Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12777
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDeza, Antoineen_US
dc.contributor.advisorFranek, Frantiseken_US
dc.contributor.authorBaker, Andrew R.en_US
dc.date.accessioned2014-06-18T17:00:43Z-
dc.date.available2014-06-18T17:00:43Z-
dc.date.created2012-12-16en_US
dc.date.issued2013-04en_US
dc.identifier.otheropendissertations/7635en_US
dc.identifier.other8689en_US
dc.identifier.other3540506en_US
dc.identifier.urihttp://hdl.handle.net/11375/12777-
dc.description.abstract<p>We investigate the function ρ<sub><em>d</em></sub>(<em>n</em>) = max { <em>r</em>(<em><strong>x</strong></em>) | <em><strong>x</strong></em> is a (<em>d</em>, <em>n</em>)-string } where <em>r</em>(<em><strong>x</strong></em>) is the number of runs in the string <em><strong>x</strong></em>, and a (<em>d</em>, <em>n</em>)-string is a string with length <em>n</em> and exactly <em>d</em> distinct symbols. Our investigation is motivated by the conjecture that ρ<sub><em>d</em></sub>(<em>n</em>) ≤ <em>n</em>-<em>d</em>. We present and discuss fundamental properties of the ρ<sub><em>d</em></sub>(<em>n</em>) function. The values of ρ<sub><em>d</em></sub>(<em>n</em>) are presented in the (<em>d</em>, <em>n</em>-<em>d</em>)-table with rows indexed by <em>d</em> and columns indexed by <em>n</em>-<em>d</em> which reveals the regularities of the function. We introduce the concepts of the r-cover and core vector of a string, yielding a novel computational framework for determining ρ<sub><em>d</em></sub>(<em>n</em>) values. The computation of the previously intractable instances is achieved via first computing a lower bound, and then using the structural properties to limit our exhaustive search only to strings that can possibly exceed this number of runs. Using this approach, we extended the known maximum number of runs in binary string from 60 to 74. In doing so, we find the first examples of run-maximal strings containing four consecutive identical symbols. Our framework is also applied for an arbitrary number of distinct symbols, <em>d</em>. For example, we are able to determine that the maximum number of runs in a string with 23 distinct symbols and length 46 is 23. Further, we discuss the structural properties of a shortest (<em>d</em>, <em>n</em>)-string <em><strong>x</strong></em> such that <em>r</em>(<em><strong>x</strong></em>) > <em>n</em>-<em>d</em>, should such a string exist.</p>en_US
dc.subjectstringen_US
dc.subjectalgorithmen_US
dc.subjectrunen_US
dc.subjectworden_US
dc.subjectperiodicityen_US
dc.subjectstring algorithmen_US
dc.subjectTheory and Algorithmsen_US
dc.subjectTheory and Algorithmsen_US
dc.titleComputational and Structural Approaches to Periodicities in Stringsen_US
dc.typethesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
574.96 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue