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ABSTRACT

¢

The approximation of linear, time-invariant, dynamical systems by
similar systems having fewer state variablss is investigated. A class
of reduced-order approximants called nonminimal partial realizations is
introduced which includes many published methods as special cases, and
thus represents a unification of the theory of model reduction. Since
the concept of linear state variablg eedback is central to many of the
design procedures of modern control heory, the behaviour of the
approximated system to such feedback laws derived from anal&sis of the
approximating system is studied. The specific results derived give a
credibility heretofore nonexistant to the class of reduced mogels called
minimai partial realizations by virtue of the fact that they form a

.
subclass of the nonminimal ‘partial realizations. Thi use of canonical
form state equapioné is advocated as a means of simplifying the
computational procedure for an important class of redpced models termed
aggregated partial realizations, Such realizations are shown to be
useful for designiné‘suboptimal linear quadratic éervzmechanism
compensators, since guéranteed st;bility of the large-scale system is
possible. i . | {
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CHAPTER 1 f/////ﬁw . X

INTRODUCTION /

T

1.1 What is Model Reduction? .

Model reduction is essentialiy the practice of approximating

i~
5
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behaviour of a complex mathematical model of a physical

’

model of reduced complexity. Such a definition, howeyér, is larggly

unénlightening, as the meaning'of thé term "comp1e§ity" has not been
precisely defineat For instance, many physical éygyems are iphenently
(nonlinear,and of a distributed”parameter naEure, which is to say tha@’
the process -mechanics ane mobelled ny nonlingar Partial differential
equations. Such models may certainly be called complex aé a quantita- :
tive mathematical treatment of them may be difficult or impossible In . -
another context, such models may be deemed relatively simple from the -

point of view of the number of parameters used in the equations The
mathematics of linear systems, although detaxledxand vast in scope, is,' \\ s f

A}

certainly easier to manage than that required for the nonlinear casef.

H

In this case, complexity enters in the form of an excessive numbér of
parameters which’rnhibits.numenical calculations by taxing the abilities

L4 .
of thg largest and fasteést digital computers currently available.Q The >}

”

most obvious'exampie of this phenomenon is the linear quadratic regula-

tor problem of modern contqpl theory whose solution is’ legantly stated

For systems 5?

. \ .
_ in.terms of -a matrix Ricatti equation {(c.f., Chapter ‘5)

+ N ri.a
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modest size: of perhaps twenty state variables, the problem tends to get
out of hand either in computational effort or in memory requirements,
depending on the algorithm chosen to solve the Ricatti equation. Since

2

the memory requirements grow as n andfphe computation time as n3, where

n is the number ©of states, the trade off of optimality for running time
or memory restri;tions is a well justified'procedure. v

The linear quadratic regulator problem is not the sole area where
aﬁllication of model reduction techniques is profitable, however, or the
effort currently being spent "in this area of research would not be
justifiedl Indee&, many design techniques in the classical) control
theoretic setting are iterative in nature and the use of a reduced model
in such a setting is commonplace. As an example, consider the feedback
stabilization/compensation problem associated with a multistage transis-
tor amplifier using the root locus technique. ‘Here the assumption that
the dominant poles“of the amplifier are the only';nes to be appreciably
affected by var%ation of the feedback network is equivalent tp the use
of a class of reduced modelé termed aggregated partial realizations.
This class is extensively treated in this thesis.

Having given some justification for the idea and application of
reduced models' in general, the ciass of complex models to which this
theais is directed is now defined. It is the’class of linear, time-

o
invariant, irreducible dynamical systems, havfgg a large number of
states, which may be modelled by differential equations of the form x =

Ax +.Bu, Yy = €Ex « Du, Here x is a state vector, u an input vector, y an

output veéctor, and A, B, C, D are matrices having entries in the field

N
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of real numbers.t The direct transmissicn map D: u - y actually may be
taken as zero without loss in generality for the purposes of developing
reduction techniques, so attention 4ill m2inly be focussed on the
matrices A, B, and C, which are assumed to be known exactly. The model
reduction problem may fherefore be loosely stated as: given i = Ax +
Bu, ¥ = Cx, find a model z = Fz + Gu, § = Hz which approximates the
given system in some specified manner, where z has fewer components than

X.

1.2 Ag O W R T

In the past decade, much literature has appeared on the subject
of model reduction, most of whigs deals with the reductiongbf order
(number of state variables) of linear time-invariant dynamical systems.
It is therefore of interest to examine briefly the history of model
reduction. The beginnings of the subject may be traced to a stability
test called the root locus technique (Evans, 1950), which has become a
widely used tool in the field of classical control. The root locus
method allows one to plpt the locus of the poles of a dynamic system as

»
a parameter is varied. The observation that the poles relatively close

’

to the imaginary axis of the complex plane are appreciably affected by

parameter variation, while those far into the left half plané ‘do not
change too much, led directly to the concepts of dominant poles, and

.

reduced-order models which retained only the dominant poles. <Classical
/

t+ This restriction is not necessary. Indeed fields of arbitrary
characteristic may be used, but the finite fields (having character-
istic > 0)-do not often occur in control theoretic settings.

FOSI R
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control theory was developed to treat input-output (trans}er function)
relationships of single-input single-output systems.. Early attempts at
generalizing the application to multi-input multi-output (multivariable)
systems falled until the introduction of the state space (matrix dif-
ferential equation) description in the early 1960's. By this time, the
dominant p&le idea had become so entrenched in classical control that

-

the first attempts a% reduction of a multivariable system (Nichqlson,
1964, Davison, 1966) used precisely this idea, and with good success.
The compu;ational effort, however, was much greater, for now calcula-
tions equivalent to'determining the eigenvalues and eigenvectors of a
matrix were® required, whereas in the single variable case, only the
factorizat}gn of a scaiar polynomial was needed. The fact that a
numerically stable eigenanalysis algorithm for real assymetric matrices
did not appear until 1970 (Martin, et al., 1970) precluded the use of
the dominant eigenvalue technique for any system haviné more than twenty
state variables, although seweral researchers developed dlfférent eigeng
value preservation schemes during this time (Marshall, 1966, Mitra,
1967, Aoki, 1968, Chidambara, 1969). Such reduetion techniques are algo
termed projective or aggre;ation methods. The term aggregation comes
from the fact that the state vector of the reduced model is the image of
a linear map (or aggregate) of the original staﬁe vector. This map may
be factored as the product of anogher map withw? projection, thus giving
the term- projective (c¢.f., Chapter 3). Mainly to reduce the large
computational effort associated with the dodinaﬁt ehgenvalue technique,

the continued fraction approach was.iﬁtroduced in 1968 (Chen and Shieh,

1968). This method consisted of expressing the transfer function as a

4
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continued fractiomn. Different order reduced models could then be
generated by' simply ignoring the last quotients and reversing the
continuation process. Knowledge of the quotients also allowed the easy
formulation of state equations for the reduced model. Zakian (1973) has
proved that the reduced models of a single variable system obtained by
Chen's method are in fact Padé approximants of the original transfer
function. It is well known that the Pad€ algorithm is the most
computationally efficient method for the approximation of a scalar
funection, so that Chen's method is the fastest reduction technique for
scalar systems. The multivariable extension of Chen's algorithm yields
a Padé Lype approximant as well, but is restricted to systems having an
equal number of inputs and outputs, and polynomial matrix inversion is
required.. To circumvent these restrictions Shamash (1973) has proposed
a direct extension of theJPadé approximation algorithm to the multi-
variable case. Although this technique is certainly computationally
more efficient than Chen's, a very serious dradg;ck is that the order of

a state variable realization of the reduced model may actually equal or

exceed that of the original system. For example, consider

1/(s42) (843)  1/(8+2)°
G(s) =
17(8+3) 1/(s+2)

whose dharacteristic polynomial is A(s) = (s+2)2(s+3) having degree“3.
Using the method of Shamash one obtains a "reduced" model

1/(s+6) 1/7(s+)Y
G(s) = ’
1/(5+3) 1/(s+42)

b e SN RV



whose characteristic polynomial is A(s) = (s+2)(s+3)(s+4)(s+6) ha;Thg
degree 4 > 3!

Chen's method is a. special case of the technique of minimal
partial realization developed in this thesis. Intuitively this means
the matching of a maximum number of terms of the Taylor series of the
original transfer function with a reduced model having a minimal order
characteristic polynomial. Although Chen showed that such reduced
models are useful in the design of dynamic compensators for the original
system, no straightforward method exists to allow the design of static
(i.e., linear state variable feedback) cémpensatidn. The aggregation
technique, however, is ideal for the design of static compensation,

although this realization was 1long overdue, and,,  at that, only proven

\

fog the special case of Davison's reduction technique (Lamba and Rao,

3,
%

1972 and 1975). The first breakthrough in the area of static compen-
sator design came with the method of singular perturbations (Sanutti and
Kokotovié, 1969). This method is also called two time scale control,
since reduction and compensator design are achieved by assuming fhat the
fast dynamics of the system are infinitely fast compared with thefslower
dyhamics (the derivative of the fast dynamies is normalized by dividing
by a smail parameter which, when set to zero, produces a reduced model
and a singular derivative). Moreover this reduction technique is
applicable to nonlinear systeﬁa as Well‘as linear ones. Good success

was reported for its appiication to the suboptimal regulator problem.

The major goals of this thesis are to develop a method of modell

reduction which includes eiisting reduction techniques as special cases

and also allows the design of static compensation based on the reduced

- —
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model. The proposed method combines the ideas~of aggregation and
pinimal partial realization and is termed nonminimal partial reali;a-
tion. This unification is largely achieved as only the singular
perturbation technique in the nonlinear case and the minimax agproach
(Genesio and Milanese, 1975) cannot be viewed as special/caseg.

.

1.3 Synopsis
The thesis 1is organized ag follows. Chapter_ é reviews four
different types of rechtion which have appeared in the literature,
including.xhe eigenvalue preservation and mimim partial realization
algorithms. Later chapters give a detailed treatment of the techniques.
In Chapter 3, the theory of model reduction by aggrégation is

r

studied. 'This method was pioneered by Aoki (1968), and held great
pr;mise, as é linear relationship z = Kx related the state\\of the
reduced model to that of the larger system. This method was largely
forgotten, however, as Aoki gave no method for the determination of.tye
aggregation matrix‘ K. . The remainder of the cpapter is devoied ‘to
solving this p;oblem, specifying the reaction -of the large system to
control laws based on the reduced model (the aggrggatiﬁn matrix K plays
a centrai role here), and the Qerivation of some sensitfvity'formulae
for the .reduced model based on eigenvalue/eigenvector sensitivities of'
the A matrix. An important consequence of the formulae for Aetermining
the aggregation matrix is that all eigenvalue pfeservation metﬁods are
casés of aggregation and vice versa. This is the first step in the

unification of model reduction theory. *

Chapter 4 dwells mainly on the state variable formulation of the
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transfer function reduction methods introduced in Chapter 2. Here the
concept of a pa;taal realization' is shown to follow naturally from fhat
of a minimal realization generated from the Markov parameters{of‘the
transfer function. A new migimal/partial reali;;tion algorithm is
developed which has someﬂspecial iterative properties making the
derivation of various partial realizationé a very efficient process.
This extension of the theory o} minimal realization allows the
unification of mhny é? the existing reduction methods based on time
moments or Markov barameters. Indeed, the algorithm ig a multiéariable

N N )
generalization—Gf the process of Padé approximatiop of proper rational

functions. The emphasis then shifts from (minimal) partial realizations

to nonminimal baﬁtial realization. The extra degrees of freedom gained
Pl .
by using a reduced staté vector of greater length than necessary for

minimall partial realization allow the development of ‘reduced models
which are both aggregated and partial realizations. Thus the class of
nonminimal partial realizations is. seen to be very large, and the

EaY
unification of reduction theory is complete. Efficient - mefhods of

determining such ag regatedhgartial realizations are given. The

p——

analytical techniques of state éggregation are gener??ized io apply to

nonminimal (and minimal) partial realizations. It is precisely these

Ta

results.whidh make nonminfma; partial realizations such good reduced
order models of systems. Throughout Chapter 4 the use of canonical form

‘state ‘equations 1is stressed. Such forms are equally useful for proving

o

otherwise difﬁicult theorems and also afford an economy for simulation,

»

both in memory and running time reduinements. -

Chapter 5 is devoted to the suboptimal linear quadratic regulator
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problem. The merits of various reduction schemes for determining
suboptimal controls are investigated. The suboptimal tracking (servo-
mechanism) problem is treated as a special form of the regulator. It is
found that aggregated partial realizations-are the most suitable reduced
models when the signals to be tracked are polynomial time fh%cékons.

Until this point 'in the thgsis, attention has focusseé exclu-
sively on dynamical systems of the continuous t;be, 113:, representable
as x = Ax + Bu.\ An extremely important élass of dynamical systems is
the discrete type, having state equations of the form x(k+1) = ¢x(k) +
eu(k). Chaptg} 6 discussesvthe_reduction of such systems using the
notion of nonminimal partial realizations as developed for the
continuous time case. Differences between the behaviour of such reduced
models from their continuous time counterparts are iavestigated.

Finélly, in Chapter 7, the technique of aggregated partial
realization is appiied to the design and impleﬁentation of a suboptimal
ﬁ‘”ﬁﬂﬁedbac& law for the 1linear 'quadratic servomechanism problem éor a

dynamical system h;ving thirty three states.
Co- ’

1.4 ng;gibg;igng of the Thesis

Claimed as original contributions of this thesis are:

K :

1. The unification of a large numbér of model reduction teéchniqu

through the use of npnmfnimal ertial realization.

5

2.  The developmeﬂt of an analytical framework which allows
description of the reactien of the large system to linear state

N~ ’

variable feedbatk laws derived from consideration of the reduced
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model. f
The use of aggregated partial realizations for the determination
of suboptimal controls in the linear quadratic regulator problem
guarantees that theiorié{égiésystem may be stabilized. Mateching
of time moments then guaggéﬁees that the steady state tracking
error will be zero for the servomechanism problem when the target
is a polynomial function of time.' )

Thg use of minimal realization algorithms to iteratively
determfne\ Padé approxim;nts‘ of strictly proper fational
functions. Thf3:§terative procedure allows the generation of ithe
[r'y r+1] or [r'+1, r] approximigt given the [r', r] approxim;nt.
The proof‘that aégregéted models a\ways preserve eigenvalues.

The proof that an aggregated reducé model may be used to place a

subseg)of the poles ‘of the large system arbitrarily.

~

B
18 -

P
e vt . - et e e e =



A v
o

\ ' GHAPTER 2

AN

\
A hEVIEW OF EXISTING METHODS
. . OF MODEL REDUCTION

2.1 Introduction

This cﬁapter proviﬁes a

areas of the field. The tuwo centnal methods, eigenvalue preservation,

¢

eview of existing work in four major

and partial realization, are discuss in detail, while the methods of

areas of research, but reflects the success\of the method developed in

Chapter 4 in unifying the topic of modei reduction.

2.2 Four Philosophies of Model Reduction
This section introduces four major areas of endeavour.in the
field of model reduction. . The eigenvalue preservation methods of

Davison (1966) and Mitra (1967), the moment matching methods of Chen and

Shieh (1968) and Shamash (1973a), the Singular perturbations method of .

Kokotovié (1972), and the minimax approximation method of Milanese

"(1971), are discussed.

2.2.1 Eige Pres at

4

" Perhaps one of the oldest methods of simplifying linear systems

igathe'retention of dominant modes. Certainly tﬁéJFirst'attempts'at

T s AT I I 0 o g P e A bk e
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redﬁcing multivariable linear systems were the techniques of Nicholson
(1964) and Davison (1966), wherein the dominant eigenvalues and their
corresponding eigenvectors (in the sens; that the ratios of-the elements
of the reﬁuced eigenvectors are the same as the ratios of correéponding
elements of the originai eigenvectors) were retained. The system to.be

reduced was represented by .

3

%X = Ax + Bu, x e R", S (2.1)

.

where u{t) was @ scalar unit step function. If the modal matrix (Porter

and Crosgley, 1972) of A and its inverse are given respectively by

} .

| * . L |
Vv = [v1 v2 cen vn] (2.2a)
() w
T |
Y
v Wl (2.2b)
; :
T .
W
" , \ 1)
where
AV = VA = ¥ diag (A], AZ’ ey Xn) (2.3)

Y and it is desired to retain the first r eigenvalues of A in a reduced

1

model, then A, V, and V7' are partitioned as follows

Lo
N TI XYY I L ,
A= (2.4a)
A ‘A A(n-r

IR O PR ST e

.
P e Lt e o - =
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L n-r-
V., (PP Ar \
¥V = ! (2.1”))
V21 V22 - (n-r /
L -t
. w11 W12 (r

W = V - (2.4C)

W1 ¥y (n-r

The dynamical equations of the reduced model of (2.1) are now given by

z

1"

Fz + Gu (2.5a)

_ ' -1 2
F = A11 + A12 V21 V11 . (2.5b)

\

G=V,, [w11 w12]s (2.5¢)

L

In Chapter 3 it is shown that the state variables x and z are

linked by 2z = V11 [w11~ W..Jx. This important result was unnoticed hy

12
D&visonfbut was discovered by ‘Lamba -and Rao (1972).
Davison's pioneering work treated the approximation of the state
trajectoﬁigs for a step input and did not consider approximation of an
- \‘ . >

output mab. This was an acceptable method providing the outputs of the
B

. |
system were identical to some of the original states, or that the
|

I

reduced mdpel was solely intended for the calculation of a suboptimal-

control fo} a~ linear quadratic regulator problem as investigéted by
'Lamba and.ﬁao (1972). - One major defect was nénﬁreservation-of the DC
" steady staté.

In man; instances, however, oné is interested in closely
approximating the output of the larg;;scale system.- The addition of an

output equation to the reduced model adds a new dimension to the

(S
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problem, for now the choice of eiéenvalues to retain ma¥ beconme critical
(Hickin and Sinha, 1976a). In his work, Mitra (1967, 1969) proposed a
method of optimal reduction in the sense of optimizing 'a linear
quadratic error functional, for some fixed¢input u(é). To retain the
firét r eigenvalues using the following functional (for which u(t) is an

impulse function) calculate

W= ,[ exp(At) BDBL exp(ATt) dt, D > 0* (2.6)
0 £

The following projection matrix is then calculated

-1
V12 \

> ¥
P=1 - . v, VW ;
| V22 | T

# -
{v V., IW  (2.7)

It is easily shown that PA = PAP so that the decontrolled trajectory x =
Px satisfies the following differential equation

x = PAx + PBu = Ax + Bu, x € R" , (2.8)
N\

The reduction is how possible by virtue of the fadt that (2.8) is

~

uncontrollable, for it easily follows that U = PU where U and U are the

controllability matrices of (2:1) and (2.8) respectively. Since P is

3

calculated by (2.7), and W by (2.6), the subspace of RP in which the

*

*po 0, the square matrix Dlis‘positive definite.

EVE



§ TN XA e Neing. e W 1

G, =,

Toa ““Y,—\\\\\ h AE

|
1
'

N

error x-x lies is orthogonal to the subspace in which x lies, when u(t)

D”2 §(t), a weighted set of unit impulses. Remqval of fhe,uncon—
N ~ R

trollable modes is now accomplished by choosing the r columns of a

matrix E to span the controllable subspace of (2.8), and partitioning A

as in (2.4a), and B and E as follows

[~ ) ‘
‘ ' ’ )
“ R 1-‘ (r-,o.\j:# ,

B = ~ . : (2‘98)
\B‘21J (n-r *
€ ) '

. Eql. (v

E = (2.9p)

“E21J (n-r
and by calculation of )
]
-1 7 -1 ;
. F = E11 A11 E1f + E11 A12 E21 ' (2.10a)
~. {

.

G=E7, B, ‘ . (2.10p)

H = CE ' (2.10¢)

The reduced model would then be given by
%2 =Fz +0u, z ¢ R" T (2. 11a)
y = Hz ‘ : (2.11b)

The similarity of (2.5) agg (2.10) should}be quite evident. In Chapter
3 a general formula for such reduced models is derived.
To optimally reduce the system (2.4) it is necessary to calculate

P and E matrices corresponding to eachxbf the (2) ways in which r eigen-

[y

values may be selected from the n origihal eigenvalues. When n is large

and r is small ‘the ensuing combinatorial search will be so time
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become prohibitive for a large matrFx\j
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consuming as to throw serious doubts as to the uEility of the method. A
common compromise is to retéin the dominant eigenvalues only.

Davison's and hitra's methods each suffer from the drawback that
gn eigenvalue/eigenviétor calculdtion must be accomplished for the &
matrix, which w{Tfﬂgenerally be assymmetric. Aftér transformation to
Hesspnbegg,form, several iterations of Ehe QR algorithm, requiring un2
cperations per iteration, may be needed to determine each eigenvalue
(Dahlquist and Bjorck, 1974). Caleculation of the eigenvectors will take

L * L}
at least as many operations and thus the computer time involved may

). In the following section

n>50
,.\\

two ¢computationally efficient methods of model reduction are presented.

2.2.2 Moment Matching and Padé Approximation

kS
To overcome the computational difficulties of eigenanalysis, Chen

and Shieh (1968) proposed the expansion of the transfer function G(s) = |

C(sI-A)"B into a continued fraction. Gefieration of reduced-order

~models is then easily accomplished by ignoring some of the quotients and

inverting the t}uncated continued fraction. Examination of 'the
continued fraction expansion also allowed the easy writing of state
equations of the transfer function and all reduced models. For scalar
systems (single-imput, single-output) the expansion of g(s) =

v

cT(sI-A)'1b proceeds as

[PUDRNIEYOI SRR



g(s) = 1 (2.12)

Although this method is very simple, and gives reduced models which are
often very good approximations to the original, it suffgrs from two
serious drawbacks. Firs?, a reduced model of a stable (resp. unstable)
G(s) may be unstable (resp. stable), and second, the method loses its
computational appeal iff*the multivariable case where polynomial matrix
inversion becomes necessary, and the number of inputs must'equal the
number of outputs. In Chapter Y4 each of these difficulties is removed.
Zakian (1973) has noted that the method of Chen and Shieh yields
an [r-1,r] Padé approximantt to g(s), and thus that the first Er time
moments of g(s) and its reduced model é(s) are equal. The steady state
error between the responses ,gf the two models will then be zero for
step, ramp, etc.,' inputs if both systems are asympotically stable.
Shamash (1973;) has proposed the use of more general [r',r] Pade
approximants for model reduction. This usually enables a reduced model

of prescribed order r having suitable stability properties to be found

*

toar g(s) is analytic at s=0, then g(s) is an {m,n) Padé approximant to

g(s) if g{s) is an [m,n] rational function and the first m+n+1 terms
of the Taylor series of g(s)-g(s) are zero.

v e,
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by choosing r'gr-1. Unfortunately, the choice of r' is governed by a
trial and error technique.’ The method may be readily extended to multi-
variable systems, however, without the need for any matrix inversion. A
serious deficiency of the multivariable algorithm of Shamash is the
introduction of multiple poles into the "reduced" system which hay then
have a ch;racteristic polynomial whose degree is greater than that of
the origi;al system! Other moments methods are discussed in the survey

by Bosley and Lees (1972) and may be found in the supplementary

bibliography.

2.2.3 Singular Perturbdations .

AN

Each technique of model rgduction mentioned so far has been
explicitly formulated for linear timeiinvariant dynamical systems. The
technique of singular perturbations (Kokotovié, 1972) was formulated to
reduce general nonlinear systems. Assuming the dynamical equations of

the large-scale sysbem to be in the following form

X4

f(x“y X2, uy, U, t) (2.133)

)J).(Z 8(X11 xzy Wy uy t) (2.13b)

where y, is a small, genérally positive, parameter, reduction is

accomplished by setting u = 0 and solving the now algebraic equation

(2.13) to yield

X2‘ = h(;1’ l-l_p t) (2. 1’43)

Xy's £{Xy, X5, 0, uy £) = f(xy, u, t) 2. 14p)

o
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Under certain conditions, the states Y1 will closely approximate the
states X4 after an initial transient where the magnitude of the error
may be quite large. The nature of the reduction method also allows a
boundary layer approximation to the behaviour of the neglecfed dynamics

%

of the system when y £ 0 as

dx2
= g(x1(t). X2('r), 0, u(0), 1), 1=t/n (2.15)
dr

The analysis and application becomes much simplified when dealing with
linear time-invariant systems. A serious disadvantage, however, is that
identification of the state variable transformation which is required to
identify xq, Xxp and y may not be simple.+

Thé method of singular perturbations has been successfully
applied to optigal control theory (for the linear quadratic loss case)
where a boundary layer system was used to perturb the Ricatti equation
(Sannuti and Kokotovie, 1969). At this time, no other branch of model
reduction allows such compensation for the 1lost information of the

neglected states.

2.2.4 Minigax Approximation .

. A greatlﬂ different philosophy to the problem of model feductiop
is the computation of an input-output iﬁdependent measure of the error
norm between a system and its. approximant in the time domain.‘ The

subsequent minimization of this é%ror norm is then used to generate a

t This was subsequently removed, c¢.f., Chow and Kokotovié (1976).

<«
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‘

reduced model. Different choices of the norm will lead to different
models. A popular choice for the input and output spaces are the so0-
called Lp spaces (p>1) (Naylor and Sell, 1971), while the erroytbetween
the system responses is measured vwith the L, or minimax (uniform) norm.
Advantages of this method include the possibility of identifying

a reduced-order model from noisy input-output data, its application to

Ead -~

nonlinear distributed parameter systems, and the possibility of
guaranteed cost control (Genesie and Milanese, 1976). A serious
disadvantage of the method is the great amount of data processing that

may be necessary, for instance in the minimization o% the error

functional of the form

#

E = sup Hy-yll , ) b, (2.16)
& uelt llull -
4 : O 1
In the above equation U represents a class of admissible inputs ang y-y
’ 4

denotes thé'output error between the system and its approximating model.
Because of the worst case nature of the approximation, the minimumlerrﬁr‘
bound E* may be too pessimigtic to be of practicdal use. ‘ ;
2.3 Summary

A review of four major methods‘ of model reduction has been
presented. The eigen;alue preserving meth;ds require much computer time
to calculate a reduced model, particularly the optimal reduction methodl
of Mitra. The moment matching methods of Chen and.Shieh and Shamash
. reqﬁire' the léast amount of -computation but suffer from the serious

drawback that the stability of the reduced model cannot be guaranteed.

While the method of singular perturbations suffers from the disadvantage

N e e B It i b s e N
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that identification of the p}oper form of the large-scale dynamical
equations may be very difficult, it remains the only method which allows
the partial recoverey of the information lost upon passage to the
reduced model. The computational rehuirements of minimax approximation
are variable, but can become very large when the set of admissible types
of input is large. The worst case nature of the reduced model, often
stated as a great advantage of the method, can sometimes tgive too
bessimistic an error.ﬂbouné; particularly if the input ‘set is not
suitably restricted.

In Chapters 3 and U4, certain invariance properties of eigenvalue
preserving and moment matching‘ methods with respect to linear state

"" variable feedback will be proven. These properties, not always shared

o .
by singularly perturbed models, and never shared by minimax models, give
J H |

V-

a new credibility to the earlier methods of model reduction. This is

not sukprising,  as the latter methods of ‘model reduction are not

‘restricted to l;nea% time-invariant dynamical systems. It is quite true

that the,tmore rgsﬁrictive the statement of a probZem is, the more

]

* specific are the results of the andlysis.

EA
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CHAPTER 3

&

THE THEORY OF STATE AGGREGATION \\

3.1 Introduction ’t:\g;'

[

The early -efforts at model reduction were primarily concerned
with approximating the output of the large system for a certain
specified input.- The fact that nd relation between the ldrge-scale and
reduced-order systems " existed "made the theories unsuitable for the

\'design of static control laws based on the reduced model, as the

resulting system was bound to be of an open loop nature (Figere 3.1%a).

”

The introduetion of non-zero initial conditions was also impossible for
- ' [
the same reason. To construct a state variable feedback law for the

large system based .on such a law for the reduced model obviously

A

requires a relationship z=f(x) between the state vectors (Figure 3.1b}.

The case of a lin€ar relationship, z=Kx, is especially useful and was

introduced to control engineers by Aoki (1968).. It is 55 interest to

s

determine if the 1arge system and its Podel form an aggregated pair

’

after the introduction of llnear state variable feedback laws.,,Althouvh

Aoki did not shoqithls to be "true, therein lies the success of the

émethod.' Rao -and Lamba (1975) .proved this for the case of Davison's

reduction method and the result was eitended to aggregated reduced-order

models in general by Hickin and Sinha (1975a) The fact- that Lamba and

}7 )
Rao (1972) provéd Davison s moael to Qe*aggregated pnovided the impetus

e iy e 3mSR
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™~ Large System
S X
—— X=Ax+Bu - C
9]
V N ‘{)‘——‘v .
E . Reduced Model
. Zz
z=Fz+Gu H
“\
. M
*
a) Compensation by general reduced model is dynamic.
&
Ldrge System
. y x A
| %= Ax+Bu c -
Aggregotion
{" M f(X) Laow
Vv N ' T
' ' ; _—
; . Reduced Model,
1 ) A
! T z
\ (T ieFzeGu P4 H FL-
i
‘ s
Lea M -—

b) Compensatioq' by aggregated reduced model is static by
virtue of the aggregation law. Dashed lines depict
equivalent signals.

. Figure 3.1 Illustrating the use of reduced models for compensation of a‘
: ." large system. ;
- 4
f\- .
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*

for Hickin and Sinha (1975b) to prove that all eigenvalue preserving

reduction methods were special cases of aggregation. Hickin and Sinha ¢

N

(1975¢) and Michailesco, et al. (1975) then gave general formulae for

.

determining the aggregation matrix and the reduced rodel. The

v

invariance property of aggregated models under 1‘inear state variable,

feedback is the foundation of the utility of the method and a

justification of the rather large amount of computation involved (in the

form of an eigenvalue/vector calculation) to reduce a system.

*

-

3.1.1 Acgki's Theory of Aggregation

It is supposed that the dynamical equations of‘ the large-scale

system are given as ’ )

X

y

a

Ax + Bu , xeRn,ueRp (3.1a)

Cx’ , yveRS ~ (3. 1b)

and that it is wished to aggregate the state vector x into a state

vector z of lower dimension, i.e., z ‘should be a linearly related to x

as

~

-

_ | ff@
= Kx , zZ e Rr, p(K) = r < n (3”.{)\'

K is termed the aggregation,_matr;ix. If 2z is to be' useful, it should

also satisfy a

>

N

differential equation such as \

Fz +Gu , zeR", uerP _ €3 3a)

"

Hz . yeRq ) . (3.3b)

W m————————-
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Substituting (3.2) and (3.3) into (3‘1zagivé the following equations to

be satisfied by X

" FK = KA ’ C 0 (3.4a)
G = KB s (3.4b)
HK = C (3. 4¢)

In general, (3.4c) is only approximately satisfied, but it is shown that
(3.4¢c) can be exact if and only if there are some uncontrollable modes
(Chen, 1970) in (3.1).

Assuming that K and A satisfy
KA = KAK'K : (3.5)

where K* denotes the Moore-Penrose pseudoinverse of XK (Albert, 1972 and

Boullion and Odell, 1969), Aoki derived F as - 7'

F = KAKY (3.6)

) The ocutput e{hation’(B.uc) was not explicitly considered, but one choice

for the H matrix could have been (in the spirit of (3.6))

+ )

H = CK 1 (3.7)

Under the condition (3.5) it’can be determined that lsI,-F| divides
|sIn-A‘._ Hence the eigenvlaue preservation method is a special case of
aggregation. It.is shown in fhe next section that any aggregated model
must preserve'eigenvalpes. Aggregated models are seen to be useful by
virtue of the aggregation law (3.2),. " Since Aoki. gave no explicit
formula for the éggreéation matrix K, the utility of‘the m s

questionable.

<

. e 4 e s
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3.2 A General Formula for the Aggregation Matrix

t
i
Il

A subtle change in viewing (3.4) provides a general formula for
the aggregation matrix. Instead of treating F as unknown, we address
ourselves to the following prob%em. Given two square matrices A and F,
under what conditions does (3.4a) have a nontrivial solution for K? The
answer, as suspecte@, is given'iﬁ the following theorem.

Theorem 3,1. Llet ithe Jordan decomposition of A as a direct sum of

Jordan blocks be

'(

a  B(i).
I

5 d Nn(ij) (li)

A N
. 119 j=1

where {’ilieﬁ}+ denotes the set of distinct eigenvalues of A, Nk(x) is

the Jordan block of dimension k and eigenvalue A, and Zn(ij) = n. Then

a full rank aggregation law z

Kx exists if and only if the decompo-

sitioﬂ of F is given by

F N

B(1) X
i1d n(ij) (Ai)

it ™ R>

1219 3

where a Lo, g(i) < B(i) for i e ;. Then the rows of K may be selected
from the rows of V"1, where V i§ the modal matrix of generalized
eigenvectors of A. h

Proof The proof is a direct generalization of that of Gantmacher (1959)
for the éolution of the equation AX = XB where A and B are the same
z$ize: Letting the modal matrices of A and F be Vand W resﬁéétivel& we

|

have

a

¥ For any positive integer ¢, & = {1, 2, ..:, @}

"‘""\‘./

s ppn s IR 1s ot e e b = S

1
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. 1 Q Béi) } ;

A=V AV I N.,. (A.) (3. 8a)
i=1d J=1d n(1J) :

L@ B(1) \

F= I L N~ Ly (X))
£=19 3219 n(i3) * i

. (3.8b)

where @ < @, B(i) < B(i) for i e &, I n(ij) = r, and O(F) = O(F) =

{lileeﬁl. The equation FK = KA now becomes

-~

FK = KA ‘ (3.9a)
K = WIKv " (3.9b)

It is seen that for a nontrivial solution K to exist we must have Xi =

~ { ~
A\ for at least ome A, e 9(F). Since it i’ wished that K have full
5

rank, we must have )‘i )«i for each i e a. There are then many

solutions for K, one beigg K = [Ir- ! 0] where

8(1)
r  n{iJ)
1 =1 i\\

is the order of F. ‘\

. |
Corollary 3,1. Let the state equations of a large scale plant be given

"3
"
1 R

i

by (3.1). ThqeLx if V is the modal matrix of A the following systein‘
constitutes an aggregated reduced-order model of (3.1) retaining the

eigenvalues {7«1}, 1<£1<r.

1

K=I[T 0V, [T| # 0 (aggregation matrix) (3. 10a)
¢
n b
F = KAK (3. 10b)

G = KB \(3-100)
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H = CcK® (3. 104)

= I.. The notation K! is

where KP is any right inverse of K, i.e., KKD -

suggested by Boullion and Odell (1969). T is any nonsingular r x r
matrix. If T = Ir’ then F is diagonal. To avoid handling domplex
quantities, the following algorithm is useful for determing K.

(1) Perform eigenanalysis on AT, i.e. find W such that AT W = W diag

(y, Aoy ey A). Then v-! = wT and the rows of V-! are the columns of

n)
W (Porter and Crossley, 1972).

(2) Suppose Ai is real and Aj = XJ+1 is complex for some i,j. Then

the i*" row of K is taken as the i*™ column of W and the 3* and J+1SF

rows of K are taken as the real and imaginary parts of the jth column of

_ A L _ A - = -
We Also fyy = jand fyj5=fy.q9 5.9 =Re (")), £y 4.4 =104, 3=-1In

’ 3

(lj). It may be noted that among all right inverses K" of K, the one
-1

most easily calculated is the pseudoinverse given by K* = KT (KKT)

which involves roughly rz(U/3r+n) operations. A slightly different

approach to determining the aggregation matrix was given by Michailesco,

et al. (1975).

~

™~
S~ N

3.3 Invariance of Aggre ed Models Under Linear St Variable

Feedback )

If the aggregated modelvis to Sé of any use, ;& must remain
aggregated after the introductiop of linear state ;ar;able>feedback.
Suppose that the large-scale, system is given by (3.1) and an aggregat;d

model matching the fiqst r eigenvalues of A is given by (3.10). If the
control law u = MKx + Ny is now substituted in (3.1) there follows
. ) 5
|

. : |

-3
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Proof. (3.11) to (3.13) prove the first assertion. That G(Ff) < o(A

.29
x = (A + BMK)x + Bliv = Agx + BNv (3.11)
Frgm (3.4) it is now evident that .
Kx = KAgx + KBNv = (F + GM)Kx + GNv ‘ (3. 12)
Setting u = Mz + Nv in (3.10) gives
z= (F+GM)z+GlNv=Fz+ Gllv (3. 13)

v

It follows that ka = KAp and that the reduced model continues to be, an
aggregated model with the original matr@x K as the aggregation matrix.
This is expressed in the following theoreg%v

Theorem 3.2. The introduction of a linear state variable feedback law u
= Mz + Nv = MKx + Nv does nog affect the aggregation matrix. Furthgr-

more, the spectrum of Ff = F + GM is entirely contained in the spectrim

" of Af = A + BKM, and those eigenvalues of A excluded from F| appear

without change in Af. Thus Ap ~ Fe ® X, where A denotes the invariant

eigenvalues.

£

and Theorem 3. 1. _ﬁow

(d(*) denotes the spectrum) follows from FeK = KA

let Av. < A,v, where A\, ¢ 9(F). Then Kav, = (FK)vy = F(Kvy) = A (Kvy).

But X, # 9(F) so Kvy = 0. Hence Agvy = (A + BMK)vy = Avy = Xyv; so Ay e

~

o(Ag). .

Theorem 3.2 waS\prgvkh for the casc of Davison's reduced model Sy
Rao and\Lamba (1975L/aﬁd was subsequently generalized to apply to all
aggregated models by Hickin'aga*s;nha (1975a). -The above proof is new
and considerablyisimpler in cégbagison with that of the.latter

| s
reference. .
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3.4 Qther Properti f A ated M s
The following theorem is particularly interesting. v
Theorem 3.3. Let |A| # 0 and let f(x) = I aili converge uniformly on

some annulus D = {(p,0): De[o1,92]} of the complex plane. Let |]-}]

denote the spectral norm of a matrix (Naylor and Sell, 1971), and let

f(A) converge uniformly. Then
‘\:/A

Y K £(A) = fi(F) K (3. 14a)
£(F) = K £(A) K" (3. 14b)

where K is any right inverse of K, and FK = KA. .

Proof. Since FK = KA it is easily established by induction that

-

wl - rlk , 120, %1, ... (3. 15a)
el prakr™y = (Ptkk® = kalk® 120, £ 1, ... (3. 15b)
For any square matrix T, |IT}| = max{|Xx]|:xeo(T)}. Hence, as o(F) ©

a{4), |IFIl < |ial] and [1E= > 118", But f(A) converges uniformly
%
-1 -
so [lall elpq,0,), ATl efpy,p5]. Hence [|F}], [E= elpq,0,] and
f(F) converges uniformly. With the aid of (3.15), equations (3. 14) now

follow at once.

Corollary 3.2. *et <A|B8> be the controllable subspace of (A,B) where B
= Im(B) (the image under the map BI(WOhnam; 1975)). Then if (F,G) is an
aggregated model with aggregation matrix K, and f}: Im{(G) then

K als> ; FIY (3.16)
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Proof K<A|B> = K(B + AB + ... + AD"Y8) = (K8) +F(K8) + ...
+F-1(xp) —
=~ lke> = €l
A consequence of this is the fact that (F,G) is controllable if (A,B) is
controllable. If (A,B) is uncontrollable, then state aggregation may be
used to remove all uncontrollable modes. In this case, there exists a
right inverse K" of K such that HK = CKPK = C, i.e., (3.4¢) is then

exact.

3.5 The Models of Davison apd Mitra Revisited

In the previous section, it was shown that eigenvalue preserva-~
tion reduction methods were cases of aggregation. The aggregation
matrices for Davison's (1966) and Mitra's (j967, 1969) models will now
be given. Thé notion used in this éection conforms with that of Section
2.2. 1, éincé the equation G = KB relates the input to state matrices of
the reduced and large-scale systems, the aggregation matrix K 1is
relatively easy to isolate. In a similar manner, the form‘of the right
inverse X" of K may be determined by inspection of the equation H = ck?
relating the =state to output matrices. A more complete collection of

aggregation matrices for different reduction schemata may be found, in

Michailesco, et al. (1976).

3.5.1 Davison's Model

Inspection of (2.5) determines K and K" to be given by

-

K=V, _[H

11 W._.] : (3.17a)

11 712

[P N

-
Mty )
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n v11 -1 Ir
K = V11 = 1 (3.17b)
v V.. V.
21 21 1}
3.5.2 Mitra's Model
Examination of (2.7), (2.10)‘gives
K = (7] 0l (3. 18a)
° - E (3. 18b)

In the calculation of F = KAKn, the result PE = E, which follows from

the way in which E i3 chosen, is needed (c.f., Hickin and Sinha, 1975b).

3.6 U A M for Cont S m D

Aokd k12§8) proposed the use of aggregated models for the
calculation of suboptimal controls. Given the state equations (3.1) and
{(3.3) and a quadratic performance index

T

T

Jd = (xTQx + uRu) dt, Q> 0, R>0 ©(3.19)

0

the minimization of J yfelds' a feedback solution in the form of a

Ricatti equation (Kalman, 1960).

= -k~ BT B(t)x, P(E) > O (3. 20a)

P =AY P +PA-PBRBP 4+Q P(T) =0 (3.20b)

In order to reduce the computational effort at a sacrifice of

optimality, the problem was reposed in terms of the reduced model &s

Ty - P o e

STt s o
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P

minimi ze J = (zTaz - uTRu)dt (3.21a)

>

¢=«Haxt (3.210)

whose solution was

w= -~ 16T p(y) 2 (3.22)
T S B (A
P =F. P+ PF - PGR™' G P+Q, P(T) =0 (3.22b)

Aoki considered the special case T * ® using the steady state solutions
to the Ricatti equations to implement the control laws. Although some
success was reported with this method (Lamba and Rao, 1972), poor
performance could result if the technique was applied to the'optimal
infinite time tracking problem, where the signal to be tracked had a
nonzero steady state. In Chapter 5 this problem is overcome by suitable
choice of the matrix K" used to specify H = CK". Aoki's choice, the
pseudoinverse K*, almost never gives a satisfactory result.

Another type of control problem is that of eigenvalue placement.
Such a problem is ideal%y suited to aggregated models by virtue of
Thegrem 3.2, which guarantees .that a control 1law Q = Lz to shift the
eigenvalues of the aggregated model to specified locations may be

implemented on the large-scale aystem as u = LKx.

—_— e ——— e
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3.6.1 Sensitivity Considerations

%
It is evident that the concept of aggregation is similar to the

modal control approach of Porter and Crossley (1972). Thus their
sensitivity methods may be"usgg to advantage. Recently Zein El-Din, et
al. (1977) have extended the ‘results of Porter and Crossley and these <
are used. It should be noted that the results are applicable only to
the case of distinct eigenvalues in the A matrix.

Let the modal matrix of A and ité inverse be taken as in Section

2.2, and let A be a function of the parameters §, n. Then set

i -1 T A . :

Pyy = (lj-ki) Wi Vi o0l 7 3 ' (3.23a)
- oyt T s

qu = (Aj Xi) ¥ 3 VJ vy 145 (3.23p)

>
The scalars P;; "and qq4 are arbitrary but it is advantageous to take(

them as zero. The first order eigenvalue and eigenvector sensitivities

are then given by

X,

?E-l = w;f 'g—ﬁ" vy (3.24a)
;gi - 321 v, p}i 21,2 seuyn | (3.24D)
The last equation may now be written as : (N
g% = VP ‘(3-25a)
‘ P - [py s pyy = 0 | (3. 25b)
There then follows ‘ -

[

e
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1 eV ot o

av_ -1
at v = PV - (3.26)

- .y

3

s

The second order eigenvalue sensitivities are given by

2
3°A 2
i T 34 2A % -
*3ran - "1 e Y93t 5y YPi * aran Vi (3.27)

<

where Q.= [qij] and Py) gy are the ith columns of P, Q, respectively.
The gensitivitiesAof an aggregated model (F,G,H) of (A,B,C) are,
now eajpk written. The .aggregation matrix K and any right inverse KD

are

K = (T o™ _ (3. 28a)

O

R I
"y ) , (3.28b) -

K

~

Ay
where S is an arbitrary constant matrix. ' Hence

P T A, a ax

aF & Yyt R A il SOLY

, (3.29a)"

| )

’ 22" o 32x1 azxz azxr S

;E—a—‘:‘- = T dia;g (agan’ '3?5-;'., ey -a-ggn) (30295A)l
G 3 ety =128 -1 '
pg = (T 0157 (¥ ,g) = [T 0] {v 35, -PFV B) (3.29¢)
M B0y ey (T | (3.294)
ag = by ¥+ CVP) [ 3.
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3.7 ' A Simple Example
It is required to derive a second order aggregated model for the

following third order system:

0 0 -4 1

-

x= (1 0 -6 x+ [0l u=A4x + Bu

0 1 -l 0
y=00 1 3)x=cx )
The eigenvalues are the roots of s3 + 432 4 63 + U =0 or s = -2, - 1%j. s

The only secondiorder aggregated model allowed is that which retains the

conjugate roots. The modal matrix. of AT is given by (Chen, 1970)

1 A 1 1 .
U ‘ ,
W= | =14] -1-J -2, | = |1+ =1-3
K (142 (1= (-2)2 -§2 w32

and the aggregation matrix K is then given by

F is written down by inspection as
Re(-1+3) ~Im(-1+j) ~ [+ -1
F = ' =
-Im(-1+j) Re(~1+3) TR

and g follo%s from
¢'zKp=[1 017

It is easily verified that

-1 0 2
FK = ) = KA
0 -2 2
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L

Calculation of the output matrix hT may be done in a number of ways.
Among all possible matrices hT = cTKn, that given by nT = cTk+ will be\

T'is overdetermined[

the least squares solution, as the equation hTK = ¢
(Albert, 1972). With this choice

{ nt = okt = [2/9  13/9]

~ Another choice for hT is that which minimizes

CI(e,®) = | €2 (u(t),b) dt -

where u(t) is taken as a step input, and e(t)-= ng(t) - hTz(t). The

analysis gives

ht [1/5  3/10].

,opt

2 T

The can{rol law u - 2%z gives

L3

Ffz, 'sIz-Ffl = (s+2)2

setting u = - PTgy = [-2 2 0]x gives

”

-2 2 -4
xe |1 0 -gx=agx Istald = (se2)
0 1 -4
A; expected
-3 7.2
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A - ‘ . ¢
If the 3,3 element of the A matrix is perturbed by —012 the

sensitivity formulae give

‘ A1=-0.9+j0.9 ~
. ~—
i
Y o= _
Z 2 0.9 - 3 0.9
A =
% 2.4
,; 3
:}r A
' and
g o

[ 0.95 -1.1 0.1
\-‘0.15 0-8 —107

(+0.9 =0, 0.9
\ F = g~ .

. 0.9 -0, ~0.1 o

The acutal values to two significant figures are

. -0.91 -0.0 N
K =

0 -0.92 -1.67

-0.91  -0.9

|
0.92 -0.91 0.

A= -0.91 + J0.92 A, = -0.91 - j0.92 QX3 = -2.39

5]
1

3.8 C ons
The cdncept of model reduction by state aggregation as introduced o
by Aoki was discussed: His worﬁ, however, gave no help in the deter-
mination of the aggrégation matrix K. Inste;d, he considered K as known
and the reduced-order model was calculated via equations (3.4b) and’

(3.6). This difficulty was removed in Section 3.2 by temporarily

considering ‘the reduced model to be known, and then deriving conditions

e e b,

e
M v v . . Y AL AN - 4 PO S Y
T v e el .
L LA . P . -
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under which the resulting solution for the aggregation matrix was
nontrivial., Theorem 3.1 shows that all eigenvalue preservation methods
are cas:ees of aggregation and vice_' versa and thus provides a unifying

\

framework for such reduetion ‘techni'ques. This is to be contrasted with
earlier approaches wherein t':he matching’of‘ eigenvalues was assumed a
priori (Michailesoo,“et al., 1975). Theorem 3.1 and its corollary also
specified the calculation of ‘the aggregation matrix in terms of the
inverse mod;l matr{xI of A. This formula has alsc been independently
discovered by Michailesco, et al. (1975). An algorithm for avoiding
complex ma;:rices {(which %éeu;' when retaining complex eigenvalues) has
also been given. Theorem 3.2 of Sect.’_Lon‘3.3, wh—ichl asserts ;‘the
invariance of the aggreg'at;ion matrix under linear state variable
feedback, iS probably the most important property of aggregated modelsﬂ.
This theorem was first proven for the special case of Davison's moc}el
.(Rao and Lamba, 1975) and was subsequently gener%.lized to apply to all
aggr‘egatedemodels by Hickin and Sinha (1975a). The proof given here is
néw and more easily followed than that .of the latter reference. In

Section 3.4 other mathematicak properties of aggregated models were

developed. Theorem 3.3 states general conditions under‘ which the

&
. equation FK = KA may be generalized to f{F)X = Kf(A) and its corollary

deals wf:th the controllable subsgpace of the pair (A,B). Section 3.5
gave the -aggr:egation matrices for the reduged models of Davj[son and
Mitra as promised ir; Chapter 2. Sensitivity consideratio;xs were
invgestigat;ed 1p Section 3.6 and an“1 illustrative example was given.
Sensitivity calcui\tations are useful in the sc.alection of eigenvalues to
be retained in the reduced mod.ell, e.g., by retainj:ng the eigénvélues

’

;e R7d ’

PSP
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having low sensitivities, control laws may be derived which ére

relatively insensitive to parameter variation.

——

A e B s e
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CHAPTER 4

PARTIAL AND AGGREGATED PARTIAL REALJIZATIONS
OF LINEAR DYNAMIC SYSTEMS

4.1 Introduction

The goal of this chapter is to combine:the method of aggregation,
discus;ed in ﬁhaptér 3, with that of moments matching, or Pade
approximation, discussed in Chapter 2,‘in such a way as to secure the
separate advantages of ‘each technique while simultaneously removing

their disadvanta%es. In fact, a generalizatior\ of/moments matching,

called partial rgalization, is considered. The existance of reduced
models which are both aggregat;d and partial realization§ of a large
scale system represents a unification of the theory of model
since a 'good number of existing methods may be classified as/ special
cases of what 1is termed nomminimal partial reéalization. This is
depicted in Figure 4.} where an arrow -+ connectihg two xes represents
proper fhclusion and an arrow + represents a non-null intersection.
Thus, the mixed methoé (Chuang, 1970), Routh app}oxiﬁation (Hutton,
1975), aggregation (Aoki, 1968), gnoments (Chen and Shieh, 1968), Padé
approximation (Shamash, 1973a), and singular perturbations (Koktovié,
1972), may ali be viewed as special casestj

’ Methods of partial realization of linear dynamic systems are

closely allied wiﬁh the minimal realization problem via the Hankel

ﬁatrix o{ Markoyx parameters. Accordingly,‘ Section 4.2 presents a

1
g

Y

e b =
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detailed discussion of this topic and its generalization (Hickin and
Sinbha, 1976a). Connections between the theory of Padé approximation and
X ~
partial realization are explored in Section 4.3, Following this, the
idea of nonminimal partial realization is introduced in Section 4. 4. A
central result describes the properties of such realizations under the
application of linear state variable feedback laws. The main result of
the theslis is given in Secpioq 4.5, where an algorithm for generating
aggregated partial realizations is presented. The final link of Figure

4.1 is completed in Sect;ggzm.G where aggregation and sfﬁgular
3

perturbations are compared.

4,2 The M Realization Proble
Given a pxq strictly proper transfer function matrix G(s), it is

" desirable to determine a state variable description (A, B, C), of

. .minimal order n, which is zero state equivalent to G(s) (Chen, 1970).

This problem, called minimal realization, has received much attention in
the 1iteraturew (Ho and Kalman, 1965, Tefher, 1970, Rissanen, 1971,
Silverman, 197‘1‘., Ackerman and Bucy, 1971, Budin, 1971, Chen and Mital,
1972, Mital and Chen, 1973, 'Dickenson, et al., 1974, Riésanen, 1974,
Rosenbrock, 1970, RSzsa and Sinha, 1974, 19%5, Hickin and Sinha, 1976a) .
Many algorithms obtain a min;mal Eealization from the Hankel matrix of

‘Markov parameters (Kalman, 1965). Thé most efficient methods of minimal

realization perform a basis factori}ation of the Hankel matrix and

\\\extract a realization in a Luenberger canonical form (Silverman, 1971,
o

\\\\\\\\\\\\\\ Rissaﬁ§hq\ 1974, R6zsa and Sinha, 1975}\\1975). An extension of the

~

. -~ hw‘m\.
[ 4 ) ‘ . \\

™~

e

ey S : : . . -
R6zs83a=Stnha._algorithm to more ’genqgg;,_ﬁankel matrices was given in
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Hickin and Sinha (1976a). Before this algorithm 1is presented, a
discussion of reducing a matrix to Hermite normal form (MacDuffee, 1943)

is given.

4.2.1 Reduction of a Matrix to Hermite Normal Form

A real general matrix is said to be in the Hermite normal form
(MacDuffee, 1943) if any coiumn is either a unit vector, or 1inearl§
dependent on unit vectors among the columns to its left. Evidently the
rank of the matrix is given by the number of (distinct) unit vectors.

For example, the following 5 x 7 rank Y4 matrix is in Hermite normal form

(1 0 x 0 x O x

o o ¢ J | —

N

where the x's denote elements-of X having arbitrary values. The utility

¥

of such a matrix form is that every real general matrix ééy be brought
~ ~

into Hermite normal form by a nonsingular transformation.

Theorem 4.1 (MacDuffee, 1943), Every real general matrix X has a

Hermite normal form xH, obtainable from X by elementary row and column

-

‘operations. The following algorithm may be used to transform X to its

Hermite normal form.
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Theorem 4,2 (Rozsa and Sinha, 1974). Let X be 2 real m x n matrix.
Then X ¢an be brought into Bermite normal form in at most p(X)+1<min
(m,n)+1 steps,

th

Proof Let x,i and xj* denote the i column and jth row of X respec-

tively. Inductively suppose that k distinet unit vectors eok have

+
already been generated, and that column j of X (where j > i, of
course)l is next to be examined. Let x,',,'j denote any nonzero element of
x,z;far which % ¢ Uk (it is computationally advantageous to select the

langest magnitude such element). If no such element exists, X% 5 is

~
linearly dependent on ghgagrfi_1, and proceed to examine Xajpq in 2

similar manner. If, however, such .an element exists, perform the

1
*J

jth column of X is now €y that the previous j-1 columns are unaffected,

calculation X + X - x, (x,J - ey)Xyy. It is easily verified that the
and that the trapsformation is nonsingular (having a determinant ,of
unity). Thus after k+1 3teps, there are k+1 distinct unit column
vectors in X. This proeeduré now continues until no suitable pivot
element can be éound, whieh in view of Theorem %#.1, takes P(X) steps.
The final:step is rearranging the rows so that the unit column vectors
appea; in their natural order. For minimal real;zation purposes,

however, this step is not needed.

‘ -

!

Following Wohnam (1974), k = {¥7 2, ..., k} if ko0, Q?G.

e }.

g = {01, 02, cees O

k
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Example
1 -2 5 -8
X =
-2 B -8 16
(1) 1 -1 [ -2 5 8] 1 -2 5 -8
X = X - 3 =
-2 0 0 2 0
- - 2 -

4

Applieation.;', of the algorithm include calculation of the rank of a
matrix and matrix inversion. If |X| # 0 for some square matrix X, then
Y may be found by reducing the c-ompound matrix '[X Y] to Hermite
normal form and rearranging the rows of the reduced n{atrix so that the
unit vectors appear in their natural order. /If‘ |X! = 0, then reduction
of [X Y] also gives 'Y where x-! is no@:/i'"nter'pr'eted as the inverse
image+ of the map X:RP+R®, This idea- may be used to calculate maximal
(A, B) invariant subspaces '(\'.’ohnam, 1974), The 'use of the Hermite

normal form in minimal canonical realizaticn of linear time invariant

v
.

dynamic systems is now given.,

" B,2.2 Minimal Realization of Transfer Funection Matrices in Canonical

Forms

th

Consider an n*" order, p input, q output irreducible system

.t

Let £:A*B. Then ™ '(X) = {aeAlf(a)eXnB} is the inverse image of X

—

Under f£. -
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n
X = Ax + Bu » x e R (4, 1a)

y = Cx (4.1b)

It is well known (Chen, 1970) that the transfer function matrix

‘\
associated/with (4.1) is given by

-1

G(s) = C(sIn ~-A) B (4.2)
\
If G(s) is formally expanded in a Taylor or Laurent series then
G(s) = =J . - J .8~ J 8- | (4.3a)
= -1 2 -3 “as ' .
_ -1 -2 3
G(s) = Jos + 8 4 I8 77+ ., (4.3b)
where )
i
Ji =t CA'B, 1e32 (4.4)

It may be noted that (4.3a) is possible if and only if G(s) has no poles

af the origin and hence A”' exists. The 4, for arbitrary i will be

i
called generalized Markov parémeters. When 1 > 0, the Ji will be termed
Markov parameters, while if 1 < 0, they will be called time moments

. ) ~ ]
(@his is a slight abuse of the strict definition,of a time moment). A

generalized Hankel matrix Hijk’ of order (i,j) and index k is written as

'3 - 3
Iy et 0 ke ge
41 ez 00 kay
Hijp = | - : : (4.5)
ﬂkﬁi-1 ger crr Jk+i+j-2J

Because of (4:4), (4.5) may be factored as a block outer product

i .

PP 7S S
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3-1p1 .
i3k ° B AB A°B ... AV B] = Vi A Yy

u8

ky - (4.6)

Vn and U, will be the observability and controllability matrices (Chen,

1970) of .(4.1) respectively. Given G(s), the J, may be readily cal-

i

culated by synthetic division. Equation (4.6) may be used to derive a

minimal canonical realization of G(s) as follows. Take i > «, j > B and

k £ 0, vhere « and g are the observability and controllability indices

(Chen, 1970) of the system. Of course, k < 0 can be chosen if and only

if G(s) has no poles at the origin. Construct HiJk and reduce it

to

Hermite normal form. There will be n unit vectofs, where n = p(Vi) =

p(Uj) (Kalman, 1965). Deletion of all zero rows now leaves Uj' from

which B and A may be easily identified because of the unit vectors.

may then be derived from Hijk’ starting at row -k+1.

Example

2(3) = (343)/(8+1)(842) = 8 408 24 (=2)83+ ... = ~(=3/2) = T/2 8 = ...

Then
. (2372 10
H =
Dy o 2
() (372 11+ o -21 fo 1 -3
H = H - =
o ” 1 0 -2

c
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0} (o 1 =3] e
(@) () [] : caM e
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s el

As there are no zero rows, §(2) . U3 = [b &b Azb] so that

T ',

' The output vector ¢” is now taken from row 2, columns 2 and 1 of

H23(_l), Viz.,

T=[0 1]
In the multivariable case, the realization so obtained is called the -
input identifiable fom\. The generic case for a p input, q output

system would be a realization of the form B = [e.l es o e, A=

p
[ep+1 ep+2 LY en 01 02 o’o ap}, C = [Jo J1 LIS J0_1 J°]1 wnere g

|n/p‘r and :I- consists of the first n—po.columns of J . The ay would

A'nﬁ?

be - obtained from columns n+i of the Hermite nor'mal form of H (af‘ter
deletion of all zero rows). Some thought will show that the input
identifiable form (ineluding all non-generic cases, where the first n
columns of H are not all linearly inqependent) is easily transformed

into the controllable rcanonical form. The details may be found in

¥

Hickin and Sinha (1977b).

x denotes the integer part of x.
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1 -2 0 1
B= |0 A= 143 0 2 c=I[48 5 6]
0 o 1 3

The Knonnecker invariant4 are obviously nj,

1]
—t
3

n

"
n
-3
oy
~
I

T
x= [a) ay Alay Aq; (W%, Cc1=Jo 0 1 0 3.5

Reduction to Hermite normal form takes one step

0] . 1 0 0 -2 -3 &
x‘”:x--}-m 0 o1 03 5=/0 0 1.0 3 5
3 10 2 -9 .

10 2 1
B=10o of, A=]0 o 1, <Cc=I[4 -9 5]
0 " -3 2 -

If the glements af the Hankel matrix are rearranged so that one
block occ&;s for each input/output pair, the Hermite normal form
algorithm may be used to ré§lize a system in the column compahion form'
(Rézsa and Sinha, 1975). This canonical form, and it? generalization,
are useful in model reduction (e.f., ®Section U.5.4). An obvious
eorollary to realization of transfer fuhction matrices in canonical

' forms is the transformation~of state equations to canonical forms: This
can be efficiently done by the Hermite normgl form aigqvithm (e.f.,

Hickin and Sinha, 1977b).
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}

4.2.3 Partial Re tion of Tran Fune atrice
Canonical Forms

A partial realization of a q x p strictly proper transfer

function matrix G(s) ;& a triple (F, G, H) such that

HFiG = CA'B |, 1 = Kk,ke1,...,kg=1, k<O (%.7a)
i i e~
ﬂ%G 4 CAYB T, 1= keg,kegtl, ... (4. 7b)

th

where (A, B, C).is any n"" order minimal realization of G(s) and og<a+g

where‘a\and g are the controllability and observability indices of (A,

-

B, C). The restriction (4.7b) insures that (F, G, H) is not equivalent
to (4, B, C).

l
l
The minimal realization algorithm of Section 4.2.2 may be used to

_obtain partial realizations of a system G(s). The procedure is te

.

construct a generalized Hankel matrix Hijkyhnd proceed with it}
reducb%on to Hermite normal form. Affer r<n:o(Hijk) steps, fr unit
vectors hgve been generated, and an rt§ order cananical partial
realization (F,‘G, H) may be .identified iﬁ the same manner as that of
'Section 4,2.2. "It is obvious that (F, G) is controllable. (F, H) is
genericaly obseryable, that is to say it is almost certainly observable.
Hence, such systems are termed minimal pértial realizapionsl A minimal
partial }éaiization matches a given number of geﬁeralized Markov
parameters with a minimuﬁ nﬁmber~ of '3t5tes. . In. contrast, the term
'nonmihimal partial realigation refers to a partial—real;;ation matchiﬁg
'a gisen number -of generalized Markoy -parameters with more than tﬁ

minimum number of stat riables’. Such realizatiéns are generically

that is, minimal in the sense of Kalman), so that care must

»
3 +
\
i
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be observed in interpreting the terms minimal and nonminimal as applied

to partial }ealiZatigns.

4.3 Part Re ati Padé roximati

It is evident that partial realiza;ion of strictly proper linear
systems is closely allied to the problem of Padé approximation. It is
shown that partial realization is a generalization of Padé approximation
when the‘approximating functions to be derived are constraiﬁed to Be
strictly proper rational functions. An iterative algorithm for solving
the Padé approximation problem under these conditions is given.

© e .

4.3.1 e Padé ro n P

In his thesis, H.. Padée (1892) investigated a method of approxi-

mating analytic functions by rational\ polynomial functionsk Given a

scalar funqtion g(s8) which is analytic at s=q, a rational polynomial in
|
L

(s-a) is sought, the Taylor series of which agrees with that of g{(s) for

the first few terms. Specifically, let
g(s) = cy + 01(s-a) + cz(s-a)2 + e . (4.8)
An [m,n] Padé approximant to g(s) about s= is.a rational,functiTn

p(s) a.+a (s-0)+..i+a (s-a)® .
m - 0 1 'm L (4.9)

. (s- ' -y
| qn(s) bo+b1(s 0)+:..+bn(s u?.

whose Taylor series agrees with (4.8) up to and including the term s™7,

For control theoretic purposes, it is assumed that m<n, and that either



o
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bo or bn may be taken as unity. Cross multiplication and equating of

like powers in (s-a) gives the following m+n+1 equations

i
a; = 1 bkcm—k B i=0,1 ., m (4. 10a)
k=0
| n
0 = 1, 2, ..., n (4. 10b)

-Ebc_ ,j:
k=0 k “m-k+j

from which the a, and b; may be calculated. Padé‘s method is one of the

most computationally efficient methods of rational function approxima-

tion.- The value of the approximant at a given 'so is also easily
evaluated by synthetic division. ‘ ) |
Although the method is straightforward, certain pathological

cases arise in which an [m,n] approximant may match fewer (or more) than

the theoretical mrm+1 terms of the Taylor series expansion of g(s). The

first case occurs because of common factors in pyts) and qn(S), while
the second case may be resolved by appealing to the theory of continued
fractions (Wall, 1948).

Padé approximation about sze may also be accomplished. In this
case, the series (U4.8) is replaced by a Laurent series and the
approximant is written P,(1/8)/q,(1/8). Equations for the coefficients
of py and q are similar to.(4.10).

Baker (1965) has extended the theory to include the idea of Pade

approximation about more than one point. Evidently partial realization

corresponds to Pad€ approximation about sz0 and ss=, and the Hermite
normal form algorithm may be used to derive such épproﬁimants in state

variable:-form by assuming the function g(s) to represent a linear system

e
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transfer function. If the coefficlents ~ei in .(4.8) are placed in a
Hankel matrix, which is then reduced to Hermite normal form, an [r-1,r]
approximant results (viz., g(s) = hT(sIr_F)"1é where (F,g,hT) are the
matrices compriging the partial realization). More generally, an [r*,r]
approximant, where r*gr-1, may be derived by padding the sequence of
time moments -¢y with an extension sequence-of r-r*—1 zeros considered

as Markov parameters.

Example

g(s) = (s+1)/(s+2)(32+23+2) = 1/4 - 1/8s - 1/1682 + 5/3283 - 9/6”34 + o0 7

A [1,2] aﬁproximant to g(s) about 8=0 is. derived by forming the

generalized BHankel matrix

-5/32  1/16 1/8

H =
1/16  1/8 -1/4
’» | D

Reduction of H yields ' .

{0 1 s \

H: i

1 0 -4/3
so that
0 (=473 1 T )
g = , F = , h* = [1/8 -1/9]? = [1/6 1/9]

1 -4/3 0 ‘

h (51 ,~F) ™ 4= (1/6) (842)/ (24 /3344 /3)21 /1 /B=1/165745 /3281 563+ ...

which agrees with the series fbr’g(s) in'l terms as expected. To derive
. i -

a [0,2] approximant, start with §
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1/16 1/8  -1/4

1/8 -1/ .0

Reduction now leads to :

S
0 1 -1

so that

2

1 0 -2 7
g:[],F:[ ],h = [-1/4 OJF = [0 1/2]

hT(sIZ—F)"1g = (1/2)/(82+S+2) = 1/ - 1/8s - 1/1632 + 3/3233 + .

4,3.2 Minimal Partial Realizations as Reduced-Order Modeds

It was|shown that minimal partial realization and Padé approxi- |

N !

mation (about s=0 and s==) are equivalent under certain circumstances

valid, in a control {theoretic setting. - Thus, minimal partial

realizations may be used to derive reduced-order models of large-scale-

systems. The method inherits all the advantages and disadvantages of
Padé approximation. "The main differené@ is that minimal partial
realization éives the reduced models in state variable form rather than
transfer fgnction form. For single variable systemsi the pathological
case of pole-zero cancellation which afflicts Paéé abproximation, oceurs
in the form of an unobservable (but controllable) ‘"minimal" partial
realization (or vice versa). . Althoﬁgh this 6ccurance is rare, thé
observability of suéh'reduced mgxelé should always be checked.

More serious from the jontrol theorétis point of view is the
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possibility of generaéing unstable (resp. stable) reduced models of a
stable (resp. unstable) system. While an unobservable model may at
least be used for simuigtion and cogtrol (provided no observer is
needed), an unstable model of a stable system (or vice versa) seems to
b; of no practi;al use whatsoever. To overcom; this prob}em, either the
specification for the desired order of the reduced model, the set of
generalized Markov parameters to be matched, or both, must be changed..
The iterative nature of the Hermite normal form algorithm allows this to
Be accomplished without starting the partial realizatiqn process from
the beginning. It is obvious that an r+1thforder model may be derived
fram an r'? order one by performing one mor%\;;duction step. Ignoring
the unit wvectors in the first p columns of é reduced Hankel matrix
(where p is the number of inputs), and performing enough iterations of
the Hermite normaﬂ form algorithm to restore the number of unit vectors

th

to r, allows the determination of an r order partial realization

matching {Jk+1’ Jk+2’ «+.} instead of {Jk’ ey’ «v.}, where k <'0.

-

Example

g(s) = (s+1)/(s+2)(s425+2)
An approximant to g(s) matching {J_y, j.3s Jup, J_,} was derived
. ‘ \ , . .-
earlier. An approximant matching {j-B? J-Z' j‘1, JO} could have been

¥
obtained had an extra cQlumn been carried in the Hankel matrix, viz.,

- "{s5/32 1/16 1/8 -1/u(>

116 1/8 -4 o | ¢

" Two steps of the reduction proceés yield
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Ignoring the first column and choosing the 23 element asi‘a{‘*biﬁm gives

- 1 0 -2
| d
ot} - 0 1 -1

The partial realization obtained from ) is

0 =2 1 T
F = , & = , ho = [-1/4 0JF = [0 1721
1 -1 0

hT(sxz-F)"g = (1/2)/(s%+s+2)

-~

which vas obtained before, and is known to match {J_3, J_ov 3qs JO}'

l&.ll‘ onminim Par- Realiz

A nonminimal partiaI\ P‘eal;\z:ation of a strictly proper transfer
function matrix G(s) may be envisag;&\as ta\i\ling_‘hp ma;tch the theoreti-
cal number of generalized Markiov parameters. \ an\e\mHSL\E caref;:l,'

I - .
however, to refrain from including the pathological cases of minimal

——

e 0

partial realization in this definition). Such nonminimal realizations

may be derived by changing some of the- calculated generalized Markov

parameters of G(s) and reduéing the generalized Hankel matrix to Hermite

nomal. form. The method of Section 4.3.1 for gemnerating [r'f,r'] Padé

approximants about s=0 for a sealar transfer function g(s) is thus an
» . Ll " k‘

"example of nonminimal partial realization.

Roman &nd Bullock (1975) have proved that the characteristic
> . - ' A

s |

%

i
I
»
.



polynomial of a nonminimal partial realization may be arbitrarily
assigned by a suitable choice of the extension sequence‘(the perturbed
generalized’ Markov parameters). Choosing an extension sequence to give

a desired set of eigenvalues, or simply to assure stability, however, is

\J

&
no easy task. Ledwich and Moore (1976) give a deecision theoretic

approach t; test for the existance of a stable partial realization,
which could be applied to test a given extension sequence, but it is
doubtful thaé the method could be extended to generate one.

The class ;f nonminimal partial realizations of a given system
G(s) 1is very large, and provides a unifying framework to the nedu;tion
of large-scaie systems. Specifically, it is obvious that the methods of
Chen and Shieh (1968), Shamash (1973a), and Chuang (1970) may be viewed
as special cases. The result of Roman and BJllock {1975) shows the
existance of aggregated partial realizationsz which occur when the
elgenvalues to be matched are eigenvalues of the original system. The

method of singular perturbations yields partial realizations, along with

&

the Routh approximation method of Hutton (1975). o
¥

In Chapter 3 it was shown that the link between the large-scale

a "}

i

system and its reduced-order aggregated model provided a ricp
\

)
andlytical framework for the design of state variable feedback lawﬂ%

. '
The following section derives similar results for (nonminipal) partial .

réalizations thereby giviné such reduced models a new credibility..

[
£ "

N

’
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\ 4,41 P tie ; zati epr Lipear S r

after the introduction of certain lineer state variable feedback laws.
It is now shown that partial realizations  are invariant (in a weak

sense) under any linear state variable feedback law.

Theorem 4.3 Let any realization of a strictly proper transfer function

matrix G(s) be

b
11

Ax + Bu , x ¢ Rn, u e RP (4. 112}

y = Cx y ¥ € re (8. 11b)

Furthermore suppose that the generalized Markov parameters J; = CA'B are
igentically zero for 1 eI = {—10, ~lgaly eees =T 0p0 i, 1.}. ‘Then

dy

p = C(A+BK)iBL\%lf for i e I and any conformable matrices K and L.
P Consider the®expansion of (a+8K) for i>0. It shall be shown by \\

induection that

-2 S ‘ i-2 i-1
BK(A+BK)+...+ABK(A+BK)~ "4BK(A+BK)™ ', 1 2 0
(4.12)

i i-1

(A+BK)1 = ataat et

»

where it is upderstood that the expansion is .terminated when any
indicated ppwer of a matrix is negative. (4.12) is trivially true for
1=0,1. Suppose by induction that (ﬂ.g;) holds for some j20 and consider

J+1

(a+BK) Y o (a+BK) I(A+BK)

1.

{A3+A3'1BK+A3'2_BK(A+BK)+. . .:rmc(mmc)""‘1 }(A+BK)

.j-z

‘Aj+1+AjBi\4i‘tlBK(A‘5K)* (A+BK)2+. ..+BK(A+BK)j

.

.

PG >

——

1T .
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Hence (4.12) is valid for j+1 and by induction for all integers 120.
When i<0, set 1 = -1. The matrix inversion lemma (Rézsa, 1974) gives

(ass0! = (B - M’LyJMIEXMJM'kA”Ji (5.13)

as i > 0, (4.12) may now be used to glve

i 1hy~1

(asBK)T = A uAiB(Ip+KA—1B)-1KA"1uAi+1B(Ip+KA— )~ Tka~ (a4BK)7!

- - A"B(Ip+xA‘1B)"1KA'1(A+BK)1*1, <0 (4. 14)

Premultiplication by € and postmultiplicgtion'by BL now give

1-1
JiLdy qKL+d; HK(A+BKIL+. ..+ K(A+BK)™ ™ L, 120
g C(A+BK) BL = - ' (4, 15a)
JL+d. L T(ABE) L. 43 . r(a+3) L, 140
i i+l -1
X =1, =1
D= (I KA B) KA (4, 15b)

where the identity Ip - (Ip+xA'1B)'1KA'1

B = (Ip+KA'1B)'1 has been used.
Since J; = 0 for i e I = (-ig, -ig*1, ..., =1} U {0, 1, ..., i1}, the

application of (U.15) now gives Jif = 0for iel,

Theorem 4,4 Let a large-scale system and any partial realization be
given by '

X

Ax + Bu , y=Cx

Fz '+ Gu 7, ; = Hz °

.

-
and suppose that the generalized Markoy/pa?ameters of the two systems

2

<

.aéree on the set I of Theorgmf”ﬂ}3. Then the generalized Markov
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g?) of the error system y-y are zer¢e for i e I, and any

linear'state variable feedback law of the form u = Kx + Lz + Mv.

parameters J

Proof The generalized Markov parameters Jie) of the error system
%) . (A 0) [x
. = + u
4 0 F z G

®
L1
—
(@)
]
e o}
S
N X
———

are obviously zero for i e I. Application of Theorem 4.3 now gives J§?)

= 0 for L e I where u = [K L] [g + ﬁ; = Kx + Lz + Mv.

A useful application of Theorlm 4.4 is the case of polynomial
input functions u(t) = £§;3 citi/i!. If the original and reduced-order
models have only open left half plane poles, and the'generalized Markov
parameters {J_q, J_5» v+, J~k} are matched, then the steady state error
(and its first k-1 derivatives) are 2zero regardless of any feedback
control law introduced. Hence if u = }z + Mv is applied to (F, G, H) to
track some specified polynomial function, th;s control law applied to

(A, B, C) will achieve the same resulting steady state.

4.5 Canonical Aggregated Partial Realizations

Although the work of Roman and Bullock (1975) proves the

‘existance of aggregated partial realizations, it is not of much use in

their determination, as the sﬁeqification of an extension sequence to
give a desired get of ‘eigenvalues is by no means a simple matter.
A more direct approach is the use of certain canonical forms of

state equations where the elements may- be easily chosen to give a
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desired characteristic polynomial. The input and output matrices are
then chosen to match some generaliZzed Markov parameters. The problem is
first solved for single—input single-output systems and this solution is
then generalized to the multivariable case. The canonical forms which
are most convenient to use are the column, K companion and controllable
canonical forms jfLuenberger, 1967) . A generalizatio& of the column

companion form is how given.

§.5.1 G alize ] anion Form for Single Varjable Systems

' Let (ﬁ,b,cT) ‘denote a controllzble, n®? order, single-input,.
single-output systen. If a transformation matrix is chosen as

(Luenberger, 1967)

\\\ =[b Ab ... A
\\ P

then the controllability of (A,b) insures that P is nonsingular and

n=1p3 ' ' (4.16)

3 3
r0 0 0004 0 "an
1 0 . e 0 -'a
n-1
— -1 i —
A =P AP = |1 0 . 0 -Gn_z , b= 81 (4. 17a)
~0 0 ‘. 1 -a1 J
=T T - ’
¢ = c¢P = [JO g ver 3 Jn_1] (4.17b)

-

where the Ji are the Markov parameters of the system. It is well known

(Chen, 1970) that the characteristic polynomial of A is

' A - - Xd a An'1 a A « '
' l In AI f 1 + ses + n-1 + n (u- 18)
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<N

Theorem 4.5

n-1 n-2 n n-1
Let g(s) = (B1s +B,s +...+Bn_1s+8n)/(s +a,s +“'+°n-15+un)'

Then if g(s) has no common factors, a minimal realization is given by

LY

X

AX + e u = Ax + bu , ken ’ (4, 19a)

. =T
V2 Ugr gz o Jaend® = 0%, (4.190)

where A is a companion matrix as in (4.17).

Proof The special case of k=1 is valid From consideration of (4,17).
If k>1, (4.19b) requires the computation of time moments, so that g(s)
ﬁust have no pole at the opiéinu In this case |A| # 0, and a~' exists.
Writing A in columhs as

A= [e e a) ' (4.20)

83 s’ n

2

it is then easily established that

3 ) - -1
AT = [ei_ﬂ‘_e1+2 .T' en_ a Aa ... AT 0}, 1 20 (4.21)
R e (-1)
Since A A = In’ then for some vector a we have
1 (1) ' .
I = [a ‘e1 € von en_1] (4.22a)
EARl
i it (<1) =142 (1) (-1) .
A - [A a A a see O 61 82 LI K en-—i]’ i>0 R

(4. 22b)
If equation (4.17) is now transformed aqcoﬁﬁing to P = A7¥*1 then

e .\\\—f \ | ku:23§)

. A=P'IP:=%
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- .
b=PTe, =e (4.23b)
T _ T, _ “Tey-k+l  7-k+2 5 =k+n -
= c In = ¢ [A e, A e e A ek] = [3-k+1 j-k+2 ves j-k+n
/ (4.23c)

where the fact that the generalized Markov parameters are invariant
under ‘a nonsingular transformation has been used. Since g(s) vas
assumed to have no common factors, (U4.17) and hence (4.19) are minimal
realizations. ‘

Corollary 4.1 The state variable r:epr-es\entation

\

AxX + Kénu (4,.2842a)

X

i, 3

-n “=n+t1

«
7

.. 3_1]x (4.24b)

is equivalent to (4.19). ,

This type of realization is useful in casting thg Routh Approxi-
mation Method into state variabie form, for it is well known (Hutton and
Friedland, 1975) that the pth order Routh'apponimant of ‘a scalar system
matches the first r timg moments of the original system. |
4,5.2 " Canond

Systems

As the characteristic ﬁolynomial of a companion matrix is easily

determined, such matrices play an important rﬁle in the derivation of

aggregated reduced-order models of single-input single-oquut'systems.

' The remaining problem is the choice of the input and output matrices (b

and,cT) which allow the easy determination of the aggregation matrix and

easy matching of generalized Markov parameters.

- \
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The genéfalized column companion form of Section 4.5.1 is§
obviously useful for matching the generalized Markov parameters. It is
shown that the agéregation matrix is also easily derived. The
controllable cancnical form is also suitable for generating aggregated
partial realizations; the matching of generalized Mark&v parameters

requiring marginally more computation than the case of the column

-

companion form.
Theorem 4.6 Let g(s) be as in Theorem 4.5 and let the poles of g(s) be

fx1, 12, Ceay Xn}. Then an rth order aggregated partial realization-of

-

)

g(s) is given by

'0 0“‘0.' 0 "6 3

r
1 0 ... 0 “{‘.'Grq — ’
z= 0 1 ... 0 ~8pp| 7+ epu = Fz + gu, m e 1 (4.25a)
k(‘) 0 1 -:31 J
\ T
y=03_ g Jpp oo 3 Sopepl? © By " (4.25D)

~m=1+r -

e

r -1 .
where s° 4+ 8,87 4 ., 4 6 154 6, = (s-31)(s-}p) .. o(s22).  Further-
more, if a realization of g(s) is taken as in (4.19), then the

aggregation matrix is
%

*
. !

€= FRT T L TR )

. Proof By Theorem 4.5 and the choice' of the 61, (4.25) obviously
represents ag aggregated paréial real@zatfon of g{(s). The formula for
the aggregation matrix follows . from (4.21), (4.22) and. K =- KIn =
K[-A—“k*"; K-k+2; o -ka-o:ng]‘ . . .

| e

!

AXbe Baid P sl b memArA YR A QAR




B s>

e R T

-

66

It is expedient to choose/m > k (if possible), for then the

.

aggregation matrix K given in (4.25) will contain a maximal number (r)

of unit vectors.

Theorem 8.7 lLet g(s) be realized in the controllable canonical form

(Chen, 1970)
[ 0 1
0 0
x=|: :
0 0
\“an hun"‘]
¥ 23[Bn B

"o e 0 )
1 LN 3 0
0 L 3 1
Spz 7Oy

pep ot 81]x=

X + enu =z Ax + bu

4

If the eigenvalues of A are {;, A, ..., Xn} then an aggregated partial

realization matching {j-k+1’ Igens ore J-k+¥} where k e r is given by

4

0 1 0
0 0 1
2 = . . .
0 0 0
g"cr o1 S

T L3 ket iz duka3t s o]

Z +¢€eu
r

s O

= Fz
s
1‘l
0
Q

0

+ gu (4. 26a)
Fk—}z = hTz
(4,26b)
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and the ‘aggregation matrix is given by

ren_r €horel  Spep-2 €2, €y 1 0 0 ... ‘O 0y
(¢] en-r‘ En—r'-1 e 53 €5 €4 1 0 ... 0 0
K = : . X . N .
0 0 0 . €h r-1 Ep2 . 1 0
\
L0 0 0 . er+1 €. €t . \0 1)
(4.27)

r r-1
where 8 + 513 + vee * 6r_1s + Gr = (s—A1)(s-l2).‘.(s-lr) and

2y
)

n-r n-r-1

e ' = (s-A “3 Deeu(s=2r ).
8 * 815 * +€n—r—ls+€n~n (s r+1)(s r+2) ( n)
Proof Since
(sT+8 §k1+.”+6 NsmT+esm¢ﬁ1+“.+e ) = san-o-c:sn"1 4ot @

1 r 1 n-r 17 n’

then FK = KA and g = Kb may be directly verified for K given by (4.27).
.Hence (F,b) is an aggregated model of (A,b).
The generalized Markov paﬁemeters.of (F,g,hT) may be calculated

from

] = hTF“‘k""l[g Fg o FI’-]g.]«= hTF-k+1U.

-

[J-k+1 j-k+2 v J---lu-r

where 'U is the controllability matrix,” which is always invertible.

Hence hIl -]U‘IFk“1. Use of the representation

= [Jgsr Jgs2 o Joker
of Uf1 as given in Chen (1970) gives (4.26b) immediately.

)
) . .
.
Example ’
.
.
) ‘

.

g(s) = (s+13/(s+2)(§2+23+2)

2

i

[P

1w v
oy
&
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A minimal realization of g(s) in the generalized column companion form

h

is
0 0 i 0
x=|1 0 6| x+ (0] u=A4axa+bu
0 1 -4 1

(178 -1/ 0] x = ch \

" f

-~
L1

An aggregated model retaining the eigenvalues -1%j and matching {J_1,j0}

is given by 4
. 0 =2 0
z=1] zZ + u = Fz + gu
i -2 1
- T R
y=1[~1/4 0] z=h"z

|
v

-1 1 0
=2 -1 .
K=[F g F g g] = ]
S -172, 0 1
If the controllable canonical form is to be used in the realizations,
then « .
0 1 0’ 0
i s 0 0 1 -x + |0} u = Ax + bu
-4 -6 i 1
y=[1 1 0]x-= ch

e

1]
—
§

n o
‘1

nN p—y
) ——

[

+
——
= 9

=

g >

. 2 1 0 1 ., 7 ) ot
= [-1/4 0] [ ] [ ] z=[1/2 0} z=hz. _



69

In each case it is easily verified that FK = KA and g = Kb as required.
The reduced order transfer function is evidently g(s) = hT(sI—F)"1g =

(172)/(s2+2542).

4,5.3 A Geperalized Column Companion Form ﬁgg.Mulgixgriaglg Systems
- ;

ﬁet (4,B,C) denote an nEb order, p input, q output, controllable
- pealization of some strictly proper transfer function matrix G(s). The

transféfmation to the column companion form  is achieved by taking

(Luenberger, 1967)

, n,-1 n,-1 . ‘np-1
P s [b1 Ab1 oo A b1 b2, Ab2 oo A ‘b2 RN bp Abp .o AY bp]
(4.28)
The transformed system matrices are given by
A = P"1AP = [e2 YR - @, a8 o € s € R A e
3 n, D+ n1+3 n1+n.2
— eh-n +2 en...l;l +3 5'00 en ap] T (u’v29a)
p p
p— _1‘
B=P B= [e1 en1+1 en1+n2+1 vt en—np+1] - (H.%Qb)

C

CP = [, J11...jn1;1,1 g, 312;..Jn2_1;2 s dgp dgp v an_1’pl
(4.29¢)

Theoremi.8 Let o + 1 e I where m = min {ni,'i e p}. Assume ‘that G(s)
has no poles at the origin, and let P1 = A% P for P given\by'(§.28).

Then

e

B
- At T et i i =

o e
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A =P AP, =P AP = K ‘ (4. 30a)

w
(1]
o
[s.¢]
"
o
]
o
]
—
o

] (4. 300)

e e
o+1 o+n. +1 o+n

LI 3 e
1 1+g +1 0+n-np+1

2

J1-0,1"'Jn -1-0,1 J-a,Z J1-0,2“'jn

1 -1-0,2'?

2

c ] (4. 30c)

~0,p J1-o,p ) np-1-o,p

Proof (4.30a) and (4.30¢) follows from (4.28) and (4.29) for any
integer o. The restriction g+1 e ﬁ is imposed to insure, that B will
contain only unit vectors as indicated. Since P'1p = I, it follows that

-1,1 :
PA bj = e, where j e p, i+1 e nj and k = n1+n2+...+nj_1+i+1.. Hence

for o41 e ny it follows that

-1 0
P Ab,=¢
J n1+n2+...+nj_1+q+1
and (4.30b) is verified.

4.5.4 Canonica A ated Partial Realizat for Multivariabl
. Systems |
The geneéalized column companion form of the previous sectioﬁ
seems to be a'good canonical form to use wheﬁ an aggregated partial
realization of a multivariable system is needed. It turns out that this
is ;he only suitable canonical form for %he multivariaple case, as"the
singié variable systém results ﬁdr the controllable canonical form

cannot be extended. The main reason for this is the fact that the

charagferistic - polynomial of a ;multivariable controllable canbnieal

g e e
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realization cannot be determined by inspection, except in the case where

the matrix is block triangular. For this reason, the use of -the input

identifiable canonical fprm is tuled out as well.

I | ’
The c¢olumn compani canonical realizatiopn and its generaliza-

tions, however, may always Ye ‘taken’ in the block upper triangular form,

with the Qiagonal blocks being companion matrices. The characteristic

i
polynomial is readily seen to be a product of characteristic polynomials -

14

of 'the compdnion blocks. An aggregated model may now be constructed in

an itgrative manner by first separately aggregating tﬁe companion blocks

as in the scalar case and thén determining the coupling between these
aggregated ‘blocks. Because of the block structuke present, special care.
must be exercised when multiple eigenvalues are present. To gain

insight into these special problems, a simple example is examined.

Let'
(0 0 - -6 0 1 (1 0) ’
N R P A - 0 o0 .
Clo 1 0 17 0 3 0 0
X=1o o0 1 1.0 4 X*lo ofu=h+Bu
0 0 0 o o -u *lo 1 \
0 0- 0 0o t -5 (o o |
0 1 -2 -4 1 0 \
y = . x = Cx \
o -1 1 -1 1 1)
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It is easily verified that 1316_A| : ((s+1)%(842) (343 )} (5+1) (s+4)}.
Suppose that a third order aggregated model is to be c¢onstructed
retaining the eigenvalues s=-1 (three times). In this case, the F and G

matrices are chosen as

0 0 -1 0 1
where 51 aand f2 are "to be determined. The aggregation matrix is
" . written by inspection as o, '
S - Kl 3 o 2 3
K = K16 = K[b1 Ab1 Azb1 A b1 b2 Abel = [51.Fg1 F g, F g, &, ngl

‘KA there follows Fﬁé = Kas which

© MNow since F, K, and A must satisfy FK

gi&es . .
: {’f1'f2 [€75§3]
o £,-3f 8-51f,
{ : :
. giving f, = 20/9 and f, = 26/9. The output\gitrix H may ,be chosen as
PR U T B
TR Vg = . .
/. , ) .. . o -1.' 1~ l.» .

whish.mabches~jeq,-j11, and 319 of bhe;sixthvorder ngdel. Suppose that

a:model ratining s*-j {twicé) and s:-u is desirei} The F-and K matvices

a . . - ’
. T ‘ A W
PR . ~ \ M I
. . !
. .
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become
J
0 -1 f1 1 4] -1 2 0 t‘1
F= it -2 f2 K=]0 1 ~2 3 0 f2
0 0 0 0 0 0 1 -4

The condition Fkg = Kag imposed as before gives

-Nf1—f 6-5f

2 1

f146f2 8-5f2

- which is an inconsistant set of equations. If the (1,6) element of A

weré changed tp 3 (instead of 1), the undérdetermined‘set f-fp = 8
resul'ts. Thus, when multiple eigenvalues are présent, no aggregated
nodel or aﬂ infinite number of such models may exist.

The uqderdetermined case warrants further serutiny. Eut%ing 316

= a, the A matrix’ is now‘a function of o, denoted A(e), which may be
~ . A . E

partitioned aé

ence the classical adjoint of sIG-A(a) is - " ' 7 -

_ . (8,5(s) adesIu~A11) ) xgs,&)
adj(sI ~A(a)) = \ ‘

.) ..

0o - } uA11(3) adj(sIZ-A22

N . -- \ l‘ '. =
| N .. \ég o .
where 5..(8)} = (2#1)<( (343), 4,,(8).= (s+1)(s+4), and
- ~\\11 \ :}2\-&‘ . s 0 22 "‘w\ ’ .

\T“ S A \\\\. o .

N
1

-

——
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(085% (Ta-24) 8%+ (17a=18)s+ (170~12)

283+ (a~50)8% (Ta-81)s+(17a-18)
X(s,a) = 3 5
3s -458° &+ (a-5U)s+ (Ta-28)

'433 +332 +28 +a |

.

Since An(s) and A22(s) share a common factor, namely s+1, then choosing
¢ such that X(s,a) = (s+1) ¥(s,e) will cause the minimal polynomial of A
to differ from 1ts characteristic polynomial. For a=3 it 1is easily

verified that

8 - 6s+391‘_

2 _ 53s + 331 .
X(s,a) = (s+1) [1 s]
1 .
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@
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{

~1‘82 - s - 3/ -

In this case the eigenvalue s-—-1 is agsoicated with two Jordan blocks

instead of‘ one, and each block may be’ consider'ed separately in the

‘ process of aggregation.

-

A algorithm for construc‘ci;wg an aggregated model in the ‘column

companion form is now given. Consider the equations (4.29). Because of

the selection procedure for the dolumns of the transformation matrix P

it is evident that X is a block\\uﬁper triangular matrix whose diagonal

blocks are compinion matrices and whose supsrdiagonal blocks are zero

exceptixig' the final cqlmiz. Thus , dropping the bar for notationa'l

simplicitsf ' L . .

/,‘ . . " .

B S o A e

e e




o(a) =

AH
0
A=10
(0
0 0
10
Aii= 0 1
1o o
\
(6 o
0 0
A1J= 0 0
0 0
_It is seen that

p
U

A13 e A1pl
B3 A2p
A33 v Agpy o
0 . AppJ
0 31(11) )
0 az(ii)
0 33(11), 3 (nixni)
1 a (i1)

- ni J
0 a,(i) |
0 az(ij?
? ?3(13) , (nixnj?, i
1 a (i)

n, J

O(An)?

i=1

Y

%

(4.31a)

(4.31b)

\\
(4.31¢)

Tqo determine.an aggregated model F, having the same structure, it’ is

obvious that 0( 11) S G(Aii) is a necessary condition.

aggregated mode _of Aii

Thus Fii is an

To find X such that FK = KA, it 13 gseen that K

haSrﬁhe sa@e b3 ock~sbructure as A and F except.that the main diagonal

blocks K wil# fot be square, since ﬁhey obviously satisfy flixii =

KiiAii -

It rem ins to determine the Fij and K1J where 1 Z 3.

a“

s

r""\\

This can



always be done providing one is careful when multiple eigenvalues are

bresent. The algorithm takes advantage of the canonical structure.
Putting
Fz=1e, e, ... e g, e e cvs € 8 ves
2 3 1 1 r1+2 r1+3 ry+r, 2
e B
“t %rr+2 Crere3 S p]
G=[e. ¢ [ e el € ‘]
1 r'1+? r1+r2+1 t‘-t‘p+1
AN
‘Then
n1-1 n2"1
K = KIn = K[b1 Ab1 veo A b1 b2 Ab2 ves A b2 “re
- ".N“
‘ . n -1 . ' ~~'_'"’*-,‘_
XX b Ab XX Ap b] . s .\‘\
P P . . P b
n1-1 n2-1 np-l
s [g«1 Fg1 .. F B, 8 ng veo F By oo g, ng v F gp]
n1-r1-1
= L3R 8 ] [ B L I )
(e, epeere, By FB 0. F 1 %41 %ra2
1 1 1
' n.-n.-1
> 2 2.
L3N ] e.' B FB LN N ] F 8 ~ L LI ] e ° ' e L 2N )
r1fr2 2 2 2 r-rp+1 r-rp+2 '
. L ]
: ' W -1 .
o re 8 ‘ﬁ" a8 6 Fp p' 8 -
& p FpaeFT T 51 -

4 v

The columns 31'of.F have the following form

\
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e

w0
fote
n

[81(1) cos Bi(mi) Bi(mi+1) ces Bi(mi+ri) 0... 0]

CHEN

where m o= :;1+r2+. “”'i-!1 ,mfo. The first my entries of Bi are unknown,

the next r, are determined by %(F;;), and the last are zero. The
columns %, of A have the same f:om, vhere we replace the ry by Dy
except that ‘these vectors are completely known. T'he equatio‘n FK' = KA
(e.f. Chapter 35 then gives rise to the f‘olloWing‘system of equations

n.-r n,~r n_-r '
101 2°2 P P - v
(F 81 F 62 vos F ?p] = [Ku1 Re, "2~qu] )

Beeausé of the form of ai and B 3 one may derive an equation of the f'prm

T (B, B’ 8 )& =‘{,(a

B, ...
it 1 2! T i-17 1’ 2! ' oi-1t

where Bi is a vector of the r, unknown entries of Bi‘ If 9(Fyy) was

properly chosen, ‘then the above equation has _at. least one solution for

Bi‘ 'To quantify the statement "properly chosen" suppose that a

decamposition of A as a'direct sum of Jordan blocks is

1

A'n E a N () : (4.33)

-

ley” 13

\ o Jey -
\ .

Where Nk(’lj) is a Jordan block of size k with eigenvalue and I

denotes the direqt. sum. From Ghaptér 3, for a full-rank, ager ation

,

- iatrix X ‘Go exist ve st have .

'\. - ‘-

,~, . . ‘“ :‘ -t N F '\l z d & (Ai . : L~ ) '/ ‘.(I.!\B,'r)‘.

-

> - -

‘ 1901 J\\A ,; L ( L.
J*’Ym A IR

B, )" (8.32) .
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- where U, y and V<« 1.‘ If the eigenvalues of A are.distinct there is

obviously no problem. .When this is not the case, however, (14.32) may

veoy well have no solution, since the decomposition (4.33) is unknown.

To insure a solution the safest !procedure is to retain ’or discard all

A-,invariant subspaces associated with a given eigenvalue A, That is, if

Is1 -Af (3-1)"4(s), then’ ggke IsT -Fl (S-L)GE(S) where 6 e {0,m}.

‘/; In this' case, (4.32) v{illl in fact have a unlqoe_solu’cioo for each ﬁi as
. ITiI /. o Co : ’ . .

From the discussion in Section 4.5.3 it is evident ‘that the
output matrix H of“ tbe aggregated model may be chosen to match the
generalized Markov parameters of the original syetem (4, B, C), and the
exis‘t,alnce‘ of aggregated partial realizations of multivariable systems is

‘

proven. This is statéd as

—

Inggz_:gm ,9 Let (A ‘B, C) be a controllable.realization. Then it is
_always possible to .find an aggregated partial r'ealization (rR, G, W)
which-is controllable. B
“P_.r_qg_fj Sin.ce (A B. €). is a controllable, it\ has a column companion fom
- (A, .B, C) as in (4.29). By. the above disoussion ther-e is an aggregated
partial realijmﬁioo, (1‘:, G, H). Since (F, G) is i\tsel'f in colunn
companton form, .it is controllable. |

>

~
-

- W Leb (F, G, H) be an aggregated partial realimtion of (A,

B, ¢) where the generaldzed. Markov parameters agr'dé oﬂ the set I (~1Q),

a - .

~,u 13 If' X 13 the aggregat{.on mastrix and u'= waw— LKx+Mv s any

. linean “state variable feedbaek law, then H(F+GL)1G4*- C(A+BLK)iBM for’
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iel.,

Proof Since FK = KA it is easily shown by induetion that K(A+BLK?i =
\
(F+6L)YK for all integers i.” Adapting equation (4.15) to the current

setting gives

(9 Mady LR+, LK (A4BLE)M+. v 4d x(a+86) 1y, 120

0

b
i
‘Jif = C(A+BLK) "BM -*

J.M+J, .T(A+BLK)™ M jy F(A+BK)H 1<0
(IMHy (DA tooo g + )

where I = (1 +LKA-“B)“KA“ = (I +LF"G)"F"‘K,= 9K, p being the number

\
of inputs. The theorem now follows since Ji dy when i e I where 3 iS

>

. the_ith 'generalized Markov parameter wFic,

. This resultlif far stronger than ‘that of Thearem 4.4 since it :

——.
e e e reatrmsma A ——o—

states that the generalized Markov parameters of the reduced feedback
_ gystem agree with those ‘of the original system on the set I whepreas

before only the'generalizeg Markov parameters of the error system were

zerd on the set I. For single-input single-output s&siems'Theorem‘u.1p

may be made strdnger, The result is based on the fact that the system .

zeros are feedback an?riants in the single vdriable case.

» ‘ . ’
» . .
f
. .
‘ *
- . R
- . »
.
. ‘ .
3 o, v, 1 O ., o
3 5\ a 6] 2

.

4
\ -

g ooy

Nk - ne s e N
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-t

1. It retains all the good features of the method of state
aggregation, e.g., |
~ a relationship between the states of the original and reduced
. model .
- the invariance. property under LSVF.
- a stable (unstable) reducec model of a stable (unstable?

k]

system.,

1

2. The use of canonieal fcrms permits considerable simplificétion of
the calculation of F, G, and K and also allpws easy matching of
the generalized Markov parameters, |

3 ’Ece invariance property of matched moments under LSVF is

retained.
\
The disedvantages'cf the method are

1. The reduced-order model may not be observabie;

2. ‘The tendency of many real systems to be controllable thcough the

first input results in a trade-off of modelli;g accuracy for the

remaining inputs to increase the accuracy with respect to the
first inputt ' ' ’

Tce.firsﬁ disadvantage cannot, be cu;ed. : Observability of the.

reduced mcdei should elﬁays be checked}‘ Many pcactical systems are

pontroiiable thcoqgh 'each input, -but usuaily there is also dn input

5

which affecﬁe the ‘system hoﬁé'thag anﬁ other, or is especially suited to '

manipulation for co'nt’rbl’: pui'posesi by exchanging roys of. G(s) this

special input can ""‘bé:'médé ‘the firsb 'one. Yoy~ the seccnd

T o N

disadvantage may actually' be a gneat advantage since the modelling '
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accuracy with respect to this input is very good. If this is not
acceptable, i.e., equal accuracy with respect to all inputs and outputs

is desired, the aggréga_tion process may be carried out by calculation of

the left eigenvectors of A as in Chapter 3. The aggregated model may
) 4

th\en be traan‘ormed to the input identifiable form (Hickin and Sinha,
i ' .

1977b), for which the output matrix H consists of the (generglized)‘

Markov ,parameter's of all outputs. Since the order of the reduced model
is generally much smaller _than that of the original system, this

transformation may be carried out with minimal effort.

46 A , and S Perturba
In this- section a connection between a certain class of aggre-
gated models and the method of singular pertul"bations is established.

In' pafticular,_ it is shown that a_slight modif‘ication of Davison's

algorithm results in a singularly perturbed ‘model . ~ Let the state™
¢ S

equations of a la¥rge-scale §t_ablé system be as usual

L
n

Ax + Bu ,"x éﬁn, ueRP? ' (4,35a)

y=0Cx _ ,yerl: . (4.350)

Let the eigenvalues of A, raniked by increasing magnitude \of‘ the real

!

par't be {1, 2, saey n} and let V be the corresponding modal matrik.,

Klow eonsider a transfomation of variables

r\.

\
i

4

oy ,
Moy 1Tyl 20, Tl £ 0 . (4.36)

e A N B S

M Ue 2N
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so that (4.41) becomes

LE Fip o O (¥ G4 . -
= + u, W, e B, w, @R (4.37a)
¥y 0 Fzz LYY
\
w.' 7
y= [H,, HpI N _ ‘ (4.37b)
2 \ :
‘\
where v
- n . ‘\ "~
Fyp = KyihKy, h
’ G192 Kq4B L .
Fap = KpphKDy |
Oy = KyoB | .
\ * ’ . " ’ (u038)
\ f(r.. o ‘
Ky = 1Ty
K. =70 T, .
22 = 22 -
s
B el
: ¥11 = v['r11 0] .
n 7= Lo ‘
K,, = V[0 T,,] . .-

2? 22
o d ! . - ' , i . ) . .
;t’ia clear that a(F1J),= ﬁlﬁ' “‘?”lr} and 9(F,,) = {Ar+1' veen AnL’
and that the substates v, ahd*wg of w are each aggregated states of x.
Now set '
\L
r*1)

u = Re(},)/Re(X . . (4.39a)
R L L . :

I el
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Wy = W ‘ ' (4. 39b)

W, = F”w1 + G”u ‘ © (Y4,40a)
W= Foow + Gy,u . ~ (b.40D)

<

where 522 = ﬁFaz and ﬁ12 = HHy5. Because of Fhe ranking of the

eigenvalues, u will be a small (positive) parameter. Setting w = 0 in
. ) . oy

(4.40b) now, gives a singularly perturbed model \

W= F11w + G11u | | (4.41a)

= aed .

we oFo, 021 (4.b41p)

— - R — . ‘ .
¥y = H11w1 - H12F22621u = H11 1\ H12F22621u (M.Hic)

D

It is clear that this model is -algso aggregated, and stable'by the

assuméd stability of th; original systenm. Inufact re\erencJ to Segtion
3.5.1 shows that Davison's model is a special case of (5;#1a).\ ince
‘Fn is stable it follows that w,(t) = w(t) + o(w'. Intuitiveff; this
‘means that after ap initial transient period during which~w1“w mdy be

quite - large, approximating function W comes and remains within a

v -
[ - -

k!
R

Wa(t) = w(t) +0(p) +3 a? o,.a e\[o 1]y &< @ 3w, (t) - w(t)l <

* © e
o'y £y £, See, for example Kokotovic (1972).

“a
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,

hypercylinder traced about the trajectory w1‘ Now all the.tools.of
singular perturbation theory may be brought to bear on any control

design. The boundary layer systém is evidently governed by .

. -

w(t) = F11v;(1)\ + G, 0(0), = t/u (4.42)
so that .
— —- v t
wit) =_exp(Fzzr)w(O)TFgg{exp(Fzzr)nl}021610) _ (4.43)

@
It is known that Davison's model provides a good transient }espo;se, but
a poor DC steady-state response. The presence of the term —H15F52621E
ensures that the DC steady-state error will be’zero, but in so doing,
upsets the goédltransiént traéking, and thus gives an intuitive insight
into this charactef& tic behaviour of singularly perturbed models.

As an ,éxamjae consider g{s) as givéh _in Section (3.7).

quculationa give

. -1 0 () (1
O W
sl e -1 of] Y elofu
A:H w - w I
‘ 2 o o -2J L% U
. . w1
y= (172 172 -172)
- w2

L~
y .

. ‘ \ , .
"Now uj=‘(-1/-2)-= 1/2 and se%ting LR the singularly perturbed model

—

'(u;b'),_bedomes\g , S N
' v . ) . . .

> ki o
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W=au

<
"

(12 1721 w = (1/4) E‘\

and the boundary layer system is given by

W(T) = (T £ W), T = /2

|

4.7  Conclusions

3
1

The theory of model \redyctionrby nonminimal partial Trealizations

- N

* has been proposed'. This class of reduced models is seen to be:very

large. Specifically, several exisping.methods of model reduction' are °

seen to be special .cases of nonminimal partial realization. " Thus the

claim of a wnified theory is justified.
“\\

'l’he behaviom‘ of such models under linear state v&r‘iable feedback

ié examined. .. This is an import.ant contr'ibution, for it justif\ies the’

use of such models as a means of ‘designing feedback compensators for )

. O
large-secale systens. ‘ : ‘
;_Qf" particular ‘interest are the aggregated partial realizations

v ¥

'whose existance is shown in Section k.5,° Such reduced models ere

powerful too,ls since they combine the excellent quqlities of aggregation

and partial r'ealization. 'I‘he use of' eanonical real}aations allows] the

-

aggr’egation procedur-e ‘to be accompliehed without an eigenvector calcula-
0 :

.

- N
‘tion (e.f., Chapter \3), and . facilitates the ehoice of the output matrix

\

for mat'ching generalized Mar'kov parametens..;,

Model reduction b’y minimal partie(l & realization is presefxted,
- 5 .
along with a new aigorithm t‘ox' the determinatidn of state variable re-

pnesent%,tions of proper‘ x‘ational tr'ansfer funotions.‘ Several exi’st;ing

!’ . .
| ." «b
.

<
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methods such as Padé¢ approxim%tion and continued fraction expansion are
special cases, The proposed method has the advantage of determining
reduced modéls directly in state variable form and its iterati;e nature
is appreciated when a reduction of a givén order fails to be useful,

e.g., unobservable or unstable (assuming the original system was

observable and stable).

Ay
-

~ -



/\\ CHAPTER 5

THE SUBOPTIMAL CONTROL PROBLEM

5.1 Introduction

The 1linear quadratic regulator problem and its solution via a
time varying linear state variable feedback law is one of the most
fundamental problems of modern control theory (Kalman, 1960). For an
nth order system, the crux of the problem is the solution of a matrix
differential equation in 1/2 n(n+1) unknowns, which is further
complicated by the presence of a terminal boundary value rather than an
initial one. The solution of the optimal trajectory then requires

integration of the autonomous system once the feedback gain matrix is

known. Tnis total solution is then termed the two point boundary value

problem and has been the object of intensive research since 1960, All

A

known algorithms, including the so-called gener#lized X-Y or
Chandesekhar 4nethods, take a prohibitive amount of computer time to
solve even fof systems of modest order, and it is doubtful whether such
algorithms may ever be implemented in real time.

In ofde; to save -computational éﬁfort, the steady-sta¥e value of
the feedback gain matrix is often used, reducing the calculakion to the
solution of an algebraic matrix equation in n(n+1)/2 unknowni. Even the
best of the algorithms for solving this problem (Kleinmann, 1968) may

require too much computer time for large systems (n > 50).

87

e e ————————_ -
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An alternative approach is to derive a reduced -order model of the
large-scale system, ®epose the optimal'control problem, for the reduced
model, -solve this easier problem, and apply the resulting control signal
to the large-scale system and hope for the best. If n/r > 5 the
potential savings in computation are enormous, being roughly
proportional to the 3rd power of this reduction ratio. Two methods of
attacking this sub-optimal control ﬁroblem are those of Aoki (1968) and
Kokotovié (1972). The next section presents a generalization of Aoki's

method.

5.2 The Linear Quadratic Regulator

The linear quadratic regulator problem and its solution are well
documented in the literature. This section states .the problem in a
somewhat more general manner than the original work (Kalman, 1960) but

i8 nevertheless well known. Thus let

X = Ax + Bu, x(0) = xé, X @ Rn, u e RP (5. 1a)
y = Cx , y e RY (5.1b)
. -
The linear quadratic regulator problem is
minimize PI = R>0 (5.2)
Theopem 5,1 If (A, B) is stabilizible and (£, C) is detectable then the

optimal control u'(t) is given by
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* -1 T 3
u (t) R B P(t)x (t) (5.32)
' Y

“P(t) = P(t)A+ATP(t)-P(t)BR™ 'BIP(t)+CIC, P(1) = O (5. 3b)

furthermore the minimal value PI* is given by

¥ T
PI = X P(O)xo (5.4)

The proof of Theorem (5.1) is possible under slightly more general
circumstances than have been stated, and may be found in Kwakernaak and
Sivan (1972). The following corollory is also provable.

Corollary 5.1 For T *» =, 1lim P(t) = P # 0. P is the unique positive

t+u:
definite solution of the algebraic Ricatti equation

0 =P + AP - PBR™'BTP 4 CTC (5.5)

More recently, a different approach to the problem provides a

. o
relief in computational effort if p + q < 1/2 n. This is the so-called
generalized X-Y or Chandrasekhar method (Casti, 1974, and Kailath,

1972), and is stated below without proof.

Theorem 5,2 Let (A,B) be stabilizible and (A,C) deteétable. Then the
optimél control u*(t) is given by
<%
%
u (t) = BN(t) (5.6a)
oS
. T T
-M{Y) = (A - BN(t)) M(t), M(T) = C (5.6b)
MNe) = RTBMeM (0, v 20 (5. 6c)

/

/

o e B A
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In addition, the solution P(t) of (5.3b) is expressible as

P(t) M(o )M (0)do (5.7)

Note The resulting aujonomous system x* = (A—BR“BTP(t))x', x(0) = x

0

is always stable if the conditions of the theorems are met.

5.3 Buboptimal Contro) via Reduced-Order Models

An intuitively appealing method for reducing the calculation in
the linear quadratic regulator problea is to proceed as follows.
1. Derive a reduced-prder model of the large-scale system (5.1).
2. Substitute the output ; of the reduced moq§l for y in the

performance index PI (5.25:

3. Calculate the optimal control u* by Theorem (5.1) or (5.2) and

use it as a suboptimal control for the system {(5.1). <
Thus let
L] » r\ p
z = Fz + Gu, z{(0) = 2,28 R, uaR (5.8a)
Y = Hz (5.8b)

be a reduced-order model of (5.1). To derive a suboptimal control, the

following quadratic functional is minimized by theorems (5.1) or (5.2)

Pl = (y'y  + ulhu)dt c o (5.9)
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A
Via Ricatti equations theré follows
* -1.T> * .
u = -R G P(t)z (t) . (5.10a)
) A TSy 8 -1.T5 T, 3
=P(t) = P{t)F+F P(t)-P(t)GR "G P(t)+H H, P(t) = O (5.10b)
and via X-Y equations

-M(t)

(F - GN(t))TH(t), M(T)

]
o]

(5.11a)

“N(t) = ROVGTMCE)MI(E) , N(T)

f— 0

1"
o

(5.11b)

The merits of aggregation, partial realizaton, and aggregated partial
realization for the reduced-order model (F,G,H) are discussed in the.

following three sections,

5.3.1 Suboptimai Control via Aggregation .
Let (F,G,H) be an aggregated reduced-order model of (A,B,C).
Then z(t) = Kx(t) where K is the aggregation matrix. As an immediate

consequence, the initial condition zj in (5.8a) may be specified as Kx,

since X, was specified in the initial probled (5.1, 5.2). Suppose, for
the moment, that C = In’ i.e., a state regulator problem is given. The

choice H = CK* = kT allows the functional (5.9) to be written
\
T

+
T Tkx + ulRu} dt

v

PI = {x



-t

which is the form advocated by Aoki (1968).

/

The aggregation law z = Kx, and the relationships FK = KA, G = KB
allow equations (5.10) and (5.11) to be rewritten as
u(t) = -R-1GTKTP(£)K x(t) (5. 12a)
. .
KTB(E)K = (KTPR)A+AT (K PK)- (K BK)BR™ 'BY (K TPK )+ (HK) THK,
TA
K'P(t)K =0 (5.12b)
«Mice) = (4 - BROK™H , KM (9 = (1K) (5.13a)
Ak = BRI & T, 80k = o | =" (5. 13b)

Comparison of the'.above with equations (5.3) and (5.5) allows the

following correspondences
T~
P(t) « K'P(t)K

M(t) ~ KM(t) -9

N(t) *+* N(t)K

which gives some apreciation for the bsefulness of the suboptimal
control. Specifically, a lower bound for J,'iS

- T.T T
Jluy,x ) 2 x K'PKx = 2 Pz .

AR

When the control ug(t) = -R"1BTKT§(t)Kx(t) is applied, it is’

easily determined that the autonomous system remains aggregated in spite

of the time-varying component, viz.,
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K{A-BR'1BTKﬁ(t)x}.= {FK-GR"GTﬁ(t)K}

=
-3
o TS
—~
(32
S’
11}

113

{F-GR™'G E(t)}K‘z'Fr(t)K (5. 14)

This allows the following theorem.

Theor‘em=5—:§\“hef'ﬁeA <0 VAa °(A)\°(F).+ Then the autonomous system

X = A(t)x - {(A-BR™'BIKIP(t)K}x, x(0) = X _

is stable in the sense of Lyapunov (ISL stable).

Proof By the assumed conditions of Theorem (5.1), the autonomous system”

2= F(t)z = F-GR™6TP(t)}z, 2(0) = Kx_

-

is ISL stable. Hence the Jacobian matrix aFf(t)Z/azT, i.e., Ff(t), has
a stable spectrum for each t & [0, T]. By (5.14) 9(Ac(t)) » O(Fg(t)),
and ”(Af(t))\U(Ff(t)) = O(A)\9(F), which has left half plane ¢igenvlaues

by assumption. Hence °(Af) is ISL stable for each t e [0, T] and the

.theorem is proven.

+ . * r
If X2 Y, X\Y = {x e X | x4 Y}, the set theoretic difference".
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Corollary 5.2 o(A-BR™'BTKTPK) is'ISL stable where P = lim P(t).
2.2
g

Vel e
i

-

There is miyéﬂin Tgébrgg 5.3 than is-immedinfely apparent. Besides the
stability consideratién ft’ﬁ§s~shé@n that the suboptimal control can be
realized iﬁ~hlosed-loop form.

In takipg an aggregated model (F,G,ﬁ) of (A,B,C) no assumption on
the nature of the H matrix was made. In general, H = CKP, where KU is
some right inverse of the aggregation matrix K. The output y'(t) may
tend to some finite, but nonzero limit, when the optimal control u*(t)
is applied. To keep the quadratic functional finite when the subpptihal
control uy(t) is applied, it may become necessary to choose the H matrix

to match some time moments.

5.3.2 ‘Suboptimal Control via Partial Realization

The linear optimal quadratic regulatoriis a special case of the
more general linear optimal quadratic tracking problem where the

performance functional takes the following form

PI = (eTe + uTRu)dt ’ (5. 15a)

0

o

e(t) = y(t) - F(t) ‘ ’ (5. 15b)
where y(t) is some prescribed target function. If §?t) = 0, if reverts
to the‘regulator problem. ‘Although the tracking problem may be solved

. by the direct application of Pontryagin s minimum principle to (5.15),

it is possible t¢ convert.the problem into a regulator problem of higher
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d}mension. Specifically, it is assumed that y(t) may be represented as
>

the output of an autonomous linear system, viz.,

\

J %(t) = Ax, x(0) = 5{0 (5. 16a)

y(t)

cx (5. 16b)

wy

Augmenting the state x(t) of (5.1) bybx(t) above allows the\following

»
respecification of the tracking problem
X A 0} [x B x(0) E
:_ = _ + u, _ = _ Y (Sv 173)
X 0 I x 0 x(0) X,
— x 4 .
€ ='[C ~C4] [_J ’ ’ . (5.17b)
X

Equations (5.17) plus the functional (5.15) are seen to constitute a

regulator problem, the solution of which is possible via Theorems 5.1 or:

5.2. Note that the state x is uncontrollable. This is necessary as the
target y would be upset by the resulting feedback law. ‘

The suboptimal tracking problem is now easily formulated by

)

replacing (A, B, C) witlr a reduced model (F, G, H). The important case
. ) » -

T = ® is now considered. -

The specifigation ¥ = ® in the functional (5.15) ensures that the

ey

_steady state error is zero. If a reduced-order model is to be ‘used, it

must be such that the steady state error ;(t) =~§(t) - ;Yt) is also

\

zero, or the 6esulting performance integral will be infinite. The

special case where y(t) is a polynomial in t is common. In this case,

by virtue of Theorem 4,2, a Zero steady state error is possible if the
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generalized Markov parameters J; (i<0) are matched between (A, B, t) and
(F, G, H) prior to the solution of the Ricatti equation. The resulting

feedback system will be of an open-loop nature, so the A matrix fust be

stable at the outset. This ig summarized in the theorem below.

Theorem 5.4 Let (A, B, C) be a stable, minimal realization, and let (F,
G, H) be a stabilizible-detectable partial realization of (A, B, C),
.such that the generalized Markov parameters Ji’ i e {-1, -2, ..., =k}
are matched. Then any sub-optimal control law derived on the basis of

(F, G, H) will result in, a zero steady state tracking error for target

functions of the form e
k-1 i
y(£) = I d;t™ . ’
i=0

- \
Proof Szﬁce (F, G, H) is stabilizible-detectable, it follows that the

feedback law derived drives the output y(t) to the desired target y(t)

"as t + =, By the assumed stability of the A matrix, the matched Ji’ ie

{-1, -2, ..., =k}, and Theorem (4.2), it follows that the Jip? the

generalized Markov parameters of the error system are zero ‘for

w

ie{-1, -2, ..., -k}, and that lim+e(t) = 0 for all targets

t+co

.

=7 k-1

;(t) = I diti, the Laplace transform of which is
i=0
k-1 :
yis) = ¢ d.,i g1-1,
1=0 4 ‘
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5.3.3 ,Suboptimal Control via Aggregated Partial Realization
Y . ' .
The wusefulness of an aggregated partial realization for the

L 4

calculation of suboptimal controls should now be evident. Theorems 5.3

1 hd

and 5.4 ma7 be immedjately combined{to give

/
Theqrem ?.5 Let (F, G, H) be a detectable aggregated partial realiza-

<
tion of\the stabjlizible-detectable system (A, B, C),-where the

generalized Markov par meﬂgrs J1 agree on-the set {-1, -2, ..., -k}.

~

Then equatiom (5. 14 olds, the suboptimal control derived on the basis
of (F, G, H) defines a stable system, and the steady-state tracking

error y -~ y is zero for target functions
F _ k-1 i ’ . -
y(t;) = I dit . R ~
i=0

. . H
5.4 Some Simple Examples "

The first example is taken from Rao and Lamba (1974), which is
. ¢

cast in & slightly different form (addition of an butput matrix C).

0 1 0 X
X = , 0 0 1 X + [0lu = Ax + bu
-1/2  -28/5 ~61/10 1 s
y = diag (5, /4, /1)x = Cx
’ {
ninimize PI = (yTy+uTu)dt .

-

0

.'\'/

7




/

A\
- The characteristic polynomial is evidently lsI3’_ Al = 33 + 61/6032 +

characieristic polynomiagl |si2 - F[ = (s+1/10)(s+1) = s + 11/10s + 1/10
‘ .

and the output matrix wilkgbe chosen to match J_, and Jy» thus-

Y
IR €. )
Z = ) z+ | |u=Fza+ gu /
. 7
~1/10  =11/10 1 LT
-"‘/1/
| 1/v5 0 o
- - i
& y =0 01z = H,2 /
0 1 /
Y {} .
° i .
Pl = r(§T§ +u:ru)dt.
0 »
5 1 0 0
K = (aggregdtion matrix)
0 5 1

The sélution of the Ricatti equation

0 = PF + FP - Pgg P + HoH
and the suboptimal control law«hgcémes

R .6“& 0.358
P1 = | ]
) {0.358° 0.611

A 5

~ % )
Ugq = 8 P,z = -[0.358 0.6911z = -[1/791T 3/412 0.611)x

’

4

/

28/5s + 1/2 = (s+1/10)(s+1)(s+5). _The reduced model will have a }////’FT

%
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-

, where the law z = Kx has been used in the last step. Rao and lamba give

)

the optimal control law as

* - *
u = -[1.791 2.087 0.410]Jx, |]u -u,1]|/1[u'f| = 0.77

To demonstrate the effert of the choice for H, the problenm,

reworked for

] 1//% -/5/25

K

H2 = 0 2/5
0 0

which provides matching of {J_,, J;1}, gives

T . 0.593 0.358
’ ‘P2 = ]
0.358  0.347

u“2 = -[1.791 2.094 0.3471x

<F 4
-

¥ ]
| ju -u,2||/||u [] = 0.02

which is barely distinguishable from the optimal control. This second

model” is much better than the first because of the nonzero weight
0 3 !

applied to the second output instead of the third. This illustrates the

)////’zbnsequences of ipdiscriminant choice of the generalized Markov

- /

{
/

o

parameters to be matched.
A second example exhibits the suboptimal tracking problem in a

multivariable setting. The plant is described by

-
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(0 0 0 1 0 0 ( =1 1
0 0 1 0 0 0 0 1
0 0 0 0 1 0 1 -4
X = X + * U
0 0 0 0 0 1 9 -6
0 -6 -1 0 -4 0 -2 14
~120 0 0 -Th 0 -15 {-61 36/

minimize  PI = {100(y1-1)2+u?+u§}dt

Three second order reduced models were used to generate and compare sub-

optimal controls. These were

N
1
!
w
n ~
N
1
o o
|
N
+
e
Q p—y
P
| —
ot

Model 1 Partial Realization Matching »

J.} /

W_ 9,

<>
u
1
- (o]
- -
| —
N
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Ne
1]
1
o =
[}

o —
——
N
+
— a
fan) —
| —
=

Model 2 Partial Realization Matching

Model 3 Aggregated Retaining

{-1, -2} using pseudoinverse

3.38  -2.69
]z

0 0

Models 1 and 2 were partial realizations of the original, system

matching the generalized Markov parameters {J 1,‘ JO] and {JO" J1}

respectively. Model 3 was aggregated, retaining the dominant
eigenvalues {~1, -2} of the original system, and using the pseudoinverse

.

to calculate the output matrix as B = ck* (Aoki's method). The
responses of the original system to the optimal and ;uboptimal controls
is shown in Figure (5.1). As expected, model 1 provides the only sub-
optimal control which drives ihe original system to the specified target
of yq° 1. Model 2 prcovides excellenﬂ Lransient tr42king but fails in
the steady state. The response to the csntrol provided by model 3

provided neither acceptable transient nor steady-state tracking (the

response yz(t) was omitted from Figure (5,1b) as 4t was always

’
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negative).

Three aggregated partial realizations, each matching J_1 but
refaining different eigenvalues, were also derived. These second order
rédgced models were then used to generate suboptimal controls for linear

qu%gfatic regulator problem with weighting matrices R = 12 and=

S

v

The initial state was xo = {1 1 1 1 1 1]T and the optimai and
suboptimal costs were calculated. The relevent data is given in Table
5.1. It is seen thét the cost based on tﬁe dominant eigenvalue approach
is not the best, although it 1is quite good. On the other hand,
retaining an eigenvalue whieh is definitely nondominant results in a
very poor value of the suboptimal cost. This clearly illustrates the
difficulties that may face the designe; if the eigenvalues of a system

cannot be clearly split into a dominant and nondominant seff

-
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[ / — —— sub~optimal (model 1
— " {mods! 2)
P / ——  w (model 3)

0 | 2 3 4
soconds

(¢ B8

Trajectories of yl(t) for different models

.61

5 [\ sub-optimal (model 2)

4
-Trajectories of yz(t) for
different models

.31 optimal

11
) sub-optimal (model 1)
o+——— — —_ r ~ t
o l. 2 3 .4 5
® seconds :
Figure 5,1

System responses to optimél and suboptimal controls

103
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. Suboptimal | Suboptimal/
Model # F matrix G matrix H matrix Cost Optimal
’ Cost
. D
~1 .381 ¢ . 875 1. 700 |» .
1 [ [ } ) 1 22. 451 1.31
0 - . 392 . 196 ~. 875 1.70
L)
-1 . 381 0 750 -10.97
2 [ [ ] 57.782 3.36
~ | L0 - 0 -.091 0 -10.97
10 .381 0 1. 640 .46
3 ] 19. 844 1.15
0 -3 . 267 1.069 -. 109 .46
Table 5.1 Various aggregated partial realizations and associated subdptimal

costs.

Optimal cost is 17. 181,
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5.4 Conclusions : '

The suboptimal linear quadr tic regulator and tracking problems
2

and their solution via reduced-order models have been discussed.

Particular attention has been gived to the use of aggregated mbdels,

whereby the suboptimal control law may be implemented in the c¢classical

~

feedback manner and stability guaranteed, and partially realized models,

o

where stability cannot be induced, but if the original system is stable,
a zero steady state tracking error for polynomial target functions can
be arranged. The used of an aggregated partial realization obviously

L2

retains these good features of the sérarate methods.
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CHAPTER 6

DISCRETE SYSTEMS

6.1 Introduction

~ To this point, the discussion has facussed exclusively‘on
continuous systems. Discrete systems, however, are firmly established
in linear systems theéory, and thus de3erve some consideration. Although
simulation of such systems is co%giderably easier than simulation of
continuous systems, the design of control laws is often more challenging

(for instance, compare the discrete and continuous versions of .the

Kalman filter). It is well kﬁown that the frequency domain descriptions

of continuous .and discrete systems are essentially the same (excepting

the incorporation of initisl conditions), so that the techniques for

’

reduction of contjnuous systems may be directly applied to the discrete
%M .

case. Th%’meaning of the complex frequency domain variable is different

in each“ase, however, and this leads to differing behaviour of reduced

models., The major differences in the application of -the theory are.

presented. fe

6.2 2 a ar sers

A strictly propeﬁ discrete system is deserfbed in the time domain

¢ -

by v

¥

. ‘ n P - ‘ '
X = Axk‘+ BUE},X a R,, ueRr (6.1a)

106
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Cx -~ ,yepd ™ (6. 1b)

[

=
"

~

where k denotes the kP time jnstant (k = 0, 1, ...). A transfer
;‘;7 »
3
function description of (6.1) is obtained by assuming zero initial !

conditions and Z-transforming to give

y(2) = G(2)u(z) '=C(zIn-A)—1Bu(z) . ‘ v - (6.2)

Evidently the formal expansions of G{z) and (zIn-A)'1fsiVe

N

5 Jiz-i-1
i=0 i .
G(2) = | ' (6.3)
- ® i"‘1 :
. - I J-—iz . ‘ )
i=1 ) 4
. . s / )
and the identification
, J. =calB, 1 =0, 21, ... ' . (6.4)

It is thus evident that the computational techniques of Chapters 3 and 4

« X
may be applied to (6.1) to produce a variety of reduced-order mégf}s.,

<
i

The behaviour of partially rea{ized discrete systeﬁé differs from ‘
that of their continuous counterpapts by virtue of the faét that z~1 may )
be, interpreted %§;a unit time delay operator whéréas SfT-is'essentially
an ihtegration operator. /ratching the J5 (120) ptovides reduced models
which ‘reproduce the oufput sequence exactly for thg first few ﬂtime !

instants, while matching the Jg (1<0) yields no special steady-state

properties.
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Theorem 6.1 Let

\

¢k+1 = F¢k +'Guk, ¢ @ Rr, ueRP - . (6.5a)
: §k = oy , yerd . NS ) ~ (6.5b)

Aty

be a partial realization of (6.1) matching the generalizéd Markov

parameters Ji for i e {0, 1, ..., 2.1}, Then the output error ey = Yy

>

~
-~

Y aﬁd ze;o initial

¥, is identically zero for k e {o, 1,
conditions. . E
[ a
Proof In the frequency domain let
. » M
-1 .,
u(z) = Uy 4 UZ (6.6).
Now it is evident that .
5
o -1 -1 -2-13
E(z) = G(z)-G(z) = H(zlr-F)“ GaC(zIn-A) B =z G(z) (6.7a)
G(z) = Iy +dp 27 + ... | (6.7b)

Hence the output error, is given by

i

e(z) =.z {Jgu, + (J1u1»Jg+1uo)z_1 + vou} . ' (6.8)

0

~and so e, = 0 for ke {0, 1, ..., 2.

It is fairly obvious that the DC steady state output error may be
nulléd by selecting H(IP—A)'1G = C(1n-A)'1B‘ This corresponds to the
. < ) .
generalized Markov parameter J_, only if the substitution z « 2-1 is

made. Evidently the siﬁultaneous matching of transient and steady state

¥

—n
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3

characteristics via reduction of a generalized Hankel matrix to Hermite

Normal form is not possible.

6.3 Discretized Systems

Consider the continuous system described by

%.= AX + Bu (6g9)

y = Cx : (6.9b)

If the input u(t) is sampled at time instants kT, and followed by a zero
\ .
order hold, then the.’system (6.9) may be converted into a discrete

representation.

x(kt+1) = ¥x(kt) + 8 ulkt) (6.10a)
y(kt) = Cx(kt) . (6.10b)
-~ .
where

¢ = exp(At) (6.11a)

° |

T !
‘ 8 = exp(Ac)doB - (6.11b)

|
0

Properties of reduced models of (6.10) induced by reduced models of

(6.9) are now investigated. e .

4

'

. .
[ ’
.

s e AT s ™ v . et i b e Bttt . A
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Theore Let (F, G) be an aggregated model of (A, B) with

%
, aggregation matrix K. Then (K & KU, K8) is an aggregated model of‘(o,

), where K" 1s any right inverse of K. | H//
Proof By Theorem‘3.3, it follows that K exp(At)K® = exp(Ft) Vt. ence
K ¢ K? = exp(Ft) and

T

K6 = |exp(Fo)doG.
0

J

(K ¢ K", Ko) is-$4id to be induced by (F, G).

6.4  Conclusions

It is shown that the ideas of model reduction of continuous time .
systems via nomminimal partiél realization may be directly applied to
systems of the discrete type. 1In this cése, however, the generalized
Markov paramet;;s Ji = CAiB, where i < 0, do not have any connection
with the time moments. Hence the matrix oriented methods of Chapter U
may not be used to simultaneously match Markov pavameter; "and time

A

moments. This of ‘course does not imply that such reduced-order models

do not exist for ;iscrete systems, since Padé approximation about z = =
(Markov_parameters) and z = 1 (time moments) is obviously possible by
direct Aanileation of a \;calar transfer }unction g(z). In many
applications, however, the stéady state steé (ramp, ete.) responses aré
more himpprtant to preserve than bﬁe trénsient response, When

multivariable systems are reduced by Padé approximatién of the transfer

Functibn about more thad one point ‘it may very well happen that the

¥
|
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number of %tates in alization of the approximant G(z) may be largeé
than the number of stated in-the original system G(z). Thus it seems
that the'disadvantage of the proposed algorithm is pnly apparent in the

4
scalar case.

3

RSP
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CHAPTER 7

APPLICATION OF THE THEORY TO A LARGE SYSTEM

\7.1 Introduction

An applibation of the theory of mogel reduction by aggregated

J

———

pé tial'realization to a control system of order thirty three, having
threk inputs and three outputs, is presented. The reduced model, df

order gight, is used in the design of a suboptimal output tracking

control }aw. The performancg is compared to the optimal control.

7.2 Specifications of theﬁ§ystem
™

-

The system chosen to illustrate the salient points of_the theory
has thirty three‘states,‘three inputs, and three ;utputs, and will be
&enoted by (A, B, C).. The realization is given in the coluan companion
form, the main'diagdnal blocks of A haéing sizes of twelve, eleven, qnd
ten, respectively. The nﬁmerical values df\the matrices are gi;en in
Figure 7.1’while‘the eigenvalﬁes of-A are listed in‘Tablg 7.1. Note

that there are four sets of repeated eigenvalues. The system is

]

obviously controllable, and the observability was checked by calculating

> v
'o[CT ATCT A2T ces A3OT] = 33. Since the column companionlform is used,.

the Mdrkov -parameters are easily identified by inspeetion of the columns
< - \ .

of C: For -the reduction process, hoﬁever,'the first time moment (J 7=

§ * eg

s ca~'B) iakrequired and is given in ﬁigure 7.2.)

)r
'Dl
' 112 .
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7.3 Derivation of the Reduced Model

o

An aggregated"partiél realization of (A, B, C) is derived using

the techniques of Chapter &, The aggregation process is described

¢

first, whllelthe matching of generalized Markov parameters is deferred
to Section 7.?22. ‘

v./"
7.3.17 Derivation of the Aggregated Model

The algorithm of Theorem 4.9 may be described as aggregating the

L]

" diagonal‘ blocks of A separately, followed by the oalculat&on of the

cgupling,columns to ensure that FK = KA, where F i%\the_cs?uced state
transition matrix and K is the aggregation matrix. An engineering rule

of thumb states that any control system may be reasonabiy approximated

by a systeﬁ of third order, hence a reduced model of order nine, i.e.,

o
three subsystems of order three, is sought. Following another time

honoured pfactipe, the dominant poleg of the system will .first be

examined for possible inclusion in the aggregated model (F, ‘G). To
, . Py

insure the existance of such a model, %ny repeated pole will be entirely

included or else excluded from the reduced model. Note that choosihg
each subsystem to have order three constrains each to have at least one
real pole.- When 4ll the ;bove constraints are considered, no set of
n%n; eigenvalues can be found. Relaxing the subaystem order comstraint
allows the set of eight eigenvalues listed in Table 7.2 to qualify. The
Qhaﬁacteristic polynomial of each subsystem is readily calculated, thus
determining the diagonal‘blgpks of F, which 1is given in Figure 7.3.
Since the coupling between the blocks is ndt ;et'known, these values

\ f

have bedn denoted by 81

Lo
,

(

3’ The structure of the aggregation matrix X' is
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given in Figure 7.4 where sy denotes the column vector [B8,, Boy

B, 0 .. OJT. Application of the algorithm of Theorem 4.9 yields

unique solutions for the g which are tabulated in Table 7.3. The

ij

numerical accuracy of the procedure for determining the 81j was of the

order of 10'9 using single precision arithmetic on a CDC 6400 computer.
Th1s completes the aggregation procedure.

7.3.2 Selection of the Qutput Matriyx

v
Selection of the output matrix ;\Bg match some of the generalized
Markov parameters of (A, B, C) should) be done with the intended
application of the reduced model in ';d. Since it is intended to
design a suboptimal output trackingmi;mpensator, where the targets are
step functions, it 1is expediant to match at least one time moment to
pFBvide a zero gtegdyistate step error Since the Markov parameters are
closely associatgd wiph the transient réébonse of a system, és m?ny aS\\
possible should be matched in order to track the transient closely.
Hence, the columns of H are to be chosen from the set {J_1, Jgr J4}
This necessitates use of the gene;alizee column companion form of

Section 4.5.3. The F matrix is invariant under this transformation, and

we have

F =FFF  =F

G:FG:[G2 95 97] .
K = FK

H = )
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o
This completes the determination of the aggregated partial realization

(F, G, H) of (A, B, C). The zero state responses of (A, B, C) and (F,

G, B) to an input ul = [1 1 1) are shown in Figure 7.5.

7.4 Design of a Suboptimal Output Tracking Compensator

It 15 desired to design a compensator to allow the original

system (4, B, C) to track step changes. Thus a performance integral

PI (eTSe+uTRu)dt

is to be minimized, where e = y-y is the deviation of the output from
the targét signal y, which is a vector of step functions. The method of
Section 5.3.3 is used to convert this problem into an equivalent
quadratic regulator problem by appending three éxtra states to generate
the target signals. }

The use of aggregated partial realizations to implement
suboptimal controls is straightforward. The procedure may also be used
for design, however. One of the major difficulties associated with
linear quadratic regulator theory is the choice of the weighting
matrices to give an acceptable ré;ponse. The usual cu£ and ;ry’approach
can be very expensive and time consuming when' dealing with a l;rge
system. If, however, a reduced mode% is available, it is relatively
cheap to use the cut and try approach with the ﬁgpe that the resulting

weighting matrices will also provide an acceptable optimal control.

This approach is taken here.
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From the unit step responses of Figure 7.5 it is evident that y1
and Y3 take 200 seconds to reach 98% of the steady state value while Yo
takes 140 seconds. The long settling time is mainly due to the double
eigenvalues at -.0479+3j0.0119. The design objective will be to redtce
all settling times to 100 seconds and having a steady state response of

yT = (0.5 0.02 4.0} for an input ol - [1 1 1), A class of

38

feedback 1laws required to produce the desired steady state may be
deriveé as solutions to the optimal linear servomechanism problem
discussed above. It remains to choose the weighting matrices to give an
acceptable seitling time.

The input weighting matrix R was taken as the identity matrix and
four runs were made with the different output weighting matrices listed
in Table 7.4. The tracking error responses for the first three choices
of S are plotted in Figure 7.6. It is apparent that a 2% settling time
of less than 100 seconds for all three outputs is ill posed, since re-
ducing the settling time of y4, and Y3 increases that of Yo Ignoring
our specification for 22' the fourth choice for S produces acceptable
settling times for y, and y3* The tracking error responses are plotted
in Figure 7.7 along with the response of the original system to this
control law. The similarity between the signals y-; and i-?} where y is’

the target, is evident, and the settling times are roughly 1Q0 seconds.

The cost of the control strategy for the reduced system was PI* = 2.5 x

105 while the cost for the large system was PI = 4.64 x 10°. The agree-
ment between the costs is not exceptional and occurs because of the

method of calcuiating the optimal control and is discussed in Section

7.5.

R M ey g T, N RN
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7.5 Some Notes on Computational Procedures

All calculations were executed to meet or ‘exceed a tolerance of
10“7 (absolute). The pontinuous time Ricatti equation was solved by the
diagonalization method of Potter (1966); the eigenanalysis being carried
out by the QR algorithm (Martin, et al.) after reduction of
the original matrix to almost tfiangulgF (Hessenherg) fOrmT Simulations
of dynamic systems were'obtained through the discretization procedure

mentioned in Chapter 6. The computation involves taking the exponential

of the block matrix

A B ' 6 .
exp{ LS which yields wheré
0 0 i {0 I
L P
£
= -
¢ = exp(At), 0 = exp(Ao)daB, B
0 ‘ R

and ¢ is the integration step size. The matrix exponential routine is

due to Kallstrom (1973) which uses a ﬁcaled back-iterated.Tayior series
expansion to minimize error. The continucus Lyapunov eduation, used to
calculate the cost of the suboptimal feedback law, was solved using the
recent algorithm of Hoskins, et al. (1977). Mosé of the above mentioned
routines involve matrix multipii;étion. Rather than explicitly code the
multiplication wherever needéd, a Sﬁbroutine has been used whose code is
optimized to reduce the roundoff errors bound to occur. " This ‘code is
due’ to Kakan (1971).

The solution of the servomechanism problem was effected by the

method of Section 5.3.2, where ‘the A matrix was taken as diag (-.0015,
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-.002, -.0025). This choice genera?es targeé signals y_which are slowly
decaying exponentials and thus approximate unit steps. This was done to
keep the sy;bem asymptotically stable. If A had been taken to be
identically zero, uhboundness in the P matrix wobld.have OQEEEEEE;J/XBUS
the costs of control given in Section 7.4 for the 33rd order example
will approach =« as/K'* 0. They are evidently becoming unbounded at the

Same rate.

7.6 Conclusions
An aggregated partial réalization of order eight has been derived
for a thirty third order system. This reduced model has been

successfully used to design a sﬁboptimal .static compensator for the

. X I .
linear quadratic servomechanism problem, where the choice of the

W
L]

wveighting matrices is understood; to be an integral part of the dqsigh.
A .. . -
13

It is to be noted that an.aggregated partial .realization is the -only

type 6f réduced_npdel other than singular periurbations which may be

. A . 4
successfully used to solve ,this "type.of problem when the signal to be
L .
tracked i§ a, polynomial function of time. It may be added‘thag,using

singular perturbations,- the equation for the approxﬁmated output y

. ‘ . Gl - , .

becomes y = Hz + Du, resulting in a modified Ricatti equation, for whichs ’
v . : AN )

ghe;solufion“is_only posiéive ?emidefinite; instead of positive
defiﬁite. The proposed method resdlts’in a suboptimal control u =
-R'1BT(KTPK)x, whére P is positive definite., It is easily apprecia?ed
that thé~TactbrAKTPK is now only positive semidefinite; so that the two

methods are quite similar. - , -

! ot
. .
.
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B 1,2 -3.57%312.58

L 3,4 -0.338%30.602

0 5,6 -0.0679% 0. 0119

c T -0.0619

K - 8,9 -0. 132%30. 00804
40, 11 -5.28%§3.657

1 12 -8.14 :

B 13, 14 -0. 132%50. 80804

L 15 -0. 154

0 16 -0.212

C 17 -0.598

K 18,19 f%.g8ij3.57
20,21 -3.76%34.85

2 22,23 -5.28%33.657

B 24 ~T.62

L 25,26 -3.62%30,56

0 27,28 -0.0479%30. Q119

c 29 -0.224

K 30 -0.598

31 -0.765
3 32,33 -3.15%38.65

Table 7.1 Eigenvalues of the A matrix

\

|
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-0.319210-1 a0.850910—2 -0.5738

J_4 = -0.858N1O—N «:;o.1u6910—u -o.155u10—1 .
-0.2123 -0.36&210-1 -0.398710+1 ﬁ
Figure 7.2 The first time moment ca~1B of (A, B, C) ¢
i 1 |

B :
,L ]

0 1,2 -0.0479%30.0119

C

4 3 -0.0619

1 .

B .

L- 4 -0. 154

0

o

K 5 -0.212

2

B

L 6,7 " -0.0479%3j0.0119 )

O t
C

K 8 -0.224

3

Table 7.2 Ejgenvalues of the reduced system

B 10 -0.1709 -1
‘ Boo 0. u4y22
| -
B3p 0.8377 ,  +1 .
Bag 0.1095_ -1
Bas 0.5548, -1
By ’ ~0.3340; -2
b v1u2 "1
853 0- 127,

4

i 1
Table 7.3 Values of the unknowns Bij of Fig., 7.2 . -
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& [0 0 . "Ou 150710"'3 812 w 813
1 0 —0.836610-2 , Boo Bo3 '
0 1 -0. 1577+ 832 833 )
F. = -0.326510-1 8u3
~0.3660 863
1 0 -0‘?39010-1
L 0 1 ~-0.3198 J
Figure ‘7.3 Structure of F and G with unknown entries Bij
- 11 10 £
K _,[31 ‘F$1 .. F g, &, ng R g, ‘g3 Fg3 ... F g3]
= [e F3 F8 e, e F F8
- 1 82 83 8’1 8*1 » e B*‘l. u 5 8*2 8*2 [ Y 8*2 [ Y
‘e ; e e 8 F( DY F6B ]
> ‘ 6 7 8 %3 *3 . *3
\ ] Figure 7.4 Structure of the aggregatioh matrix K

\

(B*i is the final column corresponding to block i of F)

Design #

Output Weighting Matrix S

£Eow N s

diag(100, 10, 100)
d1ag (1000, 10, 1000)
diag(600, 100, 500)

diag(500, 1000, 1000

. Table 7.4 Various output weighting matrices used in the design problem

———
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5 CHAPTER 8

CONCLUSIONS « :

- -
<

”

The problem o{ aqproxima?ing large-scéle, linear, time-invariant
dfnamical sygtems has bgen inve%tigatez in detail. A c¢close examination
of many existing‘ reductﬁg?ﬁ methods has revealeﬁ that -they may be
Elassified in two maiq/%roups, those which preserve eigenvalues
(aggregatéd modqls), énd those: which preserve part of the Taylor (or
Laurent) series of the system transfer function (partial realizations).’
Furphermore, these two reduction méthéds mgy siﬁultaneously be ap%lied,_
and‘such approximaﬁts (aggregated ba}tial realizations) are seen to be 2
special, but very important case of model reductiSﬁi by nonminimal

partial realization. Nonminimal partial realization is thus a unifying

" S s @ vt

concept i/ the field of model reduction. The reaction of the large
system to static compensation-schemes dérived fr3m~eqnsideratgon of such
reduced models was derived. Although some results were known for
special cases of agg;egated mogeis, the extension to the case of partial

realizations is new, and gives such reduced models a previodsly non- §

existant credibilitf. By combining aggregation with pa}tial fealization ]
it has been made'possible,to_éolve suboptimal control problems which

- o~
could have not been successfully attacked before. Specifically, in the !

case of the suboptimal linear quadratic servomechanism problem, where

the signal to be -tracked is a polynomial function 4n time (for exémple.

132 .
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step fpnctions), it is possible to ensure the stability of the large
'system and the converéence of the performancé integral to a finite
value.

The detailed theory of aggregation has resulted in a general
formula for deriving aggregated reduced models and athe aggregation
matrix. While this result is not entirely new, the approach used proves
that all aggregated reduced mpdels preserve the eigenvalues of the
original system. Previous work had started with this assumption a
priori. An important fesuit of this investigation is that the rows of

the .aggregation matrix are linear combinations of the rows of the

inverse modal matrix. of the large system. The -use of ‘the generalized

»
+

" column companion form was then considered ip order to remove the

necessity of calculating the inverse modal matrix. This canonical form
' v

also allows the easy matching of generalized Markov parameters.

Model reduction by partial realization was seen to be closely

related to the Padé approiimat@on problem. In faet, for scalar proper

|
1

systems, the two theories are equivalent. This hasédirectli led to a
more general theory o€ the minimal realization problem and the
introduction of generalized canonical forms. Thg iterative nature of
the algorithm used to generate such realizations allows the}designer
great flexibility in choosing a reduced-order model of a large-scale
system. Starting frqm the genegraiized Hankel matrix, mcdels of
increasing order may be generated without starting again all over from
the beginn;ng. This ;hvantage is not gharéa by éhen‘s matrix continued
fraction technique, which is widely'agcepted ag_being Sﬁe of the most

effective reduction techniques. "It also representé an improvement in

¢

-~ o,




——— s

SR

w

2

Llad

i 134

" \ b
the fact that multi&ariable models having an unequal number of inputs

and outputs may be treated, the reduced model order need not be a
I

multiple of the numbbr of inputs, and matrix polynomial inversion is not
\ .

needed. S

A nontrivial application of the theory to a system of order 33 is
given. Here an eighth order reduced model is used in the design of a
suboptimal linear quadratic servomechanism gompgqsator. ‘Selection of
the weighting mgtrices for suéﬁ problemé is rathér arbitrary, and most

appliéations of the theory are reduced to, trying different weighting

schemes until a satisfactory response is achieved. For a large~scale

Syste?, this précess will become very expensive, both in terms o% the
computer't;me‘required (several minutes per run) and the lengthening of
th% design process due to poor turn around time likely to be
experienced. ' The alternative. is to calculate an aggregated parzigély
reaiizedﬁ model of the ssystem (which, admittedly, is 1likely to be
expensive, but need only be done once) and design on the basiS'of the
reduced model. The time saved per run'ﬁg%& be of the order of the cube
of the reduction ratio (number of states in thg reduced model divided by
the number of states in the large system), which for the probieg
coﬁsidered is close to 97%. Since computer throughput will be greatl§
accelerategg it is plaubible that the design process will be a matter of
hours instead of é;ys‘ Now on-line design of servomechanism compensa-
tors becomes worihwhi}e and will accelerate the process even moré.

There 1is, of cou}se} a -price to be paid, and the final design is

suboptimal in the sense of the quadratic perfobmance index. This seems
S - ' Co

+of 1little import when a workable design has been .achieved which
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otherwise might have never been attempted. In those cases where
optimality is absolutely essential (which those with industrial

experience will be quick to say are few or nonexistent) the derived

IR

suboptimal control law may serve as the starting approximation in an

-

iterative solution scheme (c.f., Kleinmann, 1968).
1

It is hoped that the partial unification of model reduction of
linear time-invariant dynamical sysf@ms given in this dissertation will

encourage further work in their application to the design-process. Some

\
'suggstions for further research are given in the next section.

\
8.1  Suggestions for Further Research "

it |

The discussion following Theorem 4,10 provides a useful clue for

further research which should eventually lead to a class of approximants

W

wg}ch include nonminimal partial realizations as a special case. In the
proof of Theorem 4.4 the key result was that ﬁhe set of generalized

Markov parameters which are identioa;ly zero, {Ji = CAiB =011 = -io’

-ig*h .4y O 1,...., 11}, is in&ariant under linear state variable
feedback. Again, with the aggregation metﬁsd described in Chapter 3, it
is noticed _that the eigenvalues of the large system which are not
incorporated into the reduced model are linear state variable feedback
invariants (c;f., Theorem 3.3). Reéently the role of the transmission

(or invariant) zeros (Rosenbrock, 1970) in model reduction has been

-~ . < .

examined (Shaked and Karcanias, 1976). The transmission zeros are also
. :

linear state variable feedback,invariants. This evidence suggests that

: Feedback‘invariqus_of the large system play anvimpoyi:nt part in the

| ~
philosophytaf/model reduction. A deep study of this wonld probabliy be
’ . , .

~
«
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initiated by placing a module structure on the transfer function space
»of linear systems rather than the more usual vector space approach
(e.f., Kalman, 1969); Here the possibility of tortion (zero divisors)
<

could lead to a useful method of system reductionl The interested
reader is referred to Jacobson (1974) for the definition of thé various
algebraic terms. |

In thisﬂ thesis, the use of the ‘column companion form for
determining aggregated p;rtial realizations is proposed. Ap alternative
approach would be the use of a real Schur form of the A and F matrices.

In this case there would be no question as %& the validity of a proposed

F matrix~bdt the calculation of the output matrix H to match generalized
- N .
Markov parameters ﬁgii\gecome more complicated.

The matching ofj'time moments 1is equivalent to matching the
derivatives of th; transfer function at ks = 0. Perhapsv the output
matrix may also be chosen to duplicate some of th? phase information as
well (at a point s = j; instead of 8 = 0). This is certainly possible

[ ,

in an ad hoc manner, for consider

g(s) = (53+6)/(s+1)(s+2)(s+3)

(5w = tan” (5u/6)-tan” (w/3)-tan” {3/ (2-u"))

If g(s) is taken as

.
“

g(s) = (as+b)/(s+1)(s+2)

) 4&(&») z tan—1(am/b)—tan71{3m/(2-w2)}
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then choosing

-1

\ a = bu, tan{tan-1(5w0/6)—tan—1(w0/3)}
will give

@(jwo) .
Now g may be chosen to have é(Jwbnh = lg(jwol . it is not clear how -

that technique may be extended to multivariable systems, but the
transmission zeros should figure prominently. |

In Chabter 5, some resulEE on suboptimal control by aggregated
partial realization were given which indicate that the method is
promising. - No analytic¢ results ;ere giyen; hbwever,’to indicate how
good the suboptimal control actually is in comparison with the optimal
control law. Thié contrasts s?arply with £he method of éubpptimal

control by singular perturbations (Chow and Kokotovié, 1976), where O(n)
[ ]

and 0(¥) controls laws may. be derived. In view of the similarity

between the two meihods, it 3hould be possiblel to derive similar

results. The main problem would be the explicit identification of.the
| . -
parameter U, E v

No application of reduced-order models to filtering theory has

been given in this dissertation. One line of research might be an

investigation of filtering for systems with correlated input and outﬁht
) »

noise rather than the usual assumption of white ﬁaussian noise (more
|

rigorously the derivative of a Wiener ‘précess). Here the d;kamic.

equations of the system under consideration could be cohsiﬂqréd as an

“

aggregated version of a larger system driven by white noise.
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Alternativély, the use of partial realization to éatch the time moments
of a large system might be wuseful in the case of estimation in the
presence of a Wiener noise process.

Model reduction c%n also be used as a tool in system identifi-
cation. In many cases, g high order model may be obtained by fitting
gathered data. The real process, however, could be a low order system
in cascade with a time deléy so that the id;ntified model would have
high order due to the extra phase shift of the delay. Here, an
aggregated partial realization, preserving ?he dominant poles and the'DC

steady state, in cascade with aé suitable delay element :scould be

effectively used. T

« g /)

——
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singular perturbations, 18-19, 81-85 .
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