Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12733
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBrook, Michael A.en_US
dc.contributor.advisorSheardown, Heather D.en_US
dc.contributor.advisorFilipe, Carlosen_US
dc.contributor.authorKhan, Madiha F.en_US
dc.date.accessioned2014-06-18T17:00:39Z-
dc.date.available2014-06-18T17:00:39Z-
dc.date.created2012-11-19en_US
dc.date.issued2013-04en_US
dc.identifier.otheropendissertations/7594en_US
dc.identifier.other8655en_US
dc.identifier.other3478124en_US
dc.identifier.urihttp://hdl.handle.net/11375/12733-
dc.description.abstract<p>Bacterial biofilms are problematic in a variety of industries hence strategies for their mitigation have received significant attention. The approach described herein attempts to control bacterial adhesion using silicone-based polymers- (widely used due to their interesting properties)- via manipulation of their surface chemistry to eventually create anti-fouling surfaces. This involved study of the systematic variation of surface wettability and its effect on <em>Escherichia coli</em> (<em>E. coli</em>) adhesion to novel polymers of acrylate-modified silicone surfactant (ACR) with either hydroxyethyl methacrylate (a hydrophilic monomer), or methyl and butyl methacrylate (hydrophobic monomers). It was hypothesized that the systematic variation of ACR would produce surfaces with differing wettability, without changing other surface properties that influence cellular adhesion. Average light transmittance across the range of visible light wavelengths (400-740nm), surface roughness and Shore 00 hardness data were consistent across the ACR-HEMA copolymer series (80-90%, ~2.5 – 5 nm, and 75-95 Shore durometer points, respectively). The same consistency was observed for surface wettability (contact angles = 78-92°) despite varying HEMA content and consequently <em>Escherichia coli</em> (<em>E.coli</em>) adhesion, likely due to system saturation with silicon (as confirmed by EDX). However, wettability of the ACR-MMA-BMA polymers did vary; ≤ 20 wt% and ≥ 80 wt% ACR polymers had contact angles between 67°- 77°, while 20 < x < 80 wt% ACR polymers had increased surface wettability (contact angles 27.6°- 42.9°). <em>E. coli </em>adhesion across the set increased with increasing ACR content, a trend mirrored by the water uptake of the materials but not the contact angle data. These results indicate that <em>E. coli </em>adhesion occurs independently of wettability for these materials and although the effect of the latter on adhesion cannot be deduced, the possible correlation between bacterial adhesion and water uptake suggests that the best antifouling surfaces should not be of materials capable of imbibing significant amounts of water.</p>en_US
dc.subjectbiofilm mitigationen_US
dc.subjectEscherichia coli adhesionen_US
dc.subjectHEMAen_US
dc.subjectBMAen_US
dc.subjectMMAen_US
dc.subjectsilicone surfactanten_US
dc.subjectBiomaterialsen_US
dc.subjectBiomaterialsen_US
dc.titleNOVEL SILICONE-BASED MATERIALS TO LIMIT BACTERIAL ADHESION AND SUBSEQUENT PROLIFERATIONen_US
dc.typethesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.85 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue