Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12424
Title: Existence, Continuity, and Computability of Unique Fixed Points in Analog Network Models
Authors: James, Nick D.
Advisor: Zucker, Jeffery I.
Carette, Jacques
Department: Computing and Software
Keywords: analog computation;contraction;smoothies;vanishing delay;computable analysis;Hadamard's Principle;Theory and Algorithms;Theory and Algorithms
Publication Date: Oct-2012
Abstract: <p>The thesis consists of three research projects concerning mathematical models for analog computers, originally developed by John Tucker and Jeff Zucker. The models are capable of representing systems that essentially “diverge,” exhibiting no valid behaviour---much the way that digital computers are capable of running programs that never halt. While there is no solution to the general Halting Problem, there are certainly theorems that identify large collections of instances that are guaranteed to halt. For example, if we use a simplified language featuring only assignment, branching, algebraic operations, and loops whose bounds must be fixed in advance (i.e. at “compile time”), we know that all instances expressible in this language will halt.</p> <p>In this spirit, one of the major objectives of all three thesis projects is identify a large class of instances of analog computation (analog computer + input) that are guaranteed to “converge.” In our semantic models, this convergence is assured if a certain operator (representing the computer and its input) has a unique fixed point. The first project is based on an original fixed point construction, while the second and third projects are based on Tucker and Zucker's construction. The second project narrows the scope of the model to a special case in order to concretely identify a class of operators with well-behaved fixed points, and considers some applications. The third project goes the opposite way: widening the scope of the model in order to generalize it.</p>
URI: http://hdl.handle.net/11375/12424
Identifier: opendissertations/7312
8366
3284552
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
974.4 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue