Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12777
Title: Computational and Structural Approaches to Periodicities in Strings
Authors: Baker, Andrew R.
Advisor: Deza, Antoine
Franek, Frantisek
Department: Computing and Software
Keywords: string;algorithm;run;word;periodicity;string algorithm;Theory and Algorithms;Theory and Algorithms
Publication Date: Apr-2013
Abstract: <p>We investigate the function ρ<sub><em>d</em></sub>(<em>n</em>) = max { <em>r</em>(<em><strong>x</strong></em>) | <em><strong>x</strong></em> is a (<em>d</em>, <em>n</em>)-string } where <em>r</em>(<em><strong>x</strong></em>) is the number of runs in the string <em><strong>x</strong></em>, and a (<em>d</em>, <em>n</em>)-string is a string with length <em>n</em> and exactly <em>d</em> distinct symbols. Our investigation is motivated by the conjecture that ρ<sub><em>d</em></sub>(<em>n</em>) ≤ <em>n</em>-<em>d</em>. We present and discuss fundamental properties of the ρ<sub><em>d</em></sub>(<em>n</em>) function. The values of ρ<sub><em>d</em></sub>(<em>n</em>) are presented in the (<em>d</em>, <em>n</em>-<em>d</em>)-table with rows indexed by <em>d</em> and columns indexed by <em>n</em>-<em>d</em> which reveals the regularities of the function. We introduce the concepts of the r-cover and core vector of a string, yielding a novel computational framework for determining ρ<sub><em>d</em></sub>(<em>n</em>) values. The computation of the previously intractable instances is achieved via first computing a lower bound, and then using the structural properties to limit our exhaustive search only to strings that can possibly exceed this number of runs. Using this approach, we extended the known maximum number of runs in binary string from 60 to 74. In doing so, we find the first examples of run-maximal strings containing four consecutive identical symbols. Our framework is also applied for an arbitrary number of distinct symbols, <em>d</em>. For example, we are able to determine that the maximum number of runs in a string with 23 distinct symbols and length 46 is 23. Further, we discuss the structural properties of a shortest (<em>d</em>, <em>n</em>)-string <em><strong>x</strong></em> such that <em>r</em>(<em><strong>x</strong></em>) > <em>n</em>-<em>d</em>, should such a string exist.</p>
URI: http://hdl.handle.net/11375/12777
Identifier: opendissertations/7635
8689
3540506
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
574.96 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue