Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12709
Title: Refining Metallurgical Grade Silicon by Chlorination Treatment with Emphasis on Aluminum Removal
Authors: Bolandi, Mahboob
Advisor: Petric, Antony
Coley, Kenneth
Irons, Gordon A.
Department: Materials Science and Engineering
Keywords: Refining;Metallurgical Grade Silicon;Chlorination;Aluminum;Boron;Solar Grade SiliconRemoval;Metallurgy;Other Materials Science and Engineering;Metallurgy
Publication Date: Apr-2012
Abstract: <p>A supply shortage of solar-grade silicon in recent years resulted from a rapid expansion of the solar cell industry. Therefore, many efforts have been done to obtain reliable metallurgical methods for production of SoG silicon from metallurgical grade silicon.</p> <p>In this research, refining of metallurgical grade silicon by chlorination treatment with the emphasis on Al removal was investigated. Thermodynamic calculations through Factsage confirmed the feasibility of Al removal in repeated steps of chlorination. Therefore, an Ar+SiCl<sub>4</sub> gas mixture with different flow rates was applied to the silicon melt by blowing and injection methods at different temperatures and the ICP-OES was used for analysis of the impurities in silicon.</p> <p>Results revealed that Al removal from silicon by chlorination treatment under the conditions employed in this study is first order reaction with respect to Al. By increasing the temperature in the chlorination process, the rate constant increases which is related to an increase in the liquid mass transfer rate. Also the observed higher rates of Al removal under injection conditions appear to be the result of improved stirring in the melt rather than an increase in the interfacial area.</p>
URI: http://hdl.handle.net/11375/12709
Identifier: opendissertations/7572
8623
3420436
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.55 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue