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Abstract

The classical Main Conjecture (MC) in Iwasawa Theory relates values of p-adic L-
functions associated to 1-dimensional Artin characters over a totally real number field
F to values of characteristic polynomials attached to certain Iwasawa modules. Wiles
[47] proved the MC for odd primes p over arbitrary totally real base fields F' and for
the prime 2 over abelian totally real fields F'. An equivariant version of the MC, which
combines the information for all characters of the Galois group of a relative abelian
extension E/F of number fields with F' totally real, was formulated and proven for
odd primes p by Ritter and Weiss in [33] under the assumption that the corresponding
Iwasawa module is finitely generated over Z, (“u = 0"). This assumption is satisfied
for abelian fields and conjectured to be true in general.

In this thesis we formulate an Equivariant Main Conjecture (EMC) for all prime
numbers p, which coincides with the version of Ritter and Weiss for odd p, and we
provide a unified proof of the EMC for all primes p under the assumptions y = 0 and
the validity of the 2-adic MC. The proof combines the approach of Ritter and Weiss
with ideas and techniques used recently by Greither and Popescu [I3] to give a proof
of a slightly different formulation of an EMC under the same assumptions (p odd and
w=0) as in [33].

As an application of the EMC we prove the Coates-Sinnott Conjecture, again as-
suming p = 0. We also show that the p-adic version of the Coates-Sinnott Conjecture
holds without the assumption p = 0 for abelian Galois extensions E/F of degree
prime to p. These generalize previous results for odd primes due to Nguyen Quang
Do in [27], Greither-Popescu [13], and Popescu in [30].
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Introduction

One of the most fascinating discoveries in Arithmetic Algebraic Geometry is the
still mysterious relationship between certain algebraic and analytic data attached to
a given arithmetic object. Classical examples include the Conjecture of Birch and
Swinnerton-Dyer, which conjecturally relates the order of vanishing of the L-function
attached to an elliptic curve at 1 to the rank of the algebraically defined Mordell-
WEeil group of the curve, and Dirichlets Analytic Class Number Formula, which gives
a precise algebraic interpretation of the residue of the zeta-function of a number
field at 1. This last example has been generalised to yield interpretations of special
values of zeta-functions at arbitrary negative integers in terms of algebraic K-theory
and motivic cohomology. One of the systematic approach to understand these deep
relations between the algebraic and analytic objects is via Iwasawa Theory.

Iwasawa theory was initiated in the 1950s in order to study objects of arithmetic
interest, e.g. class groups, elliptic curves, abelian varieties, motives, etc., over infinite
towers of number fields. The prototype of Dirichlet’s analytic class number formula,
which relates certain analytic and arithmetic data in this theory, is called the main
conjecture. We describe this conjecture in the classical form as follows:

Let p be a prime number, let I’ be a totally real number field, and let ) be a
1-dimensional p-adic Artin character for F' so that F, N F, = F, where F, denotes
the fixed field of the kernel of ¢ and F is the cyclotomic Z,-extension of F. Let O,
denote the ring obtaining by adjoining all ¢-values to the ring Z,. We denote by S
a finite set of primes of F' containing the primes above p, and the infinite primes. In
[7], Deligne and Ribet showed the existence of a p-adic L-function for the character
1 - following Kubota and Leopoldt for the case F' = Q - which is continuous for
s € Z, \ {1}, and even at s = 1, if ¢ is not trivial. This satisfies the following
interpolation property for any integer n > 1:

Ly(1 = n,¢) = Lgyp(1 = n,gw™) [T (1 = ™ (p) Nm(p)' ™).

pPESH

Here w : F(pgp) — Z,; is the Teichmiiller character, and S, is the set of primes in F
sitting above p. Let Hy, € Oy[T] be defined as ¢(y)(T'+ 1) — 1 if F, C F , and 1
otherwise. They also showed that there exists a power series Gy, g(T) € Oy[[T]] so

that o -

where Lf (1 — s,%) denotes the p-adic L-function with Euler factors removed at the
primes in S. This power series represents the analytic object in the main con-
jecture. Let Fy . denote the cyclotomic Z,-extension of Fy, with Galois group
I' = Gal(Fy/Fy) =< v >. Let M __ be the maximal abelian pro-p-extension

1
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of Fy o, which is unramified outside the primes in S, with Galois group X5 =
G&Z(qum/sz,oo)- The pro-p-group X3 is equipped with a (torsion) A := Z,[[']]-
module structure, as well as a Gal(Fy/F)-action given by inner automorphisms. Serre
showed that the completed group ring A can be identified with the one variable power
series Zy[[T]], by mapping v — 1 to 7. By the Structure Theorem for Oy ([T}

modules, the 1-eigenspace
X5 = {2 € XL, ®z, Oylo(z) = p(o)z for all 0 € Gal(F,/F)}

of the A-module X3, is pseudo-isomorphic, as an Oy[[T]]-module, to a unique O,[[T]]-
module of the form

@ Op[[T])/pi™

for m > 1 and n; > 1. Here p; is the ideal generated by either a fixed uniformizer = €
O, or a monic irreducible polynomial in Oy[T]. Let Fy s(T') € Oy[T] be a generator
of the ideal []\", pi". By the Weierstrass Preparation Theorem (cf. Theorem
we have the decompositions

Fus(T) =aFes) 7 (T) and  Gys(T) = 7“9 g5 o(T)uy,s(T),

where f7 o(T') and g;, (T') are monic polynomials in Oy[T], and uys(T) is a unit
power series in Oy[[T]]. The polynomial f; 4(T') is called the characteristic polyno-
mial. The classical Main Conjecture in Iwasawa theory is formulated as follows:

f;,s(T) = Q;Z,S(T)'

This was proven by Mazur and Wiles in [24] in the case F' = Q and p odd, and more
generally by Wiles in [47] for any totally real number field F' and an odd prime p.
He also proved the conjecture for the prime 2 provided F'is an abelian extension of
Q. He also showed the equality of the p-invariants p(Fyg) = u(Gy,g) for any odd
prime p, where both sides have been conjectured to be zero at odd primes p and
further has been verified for the case F/Q is abelian (cf. [9]). For odd primes p
we will see that the A-torsion module X5 is of projective dimension at most 1 and
has a principal Fitting ideal generated by Fy ¢(7T") (cf. Proposition [1.3.4]). Therefore,
another formulation of the Main Conjecture for odd primes reads as follows:

Fitto, ) (X30) = (Gy,s(T)).

Let E/F be an abelian extension of totally real number fields with Galois group G.
One can write the classical Main Conjecture with respect to any (even) character ¢ of
G, and obtain the corresponding relationship between the algebraic and the analytic
data for any 1 as above. Combining all these relationships, based on the classical
Main Conjecture, for all characters ¢ of GG leads to the formulation of the so-called

2
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Equivariant Main Conjecture in Iwasawa theory. Ritter and Weiss formulated such a
conjecture in [33] for any odd prime p, and proved it assuming that a certain Iwasawa
module is a finitely generated Z,-module. To explain this we need the following
set-up:

Let E/F be an abelian extension of totally real number fields, and let E., be the
cyclotomic extension of E. Let M5 denote the maximal abelian pro-p-extension of
E,., unramified outside the primes in S, and let X, := Gal(MZ2 /E.). We denote
by G the Galois group of F./F, by H the Galois group of F./F,, and by A
the completed group ring Z,[[G]]. Assuming that G is abelian, we conclude the
existence of a group I' < G, so that G, = H x I'. Again by inner automorphisms
X has a (torsion) A-module structure, whose projective dimension is not necessarily
at most one. However, to formulate an Equivariant Main Conjecture, similar to
the classical Main Conjecture, one needs a finitely generated A-torsion module of
projective dimension at most one. Let d., be a non-zero divisor of the augmentation
ideal AG, of A, let ¢, be an invertible element of the total ring of fraction of A so
that dew = coo((y — 1)e 4+ (1 — €)), where e is the idempotent attached to the trivial
character of H. We denote by L the fixed field of E/F under the action of the p-Sylow
subgroup of G, by G the Galois group of the maximal algebraic extension Q7 of L,
unramified outside the primes in S, over L, and by H the Galois group of Q7 /E...
There is a commutative diagram of A-modules

0 0
! !
A = A
v 19
0 - X = Yo — AG, — 0
[ ! !
0 &5 Xoo = Zo6 — 2006 — O
\ !
0 0,

where ¢ maps 1 to do, ¥ maps 1 to a pre-image Yoo of doo, and Vo, = Ho(H, AG)
is the coinvariant of the augmentation ideal AG of Z,[[G]] respect to the group H.
The A-torsion module Z in the diagram above, whose projective dimension is at
most one, shows up as the algebraic object in the Equivariant Main Conjecture of
Ritter-Weiss. We note that the construction of Z,, depends on the choice of d.,. The
analytic object is defined as follows:

Gs = Y Gusly=1) ey € TrOHI],
el



Ph.D. Thesis - Reza Taleb McMaster - Mathematics and Statistics

where e, is the idempotent attached to any character v of H, i.e.

ey = % Z Y(o)o L.

ceG

One version of the Equivariant Main Conjecture of Ritter-Weiss for the odd primes
is as follows:
Fitty(Z5) = (cGs),

which was verified under the assumption of the vanishing of the p-invariant of X,
i.e. assuming that X is a finitely generated Z,-module. It is worth mentioning
that they have generalized and proven their Equivariant Main Conjecture in the non-

commutative case, still assuming the vanishing of the p-invariant of a certain Iwasawa
module (cf. [37]).

We now describe our Equivariant Main Conjecture for an arbitrary prime p. For
an abelian extension E/F,| by applying the algebraic construction of the Equivariant
Main Conjecture of Ritter-Weiss to the set Sy of finite primes in S, we construct the
A-torsion module Z/ , which is of projective dimension at most 1. We show that it

satisfies the following exact sequence:
0= Zy — AJdoA — a(ZL)# — (XL )* — 0,

in which

pda(A/dh) <1 and pda(a(24)) < 1,

where X7_ is the Galois group of the maximal abelian pro-p-extension of E,, unrami-
fied outside the primes in Sy, over E, a is the adjoint functor in Iwasawa theory and

# denotes the inverse action given by ~v-m = m?. The Equivariant Main Conjecture
is then formulated in Chapter [2] (cf. Conjecture [2.1.6)) as follows:

Fitty(21) = (cooG%)

for the power series

Gi=Y Glslr—1) ey € ,—;O[Hmrn,

el

where Gy g(T) = aCus)Gy o(T) = aGs) gy o(Tuy s(T). In Section we
prove this conjecture follows from the classical Main Conjecture under the assumption
p =0, i.e. assuming that X/ is a finitely generated Z,-module, by taking advantage
of the idea of determinantal ideals used by Greither and Popescu in [I3] in a recent
proof of a slightly different formulation of an Equivariant Main Conjecture under the
same assumptions (p odd and u = 0) as Ritter-Weiss in [33].



Ph.D. Thesis - Reza Taleb McMaster - Mathematics and Statistics

As an application of this Equivariant Main Conjecture we verify the Coates-
Sinnott Conjecture. This conjecture is a generalization of the classical Stickelberger
Theorem, which provides elements annihilating the class group of a cyclotomic field,
using special values of certain analytic functions. To make it more precise let E/F
be an abelian extension with Galois group G, and let S be a finite set of primes in F'
containing the primes ramified in F and the infinite primes. Let

Ofp(s) =Y Liyp(s,x7") - ex € CIC]

xe@G

be the S-incomplete equivariant L-function, where e, is the idempotent attached to
any character x of G. In [7], Deligne and Ribet proved that

Annzie)(H*(E,Q/Z(n))) - ©Fp(1 = n) C Z[G]

for any integer n > 1. Stickelberger’s Theorem shows that the following analytic
object is in the annihilator ideal of the class group Cl(Og) of the field E in the case
F=Q:

Annzie)(H'(E,Q/Z(1))) - ©F,p(0) © Anngie)(CL(OF)).

This setup has been generalized in two directions: First of all one looks at an arbitrary
relative abelian extension E/F of number fields. Here the analogue of Stickelberger’s
Theorem (Brumer’s Conjecture) is still not completely known. In a different direction
one replaces again the class group by algebraic K-groups or motivic cohomology
groups and studies annihilators of these groups as Galois modules for relative abelian
extensions. In [5], Coates and Sinnott formulated the relevant conjecture in terms of
higher Quillen K-groups as

Anngie)(H(E,Q/Z(n))) - 9%/F(1 —n) C Anngc)(Kan—2(Ok))

for any integer n > 2. As a result of the recent works of Voevodsky [45], now the
relation between algebraic K-theory, étale cohomology for all prime numbers and
motivic cohomology is known. This yields the motivic formulation of the Coates-
Sinnott Conjecture, which implies the K-theoretic version. Moreover, it enables us
to study each p-primary part of the conjecture separately for any prime number p as
follows:

Annz,c)(H°(E,Qp/Zy(n))) - O3 (1 —n) C Anng, ) (Hz (O, Zy(n))

for any integer n > 2. After some fundamental work of Coates-Sinnott in [5] and
more recent results by Ritter-Weiss, Nguyen Quang Do, Burns-Greither, Greither-
Popescu et al., the Coates-Sinnott Conjecture is completely proven for any odd prime
p, assuming p = 0. However, the 2-primary information has been neglected more
or less completely due to various technical problems. For example, there was no
formulation of an Equivariant Main Conjecture in Iwasawa theory for the prime 2.
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At the end of Chapter [2, as an application of our Equivariant Main Conjecture, we
prove the the Coates-Sinnott Conjecture for any totally real extension F/F, again
under the assumption g = 0 (cf. Theorem [2.2.8]).

In the last chapter of the thesis we deduce the p-adic version of the Coates-
Sinnott Conjecture without the assumption o = 0 from the classical Main Conjecture
in Iwasawa theory in the following situations (see Theorems [3.1.3| and |3.2.4)):

e 1 > 2is an even number and E/F is a finite abelian extension of number fields
of order prime to p, where F is a totally real number field.

e 1 > 2 is an odd number and E/F is a finite abelian extension of number fields
of degree 2m, where m is not divisible by p, E is a CM-field and F' is a totally
real number field.

For odd primes p and any totally real field £ this has been done by Popescu in [30].
In the proof for the prime 2 we have to assume the classical Main Conjecture in the
case F/Q is not abelian, as well as the equality of the algebraic and the analytic
p-invariants. It is worth mentioning that the restriction on the parity of n simply
avoids the trivial cases, where the S-incomplete equivariant L-functions vanish.



Chapter 1

Background Material

1.1 Iwasawa theory

1.1.1 Introduction

Let F' be a number field with 1 (F') real embeddings and r5(F) pairs of complex
embeddings, and let p be a fixed prime. Let F,, be a Z,-extension of F, i.e. an
extension with Galois group Gal(Fs/F) ~ I' where I' is a multiplicative group iso-
morphic to the additive group Z,. We fix a topological generator v of I'. For n > 0
let T'), ;= I'/T?" ~ Z/p"7Z and let F, denote the fixed field of F,, under the action of
I'?". Then we have the tower of fields

Fi=RCFRC---CF,C---CFy

with Gal(F,,/F) ~ T, ~Z/p"Z for any n > 0.

Example 1.1.1. Let L := F((yp) be the field obtained by adjoining a primitive 2p-th
root of unity Cap to F, and let Lo = J,5¢ F'(Copn) be the field obtained by adjoining
all p-power roots of unity to F. Then G(Loo/F) =~ Z, x A, where A is finite. The
A-fized points of L give us a Zy,-extension of F, which is called the cyclotomic
Zy,-extension of F.

Remark 1.1.2. One can show that any Z,-extension F/F is p-ramified, i.e. un-
ramified outside the primes above p, and also that there is an integer n, so that Fy | F,
is totally ramified (cp. [46], §13.1). Using class field theory, one can further show
that the number of independent Z,-extensions of F' is 1+1ry(F)+ dp, where 6p > 0 is
the so-called Leopoldt defect (cf. [14)], 2.3). We say that the Leopoldt conjecture
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holds if 6r vanishes. Leopoldt conjecture holds when F is an abelian extension of Q
or of an imaginary quadratic number field (see [29], Theorem 10.5.16).

Let O denote the integral closure of Z, in some finite extension of Q, and let 7
be a uniformizer in O. Let

Ol[r]] := m O[T

be the completed group ring. Serre showed that one obtains an isomorphism between
O[[I']] and the ring of formal power series A := O[[T]] by mapping v to 1 + 7"

A~ O[[L]]. (1.1)

We recall that A is a Notherian local domain of Krull dimension 2 with maximal ideal
< 7, T >, whose height one prime ideals are either the ideal generated by 7 € O or
the ideals generated by irreducible polynomials in O[T (cf. [4], Chap. VII).

In Iwasawa theory, the study of finitely generated A-modules is of special interest.
We first review some definitions. A monic polynomial

Tn + bnflTnil + bn72Tn72 + ctt + bo E A

is called distinguished if b; € (7) for all i. As an example, w, := (1 +7T)?" — 1 is
distinguished for any n > 0.

Proposition 1.1.3. (Weierstrass Preparation Theorem, cf. [1])], §7.1 ). Let F € A.
Then there exists an integer p > 0 such that F' can be expressed uniquely as

F(T) = o5 p*(T)

for F*(T) == f*(T)u(T), where f*(T) € O[T] is a distinguished polynomial of degree
A, and u(T) € A* is a unit.

In Proposition [1.1.3] the exponent p(F) is defined to be the p-invariant of the
power series F'. Before we state the Structure Theorem for A-modules, we recall that
a morphism ¢ : M — N is called a pseudo-isomorphism and denoted by M ~ N if
the kernel and the cokernel of ¢ are both finite.

Theorem 1.1.4. (Structure Theorem for A-modules, cf. [{6], §13.2). Let M be a
finitely generated A-module. There exist r > 0, m > 1 and n; > 1 so that M is
pseudo-isomorphic to the following elementary A-module:

M ~ Q_? Ap A

Here the p;’s are primes of height one. Moreover, the p;’s, n;’s and r are uniquely
determined by M.
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With the notations of the theorem above we have the following definitions:

e > " n;p; is the divisor of M.
e [, p is the characteristic ideal of M.

e This characteristic ideal is principal and generated by a polynomial of the form
- f5(T) € O[T] for a distinguished polynomial f*(7) of degree A by the
Weierstrass Preparation Theorem (cf. Theorem [1.1.3). The characteristic
polynomial of M is defined to be chary(M) := f*(T'), and p and A are called
the Iwasawa p-invariant and the Iwasawa A-invariant of M, respectively.

To explain why chary(M) is called the characteristic polynomial of M, we consider
a finitely generated A-torsion module M, and we note that V = M ®p Q, is a
vector space of dimension A over @p and F(T) is the characteristic polynomial of the
endomorphism of V' defined by multiplication by v — 1.

We have the following important lemma about the I'-invariants and I'-coinvariants
of A-modules (see [22] for a proof).

Lemma 1.1.5. Let M be a torsion A-module with characteristic polynomial F(T).
The following are equivalent:

1. MY is finite.
2. My s finite.
3. F(T)#0

If these conditions hold, then

| MT

T = lehara(an(o)], = p/ ),

where v is the normalized valuation, i.e. v(m) = 1, and f is the residue degree of w
over p.

One can construct Iwasawa modules by equipping certain Galois groups with A-
module structures. Let F,, be a fixed Z,-extension of F' with Galois group I', and
let K be an abelian pro-p-extension of F, so that K /F is Galois. We obtain the
extension of groups

0= Gal(Ky/Fy) — Gal(K/F) — T — 0,

9
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and I' acts on Gal(K/F) by inner automorphisms as follows: if z € Gal(K/Fx)

and v is a topological generator of I', then we define 27 := y23~! where 7 is a lift of
v to Gal(K/F). This yields a A-module structure on X := Gal(K/Fx).

Example 1.1.6. Let F/F be a fivred Z,-extension with intermediate fields F,, so
that Gal(F,,/F) ~ Z/p"Z and let S, be the set of primes above p in F. Let Lo, and
L’ be the mazximal abelian unramified pro-p-eztension of Fi, and the mazimal abelian
unramified pro-p-extension of F, in which all primes above p split, respectively. Let
Xoo = Gal(Ls/Fy) and X! := Gal(L. /Fy). Let H, and H), be the p-parts of the
Hilbert class field of F,, and the Hilbert Sy-class field of F,, i.e. the maximal abelian
unramified p-extension, in which all primes above p split, respectively. Because of the
maximality, the extensions Lo /F and L. JF are Galois. Let A, and Al denote the
p-parts of the class group and the S,-class group of F,,, respectively. Then we obtain
by class field theory that Gal(H,/F,) ~ A, and Gal(H]/F,) ~ A!,. Consequently,
by taking the projective limit with respect to the restriction maps on the left and the
norm maps on the right hand side, we obtain

KXo @An
X!~ @A;

One can show that Xo and X! are finitely generated A-torsion modules (cf. [14)],
Theorem 5). By a conjecture of Twasawa the p-invariant of X, vanishes, i.e. X
is a finitely generated Z,-module. This was shown in the case that F/Q is abelian by
Ferrero and Washington [9]. Moreover, by a conjecture of Greenberg, if F is a real
number field, then X, is supposed to be finite, i.e. both the lwasawa p-invariant and
the Iwasawa \-invariant vanish.

Let S be finite set of primes of F' which contains the primes above p. For a place

v let UZ and F, be the p-adification of the S-unit group of F' and the local field F,,
respectively. Then class field theory (see [16]) relates the Galois group of M3 , the
maximal abelian pro-p-extension of F', which is unramified outside the primes in S,
over F to the Galois group of the p-part of the Hilbert S-class field H over F' by the
following exact sequence:

0 Dp = U — [[ o = Gal(ME/F) — Gal(H5/F) — 0, (1.2)

veES

where the kernel Dy of the first map is a finitely generated Z,-module, whose rank
is given by the Leopoldt defect dp.

10
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Example 1.1.7. Let F. [ F be a fived Z,-extension with intermediate fields F,, and let
S be a finite set of primes in F' containing the primes above p. Let MY be the mazimal
abelian pro-p-extension of F,, which is unramified outside the primes above S. Then
ME | F,, is a Galois extension, whose Galois group is denoted by X35.. From the exact
sequence above one can see that X5 is a finitely generated A-module. However, X5,
s not torsion in general.

Let S; denote the set of finite primes in S, and let X/ := %fg Since infinite
primes are unramified in an odd degree extension, X5 = X/ for any odd prime p.
At this point we make the following convention, which holds in the whole thesis. The
assumption p = 0 refers to the assumption of the following statement:

n=0: The p-invariant of %f:o is zero, i.e. Z{f:o is a finitely generated

Z,-module.
(1.3)

1.1.2 Galois groups as A-modules

From now on, let S be a finite set of primes of F' containing the primes above p
and the infinite primes. Let X5 be the Galois group introduced in Example .
One can show that

ranka(X5) > ro(F) (1.4)

Proposition 1.1.8. (¢f. [29], Theorem 10.5.22). Let G5, be the Galois group of the
mazimal algebraic pro-p-extension of F.,, which is unramified outside all primes in
S. The following are equivalent:

1. ranky(X3) = ro(F)

2. The Leopoldt defect d,, of the field F,, is bounded independent of n > 0.

3. H* (G2, Qp/Zp) =0

4. Hy(GS,Z,) = 0.

As a definition, Fl,/F is said to satisfy the weak Leopoldt conjecture, if these
equivalent conditions hold. It is easy to show that the Leopoldt conjecture implies

the weak Leopoldt conjecture. An example of such an extension satisfying the weak
Leopoldt conjecture is given by the following (see Theorem 10.3.25 in [29] for a proof):

11
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Proposition 1.1.9. For any cyclotomic Z,-extension, the weak Leopoldt conjecture

holds.

We also have the following proposition (see Theorem 11.3.2 in [29] and Proposition 7
in [I0] for a proof):

Proposition 1.1.10. If the weak Leopoldt conjecture holds for a Z,-extension Fy | F,
then X5 is a finitely generated A-module of rank ro(F) with no non-trivial finite
submodules.

Corollary 1.1.11. Let F' be a number field with no real prime. Then for the cy-
clotomic Z,-extension of F, X3 is a finitely generated A-torsion module with no
non-trivial finite submodules.

We recall that X2 = X/ for any odd prime p. For p = 2 we have the following
proposition:

Proposition 1.1.12. Let F' be a number field with r1(F') real primes. Assume that
the Zo-extension Fu/F satisfies the weak Leopoldt conjecture. Then we have the
following exact sequence of A-modules:

0— (A2 x5 - x/ —0.

If we further assume that F/k is an abelian extension of totally real number fields
with Galois group G, then

0— (A[G]/2)" "W — x5 — xl =0

is an exact sequence of A|G]|-modules.

Proof. We have the following commutative diagram by (|1.2]) for the finite sets S and
Sfl
0 = Dp — U — TlesFy — Gal(Mg/HY) — 0
1 xS \J !

0 - Dy — US — Hvesfﬁv — Gal(My'JHY) — 0,

where Dp and D’ are the kernels of the corresponding maps and are bounded by the
Leopoldt defect dp. Since F, is isomorphic to Z/27Z for a real prime and trivial for
complex primes, we obtain the following exact sequence:

0 Dp—Dp— [ 2/22— Gal(MZ/M}) 0. (1.5)

real weS\Sy

12
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Since the real primes are unramified in F,/F, we can write the exact sequence above
for the unique intermediate field F,, of F../F with Gal(F,,/F) ~ Z/2"Z for any n > 0,
as follows:

0= Dp, — Dy — (2/22)*"F) — Gal(ME, /Mp') — 0.
Now the claim is the following:
lim(2/22)* ") =~ (A/28)" ")

Since A/2A ~ Jm 7 /27[T)/T?", it suffices to show for a fixed real prime w of E that
the inverse limits of {[[,, , Z/2Z} and {Z/2Z[T]/ T?"} are isomorphic. For this we
inductively define an isomorphism

fo: 1] 2/22 - z/22[1)/T*"
wn |w

compatible with the norm maps as follow: Let fy be the identity and assume we have
defined the isomorphisms f,, compatible with the norm maps for all m < n. Let w, 1
and w! | be the extensions of w, to F, 1. We define

forr o [ 1 2/22 = zj2zi1)/ 7%

Wn+1 w;_‘_l

as follows:

fn+1(a17 e 7a’2n7b17‘ o ;b2n) = fn(al +b17‘ c o, Aop + b2n) +T2nfn<a17 70/211)-

Now we have the commutative diagram

Mo w2/2Z & z/22[1)/T”"
\ !
Mo, WwZ/2Z " z/22(T)/T>""

for any n > 0 and hence

lim ] /22 ~ (A/21).

" wp|w

This completes the proof of the claim. Since
0— Gal(ME/M) = x5 = xf =0

is exact we obtain the first exact sequence in the proposition. For the second part
we note that under the assumption of the weak Leopoldt conjecture for Fi./F, the
cokernels of D, — D7, , for alln > 0 are finite elementary 2-groups of order bounded

13
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independent of n (cf. Proposition [1.1.8]). This completes the proof of the first part of
the proposition since A/2A has no non-trivial finite submodules.

To prove of the second part of the proposition it is enough to consider all groups as
A[G]-modules. We note that the term (Z/27)"(") = Hwes\sf 7,/27 in the sequence

(1.5)) is isomorphic to (Z[G]/2)"**), since G acts transitively on the set of primes w
in I’ lying above a real place v of k, i.e.

[1z/2z ~ z[G) /2.

wlv

[]

As a consequence of this proposition the p-invariant of X3 equals ri(F) under
the assumption p = 0 (cf. (1.3))). This coincides with the statement of Proposition
8 in [10], which says that the p-invariant of X3 equals [F : Q] under the assumption
of the vanishing of the p-invariant of X, (cf. Example , for any totally real
number field F'.

Now we recall the definition of the Tate-twist. Let (3, be a 2p-th root of unity
and let £ := F((y) and A := Gal(E/F). Let E, = E(uy~) be the cyclotomic
Zy-extension of E with I' := Gal(E/F). The exact sequence

0T —=>T —=A=0

splits for any odd prime p. For p = 2 the situation is slightly different. Let & > 2
be the smallest integer such that (,+ € E. The non-trivial element of Gal(E/F)

acts on E either by (or — —(or oOr (or — —(2761 = (2;”2]6_1. In the former case
Gal(Ew/F) ~ 7Z/2Z x T, and in the latter case k > 3 and Gal(Ey/F) ~ Zy. This

can be summarized in the following lemma:

Lemma 1.1.13. If p = 2, then T = Zy if and only if &4 € F or (o — C;,} € F for
some k > 3.

As a corollary, the exact sequence above splits for p = 2 if F'is a totally real number
field.

Since fipe C Ey, ' acts on fpoo. For o € I and ¢ € lpee the cyclotomic
character .
p:T'—1Z,

is defined by the following relation:
o-( = (P

14
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Assuming I' ~ A x T, the restriction of p to A, which is denoted by w, is called the
Teichmiiller character. The restriction of p to I' is denoted by &.

Now let M be a Z,-module with a T-action. M(n), the n-th Tate twist of M,
is defined to be the same underlying Z,-module M with a new I'-action as follows:

o %, m:= p(o)"m?

for o € T and m € M. As an example, T := lgln fpn is the first Tate twist of Z,,
which is called the Tate module. It is easy to see that M(n) = M ® Z,(n), and

T if n>0
Zy(n) =< Z, ifn=20
Homg, (T ", Z,) ifn<0

where T%" is endowed with the diagonal T-action, and Homg, (T ", 7Z,) is endowed
with the contravariant T-action defined in general as follows: For M and N, two

Zy|[T']-modules, Homgz, (M, N) is equipped with a Z,[[I']-module structure with either
a covariant action, i.e. g- f(z) = f(x9) ", or a contravariant action, i.e. g- f(z) =
f(x9 )9, where f € Homg,(M,N), m € M and g € I'.

Lemma 1.1.14. (/22]). Let M be a Z,-module with a T-action. For any integer n
we have the following canonical isomorphisms:

Homg, (M (n),Q,/Zy,) ~ Homg,(M,Q,/Z,(—n)) ~ Homgz,(M,Q,/Z,)(—n)

We also define for a A-module M, the inverse module M# with the same un-
derlying Z,-module as M but the inverse I'-action given by v -m = m?", for any
m € M. Since the characteristic polynomial of any A-module is determined by the
action of 1 + T, a change of variable leads to the following lemma:

Lemma 1.1.15. ([22]) Let M be a A-module with characteristic polynomial f(T),
where the base field F' is a number field which contains a 2p-th primitive root of unity
Cop- Then

1. chary(M(n)) = f(k(y)™"(1+T)—1)

2. chary(M#) = f(1+T)t =1)

Iwasawa modules usually appear with an extra group action. The eigenspaces
with respect to this extra group action are defined as follows: Let M be a Z,[[T]]-

module with G-action for a finite group GG. For a character x of G the y-eigenspace
of M is defined to be the following O, [[T]]-module:

MX:={z € M ®z, O, | o(z) = x(o)z for all 0 € G}

15
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where O, is the ring obtained by adjoining all x-character values to Z,.

It is worth to highlight the isomorphism
(Mr)" =~ (M")", (1.6)

where M* is the Pontryagin dual Homgz,(M,Q,/Z,). We also have the following
lemma (cf. [12], Lemma 5.16):

Lemma 1.1.16. Let M be a Z,[[H x I'|]-module, where H is a finite group. Assume
that M s free of finite rank as a Z,-module and My is finite. Then we have the
following isomorphism of Z,[H]-modules:

(MY)p ~ (Mrp)",

where MY denotes the dual Homg,(M,Z,) and both dual modules are viewed with
either the covariant or the contravariant (H x T')-actions.

1.1.3 Adjoints

Let M be a finitely generated A-torsion module. We have the following natural
map:
’lvbM M — H Mp = @p\div(M)Mm
peP)
where PW is the set of all primes of height one in A. Since pseudo-zero A-modules are

the finite ones for the ring A, the kernel of this map is the maximal finite submodule
of M. The cokernel of this map is called the co-adjoint of M and denoted by

B(M) := coker ().

The co-adjoint is a right exact covariant functor on the category of finitely generated
A-torsion modules. Moreover, since ker (1) is the maximal finite submodule of M, it
is also pseudo-left exact, i.e. if M +— N is an injective morphism of finitely generated
A-torsion modules, then the kernel of S(M) — S(N) is finite.

Now for any finitely generated A-torsion module M, the adjoint «(M) of M is
defined as the Pontryagin dual of S(M):

a(M) = Homg, (B(M),Q,/Z,)

with covariant A-action

(v - f)(m) = f(m?),

16
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where v is a topological generator of I', f € (M) and m € S(M). The adjoint is
then a left-exact contravariant functor on the category of finitely generated A-torsion
modules. Another description of co-adjoints and adjoints is as follows:

Let M be a finitely generated A-torsion module and let m be the maximal ideal of A.
A sequence {m, },>0 of non-zero elements of A, which are all disjoint from div(M), is
called M-admissible if 7y € m and 7,41 € m,m for all n > 0. For example, {p"*'},
is M-admissible, if the p-invariant of M is trivial, and {T""'}, is M-admissible, if
the A-invariant of M is trivial.

Proposition 1.1.17. (¢f. [14], 1.3). Let M be a finitely generated A-torsion module.
For any M -admissible sequence {m,} we have

B(M) = lim M /m, M

a(M) ~ lim Homg, (M /7, M, Qp/Zy).

As an example, applying this proposition to Yo, = Gal(Ls/H,,) with an appropriate
M-admissible sequence {v,,}n vields the following (cf. [14], Theorem 11):

B(Yao) = lim A, = X

We also have the following property of adjoints due to Iwasawa (cf. [14], 1.3):
Proposition 1.1.18. If E is an elementary A-module, then a(E) ~ E as A-modules.
As a corollary, since the adjoint of any finite module is trivial, we have:

Corollary 1.1.19. For any finitely generated A-module M, o(M) is pseudo-isomorphic
to M and has no finite non-trivial A-submodule.

1.2 L-functions

1.2.1 Introduction

Let E/F be a finite Galois extension of number fields with Galois group G. For a
finite place w in E sitting above the place v in F, let G,, denote the decomposition

17
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group, let I, denote the inertia group and let o, be a Frobenius automorphism
attached to w, i.e. o, is a generator of G,,/I,,. Now let V' be a finite representation
of G, i.e. a finite C-dimensional C[G]-module, with associated character yy .

The Artin L-function is defined as a product of Euler factors L, (s, V') for all finite
places v in F' as follows:

1
o V)= 12V = U G =5 wme )

where Nm(p,) is the norm of the prime p,, associated to the place v, Vv is the fixed
points of V under the action of the inertia group I, and det(1 — o, Nm(p,)~*|VI*) is
indeed the characteristic polynomial of o,, acting on V» evaluated at T = Nm(p,) .
It is easy to see that these characteristic polynomials are independent of the choice
of w and oy.

This product converges absolutely and defines an analytic function in the half
plane Re(s) > 1. In fact it has a meromorphic continuation to the whole complex
plane and by a deep conjecture of Artin, the analytic continuation gives an entire
function if V' is not the trivial representation. Some basic properties are as follows

(cf. [I]):

1. L(s, V@ V') = L(s,V)- L(s, V') for any representations V' and V’. This implies
that it suffices to study Artin L-functions for irreducible representations.

2. For finite extensions of number fields FF C L C E and a representation V' on
Gal(L/F), L(s,V) = L(s,inf(V)) where inf (V') denotes the inflated represen-
tation of V on Gal(E/F).

3. For finite extensions of number fields FF C L C E and a representation V' on
Gal(E/L), L(s,V) = L(s,ind(V)) where ind(V') denotes the induced represen-
tation of V on Gal(E/F).

4. (Functional equation). Let v and r; denote the number of unramified real
primes and ramified real primes in F', respectively. If we let

s+1
2

A(s, yv) == r(g)a TEID). L(s, V)

for a := (ro +r)dim(V) and b := (ro 4+ 11 )dim(V'), then for constant numbers
Cy, # 0 and B,, > 0 we have

Al —s,xv) =0, - B;VA(S, Xv)-

18
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The Artin L-function L(s,V') is also denoted by L(s, xv). We note that for finite
1-dimensional respresentations, the Artin L-functions coincide with the Dirichlet L-
functions via the following Artin reciprocity map:

I3 — Gal(E/F)
W — Oy

Here S is a finite set of primes in E containing the ramified primes, I is the set of
all fractional ideals in F which are relatively prime to the primes in .S and o, is the
Frobenius automorphism for any place w ¢ S.

From now on, let E/F be a finite abelian Galois extension with Galois group
G, let y € G be a C-valued character of G and let S be a finite set of primes in F
which contains the primes ramified in £ and the infinite primes. The corresponding
1-dimensional Artin L-function is as follows:

LE/F(SaX) = H 1

p

1
— x(p) Nm(p)~*

where the product runs over all prime ideals of F. We know that Lg p(s,x) is
analytic for Re(s) > 1 and has a meromorphic continuation to the whole complex
plane. Moreover, its analytic continuation is an entire function if the character x is
not trivial and otherwise it has only one simple pole at s = 1. As a consequence of
the functional equation of Artin L-functions, Lg,p(1 — n,x) is non-zero for n > 2
precisely in the following situations:

e F is a totally real number field and n is even.
e Fis a CM field, i.e. a totally complex field which is a quadratic extension of

its maximal real subfield, and n is odd.

By removing the Euler factors corresponding to the primes in S, one can define a
S-incomplete L-function as

1
X(op) Nm(p)=*

p¢s

Now by taking the direct sum over all characters of G we construct the G-equivariant
L-function attached to E//F. For this let
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be the idempotent of C[G| attached to any character x of the group G. The G-
equivariant L-function associated to E/F' is defined as

@E/F ZLE/F S, X 1 * x5
xEG

where the sum runs over all characters of G. Similarly removing the Euler factors
corresponding to the primes in S leads to the following definition of the G-equivariant
S-incomplete L-function associated to E/F:

E/F ZLE/F s, X €x-

xEG

So ©% /¢ € C[G] is the unique element of the complex group ring C[G] such that for
any character y of G we have

(@E/F( s)) = L%/F(SaXfl)-

Theorem 1.2.1. (Klingen-Siegel, cf. [{2]). For any integer n > 1,
6%/F(1 —n) € Q[G].
Moreover, by the following theorem, a suitable multiple of ©7, / #(s) is in fact in the
integral group ring Z[G]:
Theorem 1.2.2. (Deligne-Ribet, cf. [7]). For any integer n > 1,
Anngie)(H(E, Q/Z(n))) - ©%,r(1 —n) C Z[G].

For simplicity we will drop the index E/F in the notations above, if there is no
confusion about the extension.

1.2.2 p-adic L-functions

Let ¢ be a 1-dimensional p-adic Artin character for the totally real number field
F of finite order, i.e. a group homomorphism

¥ Gal(Q,/Q) — Q;,

of finite order and let O, denote the ring obtained by adjoining all character values
of 1 to Z,. We first mention the terminology of Greenberg (cf. [L1]) for the different
types of the characters ¢: the character ¢ is of type S if

FyNFy=F,
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and of type W if

Fy, C Fy.
So the trivial character is the only character of both types. By fixing an embedding
C — C, we identify the groups of the complex and the p-adic characters.

For a 1-dimensional p-adic Artin character ¢ for F' = Q of finite order, Kubota
and Leopoldt have defined the p-adic L-function L,(s, 1) as the unique continuous
function of p-adic numbers, which interpolates the special values of the Artin L-
function, with the Euler factor at p removed as

Ly(1—n,¢) = (1 = g™ (p)p" ) L(1 — n,gw™")
for any integer n > 1 and the Teichmiiller character w on Q. Deligne and Ribet have
extended the construction to an arbitrary number field F'. They have shown that for
any l-dimensional p-adic valued Artin character v for F' of finite order there is a p-
adic L-function L,(s, ) which interpolates the special values of the Artin L-function
with the Euler factors above p removed as

Ly(1 —n,v) = [T —vw™(0)Nm(p)"™) - L(1 = n, ™),
plp
where n > 1 is an integer and w is the Teichmiiller character over F. L,(s,) turns
out to be p-adically analytic everywhere if 1) is not trivial and with at most one simple
pole at s = 1 otherwise.

Let S, denote the set of all primes of F' sitting above p and let S be a finite set
of primes in F' containing S,. By removing the Euler factors at the primes in S\ .S,
one can construct the S-incomplete p-adic L-function which satisfies

Ly(t=n, ) = [ [ = vw™(p)p" ") - L5(1 = n, ™).

plp

Deligne and Ribet have also proved that for any such character ¢ for F'| there is
a power series Gy, g in Oy[[T]] such that

s Gy,s(u® —1)
Lp(l - 8777Z)> - H¢(u5 _ 1) )
where u = k(y) € 1+ pZ, and Hy(T) = (y)(1 +T) — 1 if ¢ is of type W and
1 otherwise. Therefore, for any integer n > 1 and S-incomplete L-function L°(1 —
n,w="), we have
-~ Gw,g(u" — 1)

Y Hy(ur—1) 7
where ~,, denotes the equality of the p-adic valuations of both sides.

L5(1 —n,¢yw™") (1.7)

Remark 1.2.3. By the functional equation of Artin L-functions (cf. Sectionm)
we see that Gy, s vanishes if 1 is an odd character, i.e. (—1) = —1.
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1.2.3 p-adic pseudo-measures

Let p be a fixed prime number. Let E/F be a finite abelian extension of totally
real number fields with Galois group G. Let E (resp. F.) be the cyclotomic Z,-
extension of E (resp. of F'), with Galois group I'g (resp. I'r). We denote by H
the Galois group of F./F., and by G, the Galois group of E./F. Since I'p is
topologically generated by one element, the exact sequence

0—>H—>GoSTrp—0 (1.8)

splits. We denote by I" the image of ' under this splitting map, and by ~ a topological
generator of I'. Assume that G, is abelian. Then G, >~ H xI'. The following diagram
illustrates the situation:

We set A := Z,[[Gw]] and denote by Q(A) the quotient ring of A. We freely use the
identification

A = Z,[H][[T]],
where v — 1 maps to T (see identification (1.1))).

Let S be a finite set of primes in F' containing the primes above p, the primes
ramified in F, and the infinite primes, and let Sy denote the set of finite primes in
S. We define equivariant versions of Gy ¢ and Hy, as follows (cf. [32], Proposition
5.4): For a character ¢ of G, let Gy (1), Hy € Oy[[T]] be the power series defined
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in Section [L.2.21 Let

@:Eymm—w%eépmwn
e (1.9)

fmzzmm—u%eﬁmmm
weH

be the equivariant versions of Gy ¢ and Hy. For any character x of G, they satisfy
the following:

X(Gs) =Gys(0) , x(Hs)= H,(0).

We recall that by the Weierstrass Preparation Theorem (cf. Theorem [1.1.3]),
Gys(T) = mCs) - G o(T)

for G, o(T) = g}, s(T) - uys(T), where g;, (T') € Oy[T] is a distinguished polyno-
mial, uy s(T) € Op[[T]] is a unit, and 7 is a fixed uniformizer in O,. The modified
equivariant L-function G is now defined as follows:

Gy=) Gisy—1)-ey€ ‘%'O[H][[F]]. (1.10)
weH

The following lemma relates Gg and G¥%, assuming p = 0 (cf. (1.3)):

Lemma 1.2.4. Under the assumption = 0 we have the following equalities:

1. Gg = G% for any odd prime p.

2. Gg =2"EIGL forp=2.

Proof. By a result of Wiles [47], ;1(Gy s) is the same as the Iwasawa p-invariant of
the A-module Lffg, which is zero by the assumption, for all odd primes p (see Section
. In the case of the prime 2, the p-invariant of X3 differs from the p-invariant

of X3 by the factor 2"1U) by Proposition |1.1.12, Therefore the p-invariant of X5
is 2717 Hence 7#(Gw.s) = 21U for any character ¢ of G (see [I1], pages 82 and
87). O

In particular, we have both equalities in Lemma for any abelian number field
F, since the assumption of the lemma holds (cf. [9]).
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To see the next lemma we briefly review the definition of a p-adic pseudo-measure
of a certain Galois group and its relation to the p-adic L-function. For more properties
one can consult [40]. For a commutative profinite group G the element As € Q(Z,[[G]])
is called a pseudo-measure on G if (¢ — 1)\g is a measure, i.e. (¢ —1)\g € Z,[[G]], for
any g € G, where Q(Z,[[G]]) denotes the quotient ring of Z,[[G]]. Let X := %if denote
the Galois group of the maximal abelian pro-p-extension of F which is unramified
outside the primes in Sy, over F. By a result of Deligne and Ribet in [7] there is a
unique pseudo-measure on X denoted by A\g € Q(Z,[[X]]), which satisfies the following
relation for any finite order character x of X:

Lp,S(l - SvX) =< X“S;)\S >

Equivalently if we let € : X — Z,, be the locally constant function defined by ¢(g) =1
if g has image 1 in H, and zero otherwise, then

Cf(é“h, 1—n)=<epp", As > .

Here p is the cyclotomic character, g, is the locally constant function satisfying
en(®) = e(ha) and (5(ep, s) is the S-incomplete p-adic partial zeta function asso-
ciated to ;. The image of Ag under the natural surjection 7 : X — G is a p-adic
pseudo-measure on G, which is denoted by 05 € Q(A). So if 4 € X denotes a
pre-image of v € G, under the surjection above, then

Zs = m((4 — 1)As) € A.

In fact 05 = (y—1)"'Zs € Q(A). Now with notations as above we have the following:

Lemma 1.2.5. Let do, and ¢y in Q(A) satisfy do = coo((y —1)e+ (1 —e)) € AG,
where e is the idempotent associated to the trivial character of H and AG, denotes
the augmentation ideal in A. Then

CooGg = doofs € A

Proof. By a calculation in Proposition 12 in [33] for any character y of G, satisfying
x(v) = 1, we have the following:

Gys(T) Zs(h,T)
TX<X71> - Z X(h) T
heH

Here Zg(h,T) is given by the relation Zg = 3,y Zs(h,7 — 1)h € A. As a result,

T
Gs/HS = Z GX’S( )6 = 95.

T<x1> "X

x€H

Since Hg = (7 — 1)e + (1 — e), we obtain c,Gg = do.0s. Therefore, for the p-adic
pseudo-measure fg on G, we have c,,Gs = dy s € A. O
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Let E=E (Cap) be the field obtaining by adjoining a primitive 2p-th root of unity
Cop t0 B, and let By := Fy((ap) = E(pp~) be the cyclotomic Z,-extension of £. We
denote by Go the Galois group of E. /F. Since E.. contains all p-power roots of
unity, we have the cyclotomic character

p:Goo — L = Aut(piye)
of éoo. We extend the definitions of a Tate twisted module and an inverse module of

Section to the following:

e Let ¢, be the unique continuous isomorphism of O-algebras

tn - O[[Goo]] = O[[Guc]l, (1.11)

which satisfies t,(g) = p(g)"-g for all g € G and n € Z. For a O[[G s ]]-module
M let the Tate twisted module M (n) be the same underlying group M with a

new O|[G4]]-action given by o x, m := t,(c)m? for o € O[[G]] and m € M.
e Let ¢ be the unique continuous isomorphism of O-algebras
t: O[[Gx]] = O[lGuo]]?, (1.12)

which satisfies t(g) = ¢! for all ¢ € Go. For a O[[Gy]]-module M, let the
inverse module M# be the same underlying group M with a new O[[G]]-action
given by o xm = 1(o)m? for 0 € O[[G]] and m € M.

By using Lemma [1.1.15] we obtain the following lemma:

Lemma 1.2.6. With notations as above we have the following:

(totn)(Gs) =D Gyorunsu™(7)™ = 1) ey

YeH

(totn)(Hg) =Y Hyrons(@" (7)™ —1) ey
YeH

This lemma yields the following equality:

71wn7s(un - 1) e
_1wn73(u” — 1) X

(ﬂ'OLOtn)Gs/HS = Z f]x
A TTX

xX€G

where m : A — Z,[G] is the projection map sending v — 1 to zero, and u = k(7).
Therefore we obtain:
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Corollary 1.2.7.
(movot,)Gs/Hg = @g/F(l —n)

Remark 1.2.8. We note that in all the dyadic and the non-dyadic L-functions we
have defined, the set S can be replaced by Sy, since infinite primes have no influence
on the definitions.

1.3 Fitting ideals

1.3.1 Introduction

Let R be a commutative ring with identity and let M be a finitely generated R-
module. We assume that M is a finitely presented R-module, i.e. that the module of
relations for M is a finitely generated R-module. So we have the following presentation
of M:

RL RS M0
Let A be a matrix associated to h. The (initial) Fitting ideal of M is defined to be
the ideal of R generated by all b-minors of A if a > b, and R otherwise. It is denoted
by Fittgr(M), and if there is no confusion about the ring, we simply write Fitt(M).
One can see as a corollary of Schanuel’s Lemma that this definition is independent
of the choice of the finite presentation. Now we list some basic properties of Fitting
ideals. For the proof one can consult [28§].

1. Fitt(M) is a finitely generated ideal of R satisfying
(Anng(M))° C Fittg(M) C Anng(M),

where Anng(M) is the annihilator ideal of M and b is an integer so that M can
be generated by b elements as a R-module.

2. If M — M’ is a surjective map of finitely presented R-modules, then

Fittp(M) C Fitt(M').

3.1f0 = M — M — M" — 0 is an exact sequence of finitely presented R-

modules, then
Fittg(M') - Fittr(M") C Fittp(M).

Moreover, we have equality if the exact sequence splits, i.e.

Fittp(M' & M") = Fittg(M') - Fittp(M").
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4. If M ~ R/a is a cyclic module, then
FZttR<M> = ATLTZR(M> = a.

More generally, applying the previous property to M ~ R/a;®R/ay®---®R/a,,
a direct sum of n cyclic R-modules, leads to

FZttR(M) = aidg * - - Qy.

5. As a consequence of properties 3 and 4, the Fitting ideal of a finite module M
over a PID R is principal and generated by the cardinality |M| of M:

Fittr(M) =< |M]| > .

6. If I C R is any ideal and Fittr(M) is the image of Fittr(M) in R/I, then
Fittg)r(M/I - M) = Fittg(M).
One can also see that if I C R is finitely generated, then

Fittp(M/I - M) C (Fittp(M), ).

7. If M is a cyclic R-module, then
Fittr(M*) = Anng(M*) ~ Anng(M) = Fittgr(M),
where M* = Hom(M,Q,/Z,) is the Pontryagin dual.

8. Let R = Ry X Ry X --- X R, be a direct sum of some rings. Let M = M; &
My @ --- & M, be a R-module, where M; is a R;-module for each i. Then

Fittg(M) = (Fittg, (M,), Fittg, (M), - , Fittg, (M),

as an ideal in the ring R = Ry X Ry X -+ X R,,.

We can say more about the relation between the Fitting ideals in an exact sequence
in the following situation (cf. [28]):

Proposition 1.3.1. Let R be a principal ideal domain and let
0O0—-E—=N-—=>M-=0
be a short exact sequence of finitely generated R-torsion modules. Then

Fittg(N) = Fittp(M) - Fittp(E).
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Proof. Since one side of this equality holds for any short exact sequence (see property
3), it suffices to show Fitt(N) C Fitt(M) - Fitt(E). Let {my,mo,--- ,my} and
{e1,€e9, -+ ,e.} generate M and E as R-modules, respectively. Letting n; be a pre-
image of m;, then N is generated by {ni,ng, -+ ,ns e, €9, ,e.}. Since M is a
torsion R-module and R is a principal ideal domain, we can form a (¢ X t)-matrix A,
whose rows are some relations of {my, ms,--- ,m;} which generate all other relations.
For any relation (ay,as,- -+ ,a¢) of {my,ma, -+ ,m;} the element a;ny + asny + -+ - +
any € N lies in E, and so generated by {ej, ey, -+ ,e.}. Therefore, there exist
b;’s so that (ai,--- ,a;, by, -+ ,b,) is a relation of {ny,---,ny, e, -+ ,e.}. Hence the
(t x t)-matrix A can be extended to the (£ x ¢ + r)-matrix (A|B), in which the
rows are relations of {ny,--- ,ng ey, -+ ,e.}. We note that if (af, -+ ,a}, by, -+ ,0.)
is an arbitrary relation of {ni,--- ,nse1, -+ ,e.}, then by the way we chose the
matrix A, the n-tuples (b, --,b.) can be written as a linear combination of rows
of B. Now let D be a matrix with ¢ 4+ r columns so thatAf‘agch row is a relation of

{n1,--- ,n4,e1,--- e, }. By adding t rows we get D' = (75~), whose rows are still

relations of {ny, -+ ,ngeq, -+ ,e.}. By elementary row operations we change D’ to
its equivalent matrix D" = (4 5 ). We observe that any (¢ + r)-minor of D is also
a (t 4+ r)-minor of D' and consequently, a (¢ + r)-minor of D”. But, any (¢ + r)-
minor of D" vanishes unless it can be written as the product of a r-minor of B’ and
det(A). Therefore, since Fitting ideals are generated by the minors, the statement of

the proposition follows. O

Since any submodule of a finitely generated torsion module over a principal ideal
domain is still finitely generated and torsion, we can state more generally the following
for a long exact sequence:

Corollary 1.3.2. Let My, My, --- , M, be finitely generated R-torsion modules where
R is a principal ideal domain, which are related by the following exact sequence

0— M, =M,y —---— My —0.

Then
Fitt(My) - Fitt(M) ™ -+ Fitt(M,) V" =1,

where Fitting ideals are viewd as fractional ideals of R.

Now let R be a local ring and let M be a R-module of projective dimension at
most one (see Section for the definition of the projective dimension). Then the
R-module M has a finite presentation

0— R R M 0.

As a result, the Fitting ideal of the R-module M is principal, and generated by the
determinant of A. In the following subsection we describe the Fitting ideal of an
important module of projective dimension at most one over some local ring.
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1.3.2 Fitting ideals of certain Iwasawa modules

For this part let O be the integral closure of Z, in some finite extension of Q,,
and let M be a torsion O[[T]}-module with no non-trivial finite submodules.

Lemma 1.3.3. For a finitely generated O[[T']]-torsion module M with no non-trivial
finite submodules, the projective dimension of M s at most one:

pdoyry(M) < 1.

Proof. By the Structure Theorem for O[[T]]-modules (cf. Theorem [1.1.4), there is
an embedding of M into an elementary Iwasawa module @, O[[T]/p{* with finite
cokernel B, where the p;’s are some primes of height one in O[[T]]. Let A € O[[T]] be
a relatively prime element to the characteristic polynomial charoyr(M). Then we
have the following commutative diagram:

0

0 - M — 0[]/ — B — 0
$A A
M — @, O[T]]/p",

where the vertical maps are given by scalar multiplication by A. Here the injectivity
of the second vertical map follows from the way we have chosen A\ to be prime to
the characteristic polynomial. Therefore the first vertical map is also injective, and
so the depth of the O[[T]]-module M is at least one. Now applying the Auslander-
Buchsbaum formula (cf. [2]) to the regular local ring O[[T7], i.e.

pdojry (M) + depthoyr)(M) = dim(O[[T]]) = 2,
yields de[[T]](M> <1 O

As a corollary, the Fitting ideal of M is a principal ideal. This has the following
explicit description:

Proposition 1.3.4. For a finitely generated O|[T]-torsion module M with no non-
trivial finite submodules we have the following equality of ideals in O[[T]]:

Fitt@[[T]] (M) = (ChCLTo[[T]] (M)).

Proof. First we note that the Fitting ideal is generated by the characteristic ideal for
any elementary Iwasawa module by property 4 of Fitting ideals in [1.3.1}

Fittor) (@D OIITN/p2*) = [[ v = (charoyy (@D OLTT)/o:)).
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Since pdojr(M) < 1 (cf. Lemma , the Fitting ideal of M is principal, and
generated by some element f(7') € O][T]]. For the O[[T"]]-torsion module M with no
non-trivial finite submodules, there are some primes p; € O[[T]] of height one and a
finite O[[T"]]-module B, so that the sequence

0— M — EolT]/pii = B —0

is exact (cf. Theorem [1.1.4). Now let p € O[[T]] be an arbitrary prime. Localizing
the exact sequence above at the prime p yields the isomorphism

M, =~ EB(@HTH/P?Z');J-

Since the Fitting ideal coincide with the ideal generated by the characteristic polyno-
mial for the right hand side of the isomorphism above, the same holds for M,. Now it
is enough to vary the primes p in the unique factorization domain O[[T]] to complete
the proof. O

1.3.3 Complements

In this part we list some propositions that we need for the next chapters. First
we describe the relation between Fitting ideals and determinantal ideals in a certain
situation. For this we review the definition of the determinantal ideal, which plays
a role similar to that of the characteristic ideal for some A-modules with an extra
group action.

For a commutative ring R with identity, a finitely generated projective R-module
P and f € Endg(P), the determinant of f is defined as

detr(f | P) :=detr(f @idg | P& Q),

where @) is a complement of P, i.e. P® (@ is free. One can check that the definition is
independent of @) by using Schanuel’s lemma. By the same strategy, since P @ R[X|
is a finitely generated projective R[X]-module, the monic polynomial detr(X — f |
P) € R[X] is defined to be

detR(X — f ‘ P) = detR(zdp®X — f® 1 ’ P@R R[X])

for any projective R-module P. One can see that these definitions are well-behaved
under base-change, i.e.

d€tR(f | P) = d@tR/(f ®idR/ ‘ P® R/)
(1.13)
detR(X - f | P) = detR/(X - (f ®ZdR/) | P & R/>,

where R is any R-algebra. We have the following proposition:
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Proposition 1.3.5. (¢f. [13], Proposition 7.2). Let R be a commulative, semi-local,
compact topological ring and let I' be a pro-cyclic group with topological generator ~y.
Let M be a topological R[[I'|]-module, which is projective and finitely generated as an
R-module. Let

F(X) :=detg(X —m., | M),

where m., is the R[[I']]-module automorphism of M given by multiplication by . Then
the following holds:

1. M is finitely presented as an R[[']]-module. If we let F(7y) be the image of F(X)
via the R-algebra morphism R[X]| — R[[T']] sending X to ~, then we have an
equality of R][[']]-ideals

Fittpry (M) = (F(7))-

2. If we view My, = Homg(M, R) as a topological R[[T']]-module with covariant
I'-action, then
FittR[[p”<M) = FittR[[r”(M%).

3. If we view MY = Homg,(M,Z,) as a topological R[[I']]-module with covariant
I-action, where R = Z,|G| and G is a finite abelian group, then

FittR[[pH (M) = Fz'ttR[[p” (Mv)

We also quote Lemma 5 in [3], which relates the Fitting ideals of the modules of
a 4-term exact sequence under some assumptions.

Proposition 1.3.6. Let R := Z,[G], for a finite abelian group G and a prime number
p. Assume that we have an exact sequence of finite R-modules

0—-A—-P—>P <A —0.
Further, assume that pdz, P < 1 and dep[G]P’ < 1. Then we have
Fittp(A*) - Fittg(P') = Fittg(A') - Fittr(P),

where the Pontryagin dual A* == Hom(A, Q,/Z,) is endowed with the covariant G-
action.

Finally, we have the following lemma describing the Fitting ideal, the annihilator
ideal and the projective dimension under the Tate-twist action. Again, let O be the
integral closure of Z, in some finite extension of QQ, for a prime p. Let G+ be the
Galois group of Es(Cp)/F defined in Section[1.2.3} and let ¢, be the homomorphisms
defined by for all n € Z. We have the following lemma (see for example Lemma
7.4 in [13] for a proof):
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Lemma 1.3.7. Assume that Goo is an abelian group and M is a finitely presented
O[[Gwo]]-module. Then for all n € Z, the following holds:

8. pdoye. (M) = pdoye. ;(M(n)).

1.4 Cohomology

1.4.1 Group cohomology

Let G be a group and let M be a G-module. We define the group of i-th cochains
C'(G, M) of G to be the set of functions from G* to M
C' G, M) :={f:G" — M},
and the i-th differentials d' : C*(G, M) — C**'(G, M) to be the following maps :

di(f)(gmgla“' agz) = gOf(.Ql?.gQ?' T ?gl>

—_

+ (_1)Jf(gﬂ) 5 8i-2,95-195+1, 9542, ¢ 792) + (_1)i+1f(907gl7 e agi—1)~
J

I
=)

Since for any ¢ > 0, d**! o d* = 0 we obtain a cochain complex
LSoe S ole o S ote S

which defines the i-th cohomology group of G with coefficients in M as follows:

i - K,

Let G be a profinite group, i.e. a topological group given by a projective limit
G = 1&[1 G/U,

where U runs over open subgroups of G of finite index. Let M be a discrete G-module,
i.e. M = UMY, where the union is over open subgroups U of G. From now on, a
G-module means a discrete G-module. We define the n-th cohomology group of G
with coefficients in M in the same way with continuous cochains, i.e. C*(G, M) is
the set of continuous functions from G™ to M. Here we list some basic properties of
these groups:
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o HO(G,M) = M.
e For an injective G-module I, H"(G,I) = 0, for any n > 1.

e For a short exact sequence 0 — L — M — N — 0 of G-modules we obtain a
long exact sequence in a functorial way as follows:

0— LY — MY~ NY— HY(G,L) = H'(G,M) — H(G,N) = H*(G,L) — -+~ .

e Let M be an induced module, i.e. M = Z[G]| ®z M, for an abelian group My
with G-action given by ¢g-(a®b) = (ga)®b. Then H"(G, M) = 0 for any n > 1.

e For a G-module M with trivial G-action we have H'(G, M) = Hom(G, M).

Now let H be a closed subgroup of a profinite group G and let M be a continuous
G-module. By changing the group we have the following maps:

e For any ¢ > 0, there is a restriction map on cochains C*(G, M) — C'(H, M),
which induces the restriction map res : H(G, M) — H'(H, M).

o If the index of H in G is finite, there is a norm map M7 — MY given by
m— >, ,gm, where g runs over a set of left coset representatives of G /H. One

can show that this map extends to the corestriction map cor : H'(H, M) —
HY(G, M) for every i > 0.

e For a closed normal subgroup H in G, M is a G/H-module. There is an
inflation map on cochains inf : C*(G/H, M) — C*(G, M), which induces the
inflation map inf : H(G/H, M%) — H'(G, M), for any i > 0.

It is not hard to see that for a closed finite subgroup H of finite index in G, the
composition map res o cor : H(G,M) — H'(G, M) is given by multiplication by
|G/H]|. In particular, for a finite group G the cohomology group H'(G, M), for i > 0,
is annihilated by |G|. If we assume that H is also normal in G we have a five term
exact sequence

0— HYG/H,M") ™ H(G, M) ™S HY(H, M) 5 HX(G/H,M") ™ H2(G, M),
(1.14)
where tr is the transfer map (cf. [29], Proposition 1.6.6). One can also check that for
a profinite group GG and a G-module M,

H"(G,M) = lim H"(G/U,M"),

where the injective limit is with respect to the inflation maps and U runs over open
subgroups of G of finite index in G (cf. [29], Proposition 1.2.6).

We have the following definitions:
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e The cohomological dimension cd(G) of the group G is defined to be the
smallest integer n such that H9(G, M) = 0 for all ¢ > n and all torsion G-
module M, and oo if no such integer exists. For a prime p the cohomological
p-dimension cd,(G) of the group G is also defined to be the smallest integer
n, such that the p-primary part HY(G, M)(p) = 0 for all ¢ > n and all torsion
G-module M, and oo if no such integer exists. For a pro-p group G one can
show that cd,(G) < n if and only if H""(G,Z/pZ) = 0 (cf. [29], Proposition
3.3.2).

e Let n > 0 and let G be a pro-p group such that the groups H(G,Z/pZ) are
finite for all ¢ with 0 < ¢ < n. Then the n-th partial Euler-Poincaré
characteristic of G is defined to be

Xn(G) = Z dimyz,,z(H (G, Z/pZ)).

e A G-module M is defined to be cohomologically trivial if H"(H, M) = 0 for
all n > 0 and all closed subgroups H of G.

Let p be a prime number and let F' be a number field with ro(F') pairs of complex
embeddings. Let S be a finite set of primes in F' containing the primes above p and
the infinite primes, let Sy denote the set of finite primes in S and let G% (resp. G}g,f )
be the Galois group of the maximal algebraic pro-p-extension of F' unramified outside
the primes in S (resp. in Sy).We need the following important lemma later on. For a
proof we refer to Proposition 8.3.17 and Corollary 8.6.16 in [29] in the case p is odd,
and Theorem 1 in [39] for the case p = 2.

Lemma 1.4.1. The cohomological dimension of G}if 15 at most 2:
Sy
cd(GY) <2,
and the second partial Euler-Poincaré characteristic of the group G}if s given by:

X2(GY) = —ra(F).

Remark 1.4.2. For any odd prime p we observe that G3 = fo, since the infinite
primes are unramified in any p-extension.

Now we want to obtain another description of group cohomology in terms of
projective resolution. First we remark that Z[G'] with G-action defined by diagonal
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left multiplication is Z[G]-free and hence projective. We define the standard projective
resolution of Z by G-modules as follows:

B G Sz — - B ZIG) S Z - 0,

where € is the augmentation map and d;, for any ¢ > 0 is given by

%

di(go, g1:-++  giv1) = Z(_l)j(Qm 052, 9i—195+1, Gj+2s T 5 Gir1)-
j=1

One can show that the standard projective resolution is exact. Now for a G-module,
M we obtain a complex
0

0 — Homye(Z[G], M) A Homge)(Z|G™], M)

2 Homge (ZIG™), M) — -+,
where D' = f o d; for any i > 0. One can show that the map
Y': Homzq)(Z|G', M) — C(G, M)

defined by .
W(f)(ghg% ce 791) = f(17g179192, 59192 'Qi)

is a natural isomorphism in the category of G-modules for any ¢« > 0. This provides
an isomorphism of complexes and so induces the same cohomology groups. Since the
standard resolution is in fact a projective resolution of Z we obtain

H'(G, M) ~ Bty (Z, M), (1.15)

where Exté[G] (Z,—) is the right derived functor of the functor Homgg(Z, —).

We recall that for a ring R and a R-module M, the projective dimension
pdr(M) of M is defined to be the minimal number n such that there exists a projective
resolution

O—-FP,—-FP1—F—=-M=0

for M of length n. If there is no such resolution we let pdg(M) = oc.

Let O be a finite integral extension of Z,, and let G be a profinite group. We
remark that (1.15) still holds for any O[[G]]-module M by a similar argument. We
have the following proposition (see [41], Chapt. IX, §5, Theorem 8 ):
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Proposition 1.4.3. Let M be a O[G|-module for a finite group G. Then M is coho-
mologically trivial if and only if the projective dimension of M 1is finite, if and only
if the projective dimension of M is at most one:

pdo[G}M < 1.
If we further assume that M is Z-free, then M 1s cohomologically trivial if and only
if M is projective as a O[G]-module.

Remark 1.4.4. Serre proved this proposition for any Z|G|-module M, where G is
finite. However, one can easily generalize the proof to any R|G|-module M, where R
s a principal ideal domain and G is a finite group.

We have the following lemma (cf. [29], Proposition 5.2.11 and Corollary 5.2.13):
Lemma 1.4.5. Let M be an O[|G]]-module. Then

1. pdojenM < n if and only if Ext?;ﬁlG”(M, N) =0 for any simple O[[G]]-module
N.

2. pd@[[gﬂo == CdpG.

Now back to Iwasawa theory. Let A = O[[I']] be a completed group ring, where

I' ~ Z,. We have the following lemma (for a proof see Proposition 2.2 and Lemma
2.3 in [30]):

Lemma 1.4.6. Let M be a finitely generated A[H|module, where H is a finite group.
Then pdymM < 1 if and only if the following conditions are satisfied:

1. deP[H]M S 1.

2. M has no non-trivial finite A-submodules (i.e., pda(M) < 1).

If we consider Z[G] as a right G-module under the right diagonal multiplication,
then for a G-module M the standard resolution of Z induces a complex

e — Z[Gs] Qz[a) M d# Z[GQ] ®z[q) M d# Z[G] Xz[q) M — 0,

whose i-th homology groups define the i-th homology groups H;(G, M) of G with
coefficients in M for all 4 > 0. Here are some basic properties:

o Hyo(G, M) = Mg.
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e For a projective G-module P, H,(G, P) =0 for any n > 1.

e For a short exact sequence 0 — L — M — N of G-modules we obtain a long
exact sequence in a functorial way as follows:

-+ —= Hy(G,N) - H,(G,L) - H(G,M) - H(G,N) - Lg - Mg — Ng — 0.

The following proposition describes the relation between cohomology and homology
groups (cf. [29] Theorem 2.2.9):

Proposition 1.4.7. Let G be a profinite group and let M be a compact G-module.
Then there are functorial isomorphisms for all i > 0

Hy(G,M)* ~ H(G, M*),

where x denotes the Pontryagin dual.

1.4.2 A useful commutative diagram

Let ¢ be a class of finite groups containing Z/pZ and closed under taking sub-
groups, homomorphic images and group extensions, where p is a fixed prime number.
Let

l-H—-G—>G—1

be an exact sequence of pro-c¢ groups, i.e. an exact sequence of groups which are
projective limits of groups in ¢. Let AH denote the augmentation ideal of Z,[#], and
let I = AHZ,|[[G]]. Then the sequence

0—=1— Z,[G]] = Zy[|[G]] = 0 (1.16)
is exact. We apply the functor Hy(H, —) = Tor%”“gH (Z,[[G]], —) to the exact sequence
0— AG — Z,[[9]] = Z, — 0,

where Z,[[G]] is homologically trivial as an induced H-module. Therefore we obtain
the following exact sequence:

0 = AHZ,[[G]]/AHAG — AG/AHAG — 7,[[G)|/ AHZ,[[G)] — Z, — 0.

We have the isomorphism Z,[[G]] ~ Z,[[G]]/I by (L.16]), and the map

fI/1? — AHZ[[G]]/AHAG,
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using the inclusion (AHZ,[[G]])> € AHAG. Consequently, the exact sequence

1)1 L 7,[G)) ©2,10) AG — AG — 0 (1.17)
is obtained.

Let G be a finitely generated pro-¢ group with presentation
l1-R—-F;—>G—1, (1.18)

where Fy is a free group of rank d. Writing the exact sequence for the short
exact sequence above, and noting that AFy is a free Z,[[Fy|]-module (cf. [29], Propo-
sitions 5.6.3 and 5.6.4) lead to the following exact sequence, which is a profinite
analogue of a theorem of Lyndon for discrete groups (cf. [26], Proposition 1.1):

Proposition 1.4.8. There is a canonical exact sequence:
0= R™(p) = Z,[|G]" = Z,[[G]] = Z, — 0
In particular, if cd,(G) < 2, then R®(p) is a projective Z,|[G]]-module.

We note that the abelian pro-p group R®(p) is naturally a Z,[[G]]-module, which is
called the p-relation module of the group G with respect to the given presentation.

Now let G be a finitely generated pro-¢ group with presentation
l1-R—-F—>G—1, (1.19)
where F' is a free pro-c-group of rank d, and let
l1-H—=-G—=G—=1

be an exact sequence of pro-c groups. We want to find a description of the Z,-module
X :=H®(p). We have the following commutative diagram:

- G — 0

- G = 0

1
R R e 2 -
1
Qe 2

—_

where N is the kernel of the corresponding maps. For
X :=H"p) and Y :=AG/AHAG,
we have the following proposition (cf. [26], Proposition 1.7 and [15], Lemma 4.3):
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Proposition 1.4.9. With the notations as above, the diagram

0
1

0 — Hy(MH,Z,) — Ho(H,N"(p)) — R*p) —
| | }

0 — Hy(H,Zp) — Ho(H,N"(p) — Z[G]" —
1

AG = AG

1
0

+

— K< <o
1
o

O <

15 commutative.

Proof. Writing the homological form of the five term exact sequence ([1.14)) (cf. Propo-
sition [1.4.7)) for the group extension

1 N—R—->H—1

and the module Z,, and noting that cd,(R) < cd,(F') = 1 lead to the first row of the
diagram. We note that H,(H,AG) ~ Hy(H,Z,). To obtain the second row we first
apply Proposition to the exact sequence 1 - N — F — G — 1 and obtain

0 — N*(p) = Z,[[G]]* = AG — 0.

Now taking H-homology of the exact sequence above and noting that Z,[[G]] is ho-
mologically trivial as an H-induced module leads to the second row of the diagram.
Similarly we obtain the second column by taking the H-homology of the sequence
0 = AG — 7Z,[[G]] = Z, — 0. The first column is also given by Proposition [1.4.§|
Therefore, for all these natural maps and compatible identifications we have the com-
mutative diagram of the proposition. O

1.4.3 Etale cohomology and number fields

Let F' be a number field, let Op be its ring of integers and let p be a prime
number. For p,m, the group of p™-th roots of unity, and n > 1 let ug?,’} denote
the n-fold tensor product. Let Qg’) denote the maximal algebraic extension of F
which is unramified outside the primes above p, and let Ggf) = Gal (Qg’) /F). The
étale cohomology groups Hy,(Spec(Op[1/p]), pgm) of the scheme Spec(Op(1/p]) with
values in the étale sheaf o as defined by Grothendieck (cf. [25]), can be identified
with the Galois cohomology groups H, ;t(Gg?), uf?ﬁ ). To simplify notations we will
write H}(Of,Z/p™(n)) instead of H,(Spec(Op[1/p]), pgm), where O = Op[1/p].
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Similarly for S, a finite set of primes of F' containing the primes above p, we obtain
the étale cohomology groups H3, (0%, Z/p™(n)) as Galois cohomology groups, where

we replace the extension Qg’) by Q%, the maximal algebraic extension of F', which is
unramified outside the primes in S. We will also denote by:

Hét( ;“7217(”)) = léLnHét( %7#32)
the p-adic cohomology groups and set

H, (O, Qp/Zy(n)) = hﬂ Hyy(OF, M?’g)'

The long exact sequence of étale cohomology coming from the short exact se-

quence
0 = Zy(n) = Qp(n) = Qp/Zy(n) — 0

gives the following boundary maps:
0i + Hy (O, Qp/Zp(1)) — Hiy(Ofp, Z(n))

The kernel and cokernel of these boundary maps were determined by Tate as follows:
the kernel of §; is the maximal divisible subgroup of H’, '(O%,Q,/Z,(n)) and the
image of d; is the torsion subgroup of H% (0%, Q,/Z,(n)) (cf. [44], Proposition 2.3).
In particular, we have the following isomorphism:

Oy : Hgt(og“»@p/zp(n)) - He}t(O;?aZp(n))tors-
We have the following proposition about the p-adic cohomology groups:
Proposition 1.4.10. (c¢f. [{5]). For any number field F' and k > 3,

1. HY(Oh, Zy(n)) =0 if n 0
2. HE(Op Z,(n)) = 0 if p is odd

k(o - (Z.)27) ") if k4 n is even
3. HaOp, Z5(n)) = { 0 otherwise,

where r1(F") is the number of real embeddings of F'.

We see that for a number field F' the first and the second p-adic étale cohomol-
ogy groups are of special interest. The structure can be described by using Borel’s
structure Theorem for algebraic K-groups together with Soulé’s Chern character as
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Proposition 1.4.11. (¢f. [19], corollary 2.5). Forn > 2,

r(F) +ro(F)  if nis odd

ro( F) if n is even

1 rankz, (H(OF Z,(m) = {
2. H%(O%,Z,(n)) is finite and trivial for almost all p.

As a corollary we obtain that H},(O%,Z,(n)) is torsion for n > 2 if and only if F
is totally real and n is even. For n = 1 we have

HL(0%,2,(1) ~Z, 2 U and H2(Op,Z,(1)) ~ Ap @ ij’*l,

where U}, is the unit group of OF, A% is the p-part of the class group of O% and s,
is the number of primes of F sitting above p (cf. [19], Chap. 2).

The relation between the étale cohomology groups of spec(O%) and of spec(F') is
given by Soulé’s exact localisation sequence as follows:

Proposition 1.4.12. (¢f. [{3]). Let n > 2 be an integer and let p be an odd prime.
Then the following sequence is exact:

0— Hét( 3«“7#;%) - H;t(F, uf?ﬁ) - @ngt(kvaNf?ﬁ_l) — He?t(O%‘JM?"’TLL) -

where v runs over all finite places of F' not dividing p and k, is the residue field of F'
at v.

Taking inverse limits in the exact sequence of Proposition [1.4.12] yields
He}t(o%azp(n)) = Hét(F> Zp(n)),

since HY,(ky, Zy(n — 1)) = 0 for n # 1. Now we take the long exact sequence of étale
cohomology of the exact sequence

0= Z,(n) 5 Z,(n) = Z/p™(n) — 0
to obtain another useful sequence called the Bockstein sequence:
0 = i1 (O Zy(n)) 0" = Hi WO Z/p"E() =y Hy(Olp, () = 0
for i > 1. Here ym H., (O, Z,(n)) denotes the p™-torsion part of H:, (O, Z,(n)).

In order to see the relation between algebraic K-theory and p-adic étale coho-
mology we need to consider étale Chern characters defined by Soulé:

chl(.ﬁz : Koni(OF) @ Zy — HY(O%, Zy(n))
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for i = 1,2 and n > 2. He constructed these homomorphisms for odd p in [43] and
showed the surjectivity. Dwyer and Friedlander in [6] used another approach which
includes the prime 2 as well by using étale K-theory. The Quillen-Lichtenbaum
Conjecture predicts that for a number field F' the étale Chern characters above are
isomorphisms for i = 1,2, n > 2, unless p = 2 and F has a real embedding. In general,
one can see that this conjecture is a consequence of the Bloch-Kato conjecture (cf.
[19], chap. 2) which has recently been proven by Voevodsky (cf. [45]). The kernel
and cokernel of the Chern characters are also described for p = 2 explicitly as follows:

Theorem 1.4.13. (¢f. [38]). The 2-primary Chern character
ch\?) : Koui(Op) ® Ly — Hy (O, Za(n))

fori=1,2 andn > 2 s

an tsomorphism if 2n —1 = 0,1,2,7 mod 8,
surjective with kernel ~ (7./27)™ if 2n — 1= 3 mod 8,
injective with cokernel ~ (Z/27)™ if 2n —i = 6 mod 8.

Forn =3 mod /4, there is an exact sequence

0 — Kop1(0F) ® Zy — H}(Op,Zo(n)) — (Z)27)™

— KQn,Q(OF) X ZQ — Hft(O},ZQ(n)) — 0.

Now we turn our attention to the relation between algebraic K-groups and motivic
cohomology groups. For a smooth scheme X over a base scheme B and an integer n >
2, we define the motivic cohomology groups H',(X,Z(n) to be the hypercohomology
groups of Bloch’s cycle complexes Z(n) (n > 0) in the Zariski topology [23]. If
B = SpecF, then the groups H'(X,Z(n)) agree with Bloch’s higher Chow groups
and with the motivic cohomology groups defined by Levine and Voevodsky [23]. For
details one can consult [I7]. We use Chern classes and characters constructed by
Pushin in [31] to relate K-theory to motivic cohomology. For the number field F' he
constructed Chern characters

chi : Kop_i(F) = Hj,(F,Z(n))

for i = 1,2 and n > 2. This induces the étale Chern character after tensoring by 7Z,.
Therefore the Quillen-Lichtenbaum conjecture shows that these Chern characters are
isomorphisms up to 2-torsion parts. The 2-primary information is the same as in the
theorem above.

Let E/F be a finite Galois extension of number fields with Galois group G. Let
p be a prime number and let S be a finite set of primes of F' containing the primes
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above p and the primes ramified in E. So Spec(O%) — Spec(O3) is étale. Studying
the Galois descent and the Galois co-descent of étale cohomology is the goal of this
part. First we note that the p-adic version of the Hochschild-Serre spectral sequence
is as follows:

By = H(G, H,(05, Z,(n))) = E™ == HL (05,2, (n)).

By Proposition [1.4.10| the Fs-terms are zero if j = 0 or if j > 3 and p is odd, and we
obtain the following Galois descent relations for odd primes:

Hy (B, Zy(n)) = Hy(F, Zy(n)),
0 — HY(G, Hy(E, Zy(n))) — HZ(OF, Zy(n)) —
HZ,(O%, Zp(n) — H*(G, Hyy (B, Zy(n))) — 0.
Similarly, the étale version of the Tate spectral sequence, i.e.
By = H_i(G, H},(OF, Zy(n)) = B = H7(OF, Zy(n))
for i < 0 and 7 > 0 leads to the Galois co-descent relation for odd primes as follows:
HZ(O%, Zy(n))e =~ HZ(OF, Zy(n)),

where the isomorphism is induced by the corestriction map. Since the higher étale
cohomology groups do not vanish for the prime 2, the study of the Galois descent and
the Galois codescent for the prime 2 is more complicated.

In this part we let E//F be an arbitrary quadratic extension of number fields with
Galois group G generated by o, n > 2 an odd integer, and 7., the number of infinite
primes of F' ramified in E. Furthermore, we denote by S a finite set of primes in
F' containing the primes above 2, the primes ramified in £ and the infinite primes.
The Galois codescent relations for H}(O%,Qy/Zy(n)) are described by the following
proposition (see Proposition 2.1 in [I§] for a proof).

Proposition 1.4.14. (c¢f. [18], Proposition 2.1). If there is a ramified infinite prime,
i.e. if roo # 0, then

0= (Z/22)"="" = Hy(O%, Qa/Za(n))c — Hey(O, Qa/Zs(n)) — 0
1s exact, and otherwise if roo = 0, then

H}(03,Q2/Zo(n))g ~ H(OF, Qa/Zs(n)).

Next we consider the Galois descent relations for HZ (0%, Qy/Zs(n)) in the fol-
lowing proposition (see Proposition 2.3 in [18] for a proof).
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Proposition 1.4.15. If there is a ramified infinite prime, i.e. if roo # 0, then
0 — HY(G, (E)) = Hy(Op, Qa/Za(n)) = Hy(OF, Qa/Zs(n))” — 0
1s exact, and if roo = 0, then
0 — H'(G, u(E)) = Hy(OF, Qa/Zs(n)) — Hiy(OF, Qo/Ze(n)) — H*(G, (E)) — 0

18 exact.

We define H} (0%, Qa/Z2(n))~ to be the kernel of the surjective corestriction map
Hy(O3, Q2/Zs(n)) =5 Hy(OF, Qa/Zs(n)),
and H (0%, Qy/75(n)) =Y to be the kernel of the cohomological norm

H(0%,Qu/Zs(n)) 5 HL(OF,Qz/Zs(n)).

As a consequence of Propositions [1.4.14] and [1.4.15]| a diagram chase in the commuta-
tive diagram

HY (03, Qo/Zo(n))”  — HL(OF,Qs/Zs(n)) =  HY(OF,Qz/Zs(n))
1 I |
HY(OF,Qo/Zo(n))™) o HY(O05,Qa/Zs(n)) ¥ HYL(OF,Q2/Zs(n))C,

yields the following lemma:
Lemma 1.4.16. There is an exact sequence

0 = Hiy(O5, Q2/Zs(n)™ = Hy(OF, Qa/Zs(n) ™) — H'(G, u(E)(2)) — 0.

We also have the Galois descent and codescent relations for HZ(O%,Za(n)) as
follows (see Proposition 2.8 in [18] for a proof):

Proposition 1.4.17. If s, denotes the 2-rank of the cokernel of the signature map
HL(O3, Zy(n)) — (Z/27)"*F) | then we have the following evact sequences:

0= (Z/22)* — HZ(OF, Za(n))e — HE(OF, Za(n)) — 0,

and
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0 —HY(G, Hy(Of, Za(n))) — Hi(OF, Zo(n)) — Hi(OF, Zo(n))”

— H*(G, HL(03, Zy(n))) — (Z)2Z) =75 — 0.

Again, we define H2(0%,Z(n))~ to be the kernel of the surjective corestriction

map
HE (O3, Za(n)) =5 HE(OF, Za(n)),

and H2 (0%, Zy(n)) Y to be the kernel of the cohomological norm
HE(O3, Zo(n)) =5 HE(OF, Za(n).

By a diagram chase in the commutative diagram

HL(03, Zo(n))~  — HA(05,Za(n)) — HE(OF,Za(n))
! H I
HE(05, Zo(n) ) HE(O5.Za(n) — H(O5 Zo(n))C,

and using Proposition [1.4.17| we obtain:

Lemma 1.4.18. The following sequence is exact:

0 = HE(OF, Za(n))” — HE(OF, Za(n)) ™Y — H'(G, Hy,(OF, Zn(n))) — 0.

At the end of this section we discuss the relation between the Fitting ideals of
HL(0%,Qq/Zs(n))~ and of H2,(O3,Zy(n))~, where E is a CM-extension of a totally
real number field F', and n > 2 is odd.

First let E/F be quadratic. We note that H},(O3,Zy(n)) and H} (O3, Zy(n)) are of
the same rank by a consequence of Proposition [1.4.11] Therefore, the n-th ()-index

Qn = [H}(OF, Za(n)) : Hiy(OF, Zn(n) H'(E, Q2 /)]

is finite. Since the image of 1 — o acting on HZ (0%, Zy(n)) is torsion, we have the
map

Hi(OF, Zo(n)) =5 HO(E, Qs/7)/2,
whose kernel equals to HL(O%,Zy(n)) - H°(E,Qq/Z;). As a consequence, the n-
th Q-index is either 1 or 2. Moreover, since the image of the above map lies in
HL (0%, Zy(n))~, the n-th Q-index is equal to 2 if and only if HY(G, H} (0%, Zy(n)))
is trivial (cf. [1§], Section 3).
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If Divg is the maximal 2-divisible subgroup of HZ (0%, Qa/Zo(n)), then by an
observation of Tate we have the following commutative diagram:

0 — Divy — HL(0%,Qy/Zsy(n))~ — HZ(0%,Zy(n))~ — 0

3 3 |
0 — Divg — HL(O%,Qq/Zy(n)) — HZ(03,Zy(n)) — 0

la 1 ! (1.20)
0 — Divp — Helt(O;?,Qg/ZQ(n)) — HZAO%,ZQ(TL)) — 0

1 3 \J

0 0 0,

in which the minus parts of the first and the second étale cohomology groups of O
with Qq/Zy-coeflicients are compared.

Proposition 1.4.19. Let H2 (0%, Zy(n))~ and H:(O%, Q2/Zs(n))~ be the kernels of

the corresponding corestriction maps. Then
Fittz, (Hz,(O3, Zs(n)) ") = (27"0Q,,) - Fittz, (H;,(OF, Qa/Zs(n))7),

where 1 (F') is the number of real primes of F.

Proof. Since the kernels of the vertical maps in diagram ([1.20]) are all finite modules
over the PID Z,, by Corollary it suffices to show
Fittz, (ker(a)) = (2™)(Q;").

n

Furthermore, since Divg and Divg are both of co-rank 2™, by a diagram chase it is
enough to show that the Fitting ideal of ker(Divp 5 Divp) is generated by (Q.).
Now we see that this holds by looking at the following commutative diagram (cf. [I§],
Proposition 3.1):

HY(G,u(E)(2))  — HYG Hi(OF, Zs(n)))

3 |
0 — Divpg — HL(O%,Qq/Zy(n)) — HZ% (0%, Zy(n)) - 0
| res 3 |
0 — Diwvg — Helt(O%,@g/Zg(n)) — Hft((’)fj,Zg(n)) — 0
+
0.

]

We now let E/F be a finite abelian extension of number fields of order 2m for m
odd, where F is CM and F is totally real. Let G = Gal(E/F), H = Gal(E/E™) and
N = Gal(E"/F), where E* denotes the maximal real subfield of E. We can consider
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diagram ((1.20]) as a diagram of Zy[N]-modules. We note that for the group N of odd
order, Zy[N] is the maximal order in Qy[N], and so

Zo[N] = [] O
peN
where 1) runs over the irreducible (real) Qy-characters of N.

We use the commutative diagram ([1.20)) for the quadratic extension E/E™ and
take 1-eigenspaces of the Zy[N]-modules, which is a maximal order, for any character
1 of N. We obtain the exact sequence

0= (Divg)” = (Hy (O, Qo/Zs(n))7)" = (HE(OF, Za(n)) ") — 0

of Oy-modules. Since Oy is a PID, the same argument as in the proof of Proposition

[L4.19 shows that
Fitto, (H2(03, Zs(n))") = (27F1Q,,) - Fitto, (H} (05, Qa/Zs(n))")

for any character 1) of N. Now taking the direct sum over all characters of N and
using property 8 of Fitting ideals in Section yields

Fittz,in(Hz(0F, Za(n)) ™) = (27"FQy) - Fittnyn (HY (OF, Qa/Za(n)) ")
Consequently, since the action of the non-trivial character y of Gal(E/E™) on the

above modules is given by multiplication by -1, we obtain:

Proposition 1.4.20. Let E/F be an abelian extension of number fields of order 2m,
for odd m, with Galois group G, where E is CM and F' is totally real. If we consider
the kernels H2(O3%,Zy(n))~ and H:{(O%, Q2/Zs(n))~ of the corresponding corestric-
tion maps as Z,|G]-modules, then

Fittz,)(HE(OF, Za(n)”) = (272PQu) - Fittz, e (Hy(OF, Qa/Zs(n)) ™),

where ro( E) is the number of pairs of complex embeddings in E.

1.5 The Main Conjecture in Iwasawa theory

Let I be a totally real number field, let F, be the cyclotomic Z,-extension of
F and let I' = Gal(F/F) be topologically generated by v. Let S be a finite set of
primes of F' containing the primes above p and the infinite primes, and let Sy denote
the set of finite primes in S. Let ¢ be a 1-dimensional Artin character for F, i.e.

Y : Gal(Q,/F) = Q
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with finite order, let F;, be the associated field of 9, i.e. the largest extension of F'
such that

Y Gal(Fy/F) — @;

is a faithful character, and let Oy := Z,[¢)] be the ring obtained by adjoining all
character values ¢(g) to Z, for g € Gal(Fy,/F'), with a fixed uniformizer .

We fix an embedding C — C,,, which identifies the groups of the complex and
the p-adic characters. We assume that v is an even character, i.e. ¥(—1) = 1, and
that the character ¢ is of type S, i.e.

FyNFy=F

Let L be a totally real finite abelian extension of F' containing [, such that
LNFy = F,and let Ly := LF,, denote the cyclotomic Z,-extension of L. Let %fo be
the Galois group of the maximal abelian pro-p-extension of L., which is unramified
outside the primes in S, over L. We denote by F,s € Oy[T] the characteristic
polynomial of the 1)-component

X5V = {z € XL, ®z, Oylo(z) = Y(o)z for all ¢ € Gal(L/F)}
of X2, This polynomial can be uniquely written as
Fys(T) = ) f] o(T)

for a distinguished polynomial f;, ¢ € Oy[T7.

Remark 1.5.1. By Proposition 1 in [11)], Fy s is independent of the choice of the
field L. So one can simply take L = F, for any even character ¢ of type S.

On the other hand, by the result of Deligne and Ribet there is a unique power
series Gy, in Oy[[T]], such that

oy Guslr() =1
L =sv) =5 =1

where H,(T) = T if 4 is the trivial character, and Hy(7T) = 1 otherwise (cf. Section
1.2.2)). By the Weierstrass Preparation Theorem (cf. Theorem |1.1.3]) the power series
Gy.s(T) € Oy][T]] can be uniquely written as

Gys(T) = mi(Gv.s) 'QZ,S(T) ~y,5(T)

for the distinguished polynomial gj, € Oy[T] and the unit uy 5 € Oy[[T]]. Now the
classical Main Conjecture is as follows (cf. [47]):
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Theorem 1.5.2. (Wiles). For a totally real number field F', an even I-dimensional
Artin character 1 for F' which is of type S, and any odd prime p,

f;;,s = 9;2,5-
If F is also assumed to be abelian, the equality still holds for p = 2.

Wiles also proved for odd primes that the algebraic p-invariant p(Fy s) and the
analytic p-invariant ;(Gy g) are the same provided that the character ¢ is of order
prime to p. However, the same equality is deduced for odd primes and an arbitrary
character 1, by using the following definition of p-invariants of X% due to Greenberg
(cf. [29], Chap. XI, §6): First we write the Galois group of the finite abelian extension
Fy/F as Gal(Fy,/F) = Q x P, where P is the cyclic p-Sylow subgroup of Gal(Fy/F)
with generator h of order p™. This gives the decomposition ¢ = ¢ - ¢/, where ¢ is
of order prime to p and ¢ is of p-power order. Let e; € O,[Q] be the idempotent
associated to ¢. Then p, of X3 is defined to be the p-invariant of the following
Oy [[I']]-module:

 u(XS) = p(Fys) if 9 is of order prime to p
PO ("™ = Deg(X5 @z, 0y))  otherwise,

With this definition we have the equality of the algebraic and the analytic u-
invariants p, = pu(Gy s) for odd primes p. However, conjecturally both sides of this
equality are zero for odd primes p, which was shown for abelian fields F', i.e. for the
case that F'/Q is abelian.

Remark 1.5.3. The assumption p = 0 (cf. (1.3))) implies the vanishing of the -
invariants of XI¥ for all even characters of G, since the Galois group of the mazimal

abelian pro-p-extension of Eo, maps to the Galois group %i{ with a finite cokernel.

By using the identification (|1.1)), which maps 7 to 7'+ 1 and the remark above,
we have also the following formulation of the classical Main Conjecture for all primes
p under the assumption p = 0:

(G,5(T)) = (detqo,) (T +1) —m, | XL ® Q(Oy)) (1.21)

for G, 4(T') = g, §(T)uy,s(T), where m., denote the automorphism of X% ® Q(Oy)
given by multiplication by 7. Here we recall that Q(Oy) is the quotient ring of Oy,
and X3 = X/ for odd primes p. Finally, we obtain yet another formulation of the
classical Main Conjecture for all primes p under the assumption © = 0 by using

Proposition as follows:
Fitto,qm)(XL0) = (G}, 5(T)). (1.22)

49



Chapter 2

An Equivariant Main Conjecture
in Iwasawa Theory

2.1 An Equivariant Main Conjecture

2.1.1 Algebraic construction and formulation

Let E//F be a finite abelian extension of totally real number fields with Galois
group G, and let p be an arbitrary prime. Let E. (resp. F) be the cyclotomic
Z,-extension of E (resp. F'). We denote the multiplicative group Gal(E«/E) (resp.
Gal(F/F)) by I'g (resp. I'r). Let H denote the Galois group of the finite abelian
extension Ey/Fy. Hence Go 1= Gal(EL/F) is abelian. We let S denote a finite
set of primes in F', which contains the primes above p, the primes ramified in F, and
the infinite primes. The set of finite primes in S is also denoted by S;. We use the
same notations for the set of primes above the primes in S and Sy, respectively, in
any intermediate field of E.,/F. Since I'r is topologically generated by one element,
the exact sequence

0—-H—=>GSTp—0 (2.1)

splits. We denote by I' < G, the image of I'p, so that G, ~ H x I, and by A the
group ring Z,[[I']]. Let E’ be the fixed field of E, under the action of the closed
subgroup I'. Then E'NFy = F, Exc = E' - F, Gal(E'/F) ~ H and E,/E' is also
a cyclotomic Z,-extension.

Let M% and M2 be the maximal abelian pro-p-extensions of F,, unramified
outside the primes in S and S}, respectively, with Galois groups X, := X3 and
Xl = xi,f, over F,, respectively. Since F is totally real, X is a A-torsion module
with no non-trivial finite submodule by Propositions|1.1.9 and [1.1.10, The A-module
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X/, which is a quotient of X, is also torsion. Finally, we set A := Z,[[G,]] and we
freely use the identification
A= Z,[H][TY), 22)

which is given by mapping v to 1 + 7T (cf. (L.1)).

Remark 2.1.1. For an odd prime p, infinite primes of F' are unramified in a pro-p-
extension. Hence M2 and Mfof coincide. Consequently, Xo, = XI_ for odd primes.

The following diagram illustrates the situation:

L M3

g

We recall that the classical Main Conjecture in Iwasawa theory can be written
in the form of equality . In this formulation the Fitting ideal of the (finitely
generated) Oy|[[T]]-torsion module X%  whose projective dimension is at most 1, is
principal, and generated by the L-function associated to v, where v is a character of
(. Hence, to formulate an Equivariant Main Conjecture we construct an appropriate
(finitely generated) A-torsion module of projective dimension at most 1, so that the
Fitting ideal of that module is principal, and generated by an equivariant L-function.
The strategy of this part is as follows: Since, the A-torsion module X/ is not nec-
essarily of projective dimension at most one, in the first step the so-called envelope
Y/ is constructed, whose projective dimension is at most one. However, this module
is not necessarily torsion. In the next step, by taking a proper quotient of the enve-
lope, the A-module Z7 is constructed. We will see that Z/ is a (finitely generated)
A-torsion module of projective dimension at most 1, whose principal Fitting ideal is
generated by an equivariant L-function.
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Let P be the p-Sylow subgroup of GG and let L be the fixed field of F under the
action of P with Galois group @, over F. Let Qif be the maximal algebraic pro-
p-extension of L, which is unramified outside the primes in Sy. We denote by H
the Galois group of Qif over E, and by G the Galois group of Qif over F'. The
finitely generated group G has a presentation of the form G ~ F /W, where F is an
appropriate free profinite group of rank d and W is a relation subgroup of F of rank
r. For a certain relation subgroup R of F we then have an isomorphism G, ~ F/R.
The following diagram illustrates the situation:

We apply Proposition to the profinite groups in the commutative diagram

— Gy — 1

— G — 1

1
e B RN S -
1
Q4 He S -

—_
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and obtain a commutative diagram:

0 0
\ !
0 — HQ(H,ZP) — H()(H,Wab) - R :{go — 0
I | $ i
0 — Hy(H,Z,) — H(HW*) — A" — YL — 0 (2.3)
\ 1
AG, = AG4
\ l
0 0,

where AG,, denotes the augmentation ideal of A, and Y/ = Hy(H,AG) is the H-
coinvariant of the augmentation ideal AG of Z,[[G]].

Remark 2.1.2. One can form diagram (2.3) more generally for any intermediate
field of Qif/L with a similar construction.

The cyclotomic Z,-extension E,,/E satisfies the weak Leopoldt conjecture by
Proposition [1.1.9) and therefore in diagram ([2.3) the group Hy(H,Z,) vanishes (cf.

Proposition [1.1.8]). We also have the following proposition:
Proposition 2.1.3. The A-module Ho(H,W®) is projective.

Proof. Since |@Q| is prime to p, we have the equality of cohomological dimensions
cdy(G) = edy(Gal()* /L)).

The p-cohomological dimension of the pro-p group Gal(Qif /L) is at most 2 (cf.

Lemma [1.4.1]), and so
cdyp(G) <2

for any prime p. By Lemma [1.4.5| we have
pdz, gy (Zp) = cdp(G).
This together with the exact sequence
0= W* = Z,[[G)]* — Z,[[G]] = Z, — 0,

given in Theorem [1.4.8 implies the projectivity of W as a Z,[[G]]-module. Now
it suffices to take H-coinvariant to conclude the projectivity of Hy(H, W) as a
Zy||G ]]-module. O
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Let x be a C,-valued character of the group @, let

1
ey = T % x(o)o™?

be the idempotent of () attached to the character x, and let A, = O,[[Gx(p)]],
where O, is the ring obtained by adjoining all character values of x to Z,. Since
Go(p) =~ P x I' is a pro-p group, A, is a local ring and therefore e, Ho(H, W®) is a
free A\ -module of rank r,:
ex Ho(H, W) ~ Alx,
Now by applying e, to the exact sequence in the second row of diagram (2.3) we
obtain:
Tx d f
0—>AX —>AX—>eXyOO—>O.

This implies that XQ(GQZ(Qif/L)(p)) = —1 +d — ry, where y2(—) is the second
partial Euler-Poincaré characteristic (cf. Section [1.4.3]). Since L is totally real,

XZ(Gal(Qif /L)(p)) is zero by Lemma . Now by taking the direct sum over
all characters of () we obtain:

Ho(?‘[, Wab) ~ A"

for r = d — 1. Therefore diagram ([2.3|) can be rewritten as

0 0
3 \J
0 —» A" L R xf 0
| J ’
0 - A" & AL o YL 5 (2.4)
3 \J
AG, = AG4
3 \J
0 0.

So far we have constructed the envelope V. of X/ | which fits into the exact
sequence
0— Xl =Y - AG, —0. (2.5)

The second row in diagram (2.4) implies that the A-module Y/ is of projective
dimension at most one. To make it into a torsion A-module we now take a quotient
of Y1 by a certain submodule as follows:

Let do, € AG4 be a non-zero divisor in the augmentation ideal of A and let ¢,
be an invertible element in Q(A) such that

doo = Coo((y = 1D)e+ (1 —€)), (2.6)
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where v is the fixed (topological) generator of I' < G, and e = ﬁ Y hem I is the

idempotent in Q(Z,[H]) attached to the trivial character of H. Here we note that
v —1 and 1 — e generate the augmentation ideal AG,, and v — 1 and 1 — e can be
written in the form ({2.6)) as follows:

y=1=(e+(v=D1=e)((y = De+ (1 -¢)),

l—e=(1=-¢e)((y—1De+ (1—c¢)).

Let yoo € V. be a pre-image of d, in diagram (2.4). We have the following diagram:

0 0
3 \J
A = A
L v L
0 - X, - YL - AG, — 0 (2.7)
T !
0 - xL, - 2L - 2L — 0
3 \J
0 0,

where W and 1 are defined by mapping 1 € A to y., and to d, respectively, and Z/,
and z/_ are the quotients of Y/ and AG., by the images of ¥ and v, respectively.
We note that the vertical maps are injective, since dy, € A is a non-zero divisor. By
a diagram chase in the diagram

A = A
L L
0 - AGx — A —=7Z,—0,

we obtain:

Lemma 2.1.4. The exact sequence
0— 2l = AJdoh — 7, — 0 (2.8)
is exact, where the middle term is of projective dimension one and

Fitta(A)dsh) = (dso).

By using the middle column of diagram ([2.7) and the first row of diagram ({2.4)
we also obtain the commutative diagram
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0 0 0
} + +

0 - A" — A™ 5 A = 0

Vi e Ly

0 - R — A™ — AG, — 0 (2.9)
} } |l

0 - X, - 2L — 2L — 0
4 1 \
0 0 0,

which implies the following proposition:

Proposition 2.1.5. Z/ is a finitely generated A-torsion module of projective dimen-
siton at most one:
pdA(Zgo) S 1.

Now we formulate the Equivariant Main Conjecture for all primes. We recall that
multiplying ¢, € Q(A) to the modified equivariant L-function G% for the field F' (cf.
(2.10) for the definition) yields an element in A ~ Z,[H][[T]] by Lemma [1.2.5;

CooGS 1= Coo Z Gys(vy—1) ey €A, (2.10)

el

where S'is a finite set of primes in F' containing the primes above p, the primes ramified
in ., and the infinite primes, and ey, is the idempotent associated to the character 1
of H. Here we recall that for the abelian extension E/F of totally real number fields
with Galois group G, and the extension E. /F,, of the cyclotomic Z,-extensions of
E and F with Galois group H, the abelian Galois group Go, = Gal(Ey/F) is of the
form H x I', where I' =<~y > is isomorphic to Z,.

Conjecture 2.1.6. (The Equivariant Main Congjecture). For the abelian extension
Ew/F with Galois group G, and a non-zero divisor de = coo((y — 1)e+ (1 —€)) in
the augmentation ideal of A = Z,[[G]] so that AJ/d. A is a finitely generated Z,-free
module, e.g. dsw =7 — 1, we have the following equality of ideals in A:

Fitty(ZL) = (cooG%).

Remark 2.1.7. For any odd prime p, the formulation of the Equivariant Main Con-
jecture coincides with the formulation of Ritter-Weiss in [33] (see Lemma[1.2.

and Remark .
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2.1.2 Proof under the assumption y =0

In this part we prove conjecture based on the classical Main Conjecture in
Iwasawa theory under the assumption @ = 0. For some technical reasons we need to
apply the contravariant functors E'(—) := Exti(—, A) to ZL, for i = 0,1. We will
see that E1(Z1) is a finitely generated A-torsion module of projective dimension at
most one, whose Fitting ideal is in terms of the modified equivariant L-function.

We first note that E°(M) = Homy (M, A) is a left exact functor for any A-module
M, and that the contravariant functor E*(—) turns any left A-module M into a right
A-module. So for any left A-module M we still have E'(M)# as a left A-module. We
recall that # denotes the inverse action defined as . To make this section more
precise we see some general properties of the functors E*(M) in the following lemma.
For a proof see Propositions 5.4.17, 5.5.6 and Corollary 5.5.7 in [29]. One can see [15]
for more properties.

Lemma 2.1.8. Let M be an A-module, let a(M) denote the adjoint of M and let
MY = Homg, (M, Zy) be the dual with contravariant Gs-action. Then

1. EY (M) = Ext\ (M, A) as A-modules for any A-module M and i > 0.

2. EY(M) ~ a(M) as A-modules, provided M is a finitely generated A-torsion
module.

3. EY(M)# ~ MV as A-modules, provided M is a A-torsion module with trivial
p-tnvariant, i.e. M is a finitely generated Z,-module.

We list some results obtained by applying the contravariant functors E*(—) for
i = 1,2, to the commutative diagrams above. We first remark that E‘(A) = 0 for

i > 1 since pda(A) = 0 by Lemma |1.4.5,

Lemma 2.1.9. The A-module E'(Z/)# is of projective dimension at most one, and

Fitty(EY(21)#) = Fitty(Z1)*.

Proof. We first apply E'(—) to the last column of diagram . We observe that
Homy (2L, A) is the set of all morphisms in Homy(AG, A), whose restriction to
dooA vanishes. This observation and the choice of doo € AG4 as a non-zero divisor
imply that E°(z{) = 0. By part 1 of Lemma E°(X]) is also trivial for the
A-torsion module X/ . Hence, by applying the contravariant functor E*(—) to the
last row of diagram (2.7)), we obtain E°(Z/) = 0. On the other hand E*(A) is trivial
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for 7 > 1 as we mentioned before. Therefore applying E'(—) to the middle column of
diagram ([2.9) leads to the commutative diagram

0 = EYAT TN poayt o EVEZL) 0
L L L
0 — At — ATt EYZI)# = 0,

which shows that the projective dimension of E*(Z/)# is at most one. As another
consequence of the diagram above, the Fitting ideal of the right A-module E'(ZY)
is given by the determinant of E°(®). The Fitting ideal of Z/ is given by the
determinant of ® defined in diagram and this completes the proof. m

Lemma 2.1.10. We have the following exact sequence of finitely generated A-torsion
modules:
0— Z, — AJdA — E'(21)# — 0.

Proof. We saw in the proof of Lemma [2.1.9| that E°(z/) is trivial. Since pda(Z,) = 1
by a consequence of Proposition |1.4.5, E?(Z,) is also trivial. So by applying E'(—)
to the exact sequence (2.8)) we obtain

0 — EYZ,) — EY(AJdA) — EY (L) — 0
L Ll 0l
0o - Z, — AldA — ECLD* — 0

where the first vertical isomorphism follows from part 2 of Lemma together

with Proposition [1.1.18] and the second vertical isomorphism is a consequence of

Lemma 2.1.11. We have the following exact sequence of finitely generated A-torsion
modules:
0— E'(z) — EY(2L) - B} X)) —o.

Proof. First we observe that E%(z/.) is trivial by applying E*(—) to the exact sequence
and by noting that the projective dimensions of Z, and A/d. A are both one.
Now we apply E‘(—) to the last row of diagram to obtain the exact sequence
above. We note that the surjectivity of the last map in the diagram follows from
the observation that E?(2/) = 0, and that the injectivity of the first map in the
diagram is a consequence of the observation that E°(X/ ) = 0 in the proof of Lemma
@.1.9). O

We combine [2.1.10[ and [2.1.11] to obtain the following theorem:
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Theorem 2.1.12. We have the following exact sequence of finitely generated A-
torsion modules:

0— Z, — AJdA — EYZL)* - EYXI)* >0,

i which
pdn(AJdshA) <1 and  pds(E'(ZL)*) < 1.

The A-module EY(X/ )# is the same as the adjoint of X/ by part 1 of Lemma
and so it is a finitely generated Z,-free module under the assumption p = 0.
Therefore, by the exact sequence in Theorem [2.1.12] we have the following proposition:

Proposition 2.1.13. Letd,, € AG be a non-zero divisor so that A/d A is a finitely
generated Zy-free module, e.g. ds = v — 1. Then under the assumption 1 = 0, the

sequence
0= Zp — AJdoA — EY(ZL)# - EYX)* =0

is an exact sequence of finitely generated Z,-free modules. Moreover, if we consider
this sequence as an exact sequence of Zy|H|-modules, then under the assumptions of
w =0 we have

dep[H} (A/dooA) =0 and dep[H}(El(Zgo)#) = 0.

Proof. We only need to prove the second part. We first remark that A/d,A and
EY(Z1) are both H-cohomologically trivial by Lemma [1.4.6] since their projective
dimensions are at most one as A-modules. By a classical theorem of Nakayama
pdz, g (M) = 0 if and only if M is Z,-free and H-cohomologically trivial (cf. Propo-
sition ED Therefore both modules are of projective dimension zero as Z,[H|-
modules. ]

By using Proposition for the ring R = Z,[H] and the finitely generated
R-modules M = EY(Z/)# and M = A/d. A, which are projective by Proposition
2.1.13, we obtain:

Lemma 2.1.14. If m, denotes the R[[I']]-module automorphism of M given by mul-
tiplication by v, then

Fitty (E"(ZL)*) = (detz, (T + 1) — m,, | E'(2L)#)),

Fitty(A/dsA) = (dety (T + 1) — my | Afdsh)).
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Let O be the ring of integers obtained by adjoining all character values of the
characters of H to Z,, let m be a fixed uniformizer in O and let Q(O) denote the
field of fraction of @. We consider O and Q(O) as A-modules with trivial G-action.
We note that for the idempotent e attached to the trivial character of H we have
Hs(T) =T -e+ (1 — e) using the identification (see for the definition of
Hg(T)). Therefore, using Lemma we obtain the following lemma:

Lemma 2.1.15. We have the following equalities of ideals in Q(O)[H]:
(Hs(T)) = (detqoym (T +1) —my | Q(O))),

(do) = (detQ(O)[H]((T +1) = m, [ A/dA)).

Remark 2.1.16. Any character x of H can be extended to a Q(O)[X]-algebra homo-
morphism, for a variable X, and to a Q(O) ®e O|[']]-algebra homomorphism

x = QO)H]X] = Q(O)[X],

X : Q(0) ®o O[[G]] = Q(O) ®o O[[1],
which map h — x(h) for h € H, respectively.

Lemma 2.1.17. We have the following equality of ideals in O[[I']]:
(detqo) (T +1) —my | ey (XL, @2, Q(0))))*

= (detqo) (T +1) —my | e (BN (XL)" ®z, Q(0))))).

Proof. For simplicity let M = X/, and V = X1, @z, Q(O). We use the argument in
the proof of part 3 of Lemma 7.5 in [I3] as follows: Let {z,} be a fixed O-basis of
ey - M, for any character y of H. We note that z, is also a Q(O)-basis for (e, - V).
Let A, denote the matrix of the automorphism m., restricted to ey - V' with respect
to the basis x,. We note that A, , is an invertible matrix of size m,, where m,, is
the dimension of e, - V over Q(O). By linear algebra we note that (A;jp,l)t is the
matrix of m, restricted to ey - VY = (ey-1 - V)V with respect to the dual basis Ty,
where t stands for transposition. Now since A, -1 is invertible and v € O[[I']]*, we
have

detqo)(T+1) —my | ey V) =det(y - Ly — (A7, 1)")
>~ det(y - Iy, — A, 1)
= detqo) (T +1) —m, | ey - V)¥,
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where 2 denotes the equality up to a unit in O[[I']]. Therefore, we have the following
equality of ideals in O[[I']]:

(detqioy((T + 1) —m, | ey(XL, ®z, Q(O))))*

= (detqo)((T' + 1) —my | ey (X} @z, Q(0)))),

where X} = Homo(XL,,0) is endowed with the covariant action. Now part 3 of
Lemma completes the proof. O

From this lemma and the formulation ([1.21]) of the classical Main Conjecture in
Iwasawa theory, i.e.

(G},5(T)) = (detqo) (T +1) = my | ey(XL, ®2, Q(O)))),

we obtain the following equality of ideals in O[[T]]:
(W(GH(T)7)) = (G, s(T)7)
= ((detqio)((T + 1) = m | ey(E'(XL)" @z, Q(0)))))

= (U(detqropm) (T +1) —m, | BY(XL)* @z, Q(0)))).

Therefore the exact sequence
0= Zp — AJdoA — EY(ZL)# — EYX)* =0

in Theorem [2.1.12] and Lemma together with the base-change property of
determinants (cf. (1.13])) imply the following equality of ideals in O[[T])]:

U((cxG5(T)*) = (U(detqoum (T +1) —m, | BY(ZL)* @2, Q(0))).  (2.11)

Now we complete the proof of the Equivariant Main Conjecture [2.1.6| under the
assumption g = 0 using the classical main conjecture. We first recall that the u-
invariant p(F') of a power series F' € O[[T]] is the largest exponent p > 0 such that
f e (7 O[[T]]. For F' € A we define the p-invariant of F' to be zero if pu(x(F)) =0
for any p-adic valued character x of H.

Let F' = detz, (T + 1) — my | EYZL)#) and G := (cooG5(T))* in A (cf.
Lemma |1.2.5). We have the following:

e 11(F) = 0, since the determinantal polynomial F' € Z,[H|[[T]] of the projective
Z,|H)-module E'(Z{)# (cf. Proposition [2.1.13) is monic.
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e u(G) = 0, since for any p-adic character ¢ of the group H, we have

n(W(GY) = mggs ugs) =0, p(p(Hs) =0 , u((ds)) =0.

Here we note that the determinantal polynomials of the filed Q(O) and the
projective Z,[H]-module A/d,A (cf. Proposition [2.1.13), which are generated
by Hg € A and d, € A, respectively (cf. Lemma [2.1.15)), are monic.

o ($(F)) = ((G)). using cquality [11).

In the terminology of [3], R := Z,[H] is admissible for the abelian group H, i.e.
R is a finite product of strictly admissible rings R;, which means that each R; is
separated and complete in the rad(R;)-adic topology and also R;/rad(R;) is a skew
field. Since the p-invariants of F,G € R[[T]] are both zero, Proposition 2.1 in [3]
as an equivariant Weierstrass Preparation Theorem implies the existence of unique
distinguished polynomials f*, ¢* € R[T] and units u,v € (R[[T]])* such that

F=u-f* and G=v-g".

We apply a p-adic character ¢ of H to both sides, and note that ¢ (f*) and ¥(g*)
are both distinguished polynomials in O[T], and that ¥ (u), ¥ (v) € O[[T]]* are units.
Hence the equality (¢(F)) = ((G)) together with the uniqueness of the Weierstrass
decomposition yields

W) = (g
for any p-adic character ) of H. Therefore, f* = ¢* and F = uv™'G. The equality
(F) = (G) now implies the following:

(((cxGs)) = (detz, ) (T + 1) —m, | E(ZL)7))

= Fitty(E*(22)*) by Lemma (2.12)
= Fitty(ZL)* by Lemma [2.1.9

Consequently, the equality
Fitty(2) = (cooG%)

holds, and this completes the proof of the Equivariant Main Conjecture under
the assumptions of the classical Main Conjecture and of p = 0.

Theorem 2.1.18. The Equivariant Main Conjecture follows from the classical
Main Conjecture in Iwasawa theory under the assumption u = 0.

Remark 2.1.19. For any odd prime p, or for the prime 2 if F' is an absolutely abelian
number field, the classical Main Conjecture holds, and hence the Equivariant Main
Conjecture |2.1.6| is verified under the assumption p = 0.
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We recall that the assumption g = 0 holds for any absolute abelian number field
E, i.e. for any number field E whose Galois group over Q is abelian, by [9]. Hence

Corollary 2.1.20. If E is an absolute abelian number field, the FEquivariant Main
Conjecture holds.

2.2 Application

The Equivariant Main Conjecture combined with Galois descent proves the Coates-
Sinnott Conjecture for totally real abelian extensions. In this part we first describe
the formulation of the Coates-Sinnott Conjecture, and then we will prove it for real
extensions under the assumption p = 0.

2.2.1 Formulation of the Coates-Sinnott Conjecture

Let E/F be an abelian extension of number fields with Galois group G, let n > 2
be an integer, and let p be an arbitrary prime. Let S be a finite set of primes in F
containing the primes above p, the primes ramified in £ and the infinite primes, and
let Sy denote the set of all finite primes in S. Let

E/F ZLE/F s, X €x

xEG

be the G-equivariant S-incomplete L-function associated to E/F (cf. Section [1.2.1]).
We recall that for an integer n > 1 by Theorem

OF/r(1—n) € QG],
and furthermore, by Theorem [1.2.2]
Annzie (HO(E, Q/Z(n)) - 05, (1 — n) C Z[G].
For n > 1, the n-th higher Stickelberger ideal is defined as follows:
Stick]g/F(n) := Anngiq(H°(E,Q/Z(n))) - @E/F(l —n) C Z[G].

Remark 2.2.1. The classical Theorem of Stickelberger states that
Sticky (1) € Anngie)(Cl(Op),

where Cl(Og) denotes the class group of Op. Brumer conjectured that the same holds
for any abelian extension E/F of number fields.
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The formulation of the Coates-Sinnott Conjecture is as follows:

Conjecture 2.2.2. (The Coates-Sinnott Conjecture, K -theoretic version). Let E/F
be an abelian Galois extension of number fields with Galois group G, and let n > 2.
Then

Stickg/F(n) C Annge)(Kon—2(0E)).

There is another formulation of the Coates-Sinnott Conjecture in terms of motivic
cohomology, which is closely related to the original conjecture:

Conjecture 2.2.3. (The Coates-Sinnott Conjecture, motivic version). Let E/F be
an abelian Galois extension of number fields with Galois group G, and let n > 2.
Then

Stick}%/F(n) C Anngq(Hr(E, Z(n))).

The motivic version is equivalent to the following p-adic version for all primes p:

Conjecture 2.2.4. (The Coates-Sinnott Conjecture, p-adic version). Let E/F be an
abelian Galois extension of number fields with Galois group G, let p be prime, and let
n > 2. Then

AnnZP[G]<HO(Ea Qp/Zy(n))) - @%/F(l —n)C AnnZP[G}(He?t( B Zp(n))).

We remark that by the functional equation of L-functions (cf. Section |1.2.1])
Lg/r(s,x) vanishes at negative integers 1 —n for n > 2, unless F' is a totally real
number field and x(1) = (—1)". Therefore the following situations are of interest:

e F is a totally real number field and n > 2 is even.

e Fis a CM field and n > 2 is odd.
Therefore, by Quillen-Lichtenbaum conjecture and Proposition [1.4.13] the motivic
version is slightly stronger than the K-theoretic version of the Coates-Sinnott Con-
jecture. More precisely, if n is congruent (mod 4) to 1 or 2, then both versions are

equivalent, and if n is congruent (mod 4) to 0 or 3, then the motivic version implies
the K-theoretic version of the Coates-Sinnott Conjecture.

2.2.2 Proof for totally real extensions F/F assuming y =0

We recall the set up from Section [2.1.1] Let E/F be an abelian Galois extension
of totally real number fields with Galois group G, and let n > 2 be an even integer.
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Let E (resp. Fi) be the cyclotomic Z,-extension of E (resp. F') with Galois group
g (resp. I'rp), over E (resp. over F). We denote by G, the Galois group of E/F,
by H the Galois group of F,/F., and by I' =< = > the image of I'r under the

splitting map in (2.1)).

Since G is abelian, Goo = H x I' and the completed group ring A = Z,[[G]] is
identified with Z,[H][[T]] under the identification (2.2). We let do, € AGw be a non-
zero divisor so that A/d.A is a finitely generated Z,-free module, e.g. doy = y—1. By
Theorem we obtain an exact sequence of finitely generated A-torsion modules

0— Z, = AJdoA — EY(ZL)* — EYXI)* >0, (2.13)

in which the middle terms are of projective dimensions at most one. By the first

equality of we also have
Fitty(A/dooA(n)) = (th(ds)),
Fitta(EY(ZL)%(n)) = ((t 0 1) (cG5))-

We note that the sequence ([2.13) is also an exact sequence of finitely generated A-
modules, where A = Z,[[I']]. Moreover, the exact sequence (2.13) is an exact sequence
of finitely generated Z,-free modules since we have assumed p = 0.

Lemma 2.2.5. Let sz be the Galois group of the mazimal algebraic pro-p-extension
of E unramified outside the primes above Sy, over E. Then

1. H'(E,Q,/Z,(n)) ~ Zy(n)r, forn>2.

2. HZ(sz,Zp(n)) ~ (EY(XL)#(n))r, for even n > 2 (under the hypothesis p =
0).
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Proof. 1. It is enough to take the I'g-invariants and I'g-coinvariants of the exact
sequence 0 — Zy(n) = Q,(n) = Qy(n)/Z,(n) — 0 to get a 6 term exact sequence
in which Q,(n)r, = Q,(n)'® = 0 for n > 2. We note that H°(F,Q,/Z,(n)) =
Qp/Zy(n)" "

2. Let E := E((,) be the cyclotomic extension of E obtained by adjoining a
primitive p-th root of unity ¢,, let E* be the maximal real subfield of E with Galois
group A = Gal(E*/E). We note that the order of A is prime to p, and that for the
prime 2, E = E. Let E’" be the cyclotomic Z -extension of Et, with Galois group
isomorphic to I'g. As before we denote by QY P (resp. Q7 2/ ) the maximal algebraic
pro-p-extension of E+t (resp. E) unramified outside the primes above S;. We have
the following calculations:

EYNXI)#(n)r, = Hom(XL,Z,)(n)r, by part 3 in Lemma [2.1.8
~ Hom((X])r,, Qp/Zy(n)) by Lemma [1.1.16
~ Hom(X!,Q,/Z,(n))"" by isomorphism (|1.6)

~ Hom(Gal(sz/Eoo)7 Qp/Zy(n))""
~ Hom(Gal(QSEi/Eoo), Qp/Zy(n)) >

~ Hl(Gal(Q‘Zer/EOO), Q,/Z,(n))>>"e since n is even and p, C E

~ HY(Gal(Qy /Ex),Q,/Z,(n)) " since |A| is prime to p
~ HY(Gal(Q /E), Q,/Zy(n)) since cd,(Tg) = 1

~ H*(Gal(Qy /E), Zy(n)),

where the last isomorphism follows from the finiteness of groups H'(H,Q,/Z,(n))
and H?(H),Z,(n)) for even n and totally real field E (cf. Proposition |1.4.11]). O

As a consequence of the lemma above together with Proposition we see that
EYNXL)#(n)r, and Z,(n)r, are both finite and so by Lemma [L.1.5] (El(%f )#)(n)te
and Z,(n)'® are both trivial for even n > 2. We note that Z,(n) and (EY(XL)#)(n),
which is equal to the adjoint of X/ (n) as a A-module by Lemma , have no non-
trivial finite submodules. On the other hand (A/dA)(n)'® = 0 since x(y)" # 1 for
n > 2. Therefore (A/dA)(n)r, is again finite by Lemma [L.1.5] As a result, the
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[ p-coinvariants of E*(Z7)#(n) are also finite and similarly (E*(ZL)#)(n)'® = 0, for
any even n > 2. Hence, by taking the I'g-coinvariants of the exact sequence ([2.13)),
we obtain the following exact sequence of finite Z,[G]-modules for any even n > 2:

0 — HY(B,Qy/Zy(n) = (A/dud)(m)ry = (EY(EL)F) (), — HAGY, Zy(n)) = 0,

(2.14)
where the two middle Z,|G]-modules are of projective dimension at most one by
Lemma [2.1.8, Furthermore, by Proposition [1.3.5] and by property 6 of Fitting ideals
in Section [1.3.1], we have

Fittz, 6)((A/dueh)(n)r,) = (7 0 1) (ds)),

Fittz, ) (BY(2L)%)(n)ry,) = (w010 t,)(cG),
where 7 : A — Z,[G] is the projection mapping v — 1 to 0.

Now by applying Proposition to the exact sequence (2.14)) of finite Z,[G]-
modules we get the following equality:

Fitts a1 (HO(E, Qy/Z(n))) Fittz, (B (ZL)#)(m)r,)

— Fittg, i ((A/dooD) (n)r,) Fittz, o) (H2(Gy , Zy(n))).

The Fitting and the annihilator ideals of H°(E,Q,/Z,(n)) are the same as the Fitting
ideal of the Pontryagin dual H°(E,Q,/Z,(n))* by property 7 of Fitting ideals in
Section [1.3.1] Hence we have the following equality of fractional ideals in Z,[G]:

Fitts, (G  Zy(n)) = Anng, o) (HO(E, Q) Z(n))) (7 0 0 0 t)(coe /e - G5)).

Finally, since do/coo = (7—1)e+ (1 —e) is identified with Hg(7") by the identification
(2.2)), we obtain the following theorem:

Theorem 2.2.6. We have the following equality of ideals of Z,|G):

Pittz (G Zyfn) = Annz (OB, @y () (7 10 1) (o2,

Now let p be an odd prime. We note that H2(GS,Z,(n)) = H*(G,Z,(n)),
where sz denotes the Galois group of the maximal algebraic pro-p-extension of E
unramified outside the primes in S, over E. Moreover, G = G under the assumption
=0 (ct. Lemmal@ . Therefore (motot,)(Cx/deG%)) = @g/F(l —n) by equality
[1.2.7, and by Theorem [2.2.6] we obtain:

Fitts, 61(HA(O5, 2, (n))) = Anng, e (HO(E,Qy/Z,(n)) - O3 (1 — n).
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This implies the p-adic version of the Coates-Sinnott Conjecture for odd primes.
For p = 2 we use the following lemma:

Lemma 2.2.7. For the extension E/F of totally real number fields with Galois group
G, where [F : Q] = r(F), and for even integers n > 2, we have

21 ) Pitty, cy(HA(GY , Za(n))) C Fittgy e (H(GS, Za(n))).

Proof. We first take I'g-coinvariants and then the Pontryagin dual of the second exact
sequence in Proposition [1.1.12{for the extension E/F. The same calculation as in the
proof of the second part of Lemma leads to the exact sequence

0 — HXGY  Zo(n)) = HY(G3, Za(n)) — (Z[G]/2)" ) (n),
which completes the proof of this lemma by property 3 of Fitting ideals in Section
31 O

From this lemma we obtain the following inclusion:

*

2100 A,y (O, Qp 2y ) (7 0 0 ) (52) € Ani(HA(OF, Za(m))

Moreover, Gg) = (214 . G% for the prime 2 under the assumption y = 0 (cf. Lemma
1.2.4). Consequently, @%/F(l —n) =2 (1o LOtn)(g—i)) (cf. [1.2.7)) for any integer
n > 2 and as a result,

Anngyi)(H*(E, Qz/Z(n))) - O%(1 — n) © Anngyic)(HE(OF, Za(n))).

Finally, we note that H%(O%, Zs(n)) C H%(O%, Z2(n)). Hence
Theorem 2.2.8. For an abelian extension E/F of totally real number fields with
Galois group G and even n > 2, the Coates-Sinnott Conjecture holds for all

primes p, under the assumptions of u = 0 and the 2-primary part of the classical
Main Conjecture in Iwasawa theory.
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Chapter 3

The p-primary part of the
Coates-Sinnott Conjecture without
assuming u = 0 for specific cases

Let E/F be a finite abelian extension of number fields with Galois group G' and
let p be an arbitrary prime number. In the two specific cases below the p-adic ver-
sion of the Coates-Sinnott Conjecture [2.2.4] can be deduced from the classical Main
Conjecture in Iwasawa theory, which does not assume p = 0.

e 1 > 2is an even number and E/F is a finite abelian extension of number fields
of order prime to p, where F is a totally real number field.

e n > 2is an odd number and E/F is a finite abelian extension of number fields
of degree 2m, where m is not divisible by p odd, F is a CM-field and F is a
totally real number field.

However, for the prime 2 we have to assume the Main Conjecture in Iwasawa theory if
Fis not abelian over Q, and the equality of the algebraic and the analytic p-invariants
for all characters of G (cf. Section . For odd primes p, n > 2 even, and a finite
abelian extension E/F of order prime to p the result has been shown in [30] and [20].

3.1 Abelian extensions E/F of totally real fields
with p1 [E : F]

The goal of this section is to prove the p-adic version of the Coates-Sinnott Con-
jecture [2.2.4] in the following set-up without assuming p = 0:
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e Let E/F be a finite abelian extension of totally real number fields with Galois
group G where the order of GG is prime to p.

e Let n > 2 be an even integer.

e Let S be a finite set of primes of I’ containing the primes above p, the primes
ramified in £ and the infinite primes.

In this situation we remark that Z,[G] is the maximal order in Q,[G]. Let E, be the
cyclotomic Z,-extension of £ with multiplicative Galois group I' =< 7 >. Since the
order of G = Gal(E/F) is prime to p, we have the following isomorphism of abelian
groups:

Gal(Ey/F) ~G x T,

Let M, be the maximal abelian pro-p-extension of E., which is unramified outside
the primes in S with Galois group X := X3, over E,. The Galois group G acts on

X by inner automorphism (cf. Section [1.1.2) and so X is equipped with a Z,[G][[']]-
module structure. We recall that by (|1.1)) we have the identification

Zp|GI[[T]] = Zy GI[[T]],

which maps v — 1 to 7. Since the Galois group G of E/F is of order prime to p, we
have the following decomposition:

Zy|G] =~ H Oy,

where the sum runs over all irreducible Z,[G]-characters and O, is the ring generated
over Zj, by the values of x. Therefore, to approach the Coates-Sinnott Conjecture we
study the conjecture characterwise for each eigenspace

Hgt(ofg? ZP(TL))X’
where y is an (even) character of G.

Let x be an (even) character of G, let A = O,[[T]] and let ¢ := xw" be the
corresponding (real) character of F' where w is the Teichmiiller character. We note
that in our situation n and y have the same parity and that X¥(—n), the (—n)-
Tate twist of the i-eigenspace of X, is a finitely generated A-torsion module with no
non-trivial finite submodules (cf. Section . In order to verify the conjecture we
describe the Fitting ideal of X¥(—n)r and then the Fitting ideal of HZ,(O3%, Z,(n))X in
terms of the n-th higher p-adic Stickelberger ideal attached to E'/F. First we remark
that by Proposition [1.3.4] we have an explicit description of the Fitting ideal of the
finitely generated A-torsion module X¥(—n) as follows:

Fittp (XY (—n)) = (chary (X% (—n))). (3.1)
To describe the Fitting ideal of H%(O%,Z,(n)) we need the following lemma:
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Lemma 3.1.1. For the character x of G, an even integer n > 2, and ¥ = xw", we
have the following isomorphism O, -modules:

(X¥(—n)r)" = HE(Of, Zy(n))X

-1

Proof. Let E = E((,) a cyclotomic extension of E by adjoining a primitive p-th root
of unity, let £+ denote the maximal real subfield of E, and let A := Gal(E*/E). Let
Q% . (resp. Q%) be the maximal algebraic p-extension of E* (resp. E) unramified
outside the primes in S. Similar to the calculations in the proof of Lemma [2.2.5 we
have the following isomorphisms:

(XY (=n)r)* =((X¥(=n))")" = Hom(X"(~n),Q,/Z,)" by isomorphism
~Hom(X(—n)X, Qp/Z,)"
~(Hom(X(—n),Q,/Z,) )"
~(Hom(X, Qy/Zy(n))* )" by Lemma

~(Hom(Gal(Q3/Ex), Qp/Zy(n) )"

~(Hom(Gal(Q, /E), Q,/Z,(n))X ™' since |Al is prime to p

~(H}(O%+, Qy/Zy(n))X " )AXT since 7 is even and p, C E
~(HY (03, Qp/Zy(n)) )™ since cdy(I') = 1

1

~H} (0%, Qp/Zp(n))X since |Al is prime to p

~ (0%, Zy(n)X

The last isomorphism holds, since the groups H% (0%, Z,(n)) and H},(O%, Z,(n))X"

are finite for totally real number field £ and even integers n > 2 (cf. Section [1.4.3)).
O

1

We note that the evaluation of the generator of Fitto [y (X¥(—n)) at T = 0 is
the same as the computation of Fitto (X¥(—n)r) because of the identification

O[] = O\[T1];

which maps v — 1 to T' (cf. (1.1])). As a result, for any character y of G the Fitting
ideal of HZ(O3,Z,(n))X " is the same as the characteristic polynomial of X¥(—n)
evaluated at zero. Therefore, by (3.1) and Lemma we obtain:

71



Ph.D. Thesis - Reza Taleb McMaster - Mathematics and Statistics

Corollary 3.1.2.

1

Fitto, (H3(05, Z,(n)¥ ") = (chara(X¥(~n))(0)).

We have to relate this result to the L-function part of the conjecture. If we let
Fys(T) = as) 1 o(T) € Oy[T]

be the characteristic polynomial of X¥, then by Lemma [1.1.15| we have the following
equality:
chara (XY (=n))(T) = Fys(rk(7)"(T +1) - 1). (3.2)

Now the Main Conjecture in Iwasawa theory (see Section yields
ffZ,s(T) = QZ,S(T)

for the monic polynomial g, ¢ defined by Gy 5(T') = w%%.8) g5 o(T)uy, s(T) € Oy[[T]],
where Gy s(T') € Oy[[T]] is given by the following:

. _ Gus(r()* =1
Lt =) = =D

Moreover, for any odd prime p the analytic p-invariant p(Gys) and the algebraic
p-invariant p(Fy g) are equal and hence

Fys(T) ~p Gy,s(T),
where ~, denotes the equality of the p-adic valuations of both sides. If we also

assume the equality of these analytic and algebraic p-invariants for the prime 2, then
the above equality still holds for p = 2.

Now we observe the following two situations:

1. Assume ¢ # 1. Since Fy, the fixed field of the kernel of v, is in E and p does
not divide the order of the Galois group of E/F, 1 is of type S. Therefore
H¢ = ]., and

Fys(h(7)" = 1) ~p Gys(s(y)" —1)
~p Lf(l —n, 1) (3.3)
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2. Assume ¢ = 1. Obviously 1 is of type W and so Hy(k(y)" — 1) = s(y)" — 1. If
we let M = Z, as a Z,[[T]]-module, then chary(M(—n))(T) = (y)"(T'+1)—1.
Since this characteristic polynomial does not vanish at zero, we have

K(7)" = 1 =|(MY(=n))r| = [(M*(=n))r)*| = [(M"(=n))")"]|
=|(Homa(Zy(—n), Qp/Z,)*" )" |
=|(Homa(Zy, Qp/Zp(n))*")"|
=((Qp/Zy(n))*")"]
=|H(E, Qp/Zy(n))*"|.

The group H°(E,Q,/Z,(n)) is cyclic, and as a consequence, H°(E,Q,/Z,(n))X is
trivial if and only if y is not the trivial character. Therefore,

Fys(k(7)" —1) ~p Gys((7)" — 1)
~p [ Hy(k(y)" = DL (1 —n,v)
~p [HYE,Qp/Zy(n))| Ly (1 — n, 1)

~p [H(E,Qy/Zy(n))| LTy p (1 = 1, ).
Hence by (3.2) we obtain
chary(X¥(=n)(0)) = [H*(E, Qy/Zy(n))| Lz /p(1 = 1, X),
and consequently, by Corollary we obtain the following equality of ideals:
Fitto, (H3(03, Z,(m)* ™) = H(B, Qu/Z,(m)) (L3p(1 = n.))

= Annz, ) (HO(E, Qp/Zy(n)) - L (1~ x).

Finally, we take the direct sum of the O,-modules H2(O%,Z,(n))X " in the situation
of this section, and use property 8 of Fitting ideals in Section [1.3.1)) to obtain:

Anng, i) (H*(E, Qp/Zp(n))) - O p(1 = n) =Fitty,jc)(H;(OF, Zp(n)))

CAnng,q (He?t(O% Zp(n)))

gAnan[G] (Hegt(O/Ea Zp(n)))7

where the last relation follows from the fact that HZ (0%, Zy(n)) € HZ(O%, Zy(n)).
Hence
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Theorem 3.1.3. The p-adic version of the Coates-Sinnott Conjecture holds
for any prime number p, an even integer n > 2, and an abelian extension E/F of
totally real number fields, with Galois group G, whose order is prime to p, based
on the classical Main Conjecture and the equality of the algebraic and the analytic
w-1nvariants for the prime 2.

3.2 Abelian extensions of a CM field F over a to-
tally real field F of degree 2m with p{m

The goal of this section is to prove the p-adic version of the Coates-Sinnott Con-
jecture [2.2.4] in the following set-up without assuming p = 0:

e Let E/F be a finite abelian extension of number fields of degree 2m with Galois
group GG, where m is not divisible by p, F is CM and F' is totally real,

e Let n > 2 be an odd integer,

e Let S be a finite set of primes of F' containing the primes above p, the primes
ramified in £ and the infinite primes.

We denote by J the complex conjugation, by £ the maximal real subfield of F, and
by H =< J > the Galois group of E/E*.

3.2.1 The case p # 2

We have the following definitions of the minus and the plus parts of a Z,[G]-module
M for p odd:
1—-J 1+ J

M*::(T)M and M7 :=( 5

which give rise to the decomposition M = M~ & M~. In particular,
Zp[G] = Zp[G]_ b Zp[G]+'

)M,

In this situation we remark that Z,[G] is the maximal order in Q,[G], and that
the L-function attached to E*/F vanishes at s = 1 — n, for odd n > 2, by the
functional equation of L-functions (cf. Section [1.2.1]). So we only concentrate on the
Fitting ideal of the minus part HZ (0%, Zs(n))~ of

HE(Of, Zy(n)) = Hz(Of, Zy(n))” & Hi (O, Zy(n))*.
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Furthermore, we can study the Coates-Sinnott Conjecture characterwise, for odd
characters of GG, i.e. the characters which map -1 to -1, since

HE (0%, Zy(n))” = D HE(OF, Zy(n)).
xodd

Without loss of generality, we can assume that ¢, € E for p odd, since for any
odd character x of G we have:

H;t( 5 Qp/Zy(n))X =~ He}t(ogz(gp)a(@p/zp(n))x-
We also remark that by Proposition the Z,-rank of

He}t(olEv @p/Zp(”>)+ = He}t(O/E+’ Qp/Zy(n))

is the same as the Z,rank of H}, (0%, Q,/Z,(n)), since E is a CM field. Therefore
the minus part H}, (0%, Q,/Z,(n))~ is finite.

Let x be an odd character of G, let ¢ = xw" be the corresponding even character,
and let A = O,[[T]]. Let Mg _ (resp. M. ) be the maximal abelian pro-p-extension

of Ey (resp. EY), which is unramified outside the primes in S, and let Xp := X3,
(resp. Xp+ := X%, ) be the Galois group of the extension My _/E. (resp. M7, /EY).

By Galois theory, since p is odd and ¢, € E, we have the isomorphism Xg/(1 —
J)Xg ~ Xp+. As a consequence,

Xy~ XY, (3.5)
for the even character ¢). So %ﬁ is a finitely generated A-torsion module with no

non-trivial finite submodule (cf. Section [1.1.2)). By using Proposition we have
the same equality as (3.1):

Fz'ttA(%}é(—n)p) = (charA(%%(—n)(O))). (3.6)

Lemma 3.2.1. For the odd character x of the Galois group G and an odd integer
n > 2, we have the following isomorphism of O, -modules:

1

(%%(—n)p)* = Hgt(ofg7 Zp(n)>x_

Proof. As we mentioned we can assume that E contains the primitive p-th roots
of unity for p odd. Let Q7 be the maximal algebraic p-extension of E unramified
outside the primes in S. The same calculation as in the proof of Lemma yields
the following:

(XY (=n)p)* ~(Hom(Gal(Q3/Ex), Qy/Z,(n))* ) sce calculation in Lemma B11]

-1

Z(Hét(ogw, Qp/Zp(n))* )" for n odd and jip € Ex
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1

~H} (0%, Q,/Z,(n))X" since cd,(I') =1

—1

ZHe?t(Og,Zp(TL))X )

where the last isomorphism follows from the finiteness of the group H% (0%, Z,(n))
and the inclusion

H;t(OJSE7 Qp/zp(n))x_l C Hét(ogv Qp/Zp(n))".

]
The same argument as in the proof of Corollary shows:
Fitto, (Hz(03, Z,(n))* ) = (chara(X}5(—n))(0)). (3.7)

Let Fys(T) = ﬁ“(Fw,s)ﬁz’S(T) € Oy4[T] be the characteristic polynomial of ¥%. By
Lemma [1.1.15( the characteristic polynomial of X% (—n) is as follows:

chara(Xg(—n))(T) = Fys(k(7)"(T +1) = 1).

Because of the isomorphism ({3.5) we can use the Main Conjecture in Iwasawa theory
(see Section [L5)). This yields

f;;,S(T) = Q:Z,S(T)

for the monic polynomial g}, ¢ defined by Gy, s(T) = w(@v-8) g% o(T)uy, s(T) € Oy[[T1],
where Gy, s(T') € Oy[[T]] is given by the following:

Gys(k(7)” = 1)
Hy(k(y)s = 1)

Moreover, since the analytic and the algebraic p-invariants are equal for p odd, we
obtain the following relation:

L;f(l_saw) =

Fys(T) ~p Gy s(T).

where ~,, denotes the equality of the p-adic valuations of both sides. The same
calculations in (3.3) and (3.4)) together with yield

Fitto, (H2,(O%, Z,(m)¥") =/ HY(E, @/ Zy(m) (Le(1 — n, 1))
:Annzp[G](HO(E, Qp/Zy(n))) - LJSJ/F(1 —n,X).

Finally, we note that H2(0O3, Z,(n))~ is the direct sums of H2 (0%, Z,(n))X ', where
x runs over the odd characters of G, and that L%, /F(l —mn,x) = 0 for any even
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characters x of G. Therefore, by property 8 of Fitting ideals in Section [L.3.1 we
obtain:

Anng, i) (H(E,Qy/Zy(n))) - O p(1 = n) =Fitty,ic)(H; (O, Zy(n)))
C Annz, 6 (Hg (0%, Zy(n)))

C Az, ) (H3 (O, Z,(n)),

where the last relation follows from the inclusion H2 (0%, Z,(n)) C H% (0%, Z,(n)).
Hence the p-adic version of the Coates-Sinnott Conjecture holds for odd primes
p in the situation of this part.

3.2.2 The case p =2

In the situation of this section, again the L-function attached to E*/F vanishes
at s = 1 —n, for odd n > 2, by the functional equation of L-functions (cf. Section
. Therefore we only concentrate again on the Fitting ideal of the minus part of
HZ(O%,Zs(n)). We recall that the minus part is defined as the kernel of the following
surjective corestriction map:

cor : H(Op, Za(n)) = Hg (O, Zo(n)).
We recall that E* denotes the maximal real subfield of F, and H =< J > denotes

the Galois group of the quadratic extension E/E*. We also let N denote the Galois
group of ET /F, whose degree is not divisible by 2.

E
e N
E+ F' = EN
\ /
N ja H~7.)27,

Since N is of odd order, we have the canonical isomorphism G ~ N x H. Therefore
the group of characters G of GG is also canonically isomorphic to the direct product

G~ N xH, (3.8)
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where N and H denote the group of characters of H and N, respectively. Since Zy[N]
is the maximal order in Q9[/V], we also have the decomposition

A[G] = (©yOy @z, Zo[H])[[T]],

where ¢ runs over all (real) characters of N and Oy is defined as before.

Step 1: 1 € £

In this step we assume that E contains the primitive 4-th root of unity ¢ = (4.
Let x denote the non-trivial character of H, which is the same as the Teichmiiller
character w in our situation, and let ¢ be an arbitrary character of N. By the
canonical isomorphism every odd character of GG is of the form 1)y for an even
character ¢ of N.

Let F, be the cyclotomic Zs-extension of F' with Galois group I' and let A =
Oy[[I']] be the completed group ring. Let E,, = E((2) (resp. EL) be the cyclotomic
Zy-extension of E (resp. ET), let M (resp. M7, ) be the maximal abelian pro-2-
extension of E., (resp. EX) which is unramified outside the primes in S with Galois
group Xp := X7_ (resp. Xp+) = %2;)» over E., (resp. over EL). Since ¢ is an
even character, %% and %%+ are both finitely generated A-torsion modules with no
non-trivial finite submodules (cf. Propositions [1.1.9| and [1.1.10). The field M gio is
contained in M gw, since we allow infinite primes to be ramified, and furthermore, by
Galois theory we have an exact sequence

where the complex conjugation J is the generator of H. The analogue of Lemma

3.1.1] in this step is as follows:

Lemma 3.2.2. For odd n > 2 we have the following isomorphisms of finite groups:

(Xp/(1 = J)Xp)? (—n)r)* ~ HL (O35, Qy/Zy(n)) )"

Proof. If we denote by Q% the maximal algebraic pro-2-extension of E unramified
outside S, and by M the A-module Xg/(1 — J)Xg, then we have the following iso-
morphisms:

(MY (—n)p)* ~(MY(—n)")" ~ Hom(M"(—n),Qs/Zs)" by isomorphism (.6
~Hom(M(—n)"*,Qq/Zs)" since n is odd

1

Q(Hom(M(—n),QQ/Zz)wX)i )F
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1

~(Hom(M,Qy/Zy(n)) ¥ )F by Lemma

—1

~(Hom(Xp, @2/22(71))(%()

B since 1 is even
:(Hom(Gal(Q%/Eoo),Q2/ZQ(H))(1&X)‘1)F
2(1T_Ie}t(o}goovQ2/Z2(n))(wrl)F since figo € Fo

~H},(OF, Qa/Za(n)) WX since cd,(T) = 1.

Finally, we note that H}, (05, Q2/Z2(n)) and HZ (O3, Q2/Zs(n)) have the same rank
for any odd integer n by Proposition [l.4.11] Therefore H %((9%, Q2/Zy(n))~ is finite,
and by Lemma ‘1.4.16|7 the group HJ (0%, Q2/Zs(n))¥X) ™" is also finite for the odd
character vy. O]

On the other hand by (3.9), the A-modules (X5/(1 — J)Xg)*(—n) and X%, (—n)
have the same characteristic polynomials, which generate the same Fitting ideals by
Proposition|[1.3.4l Therefore, by evaluation at zero, we obtain the following equalities:

Fittz,(X%(—n)r) = Fittz, (X%, (—=n)r)

= (chary (X, (—n))(0)),
under the identification (1.1]). Consequently, by Lemma [3.2.2] we have
Pittz, (HY(O5, Qo/Zo(n)*0™) = (chars (X4 (-m)(0)).  (3.10)

Now we relate this Fitting ideal to the corresponding L-function by using the
Main Conjecture in Iwasawa theory. If F, ¢(T) = 2“(Fw75)f{;7s(T) € OylT] is the

characteristic polynomial of %}i;, then by Lemma(1.1.15{the characteristic polynomial
of XV (—n) is of the form

chary (XY (=n))(T) = Fys(k(7)"(T +1) = 1).

The assumptions of the Main Conjecture in Iwasawa theory, and the equality of
algebraic and the analytic p-invariants for the prime 2 yield

Fys5(T) ~o Gy s(T),

where ~y denotes the equality of the 2-adic valuations, and Gy s(T") € Oy[[T7]] is the
numerator of the 2-adic L-function as follows (cf. Section [L.5):

S(1 —n. ) — Gys(k(y)" —1)
S A S
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This implies, in the case the S type character v is not the trivial one, that

Gys(k(7)" = 1) ~p L3 (1 = n, ).

The same argument as in (3.4)) for the trivial character ¢» = 1, which is of type W,
yields
Hy(k(7)" = 1) = [H(E, Qa/Zs(n))*".

Therefore we obtain the following equalities similarly:

chary (X}, (—n))(0) = [H(E, Qa/Zs(n))|L5 (1 — n, )

= |H*(E, Q2/Z2(n))| Ly (1 = 1, 90x).

By equallty - we can replace the ideal generated by the characteristic polynormal
of %E+ (—n) evaluated at zero, by the Fitting ideal of H}, (O3, Q/Zy(n))¥¥) ™" to obtain

Fitto, (H},(OF, Qz/Z5(n)) ") =(|H(E,Q2/Zs(n))|)LE p(1 — n,¥0x).  (3.11)

Since Zy[N] is a maximal order for the group N of odd order, H (0%, Qs/Zs(n))X
has the following decomposition as a Zs[N]-module:

Hét(ofi‘a Q2/Zsy(n))X = @WNH;t(O%, QQ/Z2(H))(¢X)*1’

where 1) runs over all (real) characters of N. Now using (3.11)) for each even character
1 and property 8 of Fitting ideals in Section yields

Fittz, ) (Hi (O, Qa/Zo(n))X) = (|H(E,Qa/Zo(n))]) Y L (1—n, dx)ey-1, (3.12)
QJJEN

where e,-1 is the idempotent attached to ="' for any character ¢ of N. Since the
action of H on H(O%,Qa/Zy(n))X is via multiplication by -1, it is enough to multiply
both sides of equality (3.12) by the idempotent e,-1 = e, to obtain the Fitting ideal
of the module H (O3, Q2/Zy(n))X over the ring Zy[G]. This yields

Fittz,c)(Hy (05, Qa/Zo(n))X) =(|H(E,Qa/Zs(n)))) Y LI(1—n,ibx)ey ey

even YEG

:<|HO(E7@2/ZQ(H))|) Z Ls(l_n,¢X)€(wX)—1.

even YEG

By using Lemma [1.4.16[ and Corollary we have the following relation:

27 HO(E, Qo/Za(n)| DY L¥(1 = n,dx)en1 € Fittayio)(HA(OF, Qa/Zs(n))7),

even ’(/)EG
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and hence Proposition implies that
2 QU HY (B, Qo) Zs(n)| D L¥(1=n, xX)ey 1 € Fittg, e (HE(OF, Za(n)) "),
oddypx€G

where r; is the number of real primes of £, and the sum is over all odd characters

of G.

By the functional equation (cf. Section [1.2.1) the L%/F(l —n,vYy) = 0 for any
even character ¥y of G, and an odd n > 2. We also note that the annihilator of

the (cyclic) Zy|G]-module H(E,Qq/Zs(n)) is principal and generated by the order
of the module. Hence

Annz, ) (H*(E, Q2/Zs(n))) - O p(1 — 1) CFittz, ) (Hz (OF, Zs(n)))
C Anng, i) (Hz (0%, Ze(n)))

CAnng,q (He?t(O/E7 Zy(n))),

where the last relation follows from the inclusion H2 (0%, Za(n)) € HZ(O3%, Zs(n)).
Hence, in the situation of step 1, the p-adic version of the Coates-Sinnott Conjecture
holds based on the classical Main Conjecture and the equality of p-invariants
for all characters of G.

Step 2: i ¢ E

In this step, E does not contain the primitive 4-th root of unity ¢ = (4. So
the extension E(7)/F is an abelian extension with Galois group isomorphic to N x
7.)2 x Z]2. Let K denote the maximal real subfield of E(i). The following diagram
illustrates the situation:

E(i)

/ |
K E(
SN

E-‘r

N
i) E
7

|
F
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Both E*(i)/F and E(i)/K are CM-extensions of type considered in step 1. We
note that the non-trivial characters of E*(i)/E™ and E(i)/K are the Teichmiiller
characters wg+ and wg, respectively. Let x denote the non-trivial character of E/E™,
and let ¢ be any (real) character of N. By we have the following:

( Fittz,vi(H (0%, Qz/Za(n))*F)
= (1H(E(i), Q2/Za(n))| e Liy i (1 = no dwic)ey—1),

Fittz,n)(HA (O3 (i) Q2/Zo(n)) e )
= (|H(E* (i), Qo/Z2(n)| 3o yes L iy (1 — mo wpey),

\

where 1) runs over all (real) characters of N with the associated idempotent e,.

The induced character (Ywg ). in the extenswn E(i)/F is equal to Ywg+ + 1y
by property 3 of Artin L-functions in Section Therefore we have the following

relation as well: 5
L3 x (wr, 1 — 1)
LS A)/F(@ZJOJEJ” 1-— n)
We note that the quotient of |HY(FE(i), Qq/Zs(n))| by |H°(F (i), Qy/Zs(n))| is 1 or 2,
and that |H°(E,Qa/Zy(n))| = 2 for the field £ Z i. Hence

Fittz, i (Hg (0%, Qo) Zo(n)) ) - Fittgn)(He(ORs iy, Qa/ Zo(n))“5+) ™! =

L%/F( —n,x) =

7HH(E, Qo Za(m)| 3o yexr Liyp(1 = nx)ep—1) 3 p(E(i)(2)) # n(E*(i)(2)),
(IHH(E, Q2/Zo(n))| e Lyp(1 —no0X)ey1) i p(E(9)(2)) = u(E*(1)(2)),

where p(E(i)(2)) and pu(ET(i)(2)) denote the 2-primary parts of u(E (7)) and pu(E*(i)),
respectively. So in order to verify the conjecture, it suffices to relate the left hand
side of the equality above to the Fitting ideal of H (0%, Qa/Zy(n))¥, and then to the
Fitting ideal of HZ (0%, Zy(n))~. The following proposition is crucial:

Proposition 3.2.3. We have the following relation of Fitting ideals:

o if W(BG)2) 4 p(F(0)(2)), then
Fittz, ) (H} (05, Qa/Zo(n)))

= Fittg,n(Hy (O, Qo) Zo () ) (Flittgyn (Hpy (Ot iy, Qo) Zo(n) )7+ )~
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o if W(B()(2) = p(F(0)(2)), then
Fittz, ) (HA (03, Qa/Zo(n)))

= 27" Fittz, i) (Hiy (O, Qa/ Za(n))) (Flittz, v (Hi (O (5, Qa/ LZa(n) )5+ ) .

Proof. For simplicity, let Ay, denote the group H},(OF,Qq/Zs(n)) for any CM-field L,
and let x denote the non-trivial character of L/L*. We note that A}" is the same as

the kernel A(L_l) of the cohomological norm defined in Section . By Proposition
2.11 in [19] for the CM-extension E/E™, where i ¢ E, we have

1
1AG

\Agff}_ | if p(E(i)(2)) # p(E*(i)(2)),
A=

2ol i (B (2) = (B

PSR p(E(i)(2)) = p(E™(i)(2)).

If one considers these groups as Z[N|-modules and replaces the modules by their
y-eigenspaces in the whole proof of Proposition 2.11 in [I9] for an arbitrary (real)
character 1 of N, we obtain the same result for y-eigenspaces as

) ARSI AES T p(B()(2) # (B (0)(2)),
|AEX| =
DAL At 71 if p(B()(2) = p(EB*(i)(2)).

E* (i)

On the other hand since the groups above are Oy-modules, their Fitting ideals are
principal and generated by their orders. Therefore,

Fitto, (Ay) Fitto, (A7) ™! if 1(E(i)(2)) # p(E*+(i)(2)),
Fitto, (AY) =
(2) Fitto, (A5 Fitto, (Ayins )=t if p(B(i)(2) = p(E*(i)(2)).

Since Zs[N] is a maximal order, it is enough to vary 1 in the group of characters of
N to complete the proof. O

Now we can compute the Fitting ideal of the Zy[N]-module H} (O35, Qq/Zy(n))X
using Proposition [3.2.3}

Fittzz[N}(H;t(O%aQ2/Z2(n)) )= (2 1‘HO(E Q2/Zs(n ZLE/F —n,px)ey-1).

YeEN

(3.13)
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Again, to obtain the Fitting ideal of H (0%, Qq/Zo(n))X over Zy|G], since the action
of H on H (0%, Qy/Zy(n))X is via multiplication by -1, it is enough to multiply both
sides of equality (3.13)) by the idempotent e,-:. Consequently, we have

Fitty,j)(HY(OF, Qo/Za(m)) =27 H(E, Qa/Za(m)]) 3 L (1 = n,dx)ey-se-s

1/16N
=27 |H(E,Q2/Z2(n))) > L3 (1 — 1, bx)e(u)-
¢€N

which leads to the following relation by Lemma and Corollary [1.3.2}

272 H(E, Quo/Zs(n))] Y Ly p(1—n,dx)ey1 € Fittzy e (HY(OF, Qa/Za(n))7).

odd Yx€EG

Now by Proposition [1.4.20] we obtain

27 T2Q, | HO (B, Qy ) Za(n Z LE/F — N, YX)€(gy)-

odd PxEG

EFZttZQ ( (O};ZQ( )) )7

where 7, is the number of real primes of E*, and the sum is over all odd characters
of G. Since by the functional equation of L-functions (cf. Section [1.2.1)) we have
L%/F(l —n,1x) = 0 for any even characters 1)y and n odd. Consequently, we obtain:

Anng, e (H(E,Qy/Zy(n))) - O p(1 — n) C Anng,c)(HZ(OF, Zs(n)))

C Anng,q (H§t<O/Ea Zs(n))),

where the last inclusion follows from Spec(O%) C Spec(O%). Hence the Coates-
Sinnott Conjecture holds in this step as well. This together with the result from step
1, and the result from the case that p is odd, yields:

Theorem 3.2.4. The p-adic version of the Coates-Sinnott Conjecture [2.2.4 holds for
any prime number p, an odd integer n > 2, and an abelian extension E/F of a CM
field EE over a totally real number field F, with Galois group G, whose order is 2m for
m not divisible by p, based on the classical Main Conjecture and the equality of the
algebraic and the analytic p-invariants for all real characters of G in the case p = 2.
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