Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12699
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKolster, Manfreden_US
dc.contributor.authorTaleb, Rezaen_US
dc.date.accessioned2014-06-18T17:00:27Z-
dc.date.available2014-06-18T17:00:27Z-
dc.date.created2012-10-24en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/7563en_US
dc.identifier.other8625en_US
dc.identifier.other3421991en_US
dc.identifier.urihttp://hdl.handle.net/11375/12699-
dc.description.abstract<p>The classical Main Conjecture (MC) in Iwasawa Theory relates values of p-adic L-function associated to 1-dimensional Artin characters over a totally real number field F to values of characteristic polynomials attached to certain Iwasawa modules. Wiles [47] proved the MC for odd primes p over arbitrary totally real base fields F and for the prime 2 over abelian totally real fields F.</p> <p>An equivariant version of the MC, which combines the information for all characters of the Galois group of a relative abelian extension E/F of number fields with F totally real, was formulated and proven for odd primes p by Ritter and Weiss in [33] under the assumption that the corresponding Iwasawa module is finitely generated over ℤ<sub>p</sub> ("µ=0"). This assumption is satisfied for abelian fields and conjectured to be true in general.</p> <p>In this thesis we formulate an Equivariant Main Conjecture (EMC) for all prime numbers p, which coincides with the version of Ritter and Weiss for odd p, and we provide a unified proof of the EMC for all primes p under the assumptions µ=0 and the validity of the 2-adic MC. The proof combines the approach of Ritter and Weiss with ideas and techniques used recently by Greither and Popescu [13] to give a proof of a slightly different formulation of an EMC under the same assumptions (p odd and µ=0) as in [33].</p> <p>As an application of the EMC we prove the Coates-Sinnott Conjecture, again assuming µ=0. We also show that the p-adic version of the Coates-Sinnott Conjecture holds without the assumption µ=0 for abelian Galois extensions E/F of degree prime to p. These generalize previous results for odd primes due to Nguyen Quang Do in [27], Greither-Popescu [13], and Popescu in [30].</p>en_US
dc.subjectNumber Theoryen_US
dc.subjectNumber Theoryen_US
dc.titleAn Equivariant Main Conjecture in Iwasawa Theory and the Coates-Sinnott Conjectureen_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
755.15 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue