Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12575
Title: A Unified Theory of Model Reduction for Linear Time Invariant Dynamical Systems
Authors: Hickin, David John
Advisor: Sinha, Naresh K.
Department: Electrical Engineering
Keywords: Electrical and Electronics;Electrical and Electronics
Publication Date: Mar-1978
Abstract: <p>The approximation of linear, time-invariant, dynamical systems by similar systems having fewer state variables is investigated. A class of reduced-order approximants called nonminimal partial realizations is introduced which includes many published methods as special cases, and thus represents a unification of the theory of model reduction. Since the concept of linear state variable feedback is central to many of the design procedures of modern control theory, the behaviour of the approximated system to such feedback laws derived from analysis of the approximating system is studied. The specific results derived give a credibility heretofore nonexistant to the class of reduced models called minimal partial realizations by virtue of the fact that they form a subclass of the nonminimal partial realizations. The use of canonical form state equations is advocated as a means of simplifying the computational procedure for an important class of reduced models termed aggregated partial realizations. Such realizations are shown to be useful for designing suboptimal linear quadratic servomechanism compensators, since guaranteed stability of the large-scale system is possible.</p>
Description: 
URI: http://hdl.handle.net/11375/12575
Identifier: opendissertations/745
1854
1057578
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.18 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue