds, (ii) infrainguinal vascular surgery, and (iii) no 

diabetes.  Details of the formation of the point system are presented in Tables 4.9.1-4.9.3 
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(Appendix E).  Constant “B” was set as the lowest regression coefficient (0.7262) and 

represents the number of regression units relating to a single point [7].  As the different 

point totals were gathered, ranging from 0 to 5, their associated risks were calculated 

using (6) and recorded in Table 4.9.3 (Appendix E).  

 

4.10 Results of Secondary Analysis  

As previously mentioned, the data used for this thesis is based on patients who 

have undergone vascular surgery.  As all-cause mortality, cardiac death, and non-fatal MI 

are all cardiovascular related outcomes; the final covariates in Model A2 were used to 

produce prediction models for each. Our sensitivity analysis exposed clustering effects 

among our data and so MELR was used to perform this secondary analysis.  DIABETES 

was removed, as it was not a significant variable (α=0.05) in any of the three models.  

Details of the final models in the form of AUC, ORs, 95% CIs and p-values are 

displayed in Table 4.10.1 (Appendix F), with a forest plot of these ORs and 95% CIs in 

Figure 4.10.1 (Appendix F).  The high ORs and low p-values of MINP_thrshld indicate 

that it is also a significant covariate for these three outcomes.  The range in ORs of 

SURGERY_TYPE is consistent with the OR from Models A2 (with for MACE).  It is not, 

however, statistically significant for a cardiac death outcome.  The AUCs of each model 

(Models G-I) are greater than 70%, demonstrating a moderate level of goodness-of-fit.   

 

 

Chapter 5  
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Discussions 
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5.1 Summary of Key Findings  

The purpose of this individual patient data meta-analysis was to determine the 

optimal NP thresholds and create a parsimonious statistical model for the prediction of 

MACE, within 30 days after a vascular surgery. The minimum p-value method identified 

a BNP cutpoint of 115.57pg/mL and an NTproBNP cutpoint of 241.7pg/mL. In 

comparison to Rodseth’s ROC curve approach, this was a minimal difference of 

<0.5pg/mL between BNP thresholds and was a slightly lower NTproBNP cutpoint.  

Overall, there were no major differences in results between the two methods for 

dichotomizing continuous variables.  The NP cutpoints were very similar and possessed 

close sensitivity, specificity, and accuracy levels.   

 SLR was set as the primary type of logistic regression analysis.  It was consistent 

with Rodseth’s methods and allowed for easy comparisons in threshold effects between 

the minimum p-value method and the ROC curve approach.  Assessment of each model 

(Models A1-A5) was conducted using ORs, 95% CIs, p-values to measure the strength of 

association between each covariate and MACE.  AUC and AIC statistics were used to 

determine the goodness-of-fit of each model.  It was concluded that MINP_thrshld fit the 

SLR models slightly better than ROC_thrshld. With such close measures, it was difficult 

to select one method as more optimal than the other.  With this being said, we continued 

with our final prediction model of MACE as Model A2, which contained prognostic 

factors MINP_thrshld (OR: 8.5, 95% CI: (5.03, 14.41)), SURGERY_TYPE (OR:2.6, 

95% CI: (1.40, 1.70)) and DIABETES (OR: 2.5, 95%CI: (1.15, 3.71).  This model was 

then validated using bootstrap samples.  

 After assessing Models F and A2, the ORs and p-values indicated that 

MINP_thrshld was strongly associated with the outcome, MACE, and confirmed 
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SURGERY_TYPE and DIABETES were key covariates.  Based on their AUCs, they 

were also able to produce a very close goodness-of-fit level.   

 As our data were subject to clustering effects from studies and patients in this 

individual patient data meta-analysis, we explored Model A2’s sensitivity using MELR 

and GEE.  Slight variations in estimates and ORs were expected between the models 

since Models B and C accounted for clustering effects, while Model A2 did not.  

Sensitivity analysis of these models suggested that clustering effects did exist among the 

data and affected the influence of DIABETES in our final model.  In other words, since 

Model A2 assumes homogeneity within and across studies, DIABETES appeared as 

statistically significant (α=0.05), while our MELR and GEE models suggested otherwise.  

However, upon comparison of AUC measures between the MELR and SLR models, there 

was minimal difference (0.1%) in their goodness of fit.    

The prognostic factors finalized in Model A2 were applied to each secondary 

outcome, as they are all cardiovascular-related events. Table 4.10.2 (Appendix F) 

displays a combined 2x2 contingency table for each secondary outcome and 

MINP_thrshld while Table 4.10.3 (Appendix F) provides details of the sensitivity, 

specificity, and accuracy measures.  These tables suggest that MINP_thrshld does not 

appear to be an accurate discriminant of all-cause mortality, cardiac death, and non-fatal 

MI.  The sensitivity and specificity for each outcome indicate that the NP thresholds, 

which make up indicator variable MINP_thrshld, are too low.   

Overall, the significance level of MINP_thrshld on each outcome is very high 

(p<0.0001).  MELR was used for our secondary analysis to account for the clustering 

effects in our data. DIABETES was not significant in any of the outcomes, including 

MACE.  The ORs and p-values in Table 4.10.1 (Appendix F) suggest SURGERY_TYPE 
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as having a similar effect on the secondary outcomes as it did on MACE, except for 

cardiac death where it is not statistically significant.  Further research needs to be 

conducted, alongside the inclusion of other clinically and statistically significant 

prognostic factors, to determine the best-fit model for each secondary outcome.   

 

5.2 Assessing the Impact of Study Quality  

 A meta-analysis is the synthesis of results from different studies to explore patterns 

or relationships that may arise in a larger, combined study than in a smaller individual 

one.   The more diverse a merged dataset is, the more difficult it becomes to make 

comparisons and draw valid conclusions. To avoid this issue, we assessed the study 

quality by examining the heterogeneity among the six studies.  In a meta-analysis with 

individual patient-data from different centers, a multi-level structure is formed where 

correlation can arise among observations within a center and between centers.  Mixed 

effects logistic regression was performed during our sensitivity analysis with STUDY as 

the random effect, and MINP_thrshld, SURGERY_TYPE, and DIABETES as the fixed 

effects.  We can assess the effect size of the STUDY variable to determine the 

heterogeneity that exists in our combined dataset.  With an estimate of 0.3749, we found 

that some heterogeneity does exist among the data, which explains the variation in the 

significance of the DIABETES variable between models.  

 

 Another issue that may arise in model formation is multicollinearity. This occurs 

when there exists a strong, linear relationship among covariates [26].  High correlations 

between explanatory variables can result in unstable estimates, larger standard errors, and 

misleading results in determining which variables are statistically significant.  We 
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assessed possible multicollinearity among the variables in Models A1-A5 using PROC 

REG in SAS 9.3.  Since multicollinearity arises among prognostic factors and does not 

include the response variable, PROC REG in SAS 9.3 can still be used [26].  We set a 

VIF measure of greater than 10 and TOL level of less than 0.01, for each variable, as the 

indicators of high multicollinearity [26].  In this study, the TOL for each explanatory 

variable in Models A1-A5 was greater than or equal to 0.9 while the VIFs were found to 

be less than 1.2, suggesting that multicollinearity among the final covariates was low.   

 

5.3 Comparison of Findings with Similar Works  

With 200 million noncardiac surgeries occurring annually all over the world, pre-

operative BNP and NTproBNP have been identified as having clinical significance in risk 

stratification of patients [39].  Considerable research has been performed on the 

relationship between elevated pre-operative BNP and NTproBNP concentration levels 

and post-operative MACE [1, 12, 40].  The main hurdle in using these NPs as prognostic 

factors is in defining thresholds that classify patients into low and high-risk categories of 

post-operative MACE.  What is considered a cutpoint for one type of surgical procedure 

may not be the same for another. 

Cardiac troponin has been found to determine post-operative predictions of 

mortality, both short- and long-term after vascular surgery [44, 47].  However, to improve 

perioperative management, pre-operative assessment is very useful.  A meta-analysis was 

performed to determine which of six different pre-operative tests was the most accurate in 

predicting a post-operative MACE, within 30 days for vascular surgery patients.  

Ambulatory electrocardiography (ECG), exercise radionuclide ventriculography, 
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myocardial perfusion scintigraphy, dipyridamole stress echocardiography and 

dobutamine stress echocardiography (DSE), were all evaluated and it was concluded that 

DSE provided more precise predictions [45].  Another study suggested pre-operative 

BNP levels was just as, if not more, predictive as dobutamine stress echocardiography 

[12].  The advantages of using BNP and NTproBNP levels are the cost-effectiveness, 

time-efficiency, and ease in measuring their concentration levels from a simple blood test.   

The minimum p-value method is a common systematic method in determining 

cutpoints of continuous, prognostic factors.  The primary disadvantage of this approach 

lays in the issue of the type I error rate [46], which arises as a result of multiple testing.  

The ‘optimal’ cutpoint, which is based on the lowest p-value among the assessed 

potential thresholds, may lead to what appears to be a highly relevant prognostic 

dichotomous variable.  This conclusion, however, may be misguided due to the inflation 

of the type I error rate.  Our research implements the three correction formulae to assist in 

determining the accuracy of our BNP and NTproBNP cutpoints.  Other methods that 

utilize this maximum chi-square method to determine thresholds are the two-fold cross-

validation approach [44] and the split sample approach [43].   

The minimum p-value method was applied to a study with an outcome of breast 

cancer and continuous predictor variable, sun protection factor (commonly known as 

SPF).  It demonstrated that cutpoints may vary based on the assay and one particular 

threshold cannot be considered “optimal”.  This meta-analysis evaluates the accuracy of 

the cutpoints using the internal validation via bootstrapping.  The predictive ability of 

Model F was very similar to Model A2.   
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5.4 Key Limitations of the Study and Further Research  

 As BNP and NTproBNP have been found to be significant biomarkers in predicting 

MACE for vascular surgery patients, one study has found that NTproBNP is possibly a 

better indicator than BNP for outcomes such as mortality, morbidity, hospitalization due 

to heart failure, left ventricular abnormality or impairment, and coronary artery disease. 

Its more stable composition suggests it to possibly be less sensitive to sudden 

haemodynamic shifts [11, 12].  With only one study (n=218) containing pre-operative 

NTproBNP concentration levels and only 19 (8.72%) of these individuals who experience 

MACE, the thresholds determined for NTproBNP could be misleading.  Only 75 of 850 

(8.82%) of individuals in total experienced MACE.  The small sample size and low 

number of individuals with an outcome of MACE limit the results of this analysis.  

Further research needs to be performed on NTproBNP with more outcomes of MACE to 

ensure the robustness of the determined threshold value.   

 Another limitation of this meta-analysis is that it contained information on either 

BNP or NTproBNP.  There were no studies that provided data on both NP concentration 

levels.  Exploration in studies containing information on both pre-operative NP 

concentration levels will be useful in determining which is a better predictor (BNP or 

NTproBNP) or if both, together, will improve model accuracy.  

 Thirdly, a study has identified the level of renal dysfunction (HIGH_CREAT) as 

being highly correlated with NTproBNP concentration levels -- the more severe a 

patient’s renal function is, the lower the specificity is of NTproBNP for adverse cardiac 

outcomes [12].  This thesis did not explore the effects of HIGH_CREAT and 

MINP_thrshld together nor did it assess the interaction of the two variables in the model. 

Further research could also be performed to determine how large of an impact the 
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association between HIGH_CREAT and NTproBNP has on the final prediction outcome 

of MACE.   

 Also, as in many analyses the issue of measurement error may arise.  Since this is a 

meta-analysis, different centers may have measured and recorded BNP and NTproBNP 

concentration levels differently than others.   

 

5.5 Implications for Clinical Practice  

 Appropriate perioperative preventative measures can be taken with the ability to 

determine immediate post-surgical adverse events.  Pre-operative risk stratification of 

patients for MACE has many advantages.  Firstly, both patients and physicians are more 

aware of the risks prior to surgery.  They can make better-informed decisions based on 

the urgency or necessity of the operation, the benefits versus the risks to be taken, and 

what type of post-operative care is needed.  With risk stratification, doctors can focus 

more attention on the high-risk patients and decide if alternative methods or 

supplementary interventions will improve the post-operative health of these individuals.   

 Another key advantage of our final model is that it only incorporates BNP or 

NTproBNP, the type of vascular surgery to be undergone, and whether or not a patient 

has diabetes mellitus. The only measurements to be taken are for NP concentration levels, 

which can be obtained from a simple blood test.  Alongside this, the type of vascular 

surgery to be undergone is already known and a clinician can easily determine the 

diabetes status of a patient.  With patient information that is so easily obtained, without 

any major machines to be used, this model is at an advantage.  The affordability and 

accessibility of tools, paired with the simplicity of determining an individual patient’s 

point total, allows for an easy assessment of pre-operative risk using the scoring system 
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developed in this thesis.  Its systematic ease will help improve clinical practice in pre-

operative risk stratification of post-operative MACE.   

Based on our statistical findings, our final model is not robust since the 

significance of DIABETES is sensitive to clustering effects.  Since this is a meta-analysis, 

we need to explore a larger dataset with more information on NTproBNP and also discuss 

with clinicians about the importance of DIABETES in the prediction model.  The area 

under the ROC curve does imply that Model A2 is a good fit.  Until a larger dataset is 

obtained, our final model can be explored to see if it improves risk stratification of 

patients. Although it cannot be concluded that this is the optimal prediction model of 

MACE, it is quite beneficial in its ease of classifying patients.  
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Chapter 6  

 

Conclusions 
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6.1 Conclusions 

As previously mentioned, several studies have identified the association of 

elevated levels of pre-operative BNP and NTproBNP concentration levels with major 

adverse cardiac events, such as non-fatal MI and cardiac death.  These NPs were 

examined and their cutpoints were determined for MACE within 30 days after vascular 

surgery.  We assessed the prognostic factors in prediction models for this outcome and 

secondary outcomes all-cause mortality, cardiac death, and non-fatal MI within 30 days 

after vascular surgery.  Statistically, we explored the minimum p-value method and a 

variety of modeling approaches including SLR, MELR, and GEE.  

 

6.1.1 Statistical Conclusions  

The systematic procedure of the minimum p-value method highlighted a BNP 

cutpoint of 115.57pg/mL and 241.7pg/mL for NTproBNP.  The SLR model assumed 

homogeneity between and within studies for this meta-analysis.  The fit statistics 

exhibited the final model as a good fit with MINP_thrshld, the type of surgery, and 

diabetes mellitus as the statistically significant prognostic factors of MACE.   

 By performing internal validation using 1000 bootstrap re-samples, the average 

ORs of the SLR models created were similar to that of the final model.  Comparisons of 

the ORs, p-values, and AUC for our final model were also made with MELR and GEE 

models.  It was found that DIABETES was not a statistically significant covariate when 

clustering effects were accounted for. The MELR model did, however, produce similar 
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AUC measures as our final SLR model.  We concluded Model A2, had a modest fit of the 

data and was sensitive to methods that accounted for clustering effects. 

  

6.1.2 Clinical Conclusions 

Our first clinical goal was to determine optimal cutpoints for BNP and NTproBNP.  

We were successfully able to dichotomize BNP and NTproBNP using the minimum p-

value approach.  Since our results were similar to a previous ROC curve method that had 

already been performed on our dataset, it was difficult to determine which cutpoints were 

the most optimal.  Further research using a larger dataset with more NTproBNP data will 

assist in determining the most optimal cutpoints.  The ORs, p-values, and fit statistics 

identify MINP_thrshld, SURGERY_TYPE, and DIABETES as the key covariates in 

predicting MACE within 30 days after vascular surgery.  Using these variables a point 

system was created, ranging from 0 (2.5% risk) to 5 (49% risk).  This scoring system 

provides ease for clinicians and patients to determine the risks of undergoing their 

surgery and improves their decision-making process and perioperative management.   
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Table 1.1.1: Description of Acronyms 
 

Variable/ Term Description 
AGE Patient’s age prior to surgery 

AGE_thrshld Age threshold of 65 years old 

AIC Akaike Information Criteria 

AUC Area under the ROC curve; also referred to as the c-statistic 

BNP B-type natriuretic peptide concentration level (in pg/mL) 

BNP_thrshld Final BNP cutpoint determined by the minimum p-value method 

CCF Congestive cardiac failure 

CI Confidence interval 

df Degrees of freedom 

GEE Generalized estimating equations 

MACE Major adverse cardiac event 

MELR Mixed effects logistic regression 

MI Myocardial infarction 

NLMIXED Nonlinear mixed models 

NP Natriuretic peptides: BNP and NTproBNP 

NTproBNP N-terminal pro-B-type natriuretic peptide  

NTproBNP_thrshld Final NTproBNP cutpoint determined by the minimum p-value method 

OR Odds ratio 

p p-value 

P.Chi Pearson Chi Square statistic 

QADAS Quality assessment of diagnostic accuracy studies 
RCRI Revised cardiac risk index 

ROC Receiver operator characteristic curve 

RR Relative risk 

SAS Statistical analysis software 

SD Standard deviation 

SLR Simple logistic regression (using MINP_thrshld for NP cutpoints) 

SLR_RODSETH Simple logistic regression (using ROC_thrshld for NP cutpoints) 

TOL Tolerance level 

VIF Variance inflation factor 
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  Table 1.1.2: Description of Variables 
 
Variable Type of Variable Description 

AGE Continuous Patient’s prior to surgery 

AGE_thrshld Binary Age threshold of 65 
0=Age less than 65 
1=Age greater than or equal to 65 

BNP Continuous Measure of patient’s pre-operative B-type 
natriuretic peptide concentration level (in 
pg/mL) 

CCF Binary Patient has experienced congestive cardiac 
failure 
0 = no, 1 = yes 

CEREBRO_ 
VASCULAR_DISEASE 

Binary Patient has experienced cerebrovascular 
disease 
0 = no, 1 = yes 

DIABETES Binary Patient has diabetes mellitus 
0 = no, 1 = yes 

HIGH_CREAT Binary Patient has experienced renal failure 
(with creatinine levels>2mg/dl) 
0 = no, 1 = yes 

Hx_IHD Binary Patient has a history of coronary artery 
disease 
0 = no, 1 = yes 

MACE Binary Major adverse cardiac event 
0= no, 1 = yes 

MINP_thrshld Binary Patient NP levels exceed respective threshold 
values; thresholds determined by minimum p-
value method 
0 = no, 1 = yes 

ROC_thrshld Binary Patient NP levels exceed respective threshold 
values; thresholds determined by ROC curve 
method [1] 
0 = no, 1 = yes 

STUDY Nominal Identifies which study a patient’s information 
was obtained from 
 
1= study with BNP data [16] 
2= study with BNP data [17] 
3= study with BNP data [18] 
4= study with BNP data [19] 
5= study with BNP data [20] 
6= study with NTproBNP data [21] 
 

SURGERY_TYPE Nominal Identifies the type of vascular surgery patient 
has undergone (infrainguinal, aortoiliac, and 
not specified) 
0=Infrainguinal  
1= Aortoiliac  
2=not specified* 

*Patients with SURGERY_TYPE=2 are only used for the minimum p-value method to determine thresholds 
for BNP and NTproBNP; they are not included in any regression analysis. 
**NP levels= pre-operative BNP and NTproBNP concentration levels 
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Table 1.1.3: Description of Outcomes 

 
Outcome Description 

MACE -Major Adverse Cardiac Event 
-Composite endpoint of cardiac death and non-fatal 
myocardial infarction within 30 days after vascular 
surgery. 
 
0= no, 1 = yes 

All-Cause Mortality -Patient experiences cardiac death within 30 days after 
vascular surgery 
 
0= no, 1 = yes 

Cardiac Death -Patient experiences cardiac death within 30 days after 
vascular surgery 
 
0= no, 1 = yes 

Non-fatal MI -Patient experiences a non-fatal myocardial infarction 
within 30 days after vascular surgery 
 
0= no, 1 = yes 
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Table 1.2.1: Summary of Primary Objectives and Analysis 

*All variables are defined as covariates for MACE among literature; variables identified with ‘�’ are 
statistically significant predictors under Rodseth’s analysis [1]; MACE=major adverse cardiac event; 
SLR=simple logistic regression; GEE= generalized estimating equations; MELR=mixed effects logistic 
regression 
**1000 bootstrap samples were generated using simple random sampling with replacement on the updated 
dataset with four studies containing BNP data and 1 study with NTproBNP information.  Study 5 [20] and 
SURGERY_TYPE=2 patients were not included in these bootstrap samples.   

 

CLINICAL OBJECTIVE:   
1. Determine optimal cutpoints for BNP and NTproBNP in predicting MACE. 
STATISTICAL OBJECTIVE:  
1. Employ the minimum p-value method to dichotomize NP levels and compare with the ROC curve approach 

PROCESS OUTCOME PREDICTORS STUDIES  SIZE OF DATA METHODS  

Determine threshold 
values for BNP and 
NTproBNP 

MACE 
(Binary) 

- BNP 
- NTproBNP 

BNP: 5 
NTproBNP: 1 
 
Total: 6 

BNP: 632  
NTproBNP: 218 
 
Total: 850 

Minimum 
P-Value 
Method 
 
 

CLINICAL OBJECTIVE:  
2. Determine a prediction model for predicting MACE within 30 days after a vascular surgery. 
STATISTICAL OBJECTIVE:  
2.  Determine and validate a prediction model with a MACE outcome 
3.  Examine the robustness final prediction model 

PROCESS OUTCOME PREDICTORS STUDIES  SIZE OF DATA METHODS  

STEP 1: Create a 
prediction model 
based on covariates 
used in Rodseth’s 
final model [1]. 

MACE 
(Binary) 

-MINP_THRSHLD 
-SURGERY_TYPE* 
-DIABETES* 
 

BNP: 4 
NTproBNP: 1 
Total: 5 

BNP: 625 
NTproBNP: 218 
Total: 843 

SLR 

STEP 2: Compare 
results from 
Minimum p-value 
method and ROC 
curve approach. 

MACE 
(Binary) 

-MINP_THRSHLD 
-SURGERY_TYPE� 
- DIABETES� 
-ROC_THRSHLD� 

BNP: 4 
NTproBNP: 1 
Total: 5 

BNP: 625 
NTproBNP: 218 
Total: 843 

SLR 
 

STEP 3: Determine 
if inclusion/ removal 
of any covariates 
will create a better-
fit model. 

MACE 
(Binary) 

-MINP_THRSHLD 
-SURGERY_TYPE� 
-DIABETES� 
-AGE_THRSHLD 
-HIGH_CREAT 
-CCF 
-Hx_IHD 
-CEREBRO_ 
VASCULAR_ DISEASE 

BNP: 4 
NTproBNP: 1 
Total: 5 

BNP: 625 
NTproBNP: 218 
Total: 843 

SLR 
 

STEP 4: Validate 
model  

MACE 
(Binary) 

-MINP_THRSHLD 
-SURGERY_TYPE� 
-DIABETES 

** 
BNP: 624 607 
NTproBNP: 218 393 
Total: 843 000 

SLR 

STEP 5: Determine 
sensitivity of final 
model  

MACE 
(Binary) 

-MINP_THRSHLD 
-SURGERY_TYPE� 
-DIABETES� 
-STUDY 

BNP: 4 
NTproBNP: 1 
Total: 5 

BNP: 625 
NTproBNP: 218 
 
Total: 843 

MELR 
GEE 
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Table 1.2.2: Summary of Secondary Objectives and Analysis 

*Variables listed in the above table were considered as covariates for each secondary 
outcome as they are all cardiovascular-related events; covariates with a ‘ �’ are statistically 
significant in our final model for predicting MACE and will be the only factors used in this 
secondary analysis.  MELR=mixed effects logistic regression; STUDY will be the random 
effect in each MELR model.  

 
  

 Secondary Objectives: 
1. Determine individual prediction models for outcomes: all-cause mortality, cardiac death, non-fatal 
MI within 30 days of vascular surgery 

OBJECTIVE OUTCOME PREDICTORS STUDIES  SIZE OF DATA METHODS 

To determine a 
model for predicting 
all-cause mortality 
within 30 days of 
vascular surgery 

All-cause 
mortality 
(Binary) 

 

- MINP_THRSHLD � 

-SURGERY_TYPE � 

- DIABETES� 
- STUDY 
-AGE_THRSHLD 
-HIGH_CREAT 
-CCF 
-Hx_IHD 
- CEREBRO_ 
VASCULAR_DISEASE 

BNP: 4 
NTproBNP: 1 
 
Total: 5 

BNP: 625 
NTproBNP: 218 
 
Total: 843 

MELR 
 

To determine a 
model for predicting 
cardiac death within 
30 days of vascular 
surgery 

Cardiac 
death 

(Binary) 
 

- MINP_THRSHLD � 

-SURGERY_TYPE � 

- DIABETES� 
- STUDY 
-AGE_THRSHLD 
-HIGH_CREAT 
-CCF 
-Hx_IHD 
- CEREBRO_ 
VASCULAR_ DISEASE  

BNP: 4 
NTproBNP: 1 
 
Total: 5 
 
 

BNP: 625 
NTproBNP: 218 
 
Total: 843 

MELR 
 

To determine a 
model for predicting  
non-fatal MI within 
30 days of vascular 
surgery 

Non-fatal 
MI 

(Binary) 

- MINP_THRSHLD � 

-SURGERY_TYPE � 

- DIABETES� 
- STUDY 
-AGE_THRSHLD 
-HIGH_CREAT 
-CCF 
-Hx_IHD 
- CEREBRO_ 
VASCULAR_ DISEASE 

BNP: 625 
NTproBNP: 
218 
 
Total: 843 
 

BNP: 625 
NTproBNP: 218 
 
Total: 843 

MELR 
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Appendix B  
 
 
Tables of Patient Characteristics for 
Each Outcome 
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Table 2.1.1: Patient Characteristics for MACE 
 

*yrs=years; SD=Standard Deviation; P. Chi=Pearson chi-square test; RCRI=Revised Cardiac 
Risk Index 
 

  

Variable 
Total 

(n=850) 
MACE 
 (n=75) 

NO MACE 
 (n=775) 

P-Value 
Test 

Statistic 
Test 

Age (yrs): mean(SD) 65.4 (12.1) 69.4 (8.8) 65.0 (12.3) 0.002 3.07 T-Test 

Sex (men): n(%) 391 (46.0) 36 (48.0) 355(45.8) 0.696 0.15 P. Chi 

+missing  218 (26.0)      
Type of Vascular Surgery: n(%)    0.229 2.95 P. Chi 

a) Infrainguinal 629 (74.0) 50 (66.7) 579 (74.7)    

b) Aortoiliac 217 (25.5) 25 (33.3) 192 (24.8)    

c) Not specified 4 (0.5) 0 4 (0.5)    

RCRI Class: n(%)    0.002 12.50 P. Chi 

a) Low (RCRI 0) 320 (37.6)  19 (25.3) 301 (38.8)     

b) Intermediate  (RCRI 1 or 2) 476 (56.0) 45 (60.0) 431 (55.6)     

c) High (RCRI 3)  54 (6.4) 11 (14.7) 43 (5.5)    

RCRI Components: n(%)       

Coronary artery disease 327 (38.5)  42 (56.0) 285 (36.8) 0.001 10.68 P. Chi 

Congestive heart failure  64 (7.5) 14 (18.7) 50 (6.5) <0.001 14.65 P. Chi 

Cerebrovascular disease 145 (17.1) 8 (10.7) 137 (17.7)  0.123 2.38 P. Chi 

Diabetes mellitus  204 (24.0)  25 (33.3) 179 (23.1) 0.048 3.93 P. Chi 

Creatinine (≥2 mg/dl) 28 (3.3) 6 (8.0) 22 (2.8) 0.017 5.72 P. Chi 
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  Table 2.1.2: Patient Characteristics for All-Cause Mortality  

 

Variable 
Total  

(n=850) 

All-Cause 
Mortality 

(n=30) 

No 
All-Cause 
Mortality 
(n=820) 

P-Value 
Test 

Statistic 
Test 

Age (yrs): mean(SD) 65.4 (12.1) 69.1 (11.4)   65.2 (12.1) 0.0809  1.75 T-Test 

Sex (men): n(%) 391 (46.0) 22 (29.3) 369 (47.6) 0.112  2.52 P. Chi 

+missing 218 (26)           

Type of Vascular Surgery: n(%)    0.307* 2.14 P. Chi 

a) Infrainguinal 629 (74) 19 (25.3) 610 (78.7)       

b) Aortoiliac 217 (25.5) 11 (14.7) 206 (26.6)       

c) Not specified 4 (0.5) 0 4 (0.5)       

RCRI Class: n(%)    0.00150 13.05 P. Chi 

a) Low (RCRI 0) 320 (37.6) 5 (6.7) 315 (40.6)       

b) Intermediate       
   (RCRI 1 or 2) 

476 (56.0) 19 (25.3) 457 (59.0) 
    

  

c) High (RCRI 3) 54 (6.4) 6 (8.0) 48 (6.2)       

RCRI Components: n(%)          

Coronary artery disease 327 (38.5)  15 (20.0) 312 (40.3) 0.186 1.75 P. Chi 

Congestive heart failure  64 (7.5) 7 (9.3) 57 (7.4) 0.005* 11.16 P. Chi 

Cerebrovascular disease 145 (17.1) 5 (6.7) 140 (18.1) 0.954 0.0034 P. Chi 

Diabetes mellitus  204 (24.0)  12 (16.0) 192 (24.8) 0.0367 4.36 P. Chi 

Creatinine (≥2 mg/dl) 28 (3.3) 5 (6.7) 23 (3.0) 0.0022* 17.46 P. Chi 

‘*’Variables with 25% of the cells having expected counts less than 5. (Asymptotic) Chi-Square 
may not be a valid test, and so the Exact p-value for the chi-square statistics is used.  
**SD=Standard Deviation; P. Chi=Pearson chi-square test; RCRI=Revised Cardiac Risk Index 
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Table 2.1.3: Patient Characteristics for Cardiac Death  
 

‘*’Variables with 25% of the cells having expected counts less than 5. (Asymptotic) Chi-Square 
may not be a valid test, and so the Exact p-value for the chi-square statistics is used.  
**SD=Standard Deviation; P. Chi=Pearson chi-square test; RCRI=Revised Cardiac Risk Index 

 

Variable 
Total 

(n=850) 

Cardiac 
Death 
(n=75) 

NO Cardiac 
Death 

(n=775) 
P-Value 

Test 
Statistic 

Test 

Age (yrs): mean(SD) 
65.4 

(12.1) 
71.5 (8.8) 65.2 (12.1) 0.0254  2.24 T-Test 

Sex (men): n(%) 391 (46.0) 13 (17.3) 378 (48.8) 0.359  0.84 P. Chi 

+missing 218 (26.0)           

Type of Vascular Surgery: n(%)    0.350*  1.37 P. Chi 

a) Infrainguinal 629 (74.0) 12 (16.0) 617 (79.6)       

b) Aortoiliac 217 (25.5) 7 (9.3) 210 (27.1)       

c) Not specified 4 (0.5) 0 4 (0.5)       

RCRI Class: n(%)    0.0098  9.25  P. Chi 

a) Low (RCRI 0) 320 (37.6)  3 (4.0) 317 (40.9)       

b) Intermediate       
   (RCRI 1 or 2) 

476 (56.0) 12 (16) 464 (59.9)       

c) High (RCRI 3)  54 (6.4) 4 (5.3) 50 (6.5)       

RCRI Components: n(%)          

Coronary artery disease 327 (38.5)  11 (14.7) 316 (40.8) 0.0784  3.098  P. Chi 

Congestive heart failure  64 (7.5) 5 (6.7) 59 (7.6) 0.0105*  9.851  P. Chi 

Cerebrovascular disease 145 (17.1) 2 (2.7) 143 (18.5) 0.556*  0.586  P. Chi 

Diabetes mellitus  204 (24.0)  7 (9.3) 197 (25.4) 0.274*  1.757  P. Chi 

Creatinine (≥2 mg/dl) 28 (3.3) 4 (5.3) 24 (3.1) 0.0026*  19.25  P. Chi 



  67

Table 2.1.4: Patient Characteristics for Non-Fatal MI 
 

Variable 
Total  

(n=850) 

Non-Fatal 
MI 

(n=75) 

NO Non-
Fatal MI 
(n=775) 

P-Value 
Test 

Statistic 
Test 

Age (yrs): mean(SD) 65.4 (12.1) 68.7 (8.7) 65.1 (12.3) 0.0305 2.17 T-Test 

Sex (men): n(%) 391 (46.0) 23 (30.7) 368 (47.5) 0.861  0.031 P. Chi 

+missing 218 (26.0)           

Type of Vascular Surgery: 
n(%)    

0.443*  1.62  P. Chi 

a) Infrainguinal 629 (74.0) 38 (50.7) 591 (76.3)       

b) Aortoiliac 217 (25.5) 18 (24.0) 199 (25.7)       

c) Not specified 4 (0.5) 0 4 (0.5)       

RCRI Class: n(%)    0.0384  4.97  P. Chi 

a) Low (RCRI 0) 320 (37.6)  16 (21.3) 304 (39.2)       

b) Intermediate       
   (RCRI 1 or 2) 476 (56.0) 

33 (44) 443 (57.2) 
    

  

c) High (RCRI 3)  54 (6.4) 7 (9.3) 47 (6.1)       

RCRI Components: n(%)          

Coronary artery disease 327 (38.5)  31 (41.3) 296 (38.2) 0.0072  7.22  P. Chi 

Congestive heart failure  64 (7.5) 9 (12.0) 55 (7.1) 0.0193*  6.28  P. Chi 

Cerebrovascular disease 145 (17.1) 6 (8.0) 139 (17.9) 0.192  1.71  P. Chi 

Diabetes mellitus  204 (24.0)  18 (24.0) 186 (24) 0.140  2.18  P. Chi 

Creatinine (≥2 mg/dl) 28 (3.3) 2 (2.7) 26 (3.4) >0.999*  0.015  P. Chi 

‘*’Variables with 25% of the cells having expected counts less than 5. (Asymptotic) Chi-Square 
may not be a valid test, and so the Exact p-value for the chi-square statistics is used.  
**SD=Standard Deviation; P. Chi=Pearson chi-square test; RCRI=Revised Cardiac Risk Index 
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Appendix C 
 
 
Figures and Flowcharts of Statistical 
Methods 
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Table 3.1.1: Description of Key Methods of Analysis 

 

Method of 
Analysis 

Description 
Statistical Software and 

Procedures 

Minimum P-Value 
Method 

Used to dichotomize 
BNP and NTproBNP and 
to determine thresholds 
for MINP_thrshld with a 
MACE outcome  

-Macros obtained from 
(Glassman & Mazumdar, 
2000). 
-RStudio 0.96.326 

MELR 

Mixed effects logistic 
regression 
 
Random effect=STUDY  

-PROC GLIMMIX  
-SAS 9.3 
 

GEE 
Generalized estimating 
equations 

-PROC GENMOD 
-SAS 9.3 

SLR 
Simple logistic 
regression  

-PROC LOGISTIC 
-SAS 9.3 

*MELR= mixed effects logistic regression; GEE=generalized estimating equations; SLR=simple 
logistic regression 
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Figure 3.1.1: Flow Chart of Determining Threshold Values  
for BNP and NTproBNP 

 
 

OUTCOME      METHOD                 DESCRIPTION 

 
 
 
 
 

Figure 3.1.2: Flow Chart of Primary Analysis 
OUTCOME          METHOD                DESCRIPTION 
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Figure 3.1.3: Flow Chart of Validation Analysis 
 

OUTCOME           METHOD                   DESCRIPTION 

 
 

 
 
 

Figure 3.1.4: Flow Chart of Sensitivity Analysis 
 

OUTCOME                METHOD                            DESCRIPTION 

 
 
 
 
 

Figure 3.1.5: Flow Chart of Secondary Analysis 
 

OUTCOME                METHOD             DESCRIPTION 
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Appendix D 

 
 
Plots and Tables of  
Preliminary Analysis and the  
Minimum P-Value Method 
 
 
 
  



  

Figure 4.2.1: Boxplots of BNP Values
 

 
Figure 4.2.3: Boxplots of NTproBNP 
                     Values 

Figure 4.2.1: Boxplots of BNP Values Figure 4.2.2: Boxplots of BNP Values,          
                      with Outliers Removed

Figure 4.2.3: Boxplots of NTproBNP  
 
Figure 4.2.4: Boxplots of NTproBNP 
                     Values, with Outliers Removed
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Figure 4.2.2: Boxplots of BNP Values,          
with Outliers Removed 

 

Figure 4.2.4: Boxplots of NTproBNP  
Values, with Outliers Removed 



 

Figure 4.2.5: Observed Pre

 
Figure 4.2.6: Observed Pre

 

: Observed Pre-Operative BNP Concentration Levels

Figure 4.2.6: Observed Pre-Operative NTproBNP Concentration Levels
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Operative BNP Concentration Levels 

 

proBNP Concentration Levels 

 



  

Figure 4.2.7: Ideal Relationship between BNP Concentration Levels and MACE

Figure 4.2.8: Actual Relationship betwee

Figure 4.2.9: Actual Relationship between NTp

 

Relationship between BNP Concentration Levels and MACE

 
Relationship between BNP Concentration Levels and MACE

: Actual Relationship between NTproBNP Concentration Levels and 
MACE

 

75

Relationship between BNP Concentration Levels and MACE 

 

n BNP Concentration Levels and MACE 

 
roBNP Concentration Levels and 

 



 

Figure 4.3.1
Corresponding

Figure 4.3.2

 
 
Figure 4.3.3: Potential BNP Threshold Values

Figure 4.3.1: Potential BNP Threshold Values and  
Corresponding Chi-Square Statistics 

 
Figure 4.3.2: Potential BNP Threshold Values and 

 Corresponding P-Values 

: Potential BNP Threshold Values and Corresponding Relative Risk
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Corresponding Relative Risks

 



  

Figure 4.3.4: Potential NTproBNP Threshold Values and 
Corresponding 

Figure 4.3.5: Potential NTproBNP Threshold Values 

 

Figure 4.3.6: Potential NTproBNP Threshold Values and 
Corresponding Relative Risks

: Potential NTproBNP Threshold Values and 
Corresponding Chi-Square Statistics 

 
 

: Potential NTproBNP Threshold Values and 
Corresponding P-Values 

 
: Potential NTproBNP Threshold Values and 
Corresponding Relative Risks 
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: Potential NTproBNP Threshold Values and  

 

and  

 

: Potential NTproBNP Threshold Values and  
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Table 4.3.7: Results of the Minimum P-Value Method 
 

COVARIATE BNP NTproBNP 

Threshold Value 115.57pg/mL 241.7 pg/mL 

Chi-Squared Statistic 88.79 10.98 

Relative Risk 2.09 3.33 

Minimum p-value (Pmin) 4. 39E-21 9.20E-4  

Pms 6.85E-19 0.030 

Palt510, at 5% 1.05E-18 0.030 

Palt510,  at 10% 7.81E-19 0.023 

Pmodbon  <0.0001 0.0001 

Pmin=minimum p-value of the evaluated potential thresholds; Pms, Palt510, Pmodbon= p-value 
adjustment formulas for inflation of the Type I Error Rate; BNP=B-type Natriuretic Peptide; 
NTproBNP=N-Terminal-pro-BNP;  

  



  79

 

Appendix E 
 
 
 
Logistic Regression Analysis and  
Determining Risk Estimates for a 
MACE Outcome 
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Table 4.5.1: Breakdown of Studies and Outcomes 
 

Study 
Included 

Biomarker 
Reference 

No. of 
Patients 

 

 
With 

MACE 
 

n(%) 

With 
All-

Cause 
Mortality 

n(%) 

 
With 

Cardiac 
Death 
n(%) 

With 
Non-
Fatal 

MI 
n(%) 

1 BNP (Bolliger et al., 2009)[16] 133 4(3) 4(3) 2(2) 2(2) 

2 BNP (Biccard et al., 2011)[17] 297 26(9) 10(3) 5(2) 21(7) 

3 BNP (Cuthbertson et al., 2007) [18] 70 2(3) 1(1) 1(1) 1(1) 

4 BNP (Gibson et al., 2004) [19] 129 22(17) 12(9) 9(7) 13(10) 

5 BNP (Leibowitz et al., 2008) [20] 3 2(67) 2(67) 1(33) 1(33) 

6 NTproBNP (Mahla et al.), 2004 [21] 218 19(9) 1(0) 1(0) 18(8) 

*BNP=Pre-operative concentration levels of B-type naturietic peptide; NTproBNP= Pre-operative 
concentration levels of N-terminal pro-B-type natriuretic peptide; MACE=major adverse cardiac 
event; MI=myocardial infarction 
**The percentages calculated for each outcome with MACE, all-cause mortality, cardiac death, 
and non-fatal MI are based on the total number of individuals in each study.   
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Table 4.6.1: Breakdown of Models 

 
Outcome Type of Analysis Model Method Variables 

M
A

C
E

 

 
 
 
 

Primary 
 

 

A1 SLR 
ROC_thrshld, 
SURGERY_TYPE, 
DIABETES 

A2 SLR 
MINP_thrshld, 
SURGERY_TYPE, 
DIABETES 

A3 SLR 

MINP_thrshld, 
SURGERY_TYPE, 
DIABETES, 
AGE_thrshld 

A4 SLR 

MINP_thrshld, 
SURGERY_TYPE, 
DIABETES, 
HIGH_CREAT 

A5 SLR 

MINP_thrshld, 
SURGERY_TYPE, 
DIABETES, 
Hx_IHD 

Sensitivity 
 

B MELR 

MINP_thrshld, 
SURGERY_TYPE, 
DIABETES, 
STUDY 

C GEE 

MINP_thrshld, 
SURGERY_TYPE, 
DIABETES, 
STUDY 

Validation F SLR 
MINP_thrshld, 
SURGERY_TYPE 
DIABETES 

All-Cause Mortality 

Secondary 

G MELR 
MINP_thrshld, 
SURGERY_TYPE 
STUDY 

Cardiac Death H MELR 
MINP_thrshld, 
SURGERY_TYPE 
STUDY 

Non-fatal MI I MELR 
MINP_thrshld, 
SURGERY_TYPE 
STUDY 

*ROC_thrshld=indicator variable of NP thresholds determined by the ROC curve method [1]; 
MINP_thrshld=indicator variable of NP thresholds determined by minimum p-value method; 
SURGERY_TYPE=type of surgery; DIABETES=whether or not the patient has diabetes mellitus; 
AGE_thrshld=if an individual is over 65 years old; HIGH_CREAT= history of renal failure; 
Hx_IHD= history of coronary artery disease; MINP_thrshld** =an indicator variable of the NP 
thresholds determined from the average results of the bootstrap samples; SLR= simple logistic 
regression; MELR=mixed effects logistic regression; GEE=generalized estimating equations 
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Table 4.6.2: Determining a Prediction Model for MACE 

 
*ROC_thrshld=indicator variable of NP thresholds determined by the ROC curve method [1]; 
MINP_thrshld=indicator variable of NP thresholds determined by minimum p-value method; 
SURGERY_TYPE=type of surgery; DIABETES=whether or not patient has diabetes mellitus; 
AGE_thrshld=if an individual is over 65 years old; HIGH_CREAT= history of renal failure; 
Hx_IHD= history of coronary artery disease; 
**OR= Odds Ratio; CI=confidence interval; AUC=Area under the ROC curve; AIC=Akaike 
Information Criteria; P.Chi=Pearson Chi Square; df=degrees of freedom 
***Simple logistic regression was performed to create these models. 

 
  

Model Effect Estimate OR 95% OR CI P-Value AUC AIC 

A1 

Intercept -3.578 -  -  <.0001 0.768 431.63 

ROC_thrshld 2.126 8.4 (4.98,14.11) <.0001 
  

SURGERY_TYPE 0.882 2.4 (1.33, 4.37) 0.0036 
  

DIABETES 0.677 2 (1.10, 3.54) 0.0234   
 

A2 

Intercept -3.668  -   <.0001 0.777 430.16 

MINP_thrshld 2.142 8.5 (5.03, 14.41) <.0001 
  

SURGERY_TYPE 0.930 2.5 (1.40, 4.60) 0.0022 
  

DIABETES 0.726 2.1 (1.15, 3.71) 0.0151   
 

A3 

Intercept -3.799 -  -  <.0001 0.785 431.50 

MINP_thrshld 2.072 7.9 (4.59, 13.76) <.0001 
  

SURGERY_TYPE 0.902 2.5 (1.35, 4.49) 0.0033 
  

DIABETES 0.751 2.1 (1.18, 3.82) 0.0124 
  

AGE_thrshld 0.245 1.3 (0.70, 2.32) 0.4217   
 

A4 

Intercept -3.659 -  -  <.0001 0.777 431.67 

MINP_thrshld 2.119 8.3 (4.90, 14.14) <.0001 
  

SURGERY_TYPE 0.921 2.5 (1.38, 4.57) 0.0025 
  

DIABETES 0.670 2 (1.06, 3.60) 0.0315 
  

HIGH_CREAT 0.389 1.5 (0.50, 4.32) 0.4774   
 

A5 
 

Intercept -3.7886 -  -  <.0001 0.786 430.14 

MINP_thrshld 2.0922 8.1 (4.76, 13.78) <.0001 
  

SURGERY_TYPE 0.8887 2.4 (1.33, 4.43) 0.0037 
  

DIABETES 0.6492 1.9 (1.05, 3.48) 0.0329 
  

Hx_IHD 0.3781 1.5 (0.87, 2.46) 0.1551     



  

Table 4.6.3: Logistic Regression Analysis for MACE

 
 

Figure 4.6.4: Forest Plot of MACE outcome

 

Type of Analysis 

Primary Analysis MODEL A2 

Internal Validation 
Analysis 

MODEL F 

Sensitivity Analysis 

MODEL B 

MODEL C 

3: Logistic Regression Analysis for MACE 

Figure 4.6.4: Forest Plot of MACE outcome 

 

Final Risk Factors 
OR 

 SLR 

MINP_thrshld 8.5 (5.03,14.41

SURGERY_TYPE 2.5 (1.40, 4.60

DIABETES 2.1 (1.1

SLR 
(On bootstrap 

samples) 

MINP_thrshld 8.6 (4.95

SURGERY_TYPE 2.6 (1.37, 4.68

DIABETES 2.1 (1.11, 3.84

 MELR 

MINP_thrshld 10.0 (5.59

SURGERY_TYPE 2.8 (1.51, 5.31)

DIABETES 1.6 (0.83, 2.96)

 GEE 

MINP_thrshld 9.4 (3.81, 23.33)

SURGERY_TYPE 2.7 (1.27, 5.73)

DIABETES 1.8 (0.95, 3.46)

83

 

 

Details 

95% CI P-Value 

(5.03,14.41) <0.0001 

(1.40, 4.60) 0.0022 

(1.15, 3.71) 0.0151 

(4.95, 14.65) <0.0001 

(1.37, 4.68) 0.004 

(1.11, 3.84) 0.023 

(5.59, 18.06) <0.0001 

(1.51, 5.31) 0.0012 

(0.83, 2.96) 0.17 

(3.81, 23.33) <.0001 

(1.27, 5.73) 0.0102 

(0.95, 3.46) 0.0721 
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Table 4.7.1: Area Under the ROC Curve for MACE 
 

 

  *SLR=simple logistic regression; MELR=mixed effects logistic regression; GEE= 
generalized estimating equations; ROC= receiver operating curve; AUC=area 
under the curve; MACE= major adverse cardiac events 

 
Type of 
Analysis 

Model 
Type of 
Regression AUC 

Primary 
Analysis 

A2 SLR 0.777 

Validation 
Analysis 

F SLR 
(On bootstrap samples) 

0.793 

Sensitivity 
Analysis 

B MELR 0.776 

C GEE N/A  
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Table 4.9.1: Regression Coefficients of Final Model (A2) 
Risk Factor Regression Coefficient (ββββi) 

Intercept -3.6682 
MINP_thrshld 2.1415 

SURGERY_TYPE 0.9303 
DIABETES 0.7262 

 
Table 4.9.2: Developing a Point System 

Risk factor Categories ββββi  Wii ββββi(Wij−WiREF) 

Pointsij  = 

     

���������� ¡	
¢  

 

MINP_thrshld 
< NP thresholds 

2.1415 
0=(W1REF) 0 0 

≥ NP thresholds 1 2.1415 3 

SURGERY_TYPE 
Infrainguinal 

0.9303 
0=(W2REF) 0 0 

Aortoiliac 1 0.9303 1 

DIABETES 
No 

0.7262 

 0=(W3RE

F) 
0 0 

Yes 1 0.7262 1 

*NP thresholds are: BNP= 115.57pg/mL, NTproBNP=241.7pg/mL; SURGERY_TYPE=type of 
noncardiac vascular surgery; Wij = Reference value for i

th
 risk factor and j

th
 category;  

**The bolded categories are the base categories for each risk factor; βi is the regression 
coefficient corresponding to the risk factor; B=0.7262 

 
 

Table 4.9.3: Point Total and Respective Estimate of Risk 
 
 
 
 
 
 
 
  

Point Total Estimate of Risk 
0 
1 
2 
3 
4 
5 

0.0249 
0.0501 
0.0983 

0.184 
0.318 
0.491 
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Appendix F 
 
 
 
Logistic Regression Analysis of  
Secondary Outcomes 
  



  

Table 4.10.1: Analysis of All
 

MODEL Outcome   

G 
All-Cause Mortality 

MELR 

MINP_thrsh

SURGERY_TYPE

H 
Cardiac Death 

 MELR  
MINP_thrsh

SURGERY_TYPE

I 
Nonfatal MI 

MELR 

MINP_thrsh

SURGERY_TYPE

 
 

Figure 4.10.1: Forest Plot of All

 
 

: Analysis of All-Cause Mortality, Cardiac Death, and Non

  Final Risk Factors 
  Development Model

OR 95% CI P

MINP_thrshld 6.7 (2.76, 16.10) 

SURGERY_TYPE 2.8 (1.16, 6.79) 

MINP_thrshld 9.2 (3.10, 27.37) 

SURGERY_TYPE 2.6 (0.91, 7.64) 

MINP_thrshld 8.7 (4.60, 16.33) 

SURGERY_TYPE 2.1 (1.06, 4.17) 

: Forest Plot of All-Cause Mortality, Cardiac Death,
And Non-Fatal MI 
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Cause Mortality, Cardiac Death, and Non-Fatal MI 

Development Model 

P-Value AUC 

<0.0001 0.714 

0.0218 
 

<0.0001 0.750 

0.0752 
 

<0.0001 0.787 

0.0338 
 

y, Cardiac Death, 
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Table 4.10.2: Summary of All-Cause Mortality, Cardiac Death and Non-Fatal MI 

 
MINP_thrshld 

  0 1 Total 

All-Cause Mortality 

0 642 173 815 

1 14 14 28 

Total 656 187 843 

Cardiac Death 

0 649 176 825 

1 7 11 18 

Total 656 187 843 

Nonfatal MI 

0 636 152 788 

1 20 35 55 

Total 656 187 843 

 
 
 
 

 

Table 4.10.3: Sensitivity, Specificity, and Accuracy of MINP_thrshld for 
Secondary Outcomes 

 

 All-Cause 
Mortality 

Cardiac 
Death 

Nonfatal 
MI 

Sensitivity 0.50 0.61 0.64 
Specificity 0.79 0.79 0.81 
Accuracy 0.78 0.78 0.80 
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Appendix G 

 

RStudio Coding for the  

Minimum P-Value Method 
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setwd("/Users/User1/Thabane projects/Thesis Data analysis/datasets") 

library("ggplot2") 

library(gdata) 

library(MASS) 

data<-read.xls("Preop BNP data set FINAL.xls") 

bnp<-read.xls("BNP data 22FEb2012.xls")  ##subset of bnp data 

nt<-read.xls("NTproBNP data 22FEb2012.xls")   ##subset of ntprobnp data 

colnames(data) 

count(as.numeric(data$BNP_NTproBNP)) #Frequency of BNP and NTproBNP 

nrow(data) ##check number of observations in whole dataset 

nrow(bnp) ##check number of observations in BNP dataset 

nrow(nt) ##check number of observations in NTproBNP dataset 

 

######################################################################## 

#PART 1: EXPLORATORY ANALYSIS of pre-op BNP and NTproBNP concentration 

levels 

######################################################################## 

#PRELIMINARY PLOTS 

attach(nt);  

nt2<-nt[order(NP_Value),] #order data by NP_Values 

detach(nt) 

 

attach(bnp);  
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bnp2<-bnp[order(NP_Value),] #order data by NP_Values 

detach(bnp) 

 

#BNP 

par(mfrow=c(1,2)) 

box_bnp<-boxplot(bnp$NP_Value,xlab="BNP",main="BNP With Outliers", ylab="BNP 

Concentration levels (pg/mL"); 

box_bnp #with outliers- look at output $out 

box_bnp$out <- NULL 

box_bnp$group <- NULL 

bxp(box_bnp,xlab="BNP", main="Outliers Removed", ylab="BNP Concentration levels 

(pg/mL")  #plot without outliers 

#-->68 outliers, values >=161.25 

 

#NTPROBNP 

box_nt<-boxplot(nt$NP_Value,xlab="NTproBNP",main="NTproBNP With Outliers", 

ylab="NTproBNP Concentration levels (pg/mL"); box_nt 

box_nt$out <- NULL 

box_nt$group <- NULL 

bxp(box_nt,xlab="NTproBNP",main="Outliers Removed", ylab="NTproBNP 

Concentration levels (pg/mL") 

#-->20 outliers, values >=1522 are outliers 
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par(mfrow=c(3,1)) 

plot(bnp2$NP_Value,col="blue", ylab="BNP Levels (pg/ml)", 

ylim=c(0,4200),main="Observed BNP Levels") 

plot(nt2$NP_Value,col="purple", ylab= "NTproBNP Levels (pg/ml)", main="Observed 

NTproBNP Levels") #with outlier 

plot(nt2$NP_Value,col="purple", ylab= "NTproBNP Levels (pg/ml)",ylim=c(0,7000), 

main="Observed NTproBNP Levels, Outlier removed") #without outlier   

 

#Looking for any patterns between (MACE vs bnp_NP_Value) & (MACE vs 

nt_NP_Value) 

par(mfrow=c(1,1)) 

with(bnp, plot(NP_Value, MACE, main="Np Values of BNP vs. MACE",xlab="Np 

Value", col="blue")) 

with(nt, plot(NP_Value, MACE,main="Np values of NTproBNP vs. MACE", xlab="Np 

Value", col="purple")) 

 

 

######################################################################## 

#PART 2: MINIMUM P-VALUE METHOD 

######################################################################## 

 

#MINP  
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MINP_int <- function(x0, x, ybin) { 

   

  if (all(x<=x0) || all(x>x0)) { 

    return(c(x0,NA,NA,NA)) 

  } 

  tmp <- suppressWarnings(chisq.test(as.numeric(x<=x0), ybin)) ##p-value is used as a 

criterion for this  

                ##analysis (corresponds to the maximum chi-square), it will not be used as a 

probability of the Type I Error so the warnings can be ignored, thus SuppressWarnings 

will get rid of them. 

  tab1<-table (as.numeric(x>x0), ybin)   #organizes into table with x>x0 vs ybin;  x0 is 

the cutpoint being tested; its value is read from the list given as the 1st argument to 

sapply 

  tabc <- tab1 + 0.5   #One-way tabulation with automatic bar chart 

  rr <- (tabc[1,1]/sum(tabc[,1]))/(tabc[1,2]/sum(tabc[,2]))   

  cbind(x0, tmp$statistic, tmp$p.value, rr) #tmp$p.value changes everything else to an 

exponential value unneccesarily 

  } 

 

MINP<-function (x, ybin, xcutint) { 

  ##sapply is a looping function that applies the function given as its  

  ##2nd argument repeatedly to each element in the list given as its 1st argument 

  tmp1<-sapply (sort(unique(xcutint)), MINP_int, x, ybin)  
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  ####sapply is a looping function to repeat MINP_int for each uniqe(repeats removed) 

potential cutpoint: 

  ###ie. MINP_int(unique xcutint, x,ybin) = (unique xcutint, NP_Value, MACE) 

  tmp1<-data.frame(t(tmp1))  

  ##transpose to get a column instead of a row matrix    

  names (tmp1)<-c("Cutpoint", "Chisquare", "pvalue", "Relrisk")  

  tmp1 

  } 

 

 

######################################################################## 

#PART 3: ADJUSTMENT FORMULAS OF MINIMUM P-VALUES with 3 functions: 

PADJMS, PALT510, PMODBONF. 

######################################################################## 

#Function Performed 

#Computes the adjusted minimum p-value formulae derived by  

#Miller and Siegmund, Altman, and Lausen and Schumaker (Section 2.2). 

 

##Description of Input variables 

#Cut.point: "(scalar) the Cutpoint associated with the minimum pvalue;" 

#pmin: "(scalar) the minimum pvalue;" 

#pvalue:   "output vector from MINP; " 
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#epsi.high:"proportion of observed values of factor x that are at or below the highest 

cutpoint value tested;"  

#epsi.low: "proportion of observed values of factor x that are below the lowest cutpoint 

value tested; " 

#x:        "vector of observed values of continuous prognostic factor." 

#pms.palt5, palt10, pmodbon = "the adjusted minimum p-values." 

 

#PADJMS(Cutpoint, pvalue, epsi.high, epsi.low) 

PADJMS<-function(Cutpoint, pvalue, epsi.high, epsi.low)  

{ 

      pmin<-min(pvalue)  

      Cut.point<-Cutpoint[pvalue == min (pvalue)]  

      z<- -qnorm(pmin/2)  

      f.z. <- (dnorm(z) ) 

      pacor1<- (z-1/z) * log(((epsi.high * (1-epsi.low))/(( 1-epsi.high) * epsi.low))) + (4 * 

f.z.)/z 

      pacor<-(f.z.)*pacor1 

      pval<-c(Cut.point, pmin, ## round(pmin, 6),  

               epsi.high, epsi.low, pacor) ## round (pacor, 6))  

      names(pval)<-c("Cut.point", "p-min", "epsi.high", "epsi.low", "pms") 

      pval                     

} 
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#PALT510(Cutpoint, pvalue )  

PALT510<-function(Cutpoint, pvalue) 

{ 

      pmin<-min(pvalue)  

      Cut.point<-Cutpoint [pvalue == min(pvalue)]  

      pcor10<- -1.63 * pmin * (1+2.35*log(pmin))  

      pcor5<- -3.13 * pmin *(1+1.65 * log(pmin))  

      pval<-c(Cut.point, pmin, pcor5, pcor10)  

      names(pval)<-c("Cut.point", "p-min" , "palt5", "palt10")  

      pval   

} 

      

#PMODBONF(x, Cutpoint, pvalue) 

PMODBONF<-function(x, Cutpoint, pvalue)   

{ 

      pmin<-min(pvalue)  

      Cut.point<-Cutpoint[pvalue == min(pvalue)]  

      z<- -qnorm(pmin/2)  

      f.z.<- dnorm(z) 

      n<-length(x)  

      dsum<-0  
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      for(i in 1:(length(Cutpoint)-1)) { 

               eps0<-mean(x<=Cutpoint[i])  ##proportion of bnp values less than or equal to 

ith cutpoint 

               eps1<-mean(x<=Cutpoint[i+1])  ##proportion  

               a<-sqrt(1-(eps0*(1-eps1))/((1-eps0)*eps1)) 

               d<-(exp(-z^2/2)/pi)*f.z.*(a-(z^2/4-1)*a^3/6) 

               dsum<-dsum + d         

      } 

      pmodbonf<-(pmin + dsum)  

      pval<-c(Cut.point, pmin,round(pmodbonf,45))  

      names(pval)<-c("Cut.point", "p-min" , "pmodbonf")  

      round(pval,15)  

} 

 

 

######################################################################## 

PART 4a: MINIMUM P-VALUE METHOD for Pre-Op BNP 

######################################################################## 

cutpts<-with(bnp,NP_Value[NP_Value>=2 & NP_Value<376]) 

pvalues<-with(bnp,MINP(NP_Value,MACE,cutpts))  

pvalues[pvalues$pvalue==min(pvalues$pvalue),]  
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#GRAPH OF POTENTIAL CUTPOINTS AND PVALUES 

par(mfrow=c(3,1)) 

with(pvalues,plot(pvalue~Cutpoint,xlim=c(0,3000),main="BNP: Potential cutpoints and 

corresponding p-values")) 

with(pvalues,plot(pvalue~Cutpoint,log="y",xlim=c(0,3000),main="BNP: closer Y-axis 

scale")) 

with(pvalues,plot(pvalue~Cutpoint,log="y",xlim=c(0,600),main="BNP: Zoom on min p-

value")) 

 

#COMPARING GRAPHS WITH CHISQUARE STATISTICS (look for MAX) and P-

VALUES (look for MIN) 

par(mfrow=c(3,1)) 

with(pvalues,plot(Chisquare~Cutpoint,main="Chisquare Statistic vs Potential Threshold 

Values")) 

with(pvalues,plot(pvalue~Cutpoint,log="y",main="BNP p-values vs. Potential Threshold 

values")) 

with(pvalues,plot(Relrisk~Cutpoint,main="Relative Risk vs. Potential Threshold 

values")) 

 

######################################################################## 

PART 4b: ADJUSTMENT FORMULAS for Pro-op BNP 

######################################################################## 

#PAJMS 
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epsi.high=mean(bnp$NP_Value<=max(cutpts))   #same as writing proportion 630/632 

(below max cutpoint) 

epsi.low=mean(bnp$NP_Value<min(cutpts))     #same as writing proportion 288/632 

(below min cutpoint) 

with(pvalues,PADJMS(Cutpoint, pvalue, epsi.high, epsi.low)) 

 

#PALT510 

with(pvalues,PALT510(Cutpoint,pvalue)) 

 

#PMODBONF 

PMODBONF(bnp$NP_Value,pvalues$Cutpoint,pvalues$pvalue) 

 

######################################################################## 

PART 5a: MINIMUM P-VALUE METHOD for Pre-Op NTproBNP 

########################################################################

cutpts<-with(nt,NP_Value[NP_Value>21.5 & NP_Value<1572]) #creating column of 

potential cutpoints to be analyzed 

pvalues<-MINP(nt$NP_Value,nt$MACE,cutpts) #p-value is used as a criterion for this 

analysis (corresponds to the maximum chi-square), it will not be used a probability of the 

Type I Error so the warnings can be ignored. 

pvalues[pvalues$pvalue==min(pvalues$pvalue),] 

pvalues[pvalues$Relrisk==max(pvalues$Relrisk),] 

pvalues[pvalues$Chisquare==max(pvalues$Chisquare),] 
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######################################################################## 

PART 5b: ADJUSTMENT FORMULAS for Pre-op NTproBNP 

########################################################################

#PADJMS(Cutpoint, pvalue, epsi.high, epsi.low) 

epsi.high=mean(nt$NP_Value<=max(cutpts)) 

epsi.low=mean(nt$NP_Value<min(cutpts)) 

with(pvalues, PADJMS(Cutpoint, pvalue, epsi.high, epsi.low)) 

 

#PALT510(Cutpoint, pvalue ) 

PALT510(pvalues$Cutpoint,pvalues$pvalue) 

 

#PMODBONF(x, Cutpoint, pvalue) 

PMODBONF(nt$NP_Value,pvalues$Cutpoint,pvalues$pvalue) 
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Appendix H 

 

SAS Coding for Logistic Regression 

and Bootstrap Analysis 
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Proc import out= data datafile= "C:\Documents and Settings\vanniyt\Desktop\Preop BNP  

data set FINAL.xls" dbms=xls replace;getnames=yes; run; 

 

*REMOVE STUDY FIVE AND SURGERY_TYPE=2; 

data data; set data; if study=5 then delete; run;  

data data; set data; if Surgery_type=2 then delete; run;  

 

*CREATE THRESHOLD VARIABLES; 

data data;  

set data; 

if BNP_NTproBNP=1 and np_value ge 241.7 then MINP_thrshld=1 ;  

else if BNP_NTproBNP=1 and np_value lt 241.7 then MINP_thrshld=0 ; 

else if BNP_NTproBNP=0 and np_value ge 115.57 then MINP_thrshld=1 ;  

else if BNP_NTproBNP=0 and np_value lt 115.57 then MINP_thrshld=0 ;  

 

if BNP_NTproBNP=1 and np_value ge 277.5 then ROC_thrshld=1 ;  

else if BNP_NTproBNP=1 and np_value lt 277.5 then ROC_thrshld=0 ; 

else if BNP_NTproBNP=0 and np_value ge 116 then ROC_thrshld=1 ;  

else if BNP_NTproBNP=0 and np_value lt 116 then ROC_thrshld=0 ;  

 

if age ge 65 then age_thrshld=1; else age_thrshld=0; 

run; 

 



  103

/************DETERMINING FINAL MODEL FOR MACE************/ 

*PRIMARY ANALYSIS; 

*MODEL A1: Rodseth's original ; 

proc logistic data=data descend;  

 model MACE(EVENT='1')=roc_thrshld Surgery_type diabetes/ 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

*MODEL A2; 

proc logistic data=data descend;  

 model MACE(EVENT='1')=MINP_thrshld Surgery_type diabetes/ 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

*MODEL A3; 

Proc logistic data=data descend;  

 model MACE(EVENT='1')=MINP_thrshld Surgery_type diabetes age_thrshld/ 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 
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*MODEL A4; 

proc logistic data=data descend;  

 model MACE(EVENT='1')=MINP_thrshld Surgery_type diabetes high_creat/ 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

*MODEL A5; 

proc logistic data=data descend;  

 model MACE(EVENT='1')=MINP_thrshld Surgery_type diabetes hx_ihd/ 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

/************ VALIDATION ANALYSIS************/ 

data b1; 

 do replicate=1 to 1000; 

 do i=1 to nobs; 

  x=round(ranuni(023423)*nobs); 

  set data 

   nobs = nobs  

   point = x; 

  output; 
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 end; 

 end; 

 stop; 

run; 

proc sort data=b1; by replicate; run; 

 

proc logistic data=b1 descend;  

model MACE(EVENT='1')=MINP_thrshld Surgery_type diabetes /rsq lackfit 

outroc=roc_rocthrshld_lr; 

by replicate; 

ods output ParameterEstimates =estimates oddsratios=or; 

run; 

 

*LOOK AT ESTIMATES; 

proc sort data=estimates;by variable; run; 

proc means data=estimates noprint; 

 var estimate ProbChiSq; 

 by variable; 

 output out=estimates2; run; 

 

*LOOK AT ORs; 

data or_2; 

set or; 
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count + 1; 

by replicate; 

if first.replicate then count=1; run; 

 

proc sort data=or_2; by count; run; 

proc means data=or_2 noprint; 

by count; 

output out=or_3; run; 

 

*LOOK AT p-VALUES and 95%CIs ; 

*################ MINP_thrshld ###############; 

*generate p-values; 

data MINP_thrshld; 

set estimates; 

if variable="MINP_thrshld"; 

b1=abs(estimate-2.1415); 

b2=2.1415; 

if b1>b2 then indicator=1; 

else indicator=0; 

run; 

proc means data=MINP_thrshld; var indicator; run; *check the mean of this for p-value; 
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*generate st. error and 95%ci; 

proc means data=MINP_thrshld; var estimate; run; *take the mean of bootstrap estimates; 

data MINP_thrshld; 

set MINP_thrshld; 

SS=(estimate-2.1535343)*(estimate-2.1535343); 

run; 

proc means data=MINP_thrshld; var ss; run; *take the mean, we want the sum; 

data MINP_thrshld; 

set MINP_thrshld; 

SE=sqrt((0.0765965*1000)/(1000-1));    

lower_ci= 2.1415-1.96*SE; 

upper_ci= 2.1415+1.96*SE; 

run; 

 

*################ SURGERY_TYPE ###############; 

*generate p-values; 

data surgery_type; 

set estimates; 

if variable="Surgery_type"; 

b1=abs(estimate-0.9303); 

b2=0.9303; 

if b1>b2 then indicator=1; 

else indicator=0; 
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run; 

proc means data=surgery_type; var indicator; run;  

*generate st. error and 95%ci; 

proc means data=surgery_type; var estimate; run; *take the mean of bootstrap estimates; 

data surgery_type; 

set surgery_type; 

SS=(estimate-0.9400341)*(estimate-0.9400341); 

run; 

 

proc means data=surgery_type; var ss; run; *take the mean, we want the sum; 

data surgery_type; 

set surgery_type; 

SE=sqrt((0.0980561*1000)/(1000-1));    

lower_ci= 0.9303-1.96*SE; 

upper_ci= 0.9303+1.96*SE; 

run; 

 

*################ DIABETES ###############; 

*generate p-values; 

data diabetes; 

set estimates; 

if variable="Diabetes"; 

b1=abs(estimate-0.7262); 
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b2=0.7262; 

if b1>b2 then indicator=1; 

else indicator=0; 

run; 

proc means data=diabetes; var indicator; run;  

 

*generate st. error and 95%ci; 

proc means data=diabetes; var estimate; run; *take the mean of bootstrap estimates; 

data diabetes; 

set diabetes; 

SS=(estimate-0.7347928)*(estimate-0.7347928); 

run; 

 

proc means data=diabetes; var ss; run; *take the mean, we want the sum; 

data diabetes; 

set diabetes; 

SE=sqrt((0.0997915*1000)/(1000-1));    

lower_ci= 0.7262-1.96*SE; 

upper_ci= 0.7262+1.96*SE; 

run; 

 

 

/**************** SENSITIVITY ANALYSIS***********/ 
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*MODEL B - MELR ; 

proc glimmix data=data method=laplace;  

 class  study;  

 model MACE(event="1")=MINP_thrshld Surgery_type diabetes/ 

dist=bin link=logit oddsratio s solution;  

 random int/ subject=study ; 

 output out=ROC_out_MINP pred=xbeta pred(ilink)=MINP_predprob;  

 run; 

proc logistic data=ROC_out_MINP plots(only)=roc;  

model MACE(event='1') = MINP_predprob;  

ods select roccurve; run;  

 

*MODEL C - GEE ; 

proc genmod data=data descend; 

 class study MINP_thrshld surgery_type diabetes/param=ref descending ;  

 model MACE=MINP_thrshld Surgery_type diabetes  / 

 dist=bin link=logit waldci ;  

 repeated subject=study / TYPE=EXCH PRINTMLE;  

*TYPE=EXCH option specifies an exchangeable correlation structure ; 

 run; 

 

/**************** SECONDARY ANALYSIS ***********/ 

*MODEL G; 
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proc logistic data=data descend;  

 model mortality_allcause(EVENT='1')=MINP_thrshld Surgery_type diabetes / 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

*MODEL H; 

proc logistic data=data descend;  

 model mortality_cardiac(EVENT='1')=MINP_thrshld Surgery_type diabetes / 

rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

*MODEL I; 

proc logistic data=data descend;  

model non_fatal_cardiac_event(EVENT='1')=MINP_thrshld Surgery_type 

diabetes/rsq lackfit outroc=roc_rocthrshld_lr; 

 ods output ParameterEstimates = model_roc_thrshld;  

 run; 

 

 

 


