Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12595
Title: Linear Mixed Effects Model for a Longitudinal Genome Wide Association Study of Lipid Measures in Type 1 Diabetes
Authors: Wang, Tao
Advisor: Canty, Angelo
Department: Mathematics and Statistics
Keywords: Linear Mixed Effects Model;Genome Wide Association Study;Longitudinal Data;Lipid Measures;Type 1 Diabetes;Covariance Structure;Biostatistics;Biostatistics
Publication Date: Oct-2012
Abstract: <p>Hypercholesterolemia is the presence of high levels of cholesterol in the blood, and it is one of the major factors for the development of long-term complications in T1D patients.</p> <p>In the thesis, we studied 1303 Caucasians with type 1 diabetes in the Diabetes Control and Complications Trial (DCCT). With the experience of diabetes study, many factors are associated with diabetes complications, they are age, gender, cohort, treatment, diabetes duration, body mass index (BMI), exercise, insulin dose, etc. We mainly focus on which factors are associated with total cholesterol (CHL) analysis in the thesis.</p> <p>Many measures were collected monthly, quarterly or yearly for average 6.5 years from 1983 to 1993. We used annually lipid measures of DCCT because of their values are sufficient and complete, and they belong to longitudinal data.</p> <p>Different methods are discussed in the study, and linear mixed effect models are the appropriate approach to the study. The details of model selection with CHL model analysis are shown, which includes fixed effect selection, random effects selection, and residual correlation structure selection. Then the SNPs were added on three models individually in GWAS. We found locus (rs7412) is not only genome-wide associated with CHL, but also genome-wide associated with LDL.</p> <p>We will assess whether these SNPs are diabetes-specific in the future, and we will add dietary data in the three models to identify locus are associated with the interaction of diet and SNPs.</p>
URI: http://hdl.handle.net/11375/12595
Identifier: opendissertations/7468
8523
3348911
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
513.49 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue