Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12502
Title: DOSE-BASED EVALUATION OF A PROSTATE BED PROTOCOL
Authors: Dona, Lemus M. Olga
Advisor: Wierzbicki, Marcin
Kevin Diamond, Orest Ostapiak
Department: Medical Physics
Keywords: IGRT Protocol;Prostate Cancer Treatment;IMRT;Image Registration;Cumulative Dose;Medical Biophysics;Medical Biophysics
Publication Date: Oct-2012
Abstract: <p>The image-guided radiation therapy (IGRT) protocol used at Juravinski Cancer Center for post-prostatectomy patients involves acquiring a kV cone beam computed tomography (CBCT) image at each fraction and shifting the treatment couch to align surgical clips. This IGRT strategy is promising but its dosimetric impact is unknown, it requires significant resources, and delivers non-negligible doses to normal tissues. The objective of this work is to evaluate this IGRT protocol and investigate possible alternatives.</p> <p>IGRT delivered dose is reconstructed by deforming the planning CT to the CBCT images acquired at each fraction, computing dose on the deformed images, and inversely transforming the dose back to the original geometry. The treatments of six patients were evaluated under four scenarios: no guidance (Non-IGRT), daily guidance as performed clinically (IGRT), guidance on alternating days (Alt-IGRT), and daily automated guidance (Auto-IGRT). For one patient, the impact of reducing the planning target volume (PTV) margin to five (IGRT-5) and eight (IGRT-8) mm isotropic was also evaluated.</p> <p>With the standard clinical PTV margin of ten/seven mm, the evaluated alternatives produced similar results. The minimum dose to the CTV was decreased by 1.6±1.0, 1.2±0.7, and 0.8±0.8 Gy for Non-IGRT, Alt-IGRT, and IGRT, respectively. IGRT with manual shifting did not appear to significantly improve the delivered treatment dose compared to Auto-IGRT (difference in CTV minimum dose was 1.2±2.1Gy). Doses to the organs at risk varied but in general, an increased volume of the bladder and rectum received low doses while smaller portions received high doses. The IGRT-5 and -8 analyses showed the same CTV dose can be delivered with significant reduction in normal tissue exposure. Overall, the desired doses are delivered during IGRT although much of this may be attributed to the large PTV margins currently employed clinically.</p>
URI: http://hdl.handle.net/11375/12502
Identifier: opendissertations/7384
8439
3334413
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.54 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue