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Abstra
tThe thesis 
onsists of three resear
h proje
ts 
on
erning mathemati
al modelsfor analog 
omputers, originally developed by John Tu
ker and Je� Zu
ker.The models are 
apable of representing systems that essentially �diverge,� ex-hibiting no valid behaviour�mu
h the way that digital 
omputers are 
apableof running programs that never halt. While there is no solution to the generalHalting Problem, there are 
ertainly theorems that identify large 
olle
tions ofinstan
es that are guaranteed to halt. For example, if we use a simpli�ed lan-guage featuring only assignment, bran
hing, algebrai
 operations, and loopswhose bounds must be �xed in advan
e (i.e. at �
ompile time�), we know thatall instan
es expressible in this language will halt.In this spirit, one of the major obje
tives of all three thesis proje
ts is identifya large 
lass of instan
es of analog 
omputation (analog 
omputer + input)that are guaranteed to �
onverge.� In our semanti
 models, this 
onvergen
eis assured if a 
ertain operator (representing the 
omputer and its input) hasa unique �xed point. The �rst proje
t is based on an original �xed point
onstru
tion, while the se
ond and third proje
ts are based on Tu
ker andZu
ker's 
onstru
tion. The se
ond proje
t narrows the s
ope of the model toa spe
ial 
ase in order to 
on
retely identify a 
lass of operators with well-behaved �xed points, and 
onsiders some appli
ations. The third proje
t goesthe opposite way: widening the s
ope of the model in order to generalize it.
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De
laration of A
ademi
A
hievement
Se
tions 1.3 and Appendix B are mostly from other sour
esAlmost everything in Se
tions 1.3 on page 10 and Appendix B on page 133is taken from other sour
es but written in my own words. Most of it is from[TZ11℄, some of it from my old textbooks, and some of it is te
hni
ally �mine,�ex
ept that it's so obvious and elementary that I'm 
ertain it exists some-where else and I just abandoned the sear
h for a sour
e. There are only a fewex
eptions:
• All the proofs are mine (although, again, it's quite possible they havebeen proved elsewhere the same way I did them).
• All the �gures are mine.
• Remark 1.3.19 on page 17 is my own observation.The 
ore ideas in Se
tion 4.7 are from [TZ12℄, but the exposition is radi
allydi�erent and it in
ludes a few adaptions of my own. In some respe
ts, it is asimpli�ed summary of half of that paper, generalized for a larger 
ontext.Other se
tions are mostly originalEverything in the rest of the thesis is mine (to the best of my knowledge)unless otherwise noted, with the following ex
eptions:
• Je� Zu
ker was responsible for numerous improvements in the grammarand exposition throughout the thesis.
• The 
omment in the in Se
tion 1.1 about Hadamard's Prin
iple (startingfrom �the signi�
an
e of the latter question� to the end of the paragraph)was written by Je� Zu
ker. x



• Figure on page 67 was provided by Je� Zu
ker.
• The dis
ussion pre
eding Example 3.3.2 was written by me, but requestedby an anonymous reviewer.
• De�nition 4.7.2 was taken almost dire
tly from [TZ12℄.
• I am assuming the following lemmas must surely exist in some othersour
e, but I abandoned the sear
h for referen
es in these 
ases, despitethe 
onvi
tion that I was reinventing the wheel:� Lemma 1.4.1 on page 21.� Lemma 1.4.13 on page 27.� The Equi
ontinuity Lemma on page 63.All other non-original 
ontent (e.g. the ODEs for the pendulum and the mass-spring-damper system, Bana
h's Fixed Point Theorem, the de�nition of a σ-
ompa
t spa
e, et
.) has been attributed expli
itly, or was felt to be 
ommonenough to not require attribution.Finally, there are some things for whi
h I deserve only partial 
redit:
• The Cau
hy sequen
e in Example 4.1.5 is mine, but the sequen
e ofnested sets upon whi
h it is based was taken from [TZ11℄.
• The de�nition of Contr (λ, τ) is de�nitely not mine (although I wish itwere!), but it was invented by Je� Zu
ker to solve a problem I spottedin an early draft of [TZ11℄. So I pride myself on the tiny modi
um of
redit I deserve for its existen
e.
• The 
ondition that λ and τ be lo
ally bounded in Theorem TZ2 onpage 19 was my suggestion. They were originally required to be 
ontin-uous.
• The proofs of my two major theorems (Generalized TZ1 on page 94, andGeneralized TZJ2 on page 102) were heavily inspired by the proofs ofthe two major theorems in [TZ11℄. They've been thoroughly bent out ofshape, but a 
lose reading will reveal many 
ommon steps and tri
ks.The originality of Chapter 2 is somewhat unknownThere is also one outstanding un
ertainty: the originality of the vanishingdelay 
onstru
tion upon whi
h Chapter 2 is based. That was an idea whi
ho

urred to me independent of any other sour
es, but I have had several su
hxi



�original� ideas over the 
ourse of my a
ademi
 
areer. They seem ex
iting andwonderful until I dis
over that someone else already thought of and publishedthe idea (and in some 
ases, quite a while ago).To ensure this wasn't the 
ase for the vanishing delay 
onstru
tion, I 
ondu
tedliterature sear
hes and met with two professors in the Fa
ulty of Engineeringat the University of M
Master whom my 
ommittee felt would be most likelyto know about it: Dr. Mark Lawford, from the Department of Software andEngineering and Dr. Shahin Sirouspour from the Department of Ele
tri
al andComputer Engineering. Neither of these resear
hers were remotely familiarwith the idea.As for the literature sear
hes, they revealed that the term �vanishing delay� hasoften been applied to delay di�erential equations whi
h involve a varying delaythat may rea
h zero or approa
h it arbitrarily 
losely�whi
h appears to bequite unrelated to the 
ontent of Chapter 2. Consequently, my supervisor andI deemed it safe for me to 
ontinue, although I still suspe
t someone has surelyattempted this sort of thing before and I simply haven't found do
umentationof the attempt.

xii



Chapter 1Introdu
tion
1.1 Analog Computation and Analog NetworksAnalog 
omputation 
on
erns 
omputation on 
ontinua rather than on dis
retespa
es. Where digital 
omputation uses an abstra
t, symboli
 en
oding of dataand expli
itly written algorithms to operate upon them, analog 
omputationuses�as its name would suggest�an analogy or transdu
tion of measured dataand a 
orresponding physi
al system whi
h serves as a model of the originalsystem, i.e. the system about whi
h we wish to reason or make predi
tions..The input data 
an be any sort of measurement (e.g. voltage, pressure, tem-perature, et
.) from the world outside the model, and it 
an be representedby any measurable quantity that is within the model. The model is set upto mimi
 the initial 
onditions of the original system, and then set in motionand observed. The �language� of analog 
omputation 
omes dire
tly from thelaws of physi
s rather than from the minds of instru
tion set engineers andprogramming language designers.Admittedly, digital 
omputation often involves analogies as well. An array ofbits in a digital 
omputer might be used, for example, to dire
tly representthe status of a series of lo
ks in a 
anal. Metaphors for data stru
tures, algo-rithms, and programming language 
onstru
ts like binary �trees,� �simulatedannealing,� and �inheritan
e� permeate the literature on digital 
omputation.Hen
e, we might alternatively di
hotomize 
omputation into �algorithmi
� and�non-algorithmi
� paradigms, but the term, �analog 
omputation� is alreadywell-established and the notion of analogy is inherent in it (both in its rep-resentation of data and in its a
tual me
hanisms of 
omputation), while itappears only in
identally in digital 
omputation, and often for only dida
ti
purposes.Putting aside su
h devi
es as the Antikythera Me
hanism [F+06℄, slide rules,planimeters, and similar devi
es used to 
ompute individual values (we might1
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all them analog �
al
ulators� rather than �
omputers�), likely the �rst re
ordeda

ount of analog 
omputation was written in 1836 by Gaspard-Gustave Cori-olis [Cor36℄, in whi
h he des
ribed using gears and 
ylinders to integrate �rst-order di�erential equations. These ideas were further developed (or perhapsreinvented) in 1876 to ta
kle di�erential equations of arbitrary order by LordKelvin and his brother, James Thomson [Tho76℄. While Kelvin and Thom-son's ideas were implemented to some extent in the �Argo� �re 
ontrol systemused by the Royal Navy [Pol80℄, it was Vannevar Bush who designed and builtwhat is likely the most advan
ed me
hani
al analog 
omputer and one of themost famous and pra
ti
al 
omputers of its day: the di�erential analyzer.Claude Shannon, working as a resear
h assistant in Bush's lab, de�ned a math-emati
al model of the di�erential analyzer and named it the �General PurposeAnalog Computer� (or �GPAC�) in [Sha41℄. The GPAC is an example of what
ould more generally be 
alled an analog network, whi
h may be visualized as a
ir
uit: a dire
ted graph in whi
h the nodes are pro
essing elements known as�modules� and the edges (known as �
hannels�) a
t as wires or tubes to 
onveydata streams (whi
h are fun
tions of time).The network is merely a 
on
eptual model, however, and is not intended todes
ribe the a
tual appearan
e of the system. An ele
troni
 or hydrauli
 imple-mentation of an analog network might physi
ally resemble the dire
ted graphitself, while a me
hani
al implementation often wouldn't. A module to per-form s
alar multipli
ation, for example, 
ould be implemented as a step-uptransformer or a transistor ampli�er in an ele
troni
 
ir
uit (both of whi
h
ommonly appear in s
hemati
s), whereas the same module 
ould be imple-mented me
hani
ally as the physi
al interfa
e between the teeth of two 
ogs ofdi�ering diameters (whi
h does not so neatly suggest a node in a s
hemati
).Hen
e, a physi
al system that bears no apparent resemblan
e to a network atall, may still qualify in our verna
ular as an �analog network.�One of the main purposes of de�ning su
h a model is to determine the set offun
tions it is 
apable of generating, for if some physi
al devi
e 
an reliablygenerate a parti
ular fun
tion, it follows that this fun
tion is �
omputable� inthe plainest and most intuitive sense of the word. Shannon proved1 that theGPAC is 
apable of generating all and only the di�erentially algebrai
 fun
-tions. This is a very large 
lass of fun
tions, in
luding polynomials of one realvariable along with sinusoids, exponential fun
tions, and solutions of ordinarydi�erential equations 
onsisting of these fun
tions. It is not, however, withoutsome disappointing limitations�Shannon's poster 
hild being the well-knowngamma fun
tion, whi
h is not di�erentially algebrai
.1There were some problems with his proof whi
h Marian Pour-El addressed and at-tempted to re
tify in [PE74℄ using an alternative GPAC model. Unfortunately, there werealso problems in her own approa
h whi
h were spotted and 
orre
ted by Daniel S. Graçaand José Félix Costa in [GC03℄ using a third GPAC model.2
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Master University - Computing and SoftwarePartially inspired by these limitations and partially by the assumption thatthe brain is a type of analog 
omputer whi
h is known to perform spatial aswell as temporal integration, Lee Rubel de�ned the �Extended Analog Com-puter� (or EAC) in [Rub93℄. Rubel's EAC is theoreti
ally 
apable of solvingboundary value problems for partial di�erential equations, whereas the GPACis limited (a

ording to Shannon's de�nition) to initial value problems of ordi-nary di�erential equations. Jonathan Mills ran with Rubel's model, 
reatingfully-fun
tional analog 
omputers inspired by the EAC from foam sheets typ-i
ally used as pa
kaging material and even blo
ks of salted gelatin [MPH+06℄.There have been other implementations of analog 
omputation that repre-sent an even more profound departure from the GPAC model. Slime mold[YMTK95℄ and bees [LCR10℄ have been used to solve small instan
es of theTravelling Salesperson Problem and generate near-optimal solutions to largerinstan
es.While models of analog 
omputation o�er one approa
h for investigating the
omputability of fun
tions involving 
ontinua, there has been a parallel re-sear
h e�ort fo
used on extending 
lassi
al 
omputability theory (as de�nedby Turing, Chur
h, Kleene, et
.) into this realm: 
omputable analysis. Pio-neered primarily by Andrzej Grzegor
zyk [Grz55, Grz57℄ and Daniel La
ombe[La
55℄, 
omputable analysis puts real (and 
omplex) analysis, fun
tional anal-ysis, and numeri
al analysis under the mi
ros
ope of 
lassi
al 
omputabilitytheory and asks the question 
entral to most resear
h on analog 
omputation:whi
h fun
tions are 
omputable? We already have a 
lear answer to that ques-tion in the domain of 
lassi
al 
omputability theory (i.e. for fun
tions of theform f : N → N), as all of the models of digital 
omputation we've dis
ov-ered so far are in agreement. This is, of 
ourse, the foundation for the famousChur
h-Turing Thesis.Computability theory on 
ontinua has not yet rea
hed the same degree of
onsensus, but mu
h progress is being made. Olivier Bournez et al. showed in[BCGH06℄ that the GPAC is equivalent to Ker-I Ko's model of 
omputability[Ko91℄ as long as the GPAC is permitted to approximate fun
tions (to arbitrarypre
ision) rather than produ
e them in real time. Viggo Stoltenberg-Hansenand John Tu
ker used domain representability in [SHT99℄ to prove that �vedi�erent models of 
omputation on topologi
al algebras are equivalent (undersome modest 
onditions). Further equivalen
e results (and ex
eptions) 
an befound in [Wei00℄. The matter is still not entirely settled, so the question of
omputability pertaining to fun
tions with un
ountable domains or 
odomainsremains open for now.In [TZ07, TZ11℄, John Tu
ker and Je� Zu
ker turn this question around andask instead, given a parti
ular analog network, under what 
onditions does itprodu
e meaningful output, and under what 
onditions does this output vary3
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ontinuously with the network's parameters? They argue2 that the signi�
an
eof the latter question is grounded in the imperative of experimental physi
sknown as "Hadamard's Prin
iple," �rst arti
ulated by Hadamard [Had52℄ andlater re�ned by Courant and Hilbert [CH53℄. Its fundamental tenet is that forthe solution to a problem in physi
s to be pra
ti
ally appli
able, it must vary
ontinuously with the parameters of the system so that small dis
repan
ies orina

ura
ies in the input produ
e only small variations in the output. Thestability of measurements in the presen
e of noise is an essential feature for aphysi
al system to qualify as an analog 
omputer.Like the GPAC, the data streams 
arried by the analog networks in [TZ07,TZ11℄ are fun
tions of time. There are, of 
ourse, various ways of modellingtime. The debate over whether spa
etime is 
ontinuous, dis
rete, or evenboth simultaneously (see [Kem10℄) is ongoing, but regardless of the out
omeof that debate, the majority of our physi
al laws and theories treat measurablequantities (in
luding time) as real numbers. This may suggest using the wholereal line as a model of time, but regardless of the duration a 
omputer isallowed to run while solving a problem it must at some point a
tually be built,initialized, and started. For this reason, the authors 
hose to represent timeusing the only the nonnegative real numbers (as we do here, up until Chapter 4,at whi
h point several possible representations of time be
ome merely spe
ial
ases in a broader theory).1.2 Chapter SummaryChapter 1: Preliminary Con
eptsThe three resear
h proje
ts share a 
ommon foundation, rooted in [TZ11℄.Brie�y, we take T to be the nonnegative reals, whi
h will represent time, and
A to be a metri
 spa
e whi
h represents a physi
ally measurable quantity(e.g. voltage, position, pressure, et
.) or a 
olle
tion of physi
ally measurablequantities. Our fundamental �obje
t spa
e� is C[T,A], whi
h is the spa
e oftotal 
ontinuous fun
tions from T into A, equipped with a metri
 topology.We 
all this �stream spa
e,� and the elements within it, �streams.�The model of 
omputation in the �rst two proje
ts 
on
erns operators on
C[T,A] whi
h represent physi
al systems to be used as 
omputers. The se-manti
s of the model are given by the existen
e of unique3 �xed points for2Note that I don't fully agree with Hadamard's Prin
iple, as I explain in Appendix A.3Te
hni
ally, the �xed points need only be distinguishable to provide su
h semanti
s.That is, the model would still work even with a whole set of �xed points, provided there existsa sele
tion fun
tion (e.g. least �xed point) with ni
e properties to provide the uniqueness.This would represent a generalization of the theory suitable for future work.4



Ph.D. Thesis - N. James; M
Master University - Computing and Softwarethese operators. Two theorems from [TZ11℄ are presented here: the �rst pro-vides a set of su�
ient 
onditions for the existen
e of a unique �xed point,while the se
ond provides 
onditions to ensure this �xed point varies 
ontin-uously with the parameters and input streams. The �rst theorem is proved
onstru
tively in [TZ11℄, and the 
onstru
tion is imperative for most of thesubsequent results. So I reprodu
e it in Chapter 1 for referen
e, albeit usingdi�erent notation and slightly di�erent methods, but keeping the spirit of the
onstru
tion the same.There are two operator properties of parti
ular importan
e to the theorems:
ausality and 
ontra
tion. Loosely speaking, a �
ausal� operator does not de-pend on the future and a �
ontra
ting� operator brings streams 
loser together(but only lo
ally; this is somewhat di�erent from the usual sense of 
ontra
tion,as used in analysis). Causality is a basi
 requirement of the theory, withoutwhi
h we 
ouldn't get o� the ground at all, while 
ontra
tion does most of theheavy lifting. This is not 
ontra
tion in the usual sense, but rather a domain-restri
ted, 
onditional version of 
ontra
tion. The properties are presented,along with a third whi
h is essential to [TZ11℄, but less important here: shiftinvarian
e.Up until Se
tion 1.4, I sti
k very 
losely the original sour
e material in orderto better set it apart from my own work. After that se
tion, I introdu
e somemodest generalizations of the theory and some further preliminary results Ineed to use later.Chapter 2: Constru
ting Fixed Points of Stream Opera-tors Using Vanishing DelaysThis 
hapter 
overs the work I did on my original proje
t, whi
h I felt I hadto abandon be
ause I had gone several months without making any progress.Re
all that the model of analog 
omputation upon whi
h this thesis is based
on
erns �xed points of stream operators (aside from Chapter 4, in whi
h Idepart from streams). Some have �xed points, some don't.If we 
ompose any su
h operator with a delay, however (
reating a delayedversion of the original operator), this new operator is guaranteed to have aunique �xed point, and one that 
an even be 
onstru
ted quite me
hani
ally.So the idea explored in this 
hapter is to see what happens when we 
omposean operator with a delay, �nd the �xed point of the delayed operator (as afun
tion of the delay duration), and then let that delay approa
h zero.Intuitively, we expe
t that the �xed point of the delayed operator will 
onvergeto the �xed point of the original operator, if one exists, and that it will divergeotherwise.Chapter Highlights: 5
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ertain 
ausality 
ondition always has a unique �xed point.2. The Vanishing Delay Theorem on page 47: if that (parametrized) �xedpoint 
onverges to a stream as the delay approa
hes zero, the stream towhi
h it 
onverges is a �xed point of the original, non-delayed operator.3. Theorem TZJ1 for Vanishing Delays on page 48: if a 
ontinuous operatorsatis�es Tu
ker and Zu
ker's su�
ien
y 
onditions for having a unique�xed point, then my te
hnique of vanishing delays will 
onverge to it(loosely speaking, if their 
onstru
tion works, so will mine�at least inthe 
ase of 
ontinuous operators).Chapter 3: A Class of Contra
ting Stream OperatorsIn 2011, I 
o-authored a paper entitled �A Class of Contra
ting Stream Oper-ators,� whi
h has just been published by The Computer Journal [JZ12℄. Sin
ethat paper and the rest of this thesis share a 
ommon foundation of theoryand sin
e the paper was written to be self-
ontained, I disassembled it some-what and spread the 
ontents between Chapter 1 and Chapter 3. There aretwo, fairly distin
t parts to this 
hapter. The operators dis
ussed in [TZ11℄ areidenti�ed only indire
tly by the properties they possess. In the �rst part of this
hapter (the �rst two se
tions), I expli
itly develop a 
lass of operators whosemembers satisfy those properties. In the se
ond part (the third se
tion), I showhow the 
ase studies in [TZ07℄ and [TZ11℄ (mass-spring-damper systems) 
anbe reorganized a

ording to Part 1 to 
over a broader range of systems, as wellas in
luding a new system (the simple pendulum), whi
h yields only partiallyto the analysis in Part 1.The abstra
t from the paper reads as follows:In [TZ07℄ and [TZ11℄, Tu
ker and Zu
ker present a model forthe semanti
s of analog networks operating on streams from topo-logi
al algebras. Central to their model is a parametrized streamoperator representing the network along with a theory that 
on-
erns the existen
e, uniqueness, 
ontinuity, and 
omputability of a�xed point of that stream operator. We narrow the s
ope of thispaper from general topologi
al algebras to algebras of streams thatassume values only from a Bana
h spa
e. This restri
tion fa
ili-tates the de�nition of a fairly broad 
lass of stream operators towhi
h the theory des
ribed in the above two papers applies.As a demonstration in their original work, the authors providetwo 
ase studies: analog networks whi
h model the behaviour ofsimple mass-spring-damper systems. The 
ase studies show
ase the6
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uliar 
onditions on the parameters (the masses, the spring 
on-stants, and the damping 
oe�
ients). The extra 
onditions�whilenot 
atastrophi
 to the 
ase studies�make them somewhat unsat-isfying. We show here that while their original mass-spring-dampermodels do not fall within our new 
lass, they 
an be easily re
on-�gured into equivalent models that do. This modi�
ation obviatesthe extra 
onditions on the parameters.Chapter Highlights:1. If we take A to be a Bana
h spa
e, it is natural to de�ne two 
or-responding stream spa
es: one for s
alar-valued streams and one forve
tor-valued streams. These work together as expe
ted, using point-wise versions of the algebrai
 operations on A. In fa
t, we 
an evengeneralize the former to s
alar-matrix-valued streams.2. The Building Blo
k Lemma on page 55: an investigation into the waythe two essential properties Lip and Caus are a�e
ted by integrationand the pointwise stream operations on A.3. The Continuity Lemma on page 59: integration and the pointwise streamoperations preserve the 
ontinuity of stream operators.4. The General Form Theorem on page 65: this theorem identi�es the tit-ular 
lass of 
ontra
ting stream operators by pushing the two lemmasabove as far as they 
an go without using any �foreign� operators.5. The mass-spring-damper system from [TZ07, TZ11, TZ12℄ is reformu-lated in a way that requires no spe
ial 
onditions to be imposed on theparameters. In
identally, my presentation of the mass-spring-dampersystem in Se
tion 3.3.1.2 is the only proof of whi
h I am aware that theODE 
orresponding to the mass-spring-damper system has a solutionfor any 
ontinuous for
ing fun
tion. The versions I've seen presented intextbooks always use a sinusoidal for
ing fun
tion. This result may verywell be proven elsewhere, of 
ourse, but I have never seen it.6. The simplest form of pendulum is examined using this theory, but itrequires the use of a fun
tion outside the 
lass identi�ed by the GeneralForm Theorem on page 65.Chapter 4: Generalizing the Theory Beyond Time StreamsThe previous 
hapters along with most of [TZ07, TZ11, TZ12℄ 
on
ern streamoperators, and as noted earlier, streams are fun
tions of time. We model7
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ialproperties of R. Tu
ker and Zu
ker do start out with a more general framework,using an arbitrary σ-
ompa
t spa
e X instead of T = R≥0, but they drop downto the spe
ial 
ase of streams (X = T) as soon as 
ausality is involved�sin
ethe 
on
ept of 
ausality is inherently temporal.I was able to generalize their two main properties (
ausality and 
ontra
tion)to σ-
ompa
t spa
es, alter the 
onstru
tion somewhat to be 
ompatible inthe more general framework, and prove variants of the two main theorems in[TZ11℄. While I don't use shift invarian
e in my own theorems, I haven't beenable to prove it is 
ompletely super�uous, so to help inspire future work, Isuggest a way to generalize the shift operator as well. I also present somealternatives to the 
ontra
tion property whi
h may lead to other interestingresults.In the �nal se
tion, I give a somewhat 
ursory treatment of the pre
eding ma-terial from the perspe
tive of 
omputability, and prove the �nal major theoremof the thesis.Chapter Highlights:1. De�nitions of Caus(X) and Lip(λ,X) (De�nitions 4.2.1 and 4.2.6) formthe basis of the generalization beyond time streams.2. The de�nition of a retra
table exhaustion (De�nition 4.3.2 on page 87)is used to generalize the a
tual �xed point 
onstru
tion.3. The Generalized TZ1 Theorem on page 94 shows that an operator whi
hsatis�es Caus(X) and Contr (X) has a unique �xed point. This is oneof the main thesis highlights. In addition to being a more general resultthan Theorem TZ1 on page 19, its proof invokes Bana
h's Fixed PointTheorem rather than 
annibalizing key steps in the proof of Bana
h'stheorem. So I believe it is both more general and more elegant than thetheorem it supplants (it is just, admittedly, mu
h less original, given thatit is supplanting something in the �rst pla
e).4. The Generalized TZJ2 Theorem on page 102 is a stri
t generalization ofTheorem TZJ2 on page 27. Loosely speaking, it shows that the �xedpoint of an operator F : P ×C[X,A]→ C[X,A] varies 
ontinuously withthe parameters. This is perhaps the other main thesis highlight.5. The Con
rete Computability Theorem 4.7.11 on page 115 represents the�rst signi�
ant step toward generalizing Tu
ker and Zu
ker's follow-uppaper to [TZ11℄: [TZ12℄, in whi
h the authors provide an analysis of the
omputability of the operators in [TZ11℄ using two di�erent approa
hesto 
omputability for stream operators (
on
rete and abstra
t). In this8
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onditions whi
h are su�
ient to ensure thatthe �xed point from the previous two theorems is 
on
retely 
omputable.Chapter 5: Con
lusion and Dis
ussionGiven that I'm already 
overing the thesis highlights in this 
hapter summary,I use Chapter 5 to assess a few of the problems I en
ountered and review someof the ideas for further resear
h.Appendi
esA. Hadamard's Prin
iple and Supplementary LemmasHadamard's Prin
iple is a philosophi
al statement about the properties amathemati
al model should possess if it is meant to 
orrespond to a physi
alsystem. It was �rst expressed by Ja
ques Hadamard in [Had52℄, and expli
atedfurther by Ri
hard Courant and David Hilbert in [CH53℄. Its most weightyrequirement is that the solution to su
h a problem should vary 
ontinuouslywith the parameters of the problem (or the input to the system). This is oneof the reasons 
ontinuity is so heavily emphasized in [TZ11℄.Hadamard's Prin
iple seemed quite reasonable when it was �rst introdu
edto me, but something about it just didn't sit right. Despite the fa
t thatHadamard, Courant, and Hilbert were all far better mathemati
ians than I
ould ever hope to be (although I suppose that doesn't ne
essarily make thembetter philosophers), and despite the fa
t that I have yet to en
ounter any
riti
ism of Hadamard's Prin
iple from anyone else, I'm going to risk appearingimpudent and voi
e my 
on
erns with it in Appendix A, along with o�eringa suggestion about what I think might more aptly repla
e it. I relegate thisdis
ussion to the appendi
es, sin
e it is more of opinion pie
e than a resear
htopi
.B. Supplementary PropositionsAppendix B is small 
olle
tion of assorted lemmas that are needed elsewhere,but whi
h 
luttered the exposition when inserted near the points in whi
h theyare invoked.
9
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ker and Zu
ker'sWorkThis thesis builds upon the work in [TZ11, TZ07, TZ12℄. In order to make thisdo
ument relatively self-
ontained, some of that foundational resear
h must bereviewed, along with a few de�nitions and results from elementary topologyand analysis. That is the purpose of this se
tion.1.3.1 The Spa
e of StreamsLet (A, dA) be a 
omplete, separable metri
 spa
e. We use the symbol T torepresent time, taking4 T = R+ ∪ {0}. We adopt C[T,A]m (for some m ∈ Z+)as our fundamental stream spa
e: the spa
e ofm-tuples of 
ontinuous fun
tionsfrom T into A.De�nition 1.3.1 (Pseudometri
s on C[T,A]m). For m = 1 we de�ne a familyof pseudometri
s5 {da,b : a, b ∈ T and a ≤ b} where ∀u, v ∈ C[T,A],
da,b(u, v) = sup

a≤t≤b
dA (u(t), v(t)) (1.3.1)Observe that if our stream spa
e were instead C[[a, b],A], then da,b would be ametri
. It is a pseudometri
 only be
ause it �ignores� any di�eren
es betweenits arguments outside the interval [a, b]. For m ∈ Z+ and u = (u1, u2,, . . . , um),

v = (v1, v2, . . . , vm) ∈ C[T,A]m we de�ne,
dma,b(u,v) = max

1≤k≤m
da,b (uk, vk)In pra
ti
e, however, we will drop the supers
ript sin
e no ambiguity is intro-du
ed by overloading the symbol da,b. Furthermore, it is so often the 
ase thatwe set a = 0 that typi
ally we just write db(u,v) to mean dm0,b(u,v).Remark 1.3.2. We will often form a produ
t spa
e of some metri
 spa
e (X, dX)and C[T,A]m. An equivalent family of pseudometri
s (�equivalent� in the sensethat they 
olle
tively generate the same topology as the metri
) on this produ
tspa
e 
an be de�ned as,

d
(X×C[T,A]m)
T ((x,u), (y,v)) = max {dX(x, y), dT (u,v)}Again, without loss of spe
i�
ity, we will drop the supers
ript and use simply

dT .4Tu
ker and Zu
ker also develop their theory to address the 
ase in whi
h T = N, buthere we'll be using only the 
ontinuum of nonnegative reals.5A pseudometri
 is like a metri
 ex
ept that it is permitted to be zero even for distin
tpoints. That is, if d : X2 → Y is a pseudometri
, then d is also a metri
 i� ∀x, y ∈ X

[d(x, y) = 0 ⇒ x = y]. 10
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 to C[T,Am],so the theory 
ould be presented equivalently using either C[T,A] or C[T,A]mas the fundamental stream spa
e. If we adopt the former, we 
an always take
A = Bm (where B is some other spa
e) whenever m-tuples are required, andif we adopt the latter, we 
an always take m = 1 when tuples are not wanted.We 
hoose C[T,A] for the sake of a 
leaner exposition wherever possible, butsometimes we do need tuples (in Chapter 3, espe
ially), so we will alternatebetween them a

ording to 
onvenien
e.De�nition 1.3.4 (Lo
al Uniform Topology). The family of pseudometri
s inDe�nition 1.3.1 indu
es the lo
al uniform topology on C[T,A]m. A basis forthis topology is given by open balls of the form,

BT,ε(u) = {v ∈ C[T,A]m : dT (u,v) < ε}for u ∈ C[T,A]m, T ∈ T, and ε > 0. See [TZ11℄ for a dis
ussion of itsequivalen
e to the 
ompa
t-open topology and the inverse limit topology inthis 
ontext. In fa
t, it is not even ne
essary to in
lude every T ∈ T. We 
angenerate the topology using only 
ountably many, equally spa
ed6 values of
T ∈ T.De�nition 1.3.5 (Metri
 on C[T,A]). There is a
tually a 
lass of metri
s that
an be de�ned7 on C[T,A] (and hen
e on C[T,A]m as well) using the family ofpseudometri
s, given any τ > 0:

dC[T,A](u, v) =

∞∑

k=0

min
{
2−k, dkτ(u, v)

}These metri
s are rather unwieldy, however. While they are important forshowing that C[T,A] (with the lo
al uniform topology) is indeed metrizable,we prefer to use the pseudometri
s when a
tually reasoning about the spa
e.Of 
ourse, metri
s are more widely known than pseudometri
s, so I owe thereader some explanation of this last 
omment. Re
all the following de�nitionsfor 
ontinuity from elementary topology.De�nition 1.3.6 (Continuity on Topologi
al Spa
es). Let X, Y be topologi
alspa
es, let f : X → Y , and let x ∈ X . Then,1. f is 
ontinuous at x if for every open neighbourhood U ⊆ Y of f(x),there is an open neighbourhood V ⊆ X of x su
h that f(V ) ⊆ U .6Even that is overly demanding, but we don't require anything more general at themoment. See Se
tion 4.1.1 on page 82 for a more general treatment.7Courtesy of Edwin Beggs. 11
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ontinuous if it is 
ontinuous at every point x ∈ X . Equivalently, fis 
ontinuous if for every open U ⊆ Y , f−1(U) is open in X .Sin
e we 
an de�ne the same topology on C[T,A] using either the metri
,
dC[T,A], or the family of pseudometri
s {dT}T∈T (or, indeed, any subfamily
{dnτ}n∈N, where τ ∈ R+, as mentioned in De�nition 1.3.4), we get the followinglemma (along with Lemma 4.6.5), whi
h is rather 
onvenient for proving the
ontinuity of stream fun
tions.The proof is routine, and therefore omitted.Lemma 1.3.7. A fun
tion f : C[T,A]m → C[T,A]m is 
ontinuous i� ∀ε > 0
∀T ∈ T ∀u ∈ C[T,A]m ∃δ > 0 ∃T ′ ∈ T ∀v ∈ C[T,A]m,

dT ′(u,v) < δ ⇒ dT (f(u), f(v)) < εThat is (loosely speaking), f is 
ontinuous if and only if the images of u and vunder f 
an be made arbitrarily 
lose on any 
losed interval [0, T ], as long as
u and v are taken to be su�
iently 
lose on some other 
losed interval [0, T ′].De�nition 1.3.8 (Stream Operations). We'll often make use of the followingthree, time-based stream operations: shift , hold , delay . Given T, t ∈ T, ea
hoperation is of the form

fT :
∞⋃

k=1

C[T,A]k →
∞⋃

k=1

C[T,A]kFor a stream (or a portion of a stream), u, they are de�ned as follows (alsosee Figure 1.3.1): shiftT (u)(t) = u(t+ T )holdT (u)(t) =

{
u(t) if t ≤ T

u(T ) otherwisedelayT (u)(t) =

{
u(0) if t ≤ T

u(t− T ) otherwiseIn some situations we'll need to treat them as fun
tions of two variables:shift(T,u), hold (T,u), delay(T,u).Remark 1.3.9. In [TZ11℄, the authors use an operation extT , whi
h is de�nedthe same as holdT ex
ept that its domain is C[[0, T ],A]. I'm using hold so I
an present a slightly di�erent, but equivalent 
onstru
tion in Se
tion 1.3.5 onpage 19. 12
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T

udelayT (u)holdT (u)shiftT (u) Figure 1.3.1: Time-based Stream Operations1.3.2 The Analog Network ModelThe streams represent data �owing through a network of 
hannels and modulesover time (whi
h is 
onsidered a single, global property of the network). Ea
hmodule has stream inputs, parameter inputs, and stream outputs, and thus,
an be represented by a fun
tion of the form,
f : Ap × C[T,A]q → C[T,A]rWe refer to the stream inputs and stream outputs as 
hannels.

-

...--inputstreams { } outputstreamsf

??

. . .

?

︷ ︸︸ ︷parameters
-

...--Figure 1.3.2: A Module in an Analog NetworkRemark 1.3.10. The use ofAp as the parameter spa
e is a feature of the originalmodel and in this se
tion I am striving to hew as 
losely as possible to thesour
e material. In Se
tion 1.4, this model will be generalized, allowing for theuse of an arbitrary parameter spa
e.If all our networks were ex
lusively feed-forward (as in the following example),there would be no reason for any of this theory, and we 
ould dire
tly 
al
ulatethe network output as a fun
tion of its input streams and parameters. Wewould simply 
ompose all the module fun
tions, working from the networkinput, all the way to the network output 
hannels. That is, we 
ould representthe network output as a straight-line program (see Chapter 4 of [BCS97℄).13
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Master University - Computing and SoftwareExample 1.3.11. Suppose f1 : A×C[T,A]→ C[T,A], f2 : C[T,A]→ C[T,A],and f3 : A2 × C[T,A]2 → C[T,A], and they are 
onne
ted as shown in Fig-ure 1.3.3. Then ∀c = (c1, c2, c3) ∈ A3 ∀x = (x1, x2) ∈ C[T,A]2, the network'soutput is well-de�ned and given by the fun
tion f : A3 × C[T,A]2 → C[T,A]de�ned as
f(c,x) = f3(c2, c3, f1(c1, x1), f2(x2))

-

- �
�
�
�
�
��1

P
P
P
P
P
PPq

-

?

? ?

x1

x2

u1

u2

u3

f1

f2

f3

c1

c2 c3

Figure 1.3.3: A simple, feedforward networkWith feedba
k, however, su
h an attempt would lead to in�nite regress (seeExample 2.2.1). So, Tu
ker and Zu
ker adopt an alternative approa
h. Ratherthan looking at f itself, and trying to express the whole network's output asa fun
tion of its input (and parameters), they 
reate a system of equations,one for every output 
hannel. Ea
h equation's left-hand side 
onsists of asingle stream variable representing the output of a module. If that 
hannelis 
onne
ted to the input of another module, the stream variable will appearwithin the expression on the right-hand side of another equation.Example 1.3.11 would be written like this:
u1 = f1(c1, x1)

u2 = f2(x2) (1.3.2)
u3 = f3(c2, c3, u1, u2)It is 
onvenient to express this system as a single equation involving tuples.For a given c, x, de�ne Fc,x : C[T,A]3 → C[T,A]3 as follows:

Fc,x





u1
u2
u3




 =




f1(c1, x1)
f2(x2)

f3(c2, c3, u1, u2)


The semanti
s of the network are then given by the �xed point for Fc,x (or asolution for Equation 1.3.2), if a unique one exists. Sin
e the parameters and14
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onsider the fun
tion
F : Ar × C[T,A]p → (C[T,A]m → C[T,A]m)where F (c,x, ·) = Fc,x. This is the real heart of the model, and along with itwe de�ne a �xed-point fun
tion:

Φ : U → C[T,A]m (1.3.3)where U ⊆ Ar × C[T,A]p and ∀(c,x) ∈ U Fc,x(Φ(c,x)) = Φ(c,x).While this is 
onsistent with the 
on
ept of �xed points, I always refer to su
hoperators F in their un
urried form:
F : Aq × C[T,A]p × C[T,A]m → C[T,A]m (1.3.4)Using this form, F 
an't really be said to have a ��xed point,� per se, butit is isomorphi
 to an operator that 
an, hen
e the 
on
ept of �xed points isequally relevant, regardless of the form. So, in what might be 
onsidered anabuse of the verna
ular, I will still refer to ��xed points� and the ��xed-pointfun
tion,� even when reasoning about an un
urried F .This sort of operator F together with its �xed point fun
tion Φ is a slightlysimpli�ed version of the model of analog 
omputation introdu
ed by [TZ11,TZ07℄. There are, of 
ourse, some properties to be imposed on F , whi
h will be
overed next. There is also one extra 
omponent to be added to the domainsof the two fun
tions whi
h will be done when we turn to the property of shiftinvarian
e in Se
tion 1.3.3.2 on page 17. After that, some of this stru
ture willbe undone when I present my own 
ontributions to theory, but despite thisundoing, it is important to see the intent behind the original model (whi
hbe
omes somewhat less apparent as the model is generalized).1.3.3 Properties of Stream OperatorsAs stated in the previous se
tion, our obje
tive is to �nd �xed points for astream operator F . One of the distinguishing features of the theory is thatthese �xed points 
an be 
onstru
ted, analyzed, or shown to exist in pie
esrather than all at on
e. The following de�nition is helpful in this respe
t.De�nition 1.3.12 (T -approximate Fixed Points). Let f : C[T,A]m → C[T,A]m,

T ∈ T, and u ∈ C[T,A]m. Then we say u is a T -approximate �xed point of fif dT (u, F (u)) = 0.There are two properties we must impose on a stream operator in order tofa
ilitate this pie
ewise 
onstru
tion of the �xed point: 
ausality and 
ontra
-tion. 15
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A u

F (u)

Figure 1.3.4: A T-approximate �xed point of a stream fun
tion, F1.3.3.1 Causality and Contra
tionDe�nition 1.3.13 (Caus and WCaus). Let F : C[T,A]m → C[T,A]m. If
∀T ∈ T ∀u,v ∈ C[T,A]m,

u ↾[0,T )= v ↾[0,T ) ⇒ F (u)(T ) = F (v)(T )then we say that F satis�es Caus or F ∈ Caus . It is named as su
h sin
ethe property represents a form of 
ausality. At ea
h point in time, the valueof F (u) 
an be determined without any knowledge of future or present valuesof u.If instead,
u ↾[0,T ]= v ↾[0,T ] ⇒ F (u)(T ) = F (v)(T )then we say that F satis�es WCaus (�weak 
ausality�).Remark 1.3.14. Causality 
onditions appear throughout 
ontrol theory andsignal pro
essing (see [Son90℄ for example), and in several other 
ontexts aswell. Conditions almost identi
al to the two versions we de�ne above (di�eringonly in the domains and 
odomains of the operators involved), WCaus andCaus , are identi�ed in [Tra99℄ and [Rab03℄ as �retrospe
tive� and �stronglyretrospe
tive,� respe
tively.Fa
t 1.3.15. Sin
e streams are 
ontinuous, it follows that

F ∈ Caus i� F ∈WCaus and ∀u,v ∈ C[T,A]m F (u)(0) = F (v)(0)Example 1.3.16. The pointwise addition of a 
onstant to a real-valued streamis an example of an operator that satis�es WCaus but not Caus . De�ne
F : C[T,R]→ C[T,R] as

F (u)(t) = u(t) + 116
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e,
F (u)(T ) = u(T ) + 1 = v(T ) + 1 = F (v)(T ). Thus, F satis�es WCaus .But 
onsider the streams u(t) = 1 and v(t) = 0. At no point t ∈ T is
F (u)(t) = F (v)(t) (the former is the 
onstant stream 2, while the latter is the
onstant stream 1), but the interval [0, T ) is simply the empty set when T = 0.Thus, u ↾[0,0)= v ↾[0,0) holds trivially, and yet F (u)(0) = 2 6= 1 = F (v)(0).Remark 1.3.17. In light of Fa
t 1.3.15, the reader might wonder why we wouldbother with Caus when we have WCaus . The latter is, indeed, su�
ient forsome purposes, but the former is essential for the most important theoremsin whi
h we prove that a unique �xed point stream of an operator, F , exists(and 
onstru
t it). This �xed point stream is 
onstru
ted one portion at atime, ea
h su

essive portion 
reated from the previous one. For this to work,the initial portion must already be in pla
e and this is what Caus provides.If F ∈ Caus , then every stream in the range of F is the same at time t = 0.Thus, the image of any stream in the range of F is a 0-approximate �xedpoint. From this, we 
an build a τ -approximate �xed point (where τ is somepositive real number), and from that, a 2τ -approximate �xed point, and soon. If F satis�es only WCaus , a starting pla
e�let alone a whole �xed pointstream�may not even exist! Consider the operator in Example 1.3.16, byinspe
tion, it is 
lear that it has no T -approximate �xed points for any valueof T , yet it satis�es WCaus .De�nition 1.3.18 (Contr (λ, τ)). Let F : C[T,A]m → C[T,A]m, and λ, τ ∈
R+. If λ < 1 and ∀T ∈ T ∀u,v ∈ C[T,A]m,

dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ (u,v)then we say that F satis�es Contr (λ, τ) or F ∈ Contr (λ, τ), named for thesimilarity this property shares with the notion of 
ontra
tion8 on a metri
spa
e. We refer to λ as the modulus of 
ontra
tion of F (some authors use
ontra
tion ratio), and to τ as the 
ontra
tion in
rement of F .1.3.3.2 Shift Invarian
eSomewhat 
entral to [TZ11, TZ12℄ is the 
on
ept of shift invarian
e; majortheorems in ea
h of the two papers relies on it.Remark 1.3.19 (Not the usual sort of shift invarian
e). In signal pro
essingand 
ontrol theory a shift invariant operator F is one that simply 
ommuteswith the shift operator: shiftT ◦ F = F ◦ shiftT (see [Son90℄ for example).This won't work for an F ∈ Caus , however, be
ause for any su
h F there8If (X, dX) and (Y, dY ) are metri
 spa
es, and f : X → Y , then f is 
ontra
ting if ∃λ > 0su
h that λ < 1 and ∀x, y ∈ X dY (f(x), f(y)) ≤ λdX(x, y).17
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onstant b ∈ A su
h that ∀u ∈ C[T,A]m F (u)(0) = b. Thus, if Fwere shift invariant in the usual sense, then ∀u ∈ C[T,A]m ∀t ∈ T F (u)(t) =shift t(F (u))(0) = F (shift t(u))(0) = b. In other words, the range of F wouldbe the singleton set 
onsisting of the stream with the 
onstant value b.Shifting the output results in a glimpse of the future, while shifting the inpute�e
tively erases some of the past upon whi
h that future output depends.So Tu
ker and Zu
ker's formulation of shift invarian
e avoids this problemby introdu
ing a tuple of initial values whi
h en
odes the entire history of theinput before T in a single snapshot, thus preserving all the essential informationabout the past input.The spa
e of parametersAq from 1.3.4 on page 15 is fa
torized asAq = Ar×As,where c ∈ Ar is a tuple of system parameters (essentially these are freely
on�gurable module settings), and a ∈ As is a tuple of initial values, whi
h
omprises the aforementioned snapshot. The number s is 
hosen to be lessthan or equal to m and represents the number of 
omponents of u whi
h mustbe �initialized� to re
onstru
t the past portions of u whi
h are lost in the shift.The symbol us is used in this limited 
ontext to represent a tuple 
onsistingof the �rst s 
omponents of u (i.e. a proje
tion of u onto C[T,A]s).De�nition 1.3.20 (Invar ). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mSuppose that ∀T ∈ T, ∀(c, a,x,u) ∈ Ar×As×C[T,A]p×C[T,A]m, whenever

F (c, a,x,u)↾T= u↾Tthe following two 
onditions also hold:
u
s(0) = a

F (c,us(T ), shiftT (x), shiftT (u)) = shift(F (c, a,x,u))Then we say F satis�es Invar (or F ∈ Invar ).De�nition 1.3.21 (Closure of a domain under shifts). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mand suppose that the �xed point fun
tion Φ for F is de�ned on a set U ⊆

Ar×As×C[T,A]p (i.e. ∀(c, a,x) ∈ U ∃!u ∈ C[T,A]m su
h that F (c, a,x,u) =
u = Φ(c, a,x)). Then U is 
losed under shifts with respe
t to Φ if ∀T ∈ T
∀(c, a,x) ∈ U

(c,Φ(c, a,x)s(T ), shiftT (x)) ∈ U18
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Master University - Computing and Software1.3.4 The Main Theorems From [TZ11℄Theorem 1.3.22 (Theorem TZ1). If F : C[T,A]m → C[T,A]m satis�es Causand Contr(λ, τ) for some τ > 0 and 0 ≤ λ < 1, then F has a unique �xedpoint.Proof. See Theorem 1 from [TZ11℄.Theorem 1.3.23 (Theorem TZ2). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mand use the notation Fc,a,x to represent the fun
tion F (c, a, x, ·) : C[T,A]m →

C[T,A]m. Let U ⊆ Ar×As×C[T,A]p be an open set. Let λ = {λc,a,x : (c, a, x) ∈ U}be a family of 
ontra
tion moduli and τ = {τc,a,x : (c, a, x) ∈ U} be a family ofin
rements. Suppose the following 
onditions hold:1. Fc,a,x ∈ Contr(λc,a,x, τc,a,x) for all (c, a, x) ∈ U2. F ∈ Caus3. F ∈ Invar4. F is 
ontinuous on U5. λ and τ are lo
ally bounded on U (i.e. every point of U has a neighbour-hood within whi
h λ has an upper bound stri
tly less than 1, and τ hasa positive lower bound)6. U is 
losed under shifts with respe
t to Φ (where Φ is the �xed pointfun
tion de�ned in (1.3.3) on page 15)Then Φ is 
ontinuous on U .Proof. See Theorem 2 from [TZ11℄.1.3.5 The Mathemati
al Constru
tion of the Fixed PointAs Theorem TZ1 on this page assures us, if F : C[T,A] → C[T,A] satis�esCaus and Contr (λ, τ) (for some λ, τ > 0 with λ < 1)9, then it has a unique�xed point. The proof is 
onstru
tive and while it is not ne
essary to in
ludethe whole thing in this thesis, we often need to refer to the 
onstru
tion it uses.The 
onstru
tion below is nearly identi
al to the one used in that proof, but9Using the verna
ular from De�nition 1.4.2 on page 22, F satis�es Caus and Contr .19
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e we're not reprodu
ing the whole proof, we 
an simplify the expositiona bit. I'm also using rather di�erent notation here, whi
h (I think) greatlyimproves the 
larity of some of my subsequent proofs. In my notation, given
F ∈ Caus∩Contr (λ, τ), we de�ne a fun
tion Ψ : N×N→ C[T,A] indu
tivelyas follows:Constru
tion 1.3.24.1. Let Ψ(0, 0) be the 
onstant stream, Ψ(0, 0)(t) = c ∀t ∈ T, where c ∈ Ais the initial value 
onstant asso
iated with F ∈ Caus . That is, ∀u ∈

C[T,A] F (u)(0) = c.2. For n, k ∈ N, Ψ(n, k + 1) = holdnτ (F (Ψ(n, k))), where τ is a numbersu
h that F ∈ Contr (λ, τ).3. Given n ∈ N de�ne10 Ψ(n+ 1, 0) = limk→∞Ψ(n, k)See Figure 1.3.5 for an overview. The 
entral feature of the 
onstru
tion isthat for any n, k ∈ N, Ψ(n, k) is an nτ -approximate �xed point. That is,
∀t ∈ [0, nτ ] Ψ(n, k)(t) = F (Ψ(n, k))(t).

c = Ψ(0, 0)
Ψ(0, 1) = hold τ (F (Ψ(0, 0))) Ψ(0, 2) = hold τ (F (Ψ(0, 1))) · · · → Ψ(1, 0)
Ψ(1, 1) = hold 2τ (F (Ψ(1, 0))) Ψ(1, 2) = hold 2τ (F (Ψ(1, 1))) · · · → Ψ(2, 0)
Ψ(2, 1) = hold 3τ (F (Ψ(2, 0))) Ψ(2, 2) = hold 3τ (F (Ψ(2, 1))) · · · → Ψ(3, 0)... ... ...

↓
vFigure 1.3.5: Constru
tion of the �xed point v = F (v)Remark 1.3.25. Ordinarily it would be more natural to use a double sequen
e,but I've opted for a fun
tion on N2 to make it easier to talk about stages ofthe 
onstru
tion when F is augmented with parameters. When F is of theform F : P × C[T,A] → C[T,A] instead of merely F : C[T,A] → C[T,A], we
an easily (in terms of notational 
onsisten
y) de�ne

Ψ : P × N× N→ C[T,A]Hen
e, for any r ∈ P , Φ(r) = limn→∞Ψ(r, n, 0). The operator F and itsinterval of 
ontra
tion τ are obviously 
entral aspe
ts of the 
onstru
tion, butunlike the parameter, they are always impli
itly spe
i�ed by the 
ontext.10Theorem TZ1 proves that this limit exists using�as the reader might well guess fromthe invo
ation of 
ontra
tion�me
hanisms shared by the proof of Bana
h's Fixed PointTheorem on page 92. 20
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ould hardly be blamed for wonderingjust how su
h a 
onstru
tion 
an possibly be related to 
omputability. Afterall, we must perform in�nitely many appli
ations of F before we 
an evenbegin to approximate its �xed point at values of t ∈ [τ, 2τ), and then in�nitelymany again before we 
an go beyond 2τ . The important thing to realize isthat the purpose of this 
onstru
tion is to serve as a framework in whi
h the�xed point 
an be analyzed (and shown to exist); it is 
learly not suited toserve as a viable approximation algorithm.This 
on
ludes the bulk of the prerequisite material from other sour
es. Theremainder of this 
hapter will be used to 
over a few of my own 
ontributionsto these rudiments whi
h apply to at least two of the resear
h proje
ts (andhen
e belong in the neutral territory of the introdu
tory thesis 
hapter ratherthan in any of the three proje
t�spe
i�
 
hapters).1.4 Observations and Addenda to the CorePreliminariesThere are a few more de�nitions and results to 
over that apply to the wholethesis, but they are (for the most part) my own and not part of Tu
ker andZu
ker's resear
h. Be
ause of that and be
ause I feel they en
umber the ex-position somewhat if they are in
luded in the se
tion above, I've put them intheir own se
tion here.1.4.1 Repla
e sup with max in De�nition 1.3.1This is admittedly somewhat pedanti
, but if we wish to refer to da,b fromDe�nition 1.3.1 on page 10 as a pseudometri
, and we de�ne it as the supremumof a set of reals, it is in
umbent on us to show that the set is always bounded.By the de�nition of a pseudometri
, its 
odomain is the set of nonnegative realnumbers (or just R in some texts), while the 
odomain of sup is the two-point
ompa
ti�
ation of the real numbers (R∪{−∞,∞}). Not only is it possible toshow that the set is bounded, however, but it is also possible to show that it is
losed. Hen
e, its supremum is not only �nite, but a
tually 
ontained withinthe set itself. Thus, it makes more sense to simply use max instead of sup.While it is fairly straightforward to show that this is possible, it is surprisinglynontrivial. First, we need a lemma.Lemma 1.4.1 (Metri
s are 
ontinuous). Let (X, d) be a metri
 spa
e11. Then11In fa
t, this lemma holds even if d is only a pseudometri
, but stating it this way wouldonly lead to unne
essary 
onfusion here sin
e we need this lemma only for dA, whi
h is ametri
. 21
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d is 
ontinuous with respe
t to the topology it indu
es on X2.Proof. Sin
e the produ
t is �nite, we 
an work with the box topology on X2,whi
h 
onsists of basi
 open sets

Bε(x, y) =
{
(x′, y′) ∈ X2 : max {d(x, x′), d(y, y′)} < ε

}Let (x, y) ∈ X2 and let U ⊆ R≥0 be an open set that 
ontains d(x, y). Thenthere is an open interval I ⊆ R≥0 (open with respe
t to the subspa
e topologyon R≥0) su
h that d(x, y) ⊆ I ⊆ U . Let r > 0 be the length of that interval.Let V = Br(x, y). Then d(x, y) ∈ d (Br(x, y)) (sin
e d(x, x) = d(y, y) =
0 < r). Sin
e ∀(x′, y′) ∈ Br(x, y) d(x, x

′) < r and d(y, y′) < r, it followsthat d(Br(x, y)) ⊆ I. By De�nition 1.3.6 on page 11, it follows that d is
ontinuous.Returning to the issue hand (repla
ing sup with max), sin
e u and v are
ontinuous on T and sin
e dA is 
ontinuous on A2 (by Lemma 1.4.1), it followsthat dA (u(t), v(t)) is 
ontinuous on [a, b], whi
h is 
ompa
t with respe
t tothe subspa
e topology on T ⊆ R. The 
ontinuous image of a 
ompa
t set is
ompa
t, and a 
ompa
t subset of R is 
losed and bounded. Thus, it 
ontainsits supremum, whi
h is �nite.1.4.2 Generalize Contr(λ, τ)Remark 1.4.2. There are times at whi
h we need to refer to an operator F thatsatis�es Contr (λ, τ) for some τ, λ > 0 and λ < 1, but we don't 
are aboutthe values of λ and τ . In su
h 
ases, it seems espe
ially 
umbersome to beobligated to spe
ify that λ, τ > 0 and λ < 1 sin
e all three inequalities musthold just to satisfy De�nition 1.3.18 on page 17. In these situations, it makessense to write simply, �F ∈ Contr � or �F satis�es Contr .�While writing [JZ12℄, I found it ne
essary to be able to identify operators thatwould satisfy Contr (λ, τ), but for values of λ that may be greater than orequal to one. Although su
h operators don't o�er 
ontra
tion per se, theyare uniquely positioned to be 
omposed with other operators to produ
e su
h
ontra
tion, so it is quite useful to be able to refer to this property. This isthe subje
t of the Building Blo
k Lemma (Lemma 3.2.1 on page 55).De�nition 1.4.3 (Lip). Let F : C[T,A]m → C[T,A]m. If ∃τ, λ ∈ R+ ∪ {0}su
h that ∀T ∈ T ∀u,v ∈ C[T,A]m,
dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ(u,v)then we say that F satis�es Lip(λ, τ) or F ∈ Lip(λ, τ). The name is due tothe similarity this property shares with the well-known Lips
hitz 
ontinuityproperty from analysis (although traditionally α is in pla
e of our λ).22
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h that
dT (u,v) = 0, then 
ertainly dT−τ(u,v) = 0. Hen
e, dA (F (u)(T ), F (v)(T )) ≤
dT (F (u), F (v)) = d(T−τ)+τ (F (u), F (v)) ≤ λd(T−τ)+τ (u,v) = λdT (u,v) = 0.And therefore, F (u)(T ) = F (v)(T ). Hen
e, any F ∈ Lip(λ, τ) 
ould be saidto satisfy WCaus on [τ,∞) ⊆ T.There is, however, no way to establish the 
ausality (weak or otherwise) ofsu
h an F on [0, τ), as the following example demonstrates.Example 1.4.5 (Lip ; WCaus). Take A = R with the usual metri
, let
τ ∈ R+, and 
hoose m = 1. De�ne F : C[T,R]→ C[T,R] as follows:

F (u)(t) =

{
1
2
u(τ) if 0 ≤ t ≤ τ

1
2
u(t) if t > τThen F ∈ Lip(1/2, τ) (and it's even 
ontinuous), but it does not satisfyWCaus . To see this, 
onsider u(t) = t and v(t) = −t. Taking T = 0,we see that ∀t ≤ T u(T ) = v(T ) = 0, but F (u)(0) = τ/2 6= −τ/2 = F (v)(0).Note that su
h an example would not be possible if we were to take T = R(Lip(λ, τ) would give us WCaus �for free� on su
h a stream spa
e), butadapting the rest of the theory to work on C[R,A] would not be trivial andnor would it ne
essarily be an improvement overall (see Se
tion 3.1 on page 50for an explanation).Lemma 1.4.6. If F ∈ Lip(λ, τ) and F ∈ WCaus then ∀τ ′ ≤ τ , ∀λ′ ≥ λ,

F ∈ Lip(λ′, τ ′).Proof. Let u1,u2 ∈ C[T,A]m, T ∈ T and suppose dT (u1,u2) = 0. For λ′ ≥ λ,it is obvious that F ∈ Lip(λ′, τ):
dT+τ (F (u1), F (u2)) ≤ λdT+τ(u1,u2) ≤ λ′dT+τ (u1,u2)The τ ′ assertion is less trivial. For i = 1, 2, de�ne u

∗
i ∈ C[T,A]m as follows:

u
∗
i (t) =

{
ui(t) if t < T + τ ′

ui(T + τ ′) if t ≥ T + τ ′Then for 0 < τ ′ < τ,

dT+τ ′ (F (u1), F (u2)) = dT+τ ′ (F (u∗
1) , F (u∗

2)) sin
e F ∈WCaus and dT+τ ′(u
∗
i ,ui) = 0

≤ dT+τ (F (u∗
1) , F (u∗

2)) sin
e t < r ⇒ dt(v,w) ≤ dr(v,w)

≤ λ′dT+τ (u
∗
1,u

∗
2) sin
e F ∈ Lip(λ′, τ)

= λ′dT+τ ′ (u
∗
1,u

∗
2) sin
e uiare 
onstant beyond T + τ ′

= λ′dT+τ ′ (u1,u2) sin
e dT+τ ′(u
∗
i ,ui) = 023
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eding page, the only reason wemust require F to satisfy WCaus in the proof of Lemma 1.4.6 is to establishthe inequality for T < τ − τ ′. For if T ≥ τ − τ ′ then,
dT (u1,u2) = 0 ⇒ dT−τ+τ ′(u1,u2) = 0

⇒ d(T−τ+τ ′)+τ (Fu1, Fu2) ≤ λ′d(T−τ+τ ′)+τ (u1,u2)

= λ′dT+τ ′(u1,u2)This argument doesn't rely onWCaus at all, but it does require T−τ+τ ′ ≥ 0(so it isn't quite su�
ient to show F ∈ Lip(λ′, τ ′)).Remark 1.4.8. Note that for any λ ≥ 0, WCaus is a
tually equivalent toLip(λ, 0). Putting this observation together with Lemma 1.4.6 yields thefollowing result:
F ∈ Lip(λ, τ) ∩WCaus ⇐⇒ (∀τ ′ ≤ τ) F ∈ Lip(λ, τ ′)Remark 1.4.9. In order to be more 
onsistent with [TZ11℄ and to get the mostgeneral results possible, it would seem preferable to de�ne Lip(λ, τ) using theapparently weaker 
ondition,
dT (u,v) = 0⇒ dT,T+τ (F (u), F (v)) ≤ λdT,T+τ(u,v)Call this 
ondition Lip ′(λ, τ). One 
ould not be faulted for thinking this def-inition is stri
tly more in
lusive than Lip(λ, τ), and it mat
hes the de�nitionof Contr (λ, τ) in [TZ11℄ mu
h more 
losely. In fa
t, it turns out that the twode�nitions are equivalent (so we stand by De�nition 1.4.3).Proposition 1.4.10 (Equivalen
e of Lip de�nitions). Let F : C[T,A]m →

C[T,A]m, λ ∈ R+, τ ∈ T. Then F ∈ Lip(λ, τ) if and only if F ∈ Lip′(λ, τ).Proof. Let T ∈ T and u,v ∈ C[T,A]m su
h that dT (u,v) = 0.(⇒) Suppose F ∈ Lip(λ, τ). Then
dT,T+τ(F (u), F (v)) ≤ dT+τ (F (u), F (v))

≤ λdT+τ (u,v)The �rst inequality holds be
ause
dT+τ (F (u), F (v)) = max {dT (F (u), F (v)), dT,T+τ(F (u), F (v))}and the se
ond be
ause F ∈ Lip(λ, τ).Now,

λdT+τ(u,v) = λmax {dT (u,v), dT,T+τ(u,v)}
= λmax {0, dT,T+τ(u,v)}
= λdT,T+τ(u,v)24
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Master University - Computing and SoftwareTherefore, dT,T+τ(F (u), F (v)) ≤ λdT,T+τ(u,v).(⇐) Suppose F ∈ Lip ′(λ, τ). We must show that dT+τ(F (u), F (v)) ≤ λdT+τ(u,v).As before, note that λdT+τ (u,v) = λdT,T+τ(u,v). Similarly, dT+τ(F (u), F (v)) =
max {dT (F (u), F (v)), dT,T+τ(F (u), F (v))}. Hen
e, we need to establish thefollowing inequalities:

dT (F (u), F (v)) ≤ λdT,T+τ(u,v)

dT,T+τ (F (u), F (v)) ≤ λdT,T+τ(u,v)The latter follows dire
tly from the hypothesis, but the former requires a bit ofwork. We'll use an indu
tive approa
h for this. For the base 
ase, suppose 0 ≤
T < τ . Sin
e dT (u,v) = 0, it follows that d0(u,v) = 0. Sin
e F ∈ Lip ′(λ, τ),

dτ (F (u), F (v)) = d0,0+τ (F (u), F (v))

≤ λd0,0+τ (u,v)

= λdτ (u,v)Sin
e T < τ , dT (F (u), F (v)) ≤ dτ(F (u), F (v)).Sin
e T + τ ≥ τ , λdτ(u,v) ≤ λdT+τ(u,v).Putting these last three results together we get,
dT (F (u), F (v)) ≤ dτ (F (u), F (v))

≤ λdτ(u,v)

≤ λdT+τ(u,v)

= λdT,T+τ(u,v)Now, for the indu
tive step, let n ∈ Z+ and assume that ∀t < nτ ∀u, v ∈
C[T,A],

dt(u,v) = 0 ⇒ dt+τ (F (u), F (v)) ≤ λdt+τ (u,v)Suppose nτ ≤ T < (n+ 1)τ . We must show that
dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ (u,v)Sin
e dT (u,v) = 0 and 0 ≤ T − τ ≤ T , it follows that,

dT−τ (u,v) = 0So, by the indu
tive hypothesis and the fa
t that T − τ < nτ ,
d(T−τ)+τ (F (u), F (v)) ≤ λd(T−τ)+τ (u,v)

= λdT (u,v)

= 0

≤ λdT,T+τ(u,v)25
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Master University - Computing and Software1.4.3 Doesn't Continuity Follow from Caus and Contr?Perhaps it's just my own �awed intuition, but it seemed to me that if anoperator F : C[T,A] → C[T,A] satis�ed Caus and Contr , surely it mustbe 
ontinuous. I was parti
ularly motivated to 
onsider this assertion afterhaving written Theorem TZJ1 for Vanishing Delays on page 48 (as it wouldhave allowed me to omit one of the ante
edents). After trying to prove itunsu

essfully for a while, a 
ounterexample almost immediately o

urred tome when I abandoned the proof attempt and tried to think of one.Example 1.4.11. De�ne F : C[T,R]→ C[T,R] as follows:
F (u)(t) =

{
t if u(0) is rational
−t if u(0) is irrationalLet u, v ∈ C[T,R] and let T ∈ T. Then F (u)(0) = F (v)(0) = 0, and if

dT (u, v) = 0 then u(0) = v(0). Hen
e F (u) = F (v). That means F (u)(T ) =
F (v)(T ) and therefore, F ∈ Caus . It also means that for any λ, τ > 0,
dT+τ(F (u), F (v)) = 0 ≤ λdT+τ (u, v). Hen
e, F ∈ Contr .As for 
ontinuity, let ε = Tε = 1, let δ, Tδ > 0, and let u ∈ C[T,R]. Now
hoose a number a ∈ (0, δ) su
h that if u(0) ∈ Q then u(0) + a /∈ Q, and if
u(0) /∈ Q then u(0) + a ∈ Q. Let v(t) = u(t) + a. Then dTδ

(u, v) = a < δ, but
dTε(F (u), F (v)) = 2 ≥ ε. Therefore, F is not 
ontinuous (by Lemma 1.3.7 onpage 12).1.4.4 Parameter-Relaying Tilde Fun
tionsThere are a few pla
es in whi
h I need to transmit a parameter value through afun
tion that does not otherwise in
lude the parameter spa
e in its 
odomain.Up until my pre-defen
e revisions, I was unfamiliar with any notational 
on-vention for doing so. In the absen
e of su
h a 
onvention, I began adorning myfun
tion names with a tilde when I needed to do this. It was only during theselate-hour revisions that my attention was dire
ted to the 
on
ept of �arrows�in fun
tional programming (thanks to Prof. Ja
ques Carette!). Unfortunately,at this point I had tildes liberally sprinkled throughout my thesis, and moreimportantly, the notation for arrows does not appear to be well�suited for theuse to whi
h I would need to put them here. Consequently, I have left thetildes untou
hed.Notation 1.4.12 (Tilde fun
tions). Let X and Y be sets and let f : X ×
Y → Y . Then we de�ne f̃ : X × Y → X × Y as f̃(x, y) = (x, f(x, y)) for
(x, y) ∈ X × Y . 26
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Master University - Computing and SoftwareLemma 1.4.13. Let X and Y1, Y2, . . . , Yn be topologi
al spa
es. Let x0 ∈ X.For i = 1, 2, . . . , n, let fi : X → Yi be a fun
tion whi
h is 
ontinuous at x0.Let f : X →
∏n

i=1 Yi be de�ned as f(x) = (f1(x), f2(x), . . . , fn(x)). Then f is
ontinuous at x0.Proof. Let Y =
∏n

i=1 Yi (with the produ
t topology) and for ea
h i, let πi :
Y → Yi be the proje
tion of Y on Yi. Let V ⊆ Y be an open neighbourhoodof f(x0). Then, by de�nition of the produ
t topology, there is a basi
 openset B = B1 × B2 × · · · × Bn ⊆ V , where ea
h Bi ⊆ πi(V ) and f(x0) ∈ B.Sin
e ea
h fi is 
ontinuous at x0, there is an open neighbourhood Ui ⊆ X of
x0 su
h that fi(Ui) ⊆ Bi. Let U =

⋂n
i=1 Ui. Then U is an open neighbourhoodof x0 (sin
e it's only a �nite union of open sets, ea
h of whi
h 
ontains x0),and f(U) ⊆ B ⊆ V .Corollary 1.4.14. Let X and Y be topologi
al spa
es and suppose a fun
tion

f : X × Y → Y is 
ontinuous at a point (x0, y0) ∈ X × Y . Then f̃ (as de�nedin Notation 1.4.12) is also 
ontinuous at (x0, y0).Proof. f̃ 
an be rewritten as f̃(x, y) = (πX(x, y), f(x, y)) (where πX : X×Y →
X is the proje
tion of X×Y on X). Both 
omponent fun
tions are 
ontinuousat (x0, y0), so the result follows from Lemma 1.4.13.1.4.5 My Version of Theorem TZ2While working on my original resear
h proje
t (Chapter 2), I found myself inneed of something like Theorem TZ2 on page 19, but mu
h to my 
hagrin,the fun
tion to whi
h I needed to apply this theorem was not shift invariantand 
ould not be made so by simply augmenting it with the extra initial valueparameters. After many failed attempts using other theorems and 
onstru
-tions to get around this, I de
ided to dive into the proof to see whether I 
ouldsubstitute some other property for Invar .Mu
h to my surprise, it initially appeared I didn't need to substitute anythingfor Invar ! My proof went through by apparently just omitting it. Upon laterinspe
tion, my supervisor and I together realized that indeed I had substitutedsomething to repla
e Invar : 
ontinuity on the entire domain rather than ononly the parameter spa
e. This leads to the following modi�ed version ofTheorem TZ2:Theorem 1.4.15 (Theorem TZJ2 ). Let (P, dP ) be a metri
 spa
e and let
F : P × C[T,A] → C[T,A]. Let p ∈ P and let V ⊆ P be a neighbourhood of
p. Let τ, λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u), suppose thatfor all r ∈ V Fr satis�es Caus and Lip(λ, τ), and that for all u ∈ C[T,A], Fis 
ontinuous at (p, u). Then Φ : V → C[T,A] (as des
ribed in (1.3.3) on 15),whose existen
e is assured by Theorem TZ1 on page 19 is 
ontinuous at p.27
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e this is now12 merely a spe
ial 
ase of thegeneralized version on page 102.Remark 1.4.16 (How do Theorems TZ2 and TZJ2 
ompare?). One obviousadvantage to my requirement that F be 
ontinuous at (p, u) for every u ∈
C[T,A] (instead of being 
ontinuous on merely a subset of P , without regardto its behaviour on P × C[T,A]) over Tu
ker and Zu
ker's requirement that
F ∈ Invar is that the latter pla
es mu
h heavier demands on the domain of
F . In their version, P must be of the form Ar×As×C[T,A]q, where r, s, q ∈ Nand it must 
ontain a subset U whi
h has a nonempty interior and whi
h is
losed under shifts with respe
t to Φ. In my version, P is just an arbitrarymetri
 spa
e (whi
h 
ould be of the form Ar×As×C[T,A]q, or of some otherform).Another (possible) advantage is that my version is pointwise rather than set-wise. They require F to be 
ontinuous on U ⊆ P (whi
h, as mentioned above,has a nonempty interior and is 
losed under shifts with respe
t to Φ), insteadof at a single point p ∈ P . Of 
ourse, they do establish 
ontinuity on all of
U�not at just a single point�so if one has no need for a pointwise version ofthe theorem, mine would o�er no parti
ular advantage in this respe
t.Finally, the most obvious question to ask is how the two 
onditions overlap.That is, if we put aside the two advantages above (assume P is of the form
Ar×As×C[T,A]q and F is 
ontinuous on U), are there any stream operators
F : P×C[T,A]m → C[T,A]m that would satisfy one version and not the other?Are they, perhaps, the same under these 
onditions on the domain? After all, inmany 
ases13 it would be little more than a matter of bookkeeping (possibilityrather elaborate and arduous bookkeeping, but bookkeeping nonetheless) tostart with an operator F : P × C[T,A]m → C[T,A]m where P is a metri
spa
e that doesn't 
onform to the stru
ture demanded by Invar and 
reatean equivalent operator F ′ : Ar ×As × C[T,A]q × C[T,A]m → C[T,A]m whi
his at least eligible to satisfy Invar .Unfortunately, I don't have the 
omplete answer for this question, but do Ihave half the answer: there are some stream operators (in whi
h P is of the
orre
t form for Invar ) that satisfy the ante
edents of my Theorem TZJ2,but not the ante
edents of Tu
ker and Zu
ker's Theorem TZ2. Hen
e, theirtheorem may be a spe
ial 
ase of mine, but the 
onverse is not a possibility(even when the domain has the right form), as the following 
ounterexampleshows.12Originally I proved this theorem dire
tly, and that was long before the GeneralizedTheorem TZJ2 on page 102 even o

urred to me. To prove the more general theoremrequired only a few adjustments in the proof of this theorem.13In parti
ular, I'm thinking of 
ases in whi
h P 
an be embedded in a spa
e of the form
Ar ×As × C[T,A]q, for some r, s, q ∈ N. 28
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A×A× C[T,A] with the metri
,

dP ((c1, a1, x1) , (c2, a2, x2)) = max
{
|c1 − c2| , |a1 − a2| , dC[T,A](x1, x2)

}De�ne F : P × C[T,A]→ C[T,A] as follows, for (c, a, x, u) ∈ P × C[T,A]:
F (c, a, x, u) = delay cx

• ∀ (c, a, x) ∈ P F (c, a, x, ·) ∈ Caus . This is obvious sin
e the value of
F (c, a, x, u)(t) doesn't depend on any values of u, let alone future orpresent values.
• F is 
ontinuous (on P × C[T,A]). See Corollary 2.5.8 on page 45.
• F (c, a, x, ·) ∈ Contr (λ, |c|) for λ = 1/2 (in fa
t, for any λ < 1). SeeLemma 2.5.1 on page 41.Thus, F satis�es all the ante
edents of Theorem TZJ2 on page 27, and it is
lear by inspe
tion that its �xed point is u = delay cx.Now, take x to be a monophoni
 re
ording of somebody shouting14, �E
ho!�,starting at time t = 0 and falling silent at t = 1 (and obviously transposedwith dire
t 
urrent to ensure the re
ording stays in C[T,R+] and never venturesbelow the T-axis into C[T,R]). Let c = 1. Then for any a ∈ A, u ∈ C[T,A],

F (c, a, x, u) is a re
ording of the same shout, but starting at time t = 1 andending at time t = 2. Therefore, shiftc (F (c, a, x, u)) = x (more generally, forany T ∈ T shiftT ◦ delayT is the identity on a stream spa
e). But shiftc(x),on the other hand, is simply the zero stream, and no matter how mu
h wedelay it, we 
an never get the �E
ho!� part ba
k.So for any u ∈ C[T,A],
F (c, a, shiftc(x), shift c(u)) = delay c (shiftc(x)) = 0 6= x = shift c (F (c, a, x, u))(where 0 is the zero stream). Thus, F does not satisfy Invar , and moreover,we've done everything possible to make it satisfy Invar without 
hanging itsbehaviour.

14Or to be less 
olourful, take x to be any nonzero stream with support [0, 1).29



Chapter 2Resear
h Proje
t #1: SolvingNetwork Equations UsingVanishing Delays
2.1 OverviewTu
ker and Zu
ker's theory 
entres around their 
onstru
tion of the �xed pointalong with a set of 
omplementary properties (Caus , Contr , Invar , as wellas several others without spe
ial names). All four of their main theoremsuse that 
onstru
tion as theoreti
al s
a�olding to draw 
on
lusions about the�xed point of a stream operator. I thought of an altogether di�erent sortof 
onstru
tion for the �xed point and attempted to emulate their work usingthat. My 
onstru
tion involves introdu
ing a delay in the stream transformer�making an operator with a guaranteed �xed point that is mu
h easier to �nd�and then letting that delay approa
h zero, sort of like a homotopy in operatorspa
e. The main 
hallenge I set for myself was to �nd su�
ient (and ideallyne
essary) 
riteria to guarantee that the �xed point of the delayed transformer
onverges to a �xed point of the original stream transformer. Over
omingthis 
hallenge would give me an analogue of Theorem TZ1 (existen
e anduniqueness of the �xed point) from [TZ11℄.Unfortunately, I never did over
ome that 
hallenge�at least not to my satis-fa
tion. I was able to show that if the �xed point of the delayed transformer
onverges (to a stream), then indeed it 
onverges to a �xed point of the origi-nal transformer. I was also able to show that my vanishing delay 
onstru
tiondoes work under the same 
onditions (F ∈ Caus ∩ Contr ) that Tu
ker andZu
ker's 
onstru
tion works. But what I really wanted to �nd was my own setof properties�spe
i�
ally tailored for my 
onstru
tion�that would serve thesame fun
tion as Caus and Contr (i.e. to test whether the 
onstru
tion will30
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losest I 
ame was to devisea set of properties whi
h I think might work, and to sket
h out the beginningof a proof, but I got stu
k (for several months) trying to �nish that proof andrealized I was probably going to drown in it if I didn't abandon ship.2.2 Imposing a Delay on the Network ModelThere is a (potentially profound) simpli�
ation built into Tu
ker and Zu
ker'snetwork model, along with most similar models: the omission of propagationdelay. Streams are 
arried from module to module over 
hannels instanta-neously, and this will obviously not be true in any physi
al implementation ofa network. The delay usually makes qualitatively little di�eren
e in a purelyfeed-forward network with modules 
onsisting of total fun
tions. The output isalways well-de�ned and perhaps only slightly phase-shifted, but when feedba
kis involved, the situation 
hanges.Example 2.2.1. Consider the following network in whi
h f : C[T,R] →
C[T,R] is some linear (and total) fun
tion that satis�es WCaus (see De�-nition 1.3.13):

��
��

- -

?

�+ f

x(t) y(t)Figure 2.2.1: A Simple Feedba
k NetworkThe network output, if indeed it is well-de�ned, be
omes an in�nite regress ifwe attempt to solve it dire
tly:
y(t) = x(t) + f(y)(t)

= x(t) + f(x)(t) + f 2(y)(t)

= x(t) + f(x)(t) + f 2(x)(t) + f 3(x)(t) + f 4(y)(t)

=
...Expressed in the notation of our network models, the network behaviour wouldbe given by the (hopefully unique) solution of the following equation�if su
ha solution exists: [

x
y

]
(t) = F

[
x
y

]
(t)

=

[
x

x+ f(y)

]
(t)31
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h it serves as a model? Aside, perhaps, from pathologi
al exampleslike bla
k holes and misfortunate 
ats imprisoned opaquely with poisonous,nu
lear-triggered deathtraps in paradoxi
al gedankenexperiments, there areno �unde�ned� values in nature (whi
h is, in fa
t, the very raison d'être ofthe aforementioned felines). The system will exhibit some sort of behaviour,whether or not the equation model has a solution, and this disparity indi
atesa de�
ien
y in the model.Now, suppose we introdu
e a delay of γ ∈ R+ on every 
hannel. We wouldhave (for t ≥ γ)
[
x
y

]
(t) = F

[
x
y

]
(t− γ)

=

[
x

x+ f(y)

]
(t− γ) (2.2.1)and for t ≤ γ, there would be 
onstants x0, y0 ∈ R su
h that

[
x
y

]
(t) =

[
x0
y0

] (2.2.2)This system leads to only �nite regress. We 
an solve it dire
tly for any value of
t ∈ T. If t ≤ γ, the solution is given dire
tly by (2.2.2). If nγ ≤ t ≤ (n+ 1) γfor some n ∈ Z+, then we 
an use the 
onstant solution on [0, γ] together with(2.2.1) to �nd the solution on [γ, 2γ], whi
h we 
an then use to �nd the solutionon [2γ, 3γ], and so on, until we rea
h our target interval: [nγ, (n + 1)γ]. Aslong as F is total, the network behaviour is always well-de�ned with the delayimposed (see the Delayed Operator Theorem on page 45).Of 
ourse, to be even more physi
ally a

urate, we should equip ea
h 
hannelwith its own delay, γx, γy > 0, and solve the system on the sequen
e of (possiblyirregular) intervals with the endpoints given by multiples of γx and γy, but thatlevel of generality is beyond the s
ope of our dis
ussion.2.3 The Problem with Imposing Delays andthe Con
ept of Vanishing DelaysImposing a mandatory delay (even an arbitrary delay of γ > 0) on every
hannel would make our mathemati
al model somewhat more a

urate if thesystem being modelled dire
tly resembles the network. For example, if webuild an ele
troni
 
ir
uit that looks exa
tly like a network diagram, it willindeed exhibit some laten
y as the signal travels from module to module. The32
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y would, of 
ourse, be di�erent on ea
h 
hannel, but it still would benonzero, so a uniformly delayed model would be at least somewhat 
loser tothe real thing.Analog 
omputation involves building analogies of a real system, however, notbuilding s
ale models. Consider, for example, the model of a mass-spring-damper system 
overed Chapter 3 (or in [TZ11℄). We 
over three di�erentmodels, and ea
h of them uses a di�erent number of 
hannels. Even if weimposed the same delay on ea
h of them, the three systems would exhibitdi�erent solutions. But they're all supposed to be a model of the same system!Moreover, the system for whi
h they serve as models would exhibit no su
hdelays be
ause information 
arried on separate 
hannels of the models are, infa
t, di�erent physi
al properties (position, velo
ity, and a

eleration). Theidea of �propagation delay� between any two of those properties in the physi
alsystem is simply nonsensi
al. It is only when that network represents an a
tual
ir
uit (and one that resembles the network exa
tly) that the delay makes anysense. Thus, while an expli
it �delay module� 
ould 
ertainly be a usefuladdition to our modelling toolbox (along with adders, integrators, multipliers,et
.), for
ing a delay into the very 
al
ulus of models would be a mistake.The fa
t remains that a network with a delay on every 
hannel always has asolution (and one that 
an be found dire
tly) but a network without delaysmay not. So what if we introdu
e the delay temporarily, �nd a solution tothe delayed system, and then see what happens to that solution as the delayapproa
hes zero? This is the question I explored in Proje
t #1.2.4 Case Study: Linear Homogeneous SystemsBefore engaging in the development of a theory based on vanishing delays,it seemed prudent to test the idea on a simple type of system with a knownsolution�just to serve as a proof-of-
on
ept. Linear homogeneous systems�t the bill, and indeed, everything fell into pla
e as I had hoped (as I'll nowdemonstrate).In this se
tion, we'll take A = R (although A = C would work just as well),
hoose some m ∈ N. Let A ∈ Rm×m and c ∈ Rm. Take F : C[T,R]m →
C[T,R]m to be,

F (u)(t) =

ˆ t

0

Au(s)ds+ c (2.4.1)It is well known from the theory of ordinary di�erential equations (see [BD01℄,for example) that F has a unique �xed point, u0 ∈ C[T,R]m, given by, u0(t) =

33
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eAt

c, where
eAt =

∞∑

k=0

tk

k!
AkWhat we need to do is introdu
e a delay of γ > 0 to F , �nd the �xed point(if there is one1) of this delayed F , and then 
he
k whether that �xed pointapproa
hes eAt

c as γ → 0+.Given any γ > 0, any u ∈ C[T,R]m, and any t ∈ T,delayγF (u)(t) =

{
c if t ≤ γ
´ t−γ

0
Au(s)ds+ c if t ≥ γ

(2.4.2)Lemma 2.4.1. delayγF (as de�ned by Equation (2.4.2)) has a unique �xedpoint:
uγ(t) =

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak
c (2.4.3)Proof. We must �rst verify that uγ is a
tually a stream; in parti
ular, itmust be 
ontinuous. It is obviously 
ontinuous on any interval of the form,

[nγ, (n+ 1)γ) (where n ∈ N) be
ause it is de�ned as a sum of a �xed numberof 
ontinuous terms there (⌊t/γ⌋ + 1 of them). On
e t 
rosses into the nextsu
h interval, however, a new term is added. So we need to 
he
k only thatfor n ∈ N, uγ(t)→ uγ((n+ 1)γ) as t→ (n+ 1)γ− (i.e. from the left). This isreadily apparent sin
e that new term 
ontains the fa
tor, t− (n + 1)γ, whi
his zero at the left endpoint of the next interval (when t = (n+1)γ). With thatformality out of the way, we 
an demonstrate that uγ is a
tually a �xed pointfor delayγF .Let t ∈ T. If t < γ then,delayγF (uγ)(t) = c =
0∑

k=0

(t− kγ)k
k!

Ak
c = uγ(t) (2.4.4)So suppose t ≥ γ and let N = ⌊t/γ⌋ − 1 (making (N + 1)γ ≤ t < (N + 2)γ).1Admittedly, this seems somewhat 
oy in light of Se
tions 2.6 and 2.7. By inspe
tion,it is 
lear that F satis�es Caus and has a unique 0-approximate �xed point�namely, c.Therefore, by The Delayed Operator Theorem on page 45, the delayed operator, delayγF ,has a unique �xed point uγ (given by the 
onstru
tion in Proof 2 of that theorem) for every

γ > 0. The work in this se
tion, however, was a feasibility study whi
h ne
essarily pre
ededall that.
34
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ˆ t−γ

0

Auγ(s) ds+ c

=

N−1∑

n=0

ˆ (n+1)γ

nγ

Auγ(s) ds+

ˆ t−γ

Nγ

Auγ(s) ds+ c

=
N−1∑

n=0

ˆ (n+1)γ

nγ

A




⌊s/γ⌋∑

k=0

(s− kγ)k
k!

Ak
c


 ds

+

ˆ t−γ

Nγ

A




⌊s/γ⌋∑

k=0

(s− kγ)k
k!

Ak
c


 ds+ c

=

N−1∑

n=0

ˆ (n+1)γ

nγ

n∑

k=0

(s− kγ)k
k!

Ak+1
c ds

+

ˆ t−γ

Nγ

N∑

k=0

(s− kγ)k
k!

Ak+1
c ds+ c

=

N−1∑

n=0

n∑

k=0

ˆ (n+1)γ

nγ

(s− kγ)k
k!

dsAk+1
c

+

N∑

k=0

ˆ t−γ

Nγ

(s− kγ)k
k!

dsAk+1
c+ c

=
N−1∑

n=0

n∑

k=0

(s− kγ)k+1

(k + 1)!

∣∣∣∣
(n+1)γ

nγ

Ak+1
c

+

N∑

k=0

(s− kγ)k+1

(k + 1)!

∣∣∣∣
t−γ

Nγ

Ak+1
c+ c

=
N−1∑

n=0

n∑

k=0

((n+ 1)γ − kγ)k+1 − (nγ − kγ)k+1

(k + 1)!
Ak+1

c

+

N∑

k=0

(t− γ − kγ)k+1 − (Nγ − kγ)k+1

(k + 1)!
Ak+1

c+ c

=
N−1∑

n=0

n∑

k=0

(n− k + 1)k+1 − (n− k)k+1

(k + 1)!
γk+1Ak+1

c

+
N∑

k=0

(t/γ − (k + 1))k+1 − (N − k)k+1

(k + 1)!
γk+1Ak+1

c+ c
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=

N−1∑

k=0

(
N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1

)
γk+1Ak+1

(k + 1)!
c

+

N∑

k=0

((
t

γ
− k − 1

)k+1

− (N − k)k+1

)
γk+1Ak+1

(k + 1)!
c+ c

=
N−1∑

k=0

((
N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1

)
− (N − k)k+1

)
γk+1Ak+1

(k + 1)!
c

+

N∑

k=0

((
t

γ
− (k + 1)

)k+1
)
γk+1Ak+1

(k + 1)!
c+ cThe nested sum above (the one indexed by n) teles
opes:

N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1 = 1k+1 − 0k+1 + 2k+1 − 1k+1 + · · ·

· · ·+ (N − k)k+1 − (N − 1− k)k+1

= (N − k)k+1 − 0k+1Thus, the summand in the �rst summation is zero for every value of k from 0to N − 1, whi
h leaves only,delayγF (uγ)(t) =

N∑

k=0

((
t

γ
− (k + 1)

)k+1
)
γk+1Ak+1

(k + 1)!
c+ c

=
N+1∑

k=1

((
t

γ
− k
)k
)
γkAk

k!
c+ c

=

N+1∑

k=1

(t− kγ)k
k!

Ak
c+ c

=
N+1∑

k=0

(t− kγ)k
k!

Ak
c

=

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak
c

= uγ(t)

uγ 
an easily be shown to be unique by indu
tion on N . In Equation (2.4.4),it 
an be seen that the value of delay γF (uγ) on [0, γ) is independent of uγ�so we know at least that portion of the �xed point is unique. The rest of36
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al
ulations show that given any N ∈ N, the value of delay γF (uγ) on
[(N +1)γ, (N +2)γ) depends on uγ(t) only for t < (N +1)γ. Therefore, uγ isthe unique �xed point of delayγF .What must be shown next is that this solution approa
hes the stream, u0(t) =
eAt

c (whi
h is the �xed point of F ) as γ → 0+. First, a qui
k lemma. Re
allthat for a real number x, the power series for ex is given by
ex =

∞∑

k=0

xk

k!
= lim

n→∞

n∑

k=0

xk

k!What the following lemma shows is that we 
an �pollute� the terms of thisexpansion (in a parti
ular way that suits our purposes) and a�e
t only therate of 
onvergen
e, but not the end result.Lemma 2.4.2. For all x ∈ R≥0

lim
n→∞

n∑

k=0

xk

k!

(
1− k

n

)k

= exProof. Let x ≥ 0 and ε > 0. By de�nition,
lim
n→∞

n∑

k=0

xk

k!
= exHen
e, there is an N > 0 su
h that ∀n ≥ N

∣∣∣ex −
∑n

k=0
xk

k!

∣∣∣ < ε/2. Clearlyfor any �xed k ≥ 0,

lim
n→∞

(
1− k

n

)k

= 1So, ∀k > 0 ∀ε′ > 0 ∃Mk > 0 ∀n ≥Mk

∣∣∣∣∣

(
xk

k!

)(
1−

(
1− k

n

)k
)∣∣∣∣∣ < ε′Let M0 = 1 and for k = 1, 2, . . . , N , let Mk be su
h that ∀n ≥Mk

∣∣∣∣∣

(
xk

k!

)(
1−

(
1− k

n

)k
)∣∣∣∣∣ <

ε

2N + 2
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∣∣∣∣∣e

x −
n∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣ ≤

∣∣∣∣∣e
x −

N∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣

(sin
e 0 ≤ xk

k!

(
1− k

n

)k

≤ xk

k!
for k = N,N + 1, . . . , n

)

=

∣∣∣∣∣e
x −

N∑

k=0

xk

k!
+

N∑

k=0

xk

k!
−

N∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣

≤
∣∣∣∣∣e

x −
N∑

k=0

xk

k!

∣∣∣∣∣+
∣∣∣∣∣

N∑

k=0

xk

k!

(
1−

(
1− k

n

)k
)∣∣∣∣∣

<
ε

2
+ (N + 1)

ε

2N + 2
= εNow we 
an �nish the job by showing that uγ → u0 as γ → 0+. The fol-lowing theorem shows that my te
hnique of introdu
ing vanishing delays is
apable of solving linear homogeneous systems (and with that, we bring the
ase study to a 
lose). This is reassuring, 
ertainly, and a modest vi
tory,but it is not terribly ex
iting sin
e there are mu
h better ways to solve thesesystems already.Theorem 2.4.3 (Vanishing Delay Theorem for Linear Homogeneous Sys-tems). If A is an m×m matrix (real or 
omplex) then ∀t ∈ T

lim
γ→0+

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak = eAtProof. It is 
onvenient to use a matrix norm to show this. The parti
ular one
hosen is unimportant so long as it is submultipli
ative (‖A1A2‖ ≤ ‖A1‖‖A2‖).The operator norm, whi
h is de�ned as follows for any matrix B, is su
h anorm:
‖B‖ = max

x 6=0

‖Bx‖
‖x‖The symbol ‖ · ‖ is overloaded here, representing the ve
tor norm on the right-hand side and the operator norm on the left. In addition to being submulti-
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ative, the operator norm satis�es all the usual norm axioms2Let t ∈ T, and ε > 0. We must �nd a Γ > 0 su
h that ∀γ < Γ,
∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥
< εSin
e the operator norm is subadditive,

∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∞∑

k=0

tk

k!
Ak −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∞∑

k=⌊t/γ⌋+1

tk

k!
Ak +

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∞∑

k=⌊t/γ⌋+1

tk

k!
Ak

∥∥∥∥∥∥
+

∥∥∥∥∥∥

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥
(2.4.5)Sin
e ∑∞

k=0
tk

k!
Ak = eAt, it follows that, ∃N1 > 0 ∀n ≥ N1

∥∥∥∥∥

∞∑

k=n

tk

k!
Ak

∥∥∥∥∥ <
ε

2
(2.4.6)Let N1 be as su
h, and let Γ1 < t/N1. Then ∀γ ∈ (0,Γ1), the �rst term of(2.4.5) is less than ε/2. We now turn to the se
ond term.2For matri
es B, B1, B2, and s
alars α,

i. B = 0 ⇔ ‖B‖ = 0

ii. ‖αB‖ = |α| ‖B‖
iii. ‖B1 +B2‖ ≤ ‖B1‖+ ‖B2‖
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∥∥∥∥∥∥

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥
≤

⌊t/γ⌋∑

k=0

∥∥∥∥
(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥ (2.4.7)
=

⌊t/γ⌋∑

k=0

∣∣∣∣
(
tk − (t− kγ)k

) 1

k!

∣∣∣∣
∥∥Ak

∥∥ (2.4.8)
≤

⌊t/γ⌋∑

k=0

‖A‖k
k!

∣∣∣tk − (t− kγ)k
∣∣∣ (2.4.9)Inequality (2.4.7) follows sin
e the matrix norm is subadditive. Equation(2.4.8) follows sin
e ‖αB‖ = |α| ‖B‖ (for all s
alars α and all matri
es B).Inequality (2.4.9) follows sin
e the matrix norm is submultipli
ative. For 
on-venien
e, let Q(γ) represent the summation on line (2.4.9).If t < γ, then Q(γ) = 0 whi
h would allow us to ignore the whole term,but we're looking for an upper bound for γ that ensures Q(γ) < ε/2 when γ issu�
iently small. So we must assume γ ≤ t (in fa
t, we should assume γ ≪ t).Let q(γ) = ⌊t/γ⌋. Then (
onsidering the kγ near the end of line (2.4.9)),

kγ ≤ k
t

q(γ)and hen
e ∀γ ≤ t,
Q(γ) ≤

q(γ)∑

k=0

‖A‖k
k!

∣∣∣∣∣t
k −

(
t− k t

q(γ)

)k
∣∣∣∣∣

=

q(γ)∑

k=0

(‖A‖t)k
k!

(
1−

(
1− k

q(γ)

)k
)From Lemma 2.4.2 on page 37 and the fa
t that ex 
an also be written as∑∞

k=0
xk

k!
, it follows that ∃N2 > 0 ∀n ≥ N2

n∑

k=0

(‖A‖t)k
k!

−
n∑

k=0

(‖A‖t)k
k!

(
1− k

n

)k

=
n∑

k=0

(‖A‖t)k
k!

(
1−

(
1− k

n

)k
)

<
ε

2So 
hoose Γ2 = t/N2. Then ∀γ ≤ Γ2 q(γ) ≥ N2, and hen
e Q(γ) < ε/2, asdesired. 40
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t Γ = min{Γ1,Γ2} it follows that,
0 < γ < Γ ⇒

∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

t− kγ
k!

Ak

∥∥∥∥∥∥
< ε

2.5 Properties of the Delay OperatorHaving established that the vanishing delay te
hnique works in some situations,we 
an pro
eed to studying it theoreti
ally. We begin with some elementaryproperties of delay , whi
h will be essential for the investigation.2.5.1 delayγ is nonexpansive and preserves LipLemma 2.5.1. ∀u, v ∈ C[T,A] ∀γ, T ∈ T

dT+γ(delayγu,delayγv) = dT (u, v)Proof. Obvious (see Figure 2.5.1). Here is a proper proof, though:
dT (u, v) = max

0≤t≤T
dA(u(t), v(t))

= max
0≤t≤T

dA(u(t− γ + γ), v(t− γ + γ))

= max
γ≤t≤T+γ

dA(u(t− γ), v(t− γ))

= max
γ≤t≤T+γ

dA
((delay γu

)
(t),
(delay γv

)
(t)
)

= max
0≤t≤T+γ

dA
((delay γu

)
(t),
(delay γv

)
(t)
)

= dT+γ

((delayγu
)
,
(delayγv

))The se
ond last equation holds sin
e delay γu and delayγv are 
onstant on
[0, γ].Lemma 2.5.2. For any γ ≥ 0, delayγ is nonexpansive (i.e. it is Lips
hitz�in the traditional sense�with a Lips
hitz 
onstant of α = 1). That is, ∀u, v ∈
C[T,A] ∀γ ≥ 0 dC[T,A](delayγu,delayγv) ≤ dC[T,A](u, v).Proof. Let γ ≥ 0. For any T ≤ γ,

dT (delay γu,delayγv) = dA(u(0), v(0))

≤ dT (u, v)41
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T + γ

A

T

u

v

A
T

Tγ

delayγv

delayγu

Figure 2.5.1: An Illustration of why dT+γ(delay γu,delayγv) = dT (u, v)By Lemma 2.5.1, for any T > γ,

dT (delayγu,delayγv) = dT−γ(u, v)

≤ dT (u, v)The result then follows from the de�nition of dC[T,A] (ea
h term is individuallynonexpansive, so the summation is as well).Corollary 2.5.3. Let F : C[T,A] → C[T,A], let λ, τ ∈ R+, and suppose
F ∈ Lip(λ, τ). Then delayγF ∈ Lip(λ, τ + γ).Proof. Trivial, using Lemma 2.5.1:

dT+τ+γ(delay γF (u),delayγF (v)) = dT+τ (F (u), F (v))

2.5.2 delay preserves Caus, WCausLemma 2.5.4. Let F : C[T,A] → C[T,A] and γ > 0, then F ∈ WCaus ⇒delayγF ∈WCaus and F ∈ Caus⇒ delayγF ∈ Caus.42
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k Lemma (Lemma 3.2.1on page 55) together with Lemma 2.5.2 on page 41. By the latter, for all
T, γ ∈ T, u, v ∈ C[T,A],

dT (delayγu,delayγv) ≤ dT (u, v)So if dT (u, v) = 0, so does dT (delay γu,delayγv). Thus, delayγ satis�esWCaus . The result follows from Part 3 of the Building Blo
k Lemma.Remark 2.5.5. In fa
t, we might say that delay γF is �super
ausal� when F is
ausal sin
e the value of delay γF (u) at any point in time 
annot even dependupon values of u that are too re
ent, let alone upon present or future valuesof u. For T ≤ γ,
u(0) = v(0)⇒ delay γF (u)(T ) = delayγF (v)(T )and for T ≥ γ,
dT−γ(u, v) = 0⇒ delay γF (u)(T ) = delayγF (v)(T )2.5.3 delay is 
ontinuousThe following lemma deals with uniform 
ontinuity rather than (nonuniform)
ontinuity and while the latter generalizes to topologi
al spa
es�and thus 
anbe easily de�ned using pseudometri
s�the most general setting for the formeris uniform spa
es, whi
h is a topi
 that requires a fair bit of development. Asa result, I'll use the metri
 de�ned in De�nition 1.3.5 on page 11.Lemma 2.5.6 (delay is uniformly 
ontinuous on 
ross-se
tions). For anygiven u ∈ C[T,A], the stream delay operator is uniformly 
ontinuous on T ×

{u}. That is, ∀u ∈ C[T,A] ∀ε > 0 ∃δ > 0 ∀γ1, γ2 ∈ T

|γ1 − γ2| < δ ⇒ dC[T,A](delayγ1u,delayγ2u) < εProof. Let u ∈ C[T,A] and ε > 0. Let N be the smallest integer su
h that
2−N < ε/2. De�ne û : R→ Am

û(t) =

{
u(0) if t ≤ 0
u(t) if t ≥ 0Then ∀γ, t ∈ T delayγu(t) = û(t − γ). Sin
e û is 
ontinuous on R, it isuniformly 
ontinuous on any 
losed interval. Moreover, this 
oupled with thefa
t that û is 
onstant on (−∞, 0], ensures that it is also uniformly 
ontinuouson any half-open interval of the form, (−∞, x]. In parti
ular, ∃δ > 0 ∀t1, t2 ∈

(−∞, N ]

|t1 − t2| < δ ⇒ dA(û(t1), û(t2)) <
ε

2N43
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h that |γ1 − γ2| < δ. Then,
dC[T,A](delayγ1u,delayγ2u) =

∞∑

k=1

min

(
2−k, max

t∈[0,k]
dA
(delayγ1u(t),delayγ2u(t)

))

=

∞∑

k=1

min

(
2−k, max

t∈[0,k]
dA (û(t− γ1), û(t− γ2))

)

≤
N∑

k=1

max
t∈[0,k]

dA (û(t− γ1), û(t− γ2)) +
∞∑

k=N+1

2−k

≤ N max
t∈[0,N ]

dA (û(t− γ1), û(t− γ2)) + 2−N

< N
ε

2N
+
ε

2
(↑ sin
e (t− γ1), (t− γ2) ∈ (−∞, N ]and |(t− γ1)− (t− γ2)| < δ)

= εIn 1821, Cau
hy infamously stated that a fun
tion 
ontinuous in ea
h of itsvariables separately is 
ontinuous [Cau21℄. While this is stri
tly false, we 
anprove something similar.Lemma 2.5.7. If X, Y, Z are metri
 spa
es, f : X × Y → Z is 
ontinuous inea
h of its variables separately, and f is equi
ontinuous3 in one of them (i.e.taking f as an X-indexed family of fun
tions from Y into Z, or as a Y -indexedfamily of fun
tions from X into Z), then f itself is 
ontinuous (with respe
tto the produ
t topology on X × Y ).Proof. Suppose, without loss of generality, that the family, {f(·, y)}y∈Y isequi
ontinuous. That is, suppose there exists a fun
tion δX : X × R+ → R+su
h that ∀x0, x ∈ X ∀ε > 0 ∀y ∈ Y ,
dX(x0, x) < δX(x0, ε) ⇒ dZ(f(x0, y), f(x, y)) < εSin
e f is 
ontinuous in Y separately, there is a fun
tion δY : X×Y ×R+ su
hthat ∀ε > 0 ∀x0 ∈ X ∀y0, y ∈ Y ,

dY (y0, y) < δY (x0, y0, ε) ⇒ dZ(f(x0, y0), f(x0, y)) < εWe 
hoose the most 
onvenient metri
 for our purposes that indu
es the prod-u
t topology on X × Y , namely the �maximum� metri
:
dX×Y ((x, y), (x

′, y′)) = max {dX(x, x′), dY (y, y′)}3A family of fun
tions is equi
ontinuous if they all share the same modulus of 
ontinuity.44
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dX×Y ((x0, y0) , (x, y)) < min

{
δX

(
x0,

ε

2

)
, δY

(
x0, y0,

ε

2

)}Then it follows that,
dZ(f(x0, y0), f(x, y)) ≤ dZ(f(x0, y0), f(x0, y)) + dZ(f(x0, y), f(x, y))

<
ε

2
+
ε

2Therefore, f is 
ontinuous at (x0, y0).Corollary 2.5.8. The stream delay operator delay : T×C[T,A]→ C[T,A] is
ontinuous.Proof. By Lemma 2.5.2 on page 41, delay is equi
ontinuous in its se
ond vari-able separately (in fa
t, more than that, it's globally Lips
hitz with Lips
hitz
onstant α = 1 for all values of γ). That is, the family {delay γ

}
γ∈T is equi
on-tinuous. By Lemma 2.5.6 on page 43, delay is 
ontinuous (uniformly so) inits �rst variable. That is, all the fun
tions in the family {delay(·, u)}u∈C[T,A]are uniformly 
ontinuous. Thus, delay is 
ontinuous in ea
h of its variablesseparately, and is equi
ontinuous in one of them. By Lemma 2.5.7 on thepre
eding page, delay is 
ontinuous.Corollary 2.5.9. If F : C[T,A] → C[T,A] is 
ontinuous then delay ◦ F̃ :

T × C[T,A] → C[T,A] (whi
h is given by delay ◦ F̃ (γ, u) = delayγF (u)) isalso 
ontinuous.Proof. F̃ is 
ontinuous by Corollary 1.4.14 on page 27, delay is 
ontinuous byCorollary 2.5.8, and a 
omposition of 
ontinuous fun
tions is 
ontinuous.
2.6 Delayed Operators Always Have UniqueFixed PointsTheorem 2.6.1 (Delayed Operator Theorem). Let F : C[T,A] → C[T,A]satisfy Caus with F (u)(0) = c ∈ A for all u ∈ C[T,A]. Then ∀γ > 0 ∃!uγ ∈
C[T,A] whi
h satis�es the system,

uγ = delayγF (uγ) (2.6.1)
uγ(0) = c (2.6.2)45
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dT (u, v) = 0. Then, by Lemma 2.5.1 on page 41

dT+γ(delay γF (u),delayγF (v)) = dT (F (u), F (v))And sin
e F ∈ Caus ,
dT (F (u), F (v)) = dT (u, v)

= 0Therefore, delay γF satis�es Lip(0, γ) (and thus Contr ). By Lemma 2.5.4on page 42, delayγF satis�es Caus . Hen
e, by Theorem TZ1 on page 19,delayγF has a unique �xed point.Remark 2.6.2. It is interesting to note that the 
ontinuity of F is not requiredto establish the existen
e of a �xed point. In fa
t, if F is 
ontinuous, a dire
tproof of the Delayed Operator Theorem (that does not invoke Theorem TZ1)be
omes fairly trivial.2.7 The Delay Vanishes42.7.1 Why the Vanishing Delay Constru
tion Produ
esthe Fixed Point of FThe Delayed Operator Theorem on the pre
eding page tells us that everystream operator that satis�es Caus has an asso
iated family of streams,
{uγ}γ∈R+ , ea
h of whi
h satisfy Equations 2.6.1 on the previous page and(2.6.2). It is 
onvenient, then, to de�ne a 
orresponding stru
ture:De�nition 2.7.1. Let F : C[T,A]m → C[T,A]m satisfy Caus , and suppose
F (u)(0) = c (for all u ∈ C[T,A]m). De�ne U : R+ → C[T,A]m as, U(γ) = uγ(as de�ned in the Delayed Operator Theorem). Then the pair, (F,U), is a delaysystem. This provides a 
ontext for the symbol, uγ (and similar variations),whi
h will often be used in pla
e of U(γ) without expli
itly a
knowledging it.Remark 2.7.2. Given a delay system (F,U), we're hoping to �nd a �xed pointfor F by �nding the limit of U(γ) as γ → 0+. So our big question is �when doesthat limit exist?� But before we get to that question, how do we know thislimit will even work? That is, even if limγ→0+ U(γ) exists (in C[T,A]), how dowe know it's a �xed point of F ? This is addressed by our next theorem, andhere we do use 
ontinuity (although I have a hun
h it's not ne
essary).4No 
opyright infringement here sin
e the syllables of �lady� have been reversed.46
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C[T,A]m is 
ontinuous and satis�es Caus. Let {γk}k∈N ⊆ R+ be a sequen
esu
h that γk → 0 as k →∞, and suppose that limk→∞ U(γk) = u ∈ C[T,A]m.Then u = F (u).Proof.
u = lim

k→∞
uγk (by hypothesis)

= lim
k→∞

(delay ◦ F̃ )(uγk , γk)

= (delay ◦ F̃ )( lim
k→∞

(uγk , γk)) (sin
e delay ◦ F̃ is 
ontinuous)
= (delay ◦ F̃ )(u, 0)
= F (u) (sin
e delay(·, 0) is the identity on C[T,A]m)The operative step is the third one, in whi
h delay ◦ F̃ is moved outside thelimit. Some explanation is warranted here. Sin
e F is 
ontinuous, so is F̃ (byCorollary 1.4.14 on page 27). Thus, sin
e delay is 
ontinuous (by Lemma 2.5.6on page 43), delay◦F̃ is too. A

ording to a well-known theorem5 in Topology,if f : X → Y is 
ontinuous, X is metrizable, and {xn}n∈N ⊆ X is 
onvergent,then limn→∞ f(xn) = f(limn→∞ xn). In our 
ase, X = Y = C[T,A]m, whi
h ismetrizable, and ∀n ∈ N xn = (uγn , γn).2.7.2 When Does the Limit Exist?This is the �rst major question about the vanishing delay 
onstru
tion, andthe biggest obsta
le I fa
ed during this proje
t (indeed, it was big enough thatI never quite over
ame it). While my e�orts failed to provide a satisfa
toryanswer, they did lead indire
tly to the Generalized Theorem TZJ2 on page 102,whi
h I 
onsider to be among the most signi�
ant results of this thesis.Sin
e my vanishing delay 
onstru
tion is meant to be an alternative to the
onstru
tion presented in [TZ11℄, an obvious question is whether it is at leastas widely appli
able. That is, if Tu
ker and Zu
ker's Theorem TZ1 guaranteesthe existen
e of a unique �xed point for an operator F : C[T,A] → C[T,A],will the vanishing delay 
onstru
tion ne
essarily 
onverge to it?I wasn't able to answer even this question 
ompletely, but I 
ame 
lose (fallingshort by having to assume 
ontinuity in addition to the ante
edents of The-orem TZ1). Furthermore, it was in the pro
ess of answering this questionthat I developed Theorem TZJ2 on page 27�whi
h led to the GeneralizedTheorem TZJ2 on page 102.5See Theorem 10.3 of [Mun75℄, for example.47
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on-tinuous delay system (where F : C[T,A] → C[T,A]). Suppose F satis�esCaus and Contr. Then the unique �xed point of F (guaranteed to exist byTheorem TZ1) is given by u = limγ→0+ U(γ).Proof. The idea is to use Theorem TZJ2 on page 27, taking our parameterto be γ in the operator delay ◦ F̃ , and then U essentially be
omes the Φ inTheorem TZJ2. Let P = R≥0. De�ne G : P × C[T,A]→ C[T,A] as follows:
G(γ, u) = delay γF (u) = delay ◦ F̃ (γ, u)By Lemma 2.5.4 on page 42, G satis�es Caus . By Corollary 2.5.9 on page 45,

G is everywhere 
ontinuous, and in parti
ular it is 
ontinuous at (0, u) ∀u ∈
C[T,A]. Finally, by Corollary 2.5.3 on page 42, G satis�es Contr .Thus G satis�es all the 
onditions of the operator in Theorem TZJ2 for p = 0,and hen
e the Φ fun
tion for G is 
ontinuous at 0. The relevan
e of thisobservation is the fa
t that the Φ fun
tion for G is simply U, 
ontinuouslyextend from R+ to R≥0. Therefore, limγ→0+ U(γ) exists and by the VanishingDelay Theorem on the previous page, this limit is the �xed point of F .2.7.3 Addendum: What happens if delayγ 
ommuteswith F?Many of the results would be rendered fantasti
ally simpler if only delayγwould be so kind as to 
ommute with F . In the last proof, we 
onstru
ted afun
tion, uγ, su
h that for any t ∈ T, as long as we take a su�
iently large
n ∈ N, uγ(t) = (delay γF )

n(v1)(t). If we 
ould inter
hange delay γ and F , wewould have,
uγ(t) = (delayn

γF
n)(v1)(t) = (delaynγF

n)(v1)(t)As it happens, this is not only a surprisingly unrealisti
 expe
tation, but italso 
auses big trouble.Proposition 2.7.5. Let F, γ,uγ be as in the Delayed Operator Theorem onpage 45, and suppose that6
uγ = delayγFuγ = FdelayγuγThen uγ is 
onstant (uγ ≡ c, where c is the 0-afp of F , to be spe
i�
).6Alternatively, we 
ould assume that ∀u ∈ C[T,A]m u = delayγFu = Fdelayγu, butwe needn't go so far for this proposition. 48
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h that nγ ≥ t. Then,
uγ(t) = (delayγF )

n(uγ)(t) (sin
e uγ is a �xed point of delayγF )
= delayn

γF
n(uγ)(t) (sin
e delayγ 
ommutes with F by assumption)

= delaynγF
n(uγ)(t) (sin
e delay γ1delayγ2 = delay γ1+γ2)

= F n(uγ)(0) (sin
e t ≤ nγ)
= c (sin
e c is a 0-afp of F )Remark 2.7.6. Proposition 2.7.5 shows that imposing su
h a 
ondition on Fdrasti
ally undermines the potential power of the theory, and yet it seems likea su
h a natural and benign property that may well apply to several 
ommonstream operators. It is, however, a mu
h more restri
tive 
ondition than itmight appear.Example 2.7.7. Take F (u)(t) = ´ t

0
au(s)ds+ c (for some a, c ∈ R), and let ube the 
onstant fun
tion, c. Then,delay γF (u)(t) = delay γc · (at+ 1) =

{
c if t ≤ γ
ca · (t− γ) + c if t ≥ γConversely,

F◦delayγ(u)(t) = F (u)(t) = c·(at+1) 6= delayγF (u)(t) (unless γ · t · a · c = 0)Hen
e, even the members of this simple, general 
lass of operators don't 
om-mute with delay γ.

49



Chapter 3Resear
h Proje
t #2: Exploringthe Spe
ial Case in Whi
h A isa Bana
h Spa
eIn this 
hapter, I will present the main portions of the paper [JZ12℄ whi
hhas been published in The Computer Journal. Both the paper and this thesiswere written to be relatively self-
ontained, so if I were to paste the paperhere, wholesale, mu
h of the preliminary 
ontent in Chapter 1 would need-lessly 
ome with it. So in addition to omitting the redundant se
tions, I'vemade some minor edits to smooth the exposition from paper to thesis 
hapter.Furthermore, there are a few proofs that were omitted from the paper for thesake of brevity, and in pla
e of those proofs, I refer the reader to this thesis.Hen
e, those have been in
luded here.3.1 Introdu
tionIn [TZ11℄, Tu
ker and Zu
ker show that an operator whi
h satis�es Caus andContr has a unique �xed point, but whi
h operators satisfy those proper-ties? The authors o�er two mass-spring-damper systems as examples, whi
his 
ertainly very helpful, but it still leaves us with little intuition about whi
hoperators would have those properties and whi
h ones wouldn't. Without im-posing some restri
tions on A, there likely isn't mu
h to be done about this.There just isn't enough to work with if we want to be more spe
i�
. If we re-stri
t our attention to the 
ase in whi
h A = R, however, then we have a ri
halgebrai
 stru
ture upon whi
h to build operators that satisfy the properties.That's going a little further than ne
essary, though. It turns out that there isquite a lot we 
an say about the properties if we go only as far as making Aa Bana
h spa
e. 50
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Master University - Computing and SoftwareThere are two main parts to this 
hapter. In the �rst part I 
ondu
t a thor-ough inventory of the pointwise stream operations indu
ed by the algebrai
operations of the Bana
h spa
e, and examine the way ea
h of them a�e
tsthe stream properties 
overed in Chapter 1. While the pointwise operationsyield a wide assortment of operators that satisfy the Lips
hitz 
ondition, thereal engine behind the results is integration. An operator whi
h satis�es theLips
hitz 
ondition is all well and good, but in order to work with the two�xed point theorems, the operator must be 
ontra
ting, and that is what inte-gration provides. The integral (with respe
t to time) of a Lips
hitz operatorsatis�es Contr . All of these results are 
onsolidated into a pair of lemmas(the Building Blo
k and Continuity lemmas) and a single main theorem (theGeneral Form Theorem on page 65).In the se
ond part, I move on to dis
uss two appli
ations from me
hani
alphysi
s. The �rst is the mass-spring-damper system des
ribed in [TZ07, TZ11℄,whi
h the general form is more than powerful enough to handle on its own. These
ond�whi
h is only a simple pendulum�neatly highlights the limitationsof that form, as it is apparently not general enough to apply to that system.If we introdu
e a prede�ned operator (the sin fun
tion, in this 
ase), however,we 
an still apply the two main lemmas separately to do the work the theorem
annot.3.1.1 Algebra of Streams over a Bana
h Spa
eThe operators with whi
h we are 
on
erned in this 
hapter operate on streamsfrom C[T,B]m, where B is a Bana
h spa
e over a �eld of s
alars S. Thenorm on B will be denoted using double bars, ‖ · ‖, and it indu
es a metri

dB(x, y) = ‖x− y‖. The same m-tuple 
onvention used for the stream metri
will be used for the norms on both B and S: ‖(u1, . . . , um)‖ = max1≤k≤m ‖uk‖and |(a1, . . . , ak)| = max1≤k≤m |ak|. Furthermore, 
orresponding to ea
h pseu-dometri
 dT (for T ∈ T) is a seminorm (or a �pseudonorm,� using the verna
-ular in [Roy63℄) ‖u‖T = dT (u, 0).
C[T,B]m inherits several properties dire
tly from B�almost enough to make ita Bana
h spa
e itself. The addition operation on B naturally indu
es (point-wise) addition on C[T,B]m (the 
ontinuity of the sum of two streams is assuredby the subadditivity of the norm on B). S
alars from S operate on C[T,B]mas they do on B (e.g. a(u+ v) = au+ av, (ab)u = a(bu), et
.). It is shown in[TZ11℄ that if B is separable and 
omplete (whi
h it is, being a Bana
h spa
e),then so too is C[T,B]m. Similarly (although not addressed in [TZ11℄), the lo
al
onvexity of B assures the lo
al 
onvexity of C[T,B]m.This 
olle
tion of properties ensures that C[T,B]m is at least a Fré
het spa
e11A Fré
het spa
e is like a Bana
h spa
e, ex
ept it la
ks a norm. In its pla
e, however, a51
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e the origin of C[T,B]m does not ne
essarily 
ontain an openbounded neighbourhood2, it follows from Theorem 1.39 in [Rud91℄ that C[T,B]mis not normable. Hen
e it is not, itself, a Bana
h spa
e.For our purposes, however, a more useful observation is that C[T,S]m 
ouldalmost serve as the set of s
alars for the Fré
het spa
e C[T,B]m. Addition andmultipli
ation on S indu
e 
orresponding pointwise operations under whi
h
C[T,S]m is 
losed, and whi
h 
ommute, asso
iate, and distribute a

ording tothe �eld axioms. Pointwise multipli
ation of a stream from C[T,S]m with astream from C[T,B]m produ
es a stream from C[T,B]m. Being rife with zerodivisors, however, C[T,S]m is not a �eld (it is only a 
ommutative ring), andthus it 
annot serve as a proper �eld of s
alars in a topologi
al ve
tor spa
e.Despite this short
oming, pairing C[T,S]m with C[T,B]m produ
es a usefulalgebra of pointwise operations�one whi
h lays the foundation for matrixmultipli
ation of streams in C[T,B]m by matri
es in C[T,S]m×m. In fa
t, mem-bership in a 
ommutative ring is all that is required of the entries of a matrixin order to de�ne a determinant (see [HK71℄). That fa
t, in and of itself, isnot immediately relevant to our resear
h here, but it does suggest promisingavenues of exploration in future resear
h.Most of the observations noted above follow readily, but we will take 
are toprove that pointwise multipli
ation between C[T,B]m and C[T,S]m works as wehave 
laimed be
ause that statement, in parti
ular, is not 
ompletely trivial.Lemma 3.1.1. If a ∈ C[T,S]m and u ∈ C[T,B]m, then au ∈ C[T,B]m, where
au is the pointwise multipli
ation of a and u:

(au) (t) = (a1(t)u1(t), . . . , am(t)um(t))Proof. What must be shown is that au is 
ontinuous. Let t0 ∈ T and ε > 0.Let,
ε′ =

1

2

(√
(|a(t0)|+ ‖u(t0)‖)2 + 4ε− |a(t0)| − ‖u(t0)‖

)Sin
e a and u are 
ontinuous, ∃δa, δu > 0 su
h that ∀t ∈ T,
|t− t0| < δa ⇒ |a(t)− a(t0)| < ε′ and
|t− t0| < δu ⇒ ‖u(t)− u(t0)‖ < ε′Fré
het spa
e has a 
ountable 
olle
tion of seminorms that indu
e its topology. See [Rud91℄for details.2In this 
ontext a subset X ⊆ C[T,B]m is bounded if for every neighbourhood B of

0 ∈ C[T,B]m there is an R > 0 su
h that for all r ∈ S with |r| > R, X ⊆ rB. This meansthat unless B is the trivial spa
e B = {0} (or perhaps a rather esoteri
 and pathologi
alspa
e) we have that for every T ∈ T and ε > 0, BT,ε(0) = {u ∈ C[T,B]m : dT (u,0) < ε} isunbounded. This is be
ause for any r ∈ S there is (for all the 
ommon Bana
h spa
es, atleast) a stream u ∈ C[T,B]m su
h that ‖u(T + 1)‖ > |r|, and hen
e BT,ε(0) * r BT+1,ε(0).52
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h that |t− t0| < δ,
‖(au) (t)− (au) (t0)‖ = ‖ (a(t)− a(t0)) (u(t)− u(t0))

+ (a(t)− a(t0))u(t0) + a(t0) (u(t)− u(t0)) ‖
≤ ‖(a(t)− a(t0)) (u(t)− u(t0))‖

+ ‖(a(t)− a(t0))u(t0)‖+ ‖a(t0) (u(t)− u(t0))‖
= |a(t)− a(t0)| ‖u(t)− u(t0)‖

+ |a(t)− a(t0)| ‖u(t0)‖+ |a(t0)| ‖(u(t)− u(t0))‖
< (ε′)

2
+ ε′ (‖u(t0)‖+ |a(t0)|)

= ε (after simpli�
ation)Corollary 3.1.2. If A ∈ C[T,S]m×m and u ∈ C[T,B]m, then Au ∈ C[T,B]mWhile the algebrai
 operations on C[T,B]m fa
ilitate the 
onstru
tion of manyinteresting stream operators, they would be of rather limited utility to thetheory without integration (or something like it).Lemma 3.1.3. The Riemann integral3 is well-de�ned on C[T,B]m and ∀u ∈
C[T,B]m ∀a, b ∈ T, ∥∥∥∥

ˆ b

a

u(s) ds

∥∥∥∥ ≤
ˆ b

a

‖u(s)‖ dsProof. See Theorems 2.1 and 5.1 in [Fea99℄ for the de�nition and the inequality,respe
tively.Remark 3.1.4. Iterated integrals are of parti
ular importan
e to our theory, butstandard integral notation be
omes a little 
umbersome for representing them.So we'll be using the following notational 
onventions. Given u ∈ C[T,B]m,
a, t ∈ T (with a ≤ t), and n ∈ N,

ˆ (0)

a

u(t) = u(t)

ˆ (n+1)

a

u(t) =

ˆ t

a

(
ˆ (n)

a

u(s)

)
dsEquivalently,

ˆ (n)

a

u(t) =

ˆ t

a

ˆ s1

a

ˆ s2

a

· · ·
ˆ sn−1

a

u(sn) dsn dsn−1 . . . ds13More a

urately, the generalized Riemann integral, as de�ned by Feauveau [Fea99℄. Foran exposition of generalized integrals, see [Bar01℄.53
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∥∥∥∥∥

ˆ (n)

a

u(b)

∥∥∥∥∥ ≤
(b− a)n
n!

max
a≤t≤b

‖u(t)‖Proof. The base 
ase, for n = 1, follows from Lemma 3.1.3, along with thefa
t that for a real fun
tion, f : R → R (like the ‖u(s)‖ from the right-handside of the inequality in Lemma 3.1.3), ´ b
a
f(s) ds ≤ (b− a)maxa≤s≤b |f(s)|.Now if we suppose that the inequality holds for all u ∈ C[T,B]m, a, b ∈ T(a < b), and for some n > 0 then

∥∥∥∥∥

ˆ (n+1)

a

u(b)

∥∥∥∥∥ =

∥∥∥∥∥

ˆ b

a

ˆ (n)

a

u(s) ds

∥∥∥∥∥

≤
ˆ b

a

∥∥∥∥∥

ˆ (n)

a

u(s)

∥∥∥∥∥ ds (by Lemma 3.1.3)
≤
ˆ b

a

(s− a)n
n!

max
a≤t≤s

‖u(t)‖ ds (by the indu
tive hypothesis)
≤ max

a≤t≤b
‖u(t)‖

ˆ b

a

(s− a)n
n!

ds

=
(b− a)n+1

(n + 1)!
max
a≤t≤b

‖u(t)‖

3.2 Operators Whi
h Satisfy the Fixed PointTheoremsHaving established in Se
tion 3.1.1 some of the basi
 operations we 
an use to
reate stream operators, we 
an now pro
eed to examine the way the propertiesdis
ussed in Se
tion 1.3.3 are a�e
ted by these operations. In the BuildingBlo
k and Continuity Lemmas (Lemmas 3.2.1 on the following page and 3.2.2on page 59 below), we will simply audit the e�e
ts of the algebrai
 operationsso that when building operators from them or de
onstru
ting operators interms of them, we 
an dire
tly 
al
ulate their properties. In the General FormTheorem on page 65, all these results are 
onsolidated into the most general
lass of operators de�nable using these algebrai
 operations ex
lusively. TheBuilding Blo
k Lemma and the Continuity Lemma 
an also be used à la 
arte,however, with prede�ned operators that 
annot be expressed using only thealgebrai
 operations from Se
tion 3.1.1 (see Se
tion 3.3.2 on page 74 for anexample). 54
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k Lemma). Given stream operators F,G :
C[T,B]m → C[T,B]m, s
alar stream a = (a1, a2, . . . , am) ∈ C[T,S]m, and ma-trix stream A ∈ C[T,S]m×m, the properties of Caus, WCaus, and Lip(λ, τ)are preserved by the basi
 stream operations as follows:1. Primitive Operators(a) Given w ∈ C[T,B]m, the 
onstant operator Fw(v) = w satis�esCaus and Lip(0, τ) for any τ ≥ 0.(b) The identity on C[T,B]m satis�es WCaus and Lip(1, τ) for all

τ ≥ 0.2. Addition of Operators(a) F,G ∈WCaus ⇒ (F +G) ∈WCaus(b) F,G ∈ Caus ⇒ (F +G) ∈ Caus(
) F ∈ Lip(λF , τF ), G ∈ Lip(λG, τG)⇒ (F +G) ∈ Lip (λF + λG,min {τF , τG})3. Composition of Operators(a) F,G ∈WCaus ⇒ (F ◦G) ∈WCaus(b) F ∈ Caus and G ∈WCaus ⇒ (F ◦G) , (G ◦ F ) ∈ Caus(
) If F ∈ Lip(λF , τF ), G ∈ Lip(λG, τG), and F,G ∈ WCaus then
(F ◦G) ∈ Lip (λFλG,min {τF , τG})4. Pointwise Multipli
ation by a S
alar Stream(a) F ∈WCaus ⇒ aF ∈WCaus(b) F ∈ Caus ⇒ aF ∈ Caus(
) Let α ≥ 0. If F ∈ Lip(λ, τ) and ∀t ∈ T max

1≤i≤m
|ai(t)| ≤ α then

aF ∈ Lip(αλ, τ)5. Pointwise Multipli
ation by a S
alar Matrix(a) F ∈WCaus ⇒AF ∈WCaus(b) F ∈ Caus ⇒ AF ∈ Caus(
) F ∈WCaus and A(0) = 0 ⇒ AF ∈ Caus(d) Let α ≥ 0. If F ∈ Lip(λ, τ) and ∀t ∈ T ‖A(t)‖ ≤ α then AF ∈Lip(αλ, τ) 55
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Master University - Computing and Software6. IntegrationDe�ne F´ : C[T,B]m → C[T,B]m as follows:
F´ (u)(t) =

ˆ t

0

u(s) ds =

(
ˆ t

0

u1(s) ds,

ˆ t

0

u2(s) ds, . . . ,

ˆ t

0

um(s) ds

)where u = (u1, u2, . . . , um) ∈ C[T,B]m. Then,(a) F´ ∈ Caus(b) F´ ∈ Lip(λ, λ) ∀λ ∈ R+Proof.(1a) ∀u,v ∈ C[T,B]m [Fw(u) = Fw(v)℄, so both results follow trivially.(1b) ∀T ∈ T ∀u,v ∈ C[T,B]m [(u↾[0,T ] = v↾[0,T ] ⇒ id(u)(T ) = id(v)(T )) and
dT+τ (u,v) ≤ 1 · dT+τ (id (u) , id (v))℄.(2a) dT (u,v) = 0 ⇒ (F +G) (u)(T ) = F (u)(T ) + G(u)(T ) = F (v)(T ) +
G(v)(T ) = (F +G) (v)(2b) By Remark 1.3.15, all that remains to be shown (given Part (2a)) isthat ∀u,v ∈ C[T,B]m [(F +G) (u)(0) = (F +G) (v)(0)℄. This followsdire
tly from the fa
t that ∀u,v ∈ C[T,B]m [F (u)(0) = F (v)(0) and
G(u)(0) = G(v)(0)℄.(2
) Let τ = min {τF , τG}. By Lemma 1.4.6, F ∈ Lip (λF , τ) and G ∈Lip (λG, τ). The result follows readily by taking u,v ∈ C[T,B]m andexpanding

dT+τ ((F +G) (u), (F +G) (v))into
max

0≤t≤T+τ
‖F (u)(t) +G(u)(t)− F (v)(t)−G(v)(t)‖Then �nally rearranging the terms and using the subadditivity of ‖ · ‖ toobtain the result.(3a) F,G ∈WCaus ⇒∀T ∈ T ∀u,v ∈ C[T,B]m [dT (u,v) = 0⇒ dT (G(u), G(v)) =

0 ⇒ F (G(u))(T ) = F (G(v))(T )℄.(3b) Given any ∀u,v ∈ C[T,B]m, it may be the 
ase that G(u)(0) 6= G(v)(0),but under F the image of all streams (in
luding those two) at time t = 0is the same. Thus F ◦ G ∈ Caus . As for G ◦ F , we do know that
F (u)(0) = F (v)(0), and sin
e G ∈ WCaus, that equality �up to 0� ispreserved: G (F (u)) (0) = G (F (v)) (0).56
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) By Lemma 1.4.6, F ∈ Lip(λF , τ) and G ∈ Lip(λG, τ), where τ =
min {τF , τG}. So, given T ∈ T and u,v ∈ C[T,B]m su
h that dT (u,v) =
0, it follows from (3a) that dT (F (G(u)), F (G(v))) = 0 also. Hen
e,
dT+τ (F (G(u)), F (G(v))) ≤ λ1dT+τ (G(u), G(v)) ≤ λFλGdT+τ (u,v).(4a) dT (u,v) = 0 ⇒ F (u)(T ) = F (v)(T ) ⇒ aF (u)(T ) = aF (v)(T )(4b) F (u)(0) = F (v)(0) ⇒aF (u)(0) = aF (v)(0)(4
) Consider F as an m-tuple of fun
tions: for w ∈ C[T,B]m F (w) =
(F1(w), . . . , Fm(w)). Then,
dT+τ(aF (u),aF (v)) = max

0≤t≤T+τ
1≤k≤m

‖ak(t)Fk(u)(t)− ak(t)Fk(v)(t)‖

= max
0≤t≤T+τ
1≤k≤m

|ak(t)| ‖Fk(u)(t)− Fk(v)(t)‖

≤ max
0≤t≤T+τ
1≤k≤m

|ak(t)| max
0≤t≤T+τ
1≤k≤m

‖Fk(u)(t)− Fk(v)(t)‖

≤ αdT+τ(F (u), F (v))

≤ αλdT+τ(u,v)(5a, 5b) Same as (4a, 4b).(5
) A(0) = 0 ∈ C[T,S]m×m ⇒ (AF )(u)(0) = (AF )(v)(0) = 0 ∈ C[T,B]m.The rest is given by (5a).(5d) Similar to (4
), but using the matrix norm ‖A(t)‖ in pla
e of |ak(t)|.(6a) Let u,v ∈ C[T,B]m su
h that ∀t < T u(t) = v(t). Then, using the normon Bm,
∥∥F´ (u)(T )− F´ (v)(T )

∥∥ =

∥∥∥∥
ˆ T

0

u(s) ds−
ˆ T

0

v(s) ds

∥∥∥∥

=

∥∥∥∥
ˆ T

0

(u(s)− v(s)) ds

∥∥∥∥

≤
ˆ T

0

‖(u(s)− v(s))‖ ds

= 0The linearity of the integral in the se
ond line 
omes from Theorem 3.1 in[Fea99℄, and the inequality arises from 3.1.3. Sin
e ‖·‖ is a norm (ratherthan a mere seminorm), it follows that F´ (u)(T ) = F´ (v)(T ).57
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h that dT (u,v) = 0. Let λ ≥ 0. Then,
dT+λ

(
F´ (u), F´ (v)

)
= max

0≤t≤T+λ

∥∥∥∥
ˆ t

0

u(s) ds−
ˆ t

0

v(s) ds

∥∥∥∥

= max
0≤t≤T+λ

∥∥∥∥
ˆ t

0

(u(s)− v(s)) ds

∥∥∥∥ (3.2.1)
≤ max

0≤t≤T+λ

ˆ t

0

‖u(s)− v(s)‖ ds (3.2.2)
=

ˆ T+λ

0

‖u(s)− v(s)‖ ds (3.2.3)
=

ˆ T+λ

T

‖u(s)− v(s)‖ ds (3.2.4)
≤ λ max

T≤s≤T+λ
‖u(s)− v(s)‖ (3.2.5)

= λ max
0≤s≤T+λ

‖u(s)− v(s)‖ (3.2.6)
= λdT+λ(u,v)Step Justi�
ations (unnumbered steps require no further elu
idation):(3.2.1) By Theorem 3.1 in [Fea99℄.(3.2.2) By Lemma 3.1.3. Note that this 
onverts the Bana
h-valued integralto an ordinary integral over R.(3.2.3) Sin
e the integrand is nonnegative, the maximum will be at t =

T + λ.(3.2.4) dT (u,v) = 0 ⇒
´ T

0
‖u(s)− v(s)‖ ds = 0.(3.2.5) By Lemma 3.1.5.(3.2.6) Sin
e

max
0≤s≤T+λ

‖u(s)− v(s)‖ = max

{
max
0≤s≤T

‖u(s)− v(s)‖ ,

max
T≤s≤T+λ

‖u(s)− v(s)‖
}

= max

{
0, max

T≤s≤T+λ
‖u(s)− v(s)‖

}

= max
T≤s≤T+λ

‖u(s)− v(s)‖
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 spa
e (whi
hwill serve as a parameter spa
e) and let p ∈ P . Let F,G : P × C[T,B]m →
C[T,B]m and suppose that for all u ∈ C[T,B]m F and G are 
ontinuous at
(p,u). Let A : P → C[T,S]m×m be 
ontinuous at p. Then the fun
tions
H : P × C[T,B]m → C[T,B]m de�ned below for (r,u) ∈ P × C[T,B]m, t ∈ T,are all 
ontinuous at every point in {p} × C[T,B]m ⊆ P × C[T,B]m:1. Addition: H(r,u)(t) = (F +G) (r,u)(t) = F (r,u)(t) +G(r,u)(t)2. Composition: H(r,u)(t) = F (r, G(r,u))(t)3. Matrix Multipli
ation: H(r,u)(t) = (AF ) (r,u)(t) = A(r)(t)F (r,u)(t)4. Integration: H(r,u)(t) =

´ t

0
F (r,u)(s) dsProof.(1) Follows from the subadditivity of the seminorms on C[T,B]m: ‖u‖T =

dT (u, 0).(2) Let u ∈ C[T,B]m. Let ε > 0. Sin
e F is 
ontinuous on {p} × C[T,B]m,there is a δF > 0 su
h that ∀v ∈ C[T,B]m ∀r ∈ P ,
dP×C[T,A]m ((p,G(p,u)) , (r,v)) < δF ⇒ dC (F (p,G(p,u)) , F (r,v)) < εSin
e G is 
ontinuous on {p} × C[T,B]m, there is a δG > 0 su
h that
∀(r,w) ∈ P × C[T,B]m,

dP×C[T,A]m ((p,u), (r,w)) < δG ⇒ dC (G(p,u), G(r,w)) < δF(3) Let u ∈ C[T,B]m. Let ε > 0, T ∈ T. For the sake of tidiness, we'lloverload the symbol ‖ · ‖T using it as a seminorm on both C[T,B]m and
C[T,S]m×m. In the latter 
ase, ‖A(p)‖T = max0≤t≤T ‖A(p)(t)‖, where
‖ · ‖ is the matrix norm on Bm×m. Let
ε′ =

1

2

(√
(‖A(p)‖T + ‖F (p,u)‖T )

2 + 4ε− ‖A(p)‖T − ‖F (p,u)‖T
)Then ∃δF , δA > 0 ∃TF , TA ∈ T su
h that ∀(r,v) ∈ P × C[T,B]m,

dTF
((p,u), (r.v)) < δF ⇒ dT (F (p,u), F (r.v)) < ε′

dTA
((p,u), (r.v)) < δA ⇒ dT (A(p,u), A(r.v)) < ε′
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h that dT ′ ((p,u), (r.v))
< min {δF , δA}. Then,
dT (A(p)F (p,u), A(r)F (r,v)) = ‖A(p)F (p,u)− A(r)F (r,v)‖T

≤ ‖A(p)−A(r)‖T ‖F (p,u)− F (r.v)‖T
+ ‖A(p)− A(r)‖T ‖F (p,u)‖T
+ ‖A(p)‖T ‖F (p,u)− F (r.v)‖T

< ε(4) Choose ε > 0, T ∈ T, and u ∈ C[T,B]m. Sin
e F is 
ontinuous on
{p}×C[T,B]m, there is an open neighbourhood of (p,u) in P ×C[T,B]msu
h that T · dT (F (p,u), F (r,v)) < ε holds for all points, (r,v), in theneighbourhood. Reusing several steps from the proof of the BuildingBlo
k Lemma (6b), it is easy to show that dT (F (p,u), F (r,v)) ≤ T ·
dT ((p,u), (r,v)).Remark 3.2.3. The Building Blo
k Lemma and the Continuity Lemma natu-rally 
omplement Theorems TZ1 and TZJ2 ( on page 19 and page 27), respe
-tively. The former suggests ways to 
onstru
t operators that satisfy TheoremTZ1 and the latter merely assures us that there will be no unpleasant surpriseswhen we hope for them to satisfy Theorem TZJ2. The key observation hereis that most operators we might build from these theorems�starting with theidentity operator as our foundation�will satisfy only WCaus and Lip(λ, τ)for some λ ≥ 1. There are only two operations in the list that 
an be appliedto modify su
h an operator into one whi
h will satisfy Caus and Lip(λ, τ) fora λ < 1:
• integration, and
• multipli
ation by a matrix stream A(t) that begins at 0 (at t = 0) andwhose norm remains bounded by some λ < 1.Remark 3.2.4. This suggests the following 
lass of operators, at least as astarting point.Corollary 3.2.5. Let (P, dP ) be a metri
 spa
e (of parameter values), let

p ∈ P , and let V ⊆ P be a neighbourhood of p. Let y : P → C[T,B]m be
ontinuous at p. Let A,B : P → C[T,S]m×m be fun
tions su
h that
• A and B are 
ontinuous at p
• ∀r ∈ V B(r)(0) = 0 ∈ Bm×m 60
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• ∃MA,MB ∈ R+ ∀t ∈ T ∀r ∈ V ,
‖A(r)(t)‖ ≤MA and ‖B(r)(t)‖ ≤MB < 1De�ne F : P × C[T,B]m → C[T,B]m, as follows for u ∈ C[T,B]m, r ∈ P :

F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +

ˆ t

0

A(r)(s)u(s) dsThen for every r ∈ V , the fun
tion F (r, ·) : C[T,B]m → C[T,B]m has a �xedpoint v ∈ C[T,B]m, and its �xed point fun
tion Φ : V → C[T,B]m (as des
ribedin (1.3.3) on page 15) is 
ontinuous at p.Remark 3.2.6. Sin
e C[T,B]m and C[T,S]m×m are 
losed under their variousalgebrai
 operations and sin
e integration is linear, a single y, B, and A are
learly su�
ient here (e.g. the sum of two 
onstant streams y1(r)(t)+y2(r)(t)
ould obviously be expressed using a single 
onstant stream y(r)(t) and like-wise for the other terms). Nested integrals, however, 
annot be simpli�ed intoa single integral. So Corollary 3.2.5 
an be generalized further in the followingway.Corollary 3.2.7. Let (P, dP ), p, V , y, and B be as de�ned in Corollary 3.2.5.Let n ∈ Z+ and let A1, A2, . . . , An all be as A is de�ned (all 
ontinuous at pand all having bounded norms throughout V and T). Then the same results 
anbe obtained by de�ning F as follows (using the notation introdu
ed in Remark3.1.4):
F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +

n∑

k=1

ˆ (k)

0

(Ak(r)u) (t)Remark 3.2.8. Corollary 3.2.7 is the most general result that 
an be obtaineddire
tly (and ex
lusively) from the Building Blo
k Lemma and the ContinuityLemma, but with a bit of extra work, we 
an go further to ta
kle in�nite seriesof nested integrals instead of merely �nite sums of them.Lemma 3.2.9. Let4 M ∈ R+ and let A1, A2, A3, . . . ∈ C[T,S]m×m be a se-quen
e of matrix streams su
h that ∀t ∈ T ∀k ∈ Z+ ‖Ak(t)‖ ≤ M . Then thefollowing operator is well-de�ned on C[T,B]m:
F (u)(t) =

∞∑

k=1

ˆ (k)

0

(Aku) (t) (3.2.7)4In fa
t, the lemma holds if M is any fun
tion of the form M : T → R+, but we 
an'tmake use of this generality here and it be
omes merely in
onvenient for our purposes.
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Fn(u)(t) =

n∑

k=1

ˆ (k)

0

(Aku) (t)Then by Lemma 3.1.5, for any T ∈ T, and any N > 0 and n > N ,
dT (Fn(u), FN(u)) = ‖Fn(u)− FN(u)‖T

=

∥∥∥∥∥

n∑

k=N+1

ˆ (k)

0

(Aku)

∥∥∥∥∥
T

≤
n∑

k=N+1

∥∥∥∥∥

ˆ (k)

0

(Aku)

∥∥∥∥∥
T

=

n∑

k=N+1

max
0≤t≤T

∥∥∥∥∥

ˆ (k)

0

(Aku) (t)

∥∥∥∥∥

≤ M ‖u‖T
n∑

k=N+1

max
0≤t≤T

tk

k!

= M ‖u‖T
n∑

k=N+1

T k

k!Given u and T , this distan
e 
an be made arbitrarily small by making N su�-
iently large (and keeping n > N). Thus, for every u ∈ C[T,B]m, {Fn(u)}∞n=1 isa lo
ally uniform Cau
hy sequen
e and sin
e C[T,B]m is 
omplete, limn→∞ Fn(u)exists (and hen
e de�nes F (u)).Lemma 3.2.10. For all λ > 0 the operator F : C[T,B]m → C[T,B]m de�nedin (3.2.7) on the pre
eding page satis�es Caus and Lip(λ, τ) with τ = λ
M+λ(where M is the upper bound for ‖Ak(t)‖ indi
ated in Lemma 3.2.9).Proof. By the Building Blo
k Lemma, Parts (1b), (2b), (3b), and (6a), Fn ∈Caus for every n ∈ Z+. Lo
ally uniform 
onvergen
e implies pointwise 
on-vergen
e, so if for some T ∈ T, u,v ∈ C[T,B]m ∀n ∈ Z+ Fn(u)(T ) = Fn(v)(T ),then the same is true of the limits of ea
h side of the equation as well. This istrue whether T = 0 or T > 0. Thus, it follows that the limit F also satis�esCaus .Let T ∈ T and u,v ∈ C[T,B]m su
h that dT (u,v) = 0. Let λ > 0 and

τ = λ
M+λ

. Then by the Building Blo
k Lemma (1b), (3
), (5d), and (6b),
∀n ∈ Z+ the operator u 7→ ´ (n)

0
(Anu) satis�es Lip(τnM, τ). Thus, using (2
),

Fn ∈ Lip (M n∑

k=1

τk, τ

)

62



Ph.D. Thesis - N. James; M
Master University - Computing and SoftwareHen
e, ∀u,v ∈ C[T,B]m ∀T ∈ T, if dT (u,v) = 0 then
dT+τ (Fn(u), Fn(v)) ≤M

n∑

k=1

τkdT+τ(u,v)Now, dT+τ (F (u), F (v)) = dT+τ (limn→∞ Fn(u), limn→∞ Fn(v)), and sin
e dT+τis 
ontinuous,
dT+τ

(
lim
n→∞

Fn(u), lim
n→∞

Fn(v)
)

= lim
n→∞

dT+τ (Fn(u), Fn(v))

≤ M
∞∑

k=1

τkdT+τ (u,v)

=
Mτ

1− τ dT+τ (u,v)

= λdT+τ (u,v)Remark 3.2.11. Lemmas 3.2.9 and 3.2.10 o�er 
onditions su�
ient to guaran-tee a �xed point for integral series operator (3.2.7) using Theorem TZ1. Wenow wish to augment the domain of this operator with a parameter spa
e anddetermine a (ideally modest) set of 
onditions to be imposed on the matrixstreams {An}∞1 to ensure su
h an operator is 
ontinuous at a given point inits parameter spa
e (the main requirement demanded by Theorem TZJ2).Lemma 3.2.12 (The Equi
ontinuity Lemma). Let (X,TX) be a topologi
alspa
e (where TX is the topology on X) and (Y, dY ) be a metri
 spa
e. Let
{fn}∞n=1 be a sequen
e of fun
tions fn : X → Y that 
onverges pointwise to afun
tion f : X → Y . If {fn}∞n=1 is equi
ontinuous at a point x ∈ X, then f is
ontinuous at x.Proof. If {fn}∞n=1 is equi
ontinuous at x, then ∃δx : R+ → TX su
h that ∀ε > 0
x ∈ δx(ε) and ∀n ∈ Z+ ∀y ∈ X y ∈ δx(ε) ⇒ dY (fn(x), fn(y)) < ε. Sin
e fn
onverges pointwise to f , ∃N : X × R+ → N su
h that ∀y ∈ X ∀ε > 0
∀k > N(y, ε) d(fk(y), f(y)) < ε. Let ε > 0. Let y ∈ δ(ε/3). Choose any
n > max {N(x, ε/3), N(y, ε/3)}. Then,
dY (f(x), f(y)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε
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 spa
e and let {An}∞n=1 be a sequen
e offun
tions An : P → C[T,S]m×m. For ea
h n ∈ Z+ de�ne Hn : P ×C[T,B]m →
C[T,B]m as Hn(r,v)(t) = (An(r)(t)) (v(t)) (pointwise matrix multipli
ation).If {An}∞n=1 are equi
ontinuous at a point p ∈ P and ∃M : T → R+ su
h that
∀T ∈ T ∀n ∈ Z+ ‖An‖T ≤ M(T ), then {Hn}∞n=1 are equi
ontinuous at (p,u)for every u ∈ C[T,B]m.Proof. Let δA : R+ × T→ R+ be the modulus of 
ontinuity for {An}∞n=1 at p.That is, ∀ε > 0 ∀T ∈ T ∀n ∈ Z+∀r ∈ P ,

dP (r, p) < δA(ε, T )⇒ ‖An(p)− An(r)‖T < εWe 
an then derive a modulus of 
ontinuity for {Hn}∞n=1 using only δA, M(T ),and a stream u ∈ C[T,B]m (and, in parti
ular, not using n) by following theproof of the Continuity Lemma part (3), taking F to be the proje
tion fun
tion
F : P ×C[T,B]m → C[T,B]m, de�ned for (r,v) ∈ P ×C[T,B]m as F (r,v) = v.Spe
i�
ally, given ε > 0, u ∈ C[T,B]m, and T ∈ T, we take

ε′ =
1

2

(√
(M(T ) + ‖u‖T )

2 + 4ε−M(T )− ‖u‖T
)(
f. proof of the Continuity Lemma (3.2.2), part (3)). Then de�ne δ(ε, T,u) =

min {ε′, δA(ε′, T )}.Lemma 3.2.14. Let (P, dP ) be a metri
 spa
e and let {fn}∞n=1 be a sequen
eof fun
tions fn : P → C[T,B]m whi
h is equi
ontinuous at every point in someset Q ⊆ P . De�ne Fn : P → C[T,B]m as follows for r ∈ P , n ∈ Z+, and
t ∈ T:

Fn(r) =
n∑

k=1

ˆ (k)

0

(fk(r)) (t)Then {Fn}∞n=1 is equi
ontinuous on Q.Proof. Sin
e {fn}∞n=1 is equi
ontinuous on Q, there is a modulus of 
ontinuityfun
tion δf : R+ × T × Q → R+ su
h that ∀ε > 0 ∀n ∈ Z+ ∀T ∈ T ∀q ∈ Q
∀p ∈ P dP (p, q) < δf (ε, T, q) ⇒ dT (fn(p), fn(q)) < ε. De�ne δ(ε, T, p) =
δf(e

−T ε, T, p). Then for any T ∈ T, n ∈ Z+, and q ∈ Q su
h that dP (p, q) <
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δ(ε, T, p),

dT (Fn(p), Fn(q)) =

∥∥∥∥∥

n∑

k=1

ˆ (k)

0

(fk(p))−
n∑

k=1

ˆ (k)

0

(fk(q))

∥∥∥∥∥
T

=

∥∥∥∥∥

n∑

k=1

ˆ (k)

0

(fk(p)− fk(q))
∥∥∥∥∥
T

≤
n∑

k=1

∥∥∥∥∥

ˆ (k)

0

(fk(p)− fk(q))
∥∥∥∥∥
T

=

n∑

k=1

max
0≤t≤T

∥∥∥∥∥

ˆ (k)

0

(fk(p)− fk(q)) (t)
∥∥∥∥∥

≤
n∑

k=1

max
0≤t≤T

tk

k!
max
0≤s≤t

‖(fk(p)− fk(q)) (s)‖ (3.2.8)
=

n∑

k=1

max
0≤t≤T

tk

k!
dt (fk(p), fk(q))

≤
n∑

k=1

T k

k!
dT (fk(p), fk(q))

< e−T ε

n∑

k=1

T k

k!

< e−T ε

∞∑

k=1

T k

k!

= e−T εeT = εThe inequality in (3.2.8) is from Lemma 3.1.5 on page 54.Theorem 3.2.15 (The General Form Theorem). Let (P, dp) be a metri
 spa
e(of parameters). Let V ⊆ P be a neighbourhood of a point p ∈ P . Let y : P →
C[T,B]m be 
ontinuous at p. Let B,A1, A2, . . . : P → C[T,S]m×m be fun
tionssu
h that
• B is 
ontinuous at p, and {An}∞n=1 are equi
ontinuous at p,
• ∀r ∈ V B(r)(0) = 0 ∈ C[T,S]m×m, and
• ∃MA,MB ∈ R+ ∀r ∈ V ∀t ∈ T ∀n ∈ Z+ ‖An(r)(t)‖ ≤MA and ‖B(r)‖ ≤
MB < 1
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Master University - Computing and SoftwareDe�ne F : P × C[T,B]m → C[T,B]m as follows for r ∈ P , u ∈ C[T,B]m, and
t ∈ T:

F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +
∞∑

k=1

ˆ (k)

0

(Ak(r)u) (t) (3.2.9)For each r ∈ P de�ne Fr : C[T,B]m → C[T,B]m as Fr(u) = F (r,u).Then for ea
h r ∈ P , Fr has a unique �xed point Φ(r), and the �xed pointfun
tion Φ : V → C[T,B]m for F is 
ontinuous at p.Proof. First we'll show that ∀r ∈ P Fr satis�es Caus and Contr . TheoremTZ1 on page 19 informs us that these 
onditions are su�
ient to guaranteethat Fr has a unique �xed point for all r ∈ P . Finally we show that for every
u ∈ C[T,B]m, F is 
ontinuous at (p,u), and thus, Theorem TZJ2 on page 27provides the 
on
lusion.[Fr ∈ Caus ℄ Lemma 3.2.9 establishes the fa
t that Fr(u) 
onverges to a streamfor all (r,u) ∈ P × C[T,B]m. Using the Building Blo
k Lemma, Parts (1a),(1b), (3b), (5a), (5
), and (3.2.10), we �nd that ea
h of the main three termssatis�es Caus for any �xed r ∈ P . Part (2b) assembles them to show that Fr,itself, satis�es Caus .[Fr ∈ Contr ℄ Let λΣ = 1−MB

2
and τ = λΣ

MA+λΣ
. From (1a) the �rst term of Frsatis�es Lip(0, τ). From (1b) and (5
) the se
ond term satis�es Lip(MB, τ).From Lemma 3.2.10, the third term (the summation) satis�es Lip (λΣ, τ).Putting the three results together, we 
on
lude from (2
) that for all r ∈ P ,

Fr satis�es Lip(λ, τ) with λ = 0 +MB + λΣ = 1+MB

2
< 1.[F 
ontinuous at (p,u)℄ By Lemma 3.2.13, the set of integrands is equi
ontin-uous at every point in the set Q = {p} × C[T,B]m. Thus, by Lemma 3.2.14,the set of partial sums {∑n

k=1

´ (k)

0
(Ak(r)u) (t)

}∞

n=1
is equi
ontinuous at everypoint in Q. Sin
e the series 
onverges pointwise, the Equi
ontinuity Lemmathen asserts that its limit is 
ontinuous at every point of Q. It is then trivialto use the Continuity Lemma to show that F is 
ontinuous at every point in

Q, and hen
e by Theorem TZJ2, Φ is 
ontinuous at p.3.3 Appli
ations3.3.1 The Mass-Spring-Damper System Revisited3.3.1.1 Case Study 1The simple mass-spring-damper system (see Figure 3.3.1) was introdu
ed in[TZ07℄ as an analog network 
ase study. The system is typi
ally expressed as66
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Master University - Computing and Softwarea se
ond-order, homogeneous ODE with 
onstant 
oe�
ients:
Mẍ(t) +Dẋ(t) +Kx(t) = f(t)where M is the mass, D is the damping 
oe�
ient, K is the spring 
onstant,

f is the for
ing fun
tion, and x is the displa
ement. The initial 
onditions aregiven as
x(0) = x0 ∈ R (initial displa
ement)
ẋ(0) = v0 ∈ R (initial velo
ity)

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

����������������������������������������������

����������
����������
�����
�����
�����

�����
�����
�����

K D

x

f

M

Figure 3.3.1: Mass-Spring-Damper SystemIt is typi
al to redu
e the se
ond-order equation to a �rst-order system usingthe substitutions v(t) = ẋ(t) and a(t) = v̇(t). Integrating this system withrespe
t to t and solving for the initial 
onditions gives us a system of integralequations equivalent to the original initial value problem:
a(t) =

f(t)−Dv(t)−Kx(t)
M

v(t) =

ˆ t

0

a(s) ds+ v0

x(t) =

ˆ t

0

v(s) ds+ x0This system is the mass-spring-damper system as it is represented in [TZ07℄and [TZ11℄ as their �rst 
ase study. For ea
h parameter 
hoi
e p = (M,K,D, v0, x0, f),it indu
es the operator Fp : C[T,R]3 → C[T,R]3 de�ned for u(t) = (a, v, x)⊺ (t)as
Fp



a
v
x


 (t) =




1
M

(f(t)−Dv(t)−Kx(t))
´ t

0
a(s) ds+ v0

´ t

0
v(s) ds+ x0


 (3.3.1)67
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Master University - Computing and SoftwareA �xed point of this operator represents both a solution the original initialvalue problem (with the given parameters), and the semanti
s for the analognetwork shown in Figure 3.3.2 (whi
h is a slightly less formal version of theone used by Tu
ker and Zu
ker):
-

f(t)

-
x(t)

-
v(t)

Weighted Sum︸ ︷︷ ︸(weights)?

1
M

?

−K
M

?

− D
M

-
a(t) ´ t

0
+c

v0

?

-
v(t) ´ t

0
+c

x0

?

-
x(t)

Figure 3.3.2: Analog Network for Simple Mass-Spring-Damper SystemTu
ker and Zu
ker prove that this operator Fp satis�es the Contr 
ondition if
M > max {K, 2D}, and hen
e their theory guarantees the existen
e of a �xedpoint under that 
ondition. It is un
lear whether this is a ne
essary 
ondition,however, but while it may be weakened to some degree, it 
annot be disposedaltogether, as the following example demonstrates.Example 3.3.1. Let T ≥ 0. Take the 
onstants M = D = K = 1, v0 =
x0 = 0, and let u1 = (a1, v1, x1)

⊺,u2 = (a2, v2, x2)
⊺ be stream tuples su
h that

x1 = x2 = a1 = a2 (for all time), and v1↾[0,T ]= v2↾[0,T ] but ∃t ∈ (T, T + τ ] su
hthat v1(t) 6= v2(t). For 
onvenien
e, write (a′i, v
′
i, x

′
i)
⊺ = Fp(ui) for i = 1, 2.

68
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Master University - Computing and SoftwareThen for any τ > 0, λ < 1, and any input stream f ,
dT+τ (Fpu1, Fpu2) = max{dT+τ(a

′
1, a

′
2), dT+τ(v

′
1, v

′
2), dT+τ (x

′
1, x

′
2)}

≥ dT+τ (a
′
1, a

′
2)

= dT+τ

(
f −Dv1 −Kx1

M
,
f −Dv2 −Kx2

M

)

= dT+τ ((f − v1 − x1), (f − v2 − x2))
= max

0≤t≤T+τ
|(f(t)− v1(t)− x1(t))− (f(t)− v2(t)− x2(t))|

= max
T≤t≤T+τ

|(f(t)− v1(t)− x1(t))− (f(t)− v2(t)− x2(t))|

= max
T≤t≤T+τ

|v2 − v1|

= dT+τ(v1, v2)

= max{dT+τ(v1, v2), 0, 0}
= max{dT+τ(v1, v2), dT+τ(x1, x2), dT+τ(a1, a2)}
= dT+τ(u1,u2)

> λdT+τ(u1,u2)Thus, Fp with p = (1, 1, 1, 0, 0, f) does not satisfy the Contr 
ondition.3.3.1.2 A More Robust FormulationExample 3.3.1 shows that there are parameter values whi
h 
ause Tu
ker andZu
ker's model of the mass-spring-damper system to fail to satisfy Contr ,and hen
e also to fail to satisfy their spe
ial 
ondition, M > max{K, 2D}.In other words, the spe
ial 
ondition is not simply an artifa
t of 
al
ulation(or an �idle threat,� as it were); it does identify systems whi
h do not satisfyContr . While somewhat disappointing, it is not 
ompletely unexpe
ted thatsu
h systems would exist. In parti
ular, it is 
on
eivable to think we mightsee the Contr 
ondition fail in regions of the parameter spa
e in whi
h thesystem behaves errati
ally or in whi
h the system is most sensitive to parametervariation. Oddly enough, that does not appear to be the 
ase.Re
all that there are three types of behaviour a mass-spring-damper system
an exhibit (see [BD01℄, for example, or almost any elementary text on or-dinary di�erential equations): overdamped, 
riti
ally damped, and under-damped. An overdamped system behaves as if submerged in molasses�ifthe mass is displa
ed (and no other for
ing fun
tion a
ts on it), it graduallyand monotoni
ally returns to the equilibrium position. A 
riti
ally dampedsystem monotoni
ally returns to its equilibrium position as well, but as qui
klyas possible (like an optimized overdamped system). An underdamped systemwill os
illate with exponentially de
reasing amplitude.69
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Master University - Computing and SoftwareThe value of the damping ratio ζ = D/
√
4MK determines whi
h behaviour asystem will exhibit. If ζ > 1 the system is overdamped, if ζ < 1 the systemis underdamped, and if ζ = 1 it is 
riti
ally damped. Sin
e the motion of anunderdamped system is the least 
onstrained, we might expe
t that if Tu
kerand Zu
ker's 
ondition (M > max{K,D}) is to fail, an underdamped systemis where it would happen; and likewise, if it ever holds, surely it would hold foran overdamped system. In fa
t, for ea
h type of behaviour there is a systemwhi
h satis�es the spe
ial 
ondition and a system whi
h doesn't.Example 3.3.2. Let D ∈ R+ and set M = 3D. Then

ζ =
D√

12DK
=

√
D

12KThe system is overdamped if K < D/12, 
riti
ally damped if K = D/12, andunderdamped if K > D/12. As long as K < 3D (whi
h leaves plenty of wiggleroom), we have M > max{K, 2D}. So there are systems of every type whi
hsatisfy the 
ondition.Now let K ∈ R+, and let M = K. Then
ζ =

D

2
√
MK

=
D

2KThe system is overdamped if D > 2K, 
riti
ally damped if D = 2K, andunderdamped if D < 2K. Regardless of the value of D, M ≤ max{K, 2D}.So there are also systems of every type whi
h do not satisfy the 
ondition.Fortunately, by simply making the a

eleration stream impli
it, we 
an rear-range the system into an equivalent one that satis�es the Contr 
ondition forany 
hoi
e of M,K,D > 0 (so while the spe
ial 
ondition was not merely anartifa
t of 
al
ulation, it was only an idiosyn
ra
y of that parti
ular model ofthe system).De�ne the operatorG : P×C[T,R]2 → C[T,R]2 as follows for p = (M,K,D, v0, x0, f) ∈
(R+)

3 × R2 × C[T,R] = P and (v, x)⊺ ∈ C[T,R]2 (
f. (3.3.1)):
G

(
p,

[
v
x

])
(t) =

[
1
M

´ t

0
(f(s)−Dv(s)−Kx(s)) ds+ v0

´ t

0
v(s) ds+ x0

] (3.3.2)For 
onvenien
e, we'll use the notation Gp(u) = G(p,u) for u ∈ C[T,R]2 and
p ∈ P .The 
orresponding network is shown in Figure 3.3.3. We will now show that
G satis�es the 
onditions demanded of F from the General Form Theorem.De�ne 70
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Figure 3.3.3: Revised Mass-Spring-Damper Network
A1(p)(t) =

[
− D

M
−K

M

1 0

] and y(p)(t)=

[
1
M

´ t

0
f(s) ds+ v0
x0

]Let all the other matri
es from the General Form Theorem (B and Ak for
k = 2, 3, . . .) be zero. Rewrite Equation (3.3.2) as follows to put it in the formof (3.2.9):

G

(
p,

[
v
x

])
(t) = y(p)(t) +

ˆ (1)

0

(
A1(p)

[
v
x

])
(t)It is relatively straightforward to show that y and A1 are 
ontinuous on P�and hen
e, on any neighbourhood V ⊆ P of p. So take V to be the open ballof radius M

2
, 
entred at p = (M,K,D, v0, x0, f). More pre
isely,

V = P ∩
(
M

2
,
3M

2

)
×
(
K − M

2
, K +

M

2

)
×
(
D − M

2
, D +

M

2

)

×
(
v0 −

M

2
, v0 +

M

2

)
×
(
x0 −

M

2
, x0 +

M

2

)

×
{
g ∈ C[T,R] : dC(f, g) <

M

2

}Let MA = 1 + 2D+2K
M

. Then, as required by the General Form Theorem,
71
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∀p′ = (M ′, K ′, D′, v′0, x

′
0, f

′) ∈ V ∀t ∈ T,
‖A1(r)(t)‖ = sup

{∥∥∥∥
[
− D′

M ′
−K ′

M ′

1 0

]
u

∥∥∥∥ : u =

[
u1
u2

]
∈ R2 and ‖u‖ ≤ 1

}

= max

{
D′ +K ′

M ′ , 1

}

≤ max

{
D + M

2
+K + M

2

M − M
2

, 1

}
=MAThere is no matrix stream B, so using the proof of the General Form Theorem,a straightforward 
al
ulation reveals that G ∈ Lip(λ, τ) for

λ =
1

2
and τ =

M

4D + 4K + 3MThe remaining ante
edents of the General Form Theorem follow trivially for
G. Hen
e, for every p = (M,K,D, v0, x0, f), Gp has a unique �xed point Φ(p),and the 
orresponding �xed-point fun
tion

Φ :
(
R+
)3 × R2 × C[T,R]→ C[T,R]2for G is also 
ontinuous.The 
hara
terization of G as a �formulation� of F is justi�ed by the fa
t thatany �xed point of Gp uniquely spe
i�es a �xed point for Fp and vi
e versa. Inparti
ular,

[
v
x

] is a �xed point for Gp ⇔




1

M
(f −Dv −Kx)

v
x


 is a �xed point for FpHen
e, as intuition would suggest, Tu
ker and Zu
ker's theory 
an indeed beapplied to mass-spring-damper systems with any positive values for K, D, and

M . Admittedly G is not stri
tly equivalent to F (being two-dimensional), butif an expli
it a

eleration stream is desired, it 
an introdu
ed to the system
72
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A′(p)(t) =




0 D2

M2 − K
M

DK
M2

0 − D
M

−K
M

0 1 0




y′(p)(t) =




1
M

(
f(t)− D

M

´ t

0
f(s) ds− v0 − x0

)

1
M

´ t

0
f(s) ds+ v0
x0




F ′
p



a
v
x


 (t) =

ˆ t

0

A′(p)(s)



a
v
x


 (s) ds+ y′(p)(t)Alternatively, we 
ould skip the order-redu
tion step and simply integrate theoriginal ODE twi
e with respe
t to t, solving for the 
onstants of integrationusing the initial 
onditions to yield

x(t) =
1

M

ˆ t

0

(
ˆ s

0

(f(r)−Kx(r)) dr +Dx(s) + v0

)
ds+ x0

=
1

M

ˆ t

0

(
−K
ˆ s

0

x(r) dr +Dx(s)

)
ds+

1

M

(
ˆ t

0

ˆ s

0

f(r) dr ds+ tv0

)
+ x0In this 
ase we use 1× 1 �matri
es,� setting

A1(p) =
D

M

A2(p) = −K
M

B(p) = A3 = A4 = · · · = 0

y(p)(t) =
1

M

(
ˆ (2)

0

f(t) + tv0

)
+ x0Finally, returning to the issue of molasses-submerged systems and similarlywhimsi
al 
ontrivan
es (along with more pra
ti
al ones), observe that the ma-tri
es employed in this appli
ation have made no use of the dimension of time,whi
h is built into the model. Thus, K, D, and M 
an be made to varysmoothly over time if, for example, one wishes to model su
h systems as amass-spring-damper in a medium of varying vis
osity and/or temperature.3.3.1.3 Case Study 2The se
ond 
ase study in [TZ07℄ involves a 
oupled mass-spring-damper sys-tem: two MSD systems with one 
onne
ted to the mass of the other. The73
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Master University - Computing and Softwareauthors derive a similar system of integral equations (with two of everythinginvolved in Case Study 1) and determine that the system satis�es Contr aslong as M1 > max(2K1, 2D1) and M2 > max(2K1 + 2K2, 2D2). Fortunately,this 
an be modi�ed in the same way as Case Study 1 to yield an equiva-lent system that satis�es Contr for any parameter values. Just as in thesimpler version, the 
orresponding parametrized operator is 
ontinuous, andhen
e, Theorem TZJ2 
an be applied to it to obtain a 
ontinuous �xed-pointfun
tion Φ : (R+)
6 × R4 → C[T,R]k (where k 
an be 
hosen to be 2, 4, or 6,depending on whether a

eleration and velo
ity are to be expli
itly representedby streams).3.3.2 Simple PendulumThe simple, fri
tionless pendulum with a single, rigid arm, 
onstrained tomove within a verti
al plane is another staple of elementary me
hani
s. It isrepresented using the following se
ond-order ODE (see [A
h97℄):

θ̈(t) = −g
ℓ
sin (θ(t)) (3.3.3)where θ(t) is the angle formed by the bob and its equilibrium position at time

t, g is the gravitational 
onstant, and ℓ is the length of the arm. Using theorder-redu
tion tri
k from the last example, let φ = θ̇. Then (3.3.3) 
an berepresented by the following equivalent system:
φ(t) = −

ˆ t

0

g

ℓ
sin (θ(s)) ds+ φ0

θ(t) =

ˆ t

0

φ(s) ds+ θ0Our parameter spa
e is P = R+ × R2 (
ondense g/ℓ into a single, positiveparameter, leaving φ0 and θ0 as real numbers). In this 
ase, the GeneralForm Theorem is of no help at all sin
e the sin fun
tion is nonlinear. We 
an,however, still use the Building Blo
k Lemma dire
tly and treat the sin fun
tionas a sort of magi
ally-bestowed, primitive operator like the identity and the
onstant fun
tions from (1a) and (1b) of the Building Blo
k Lemma. De�ne5
G : P × C[T,R]2 → C[T,R]2 and y : P → C[T,R]2 as follows:

G

(
p,

[
φ
θ

])
(t) =

[
−g

ℓ
sin (θ(t))
φ(t)

] and y(p)(t) =

[
φ0

θ0

]5Note that G 
ould instead be de�ned using the simpler form G : P ×R2 → R2, but su
ha de�nition�while 
ertainly more elegant here�introdu
es awkwardness in the next step.74
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an then de�ne F : P × C[T,R]2 → C[T,R]2 like this:
F

(
p,

[
φ
θ

])
(t) =

ˆ (1)

0

G

(
p,

[
φ
θ

])
(t) + y(p)(t)WhileG is de�ned above as a stream operator, it a
tually uses only the 
urrentvalue of the input stream (see Footnote 5). Hen
e, it 
learly satis�es WCaus .It takes a bit of work to develop the formal details, but di�erentiating Gpwith respe
t to φ and θ reveals that Gp satis�es Lip(λG, τ) for any τ ∈ R+and λG = max {1, g/ℓ}. This is be
ause the magnitude of the slope of the �rst
omponent of G (with respe
t to θ rather than t) never ex
eeds g/ℓ, and theslope of the se
ond (with respe
t to φ) is always 1.Thus, we 
an apply the Building Blo
k Lemma to dedu
e that Fp satis�esCaus and Lip(1/2, τ) for τ = 1

2
min {1, ℓ/g}. It is 
lear by inspe
tion that G is
ontinuous, and hen
e, by the Continuity Lemma, so is F . Hen
e, by TheoremTZJ2, so is the �xed point fun
tion for F .The 
ontinuity of the �xed point may be somewhat surprising in this 
ase sin
e,for any g/ℓ, there is a 
ertain 
riti
al angular velo
ity (or position/velo
ity pair)whi
h will be pre
isely the right amount to turn the bob upright and leave itthere forever in its unstable equilibrium position. Even the slightest amountless and the bob falls ba
k down on the side from whi
h it approa
hed theverti
al. The slightest amount more, and it goes over the top, swinging ba
kdown on the other side. This would seem to represent a dis
ontinuity at thatpoint of 
riti
al velo
ity, but in fa
t, it doesn't. Theorem TZJ2 assures us ofthis, but it o�ers little in the way of insight.What drives our per
eption of a dis
ontinuity is the abrupt 
hange in theasymptoti
 behaviour of the system in response to arbitrarily small 
hangesin the initial 
onditions. Qualitatively speaking, there is a profound di�eren
ebetween a pendulum that falls ba
k down and one that remains upright. Whatthis observation fails to 
onsider is the length of time the bob spends in a near-upright position. As the initial velo
ity approa
hes that 
riti
al value whi
hleaves the pendulum upright forever, the bob spends more and more timein that very slow-moving limbo state in whi
h it would appear to have anun
ertain future.Now 
onsider this fa
t in light of the topology on C[T,R]. In
reasingly largevalues of T must be used to en
ounter any signi�
ant di�eren
e (with respe
t tothe pseudometri
s dT ) between the traje
tory of the perpetually upright bob,and those with su�
iently similar initial velo
ity. This phenomenon is plottedin Figure 3.3.4. Ea
h 
urve 
orresponds to the traje
tory of the bob, startingat θ(0) = 0 (hanging straight down initially), with a 
ertain initial velo
ity.The traje
tory marked �≈� is the one 
orresponding to the perfe
t amountof initial velo
ity to push the bob upright and leave it there forever. The75
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Figure 3.3.4: Pendulum traje
tories approa
hing perfe
t equilibriumtraje
tories that slope downward are produ
ed by less initial velo
ity (someare trun
ated in the plot for the sake of 
larity), and those whi
h slope upwardare produ
ed by an ex
essive initial velo
ity, whi
h pushes the bob over thetop. The important thing to note is that�regardless of whether too littleor too mu
h initial velo
ity is involved�the time at whi
h the non-uprighttraje
tories distinguish themselves be
omes later and later, the 
loser theirinitial velo
ity is to the 
riti
al value. From this, we may 
on
lude that whileinstability likely always results in a (lo
ally) smaller modulus of 
ontinuity, itdoes not ne
essarily imply a
tual dis
ontinuity�i.e. the modulus of 
ontinuitywill get very small around an unstable equilibrium point, but it may stillremain stri
tly positive.3.4 Future Work3.4.1 Develop Building Blo
ks to Handle Cases Like thePendulumIt is, of 
ourse, disappointing that for all the power of the General Form Theo-rem, it is still insu�
ient to handle an appli
ation as basi
 as the most simplependulum from elementary me
hani
s. This is one pri
e we pay for keepingour Bana
h spa
e B distin
t from its set of s
alars S. By letting B = S (whi
hholds for many 
ommon ve
tor spa
es anyway), we 
an introdu
e exponen-76
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h in turn, allows for power series and hen
e trigonometri
 andexponential operators. This is not, by any means, a straightforward additionto the theory, however. Consider, for example, the prospe
t of in
luding therather modest, pointwise squaring operator to C[T,R]:Example 3.4.1. Let id
2 : C[T,R] → C[T,R] be de�ned as follows for u ∈

C[T,R]:
id

2(u)(t) = (u(t))2

id
2 
ertainly satis�es WCaus , but what about Lip(λ, τ)? Let λ, τ ∈ R+ and
onsider the following two streams:

u(t) =
λ+ 1

τ
t

v(t) = 0Then d0(u, v) = 0, but d0+τ (id
2(u), id2(v)) = (λ+ 1)2 > λ(λ+1) = λd0+τ (u, v).Thus, ∀λ, τ ∈ R+

id
2 /∈ Lip(λ, τ).The problem here is ultimately due to the fa
t that the derivative of f(x) = x2is unbounded on R. No matter how leniently we 
hoose λ (and τ), we 
analways �nd a steep enough stream to deny id

2 its 
oveted membership in the
lass of Lip(λ, τ) operators. One way we might be able to 
ir
umvent thisproblem is by developing a nested exhaustion B1 ⊆ B2 ⊆ · · · ⊆ B of the
odomain of the streams. After all, given any R, τ ∈ R+ and any u, v ∈
C[T, [−R,R]] ⊆ C[T,R], we see that

dT+τ (id
2(u), id2(v)) = max

0≤t≤T+τ

∣∣u2(t)− v2(t)
∣∣

= max
0≤t≤T+τ

|u(t) + v(t)| |u(t)− v(t)|

≤ 2R max
0≤t≤T+τ

|u(t)− v(t)|

= 2RdT+τ(u, v)Therefore, id2 
an be said to satisfy the Lip(2R, τ) 
ondition on C[T, [−R,R]].Returning to the example of the pendulum, re
all the Ma
laurin series for
sin(t):

sin(t) =

∞∑

k=0

(−1)kt2k+1

(2k + 1)!Let sn be the derivative of the nth partial sum:
sn(t) =

n∑

k=0

(−1)kt2k
(2k)!77
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s1s15Figure 3.4.1: Partial sums in the Ma
laurin expansion for cos(t)The preimage of any bounded interval 
entred at 0 (say, [−1, 1]) 
ontinues toexpand as we examine su

essively larger partial sums. Turning our attentionto Figure 3.4.1, we see that the preimage of [−1, 1] under s1 is [−2, 2]. Under
s8, it's roughly [−6.1, 6.1], and by s15, the preimage has expanded to approxi-mately [−13.1, 13.1]. As n→∞, this preimage of [−1, 1] under sn approa
hes
R.So while none of these partial sums satisfy the Lip 
ondition on C[T,R], theoperator to whi
h they 
onverge does. This observation o�ers some hope thatwith a bit of 
are, power series might be in
orporated into the theory. Themain value of doing so is in their tremendous versatility. We 
ould, of 
ourse,simply throw spe
i�
 analyti
 fun
tions like sin into the theory individually,but it would be far more powerful (and elegant) to 
at
h them all in a single net.Furthermore, it allows for greater generality. The sin fun
tion traditionallyassumes only real or 
omplex values, but its power series expansion 
ould beused to de�ne versions of it (along with several other fun
tions) on more exoti
spa
es.3.4.2 Other Lines of Inquiry
• A network model (or rather a mathemati
al model that 
an be inter-preted as a network model) along with a system of �xed-point semanti
sis presented in [TZ11℄. The authors des
ribe a set of 
onditions su�
ientto guarantee that the model operates properly. The abstra
tness of the78
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essarily imposes a 
orresponding level of abstra
tness on these
onditions. This 
hapter is meant to be a 
ompanion work in whi
h someof that abstra
tness is sa
ri�
ed in an attempt to get 
loser to a more
on
rete, GPAC-like result�a result in whi
h a tangible 
lass of fun
-tions is identi�ed that satis�es Tu
ker and Zu
ker's 
onditions. [TZ11℄ is,however, only the �rst of a two-part series, the se
ond of whi
h examinestheir model from the framework of 
omputable analysis (spe
i�
ally, the
omputable analysis 
overed in [TZ04℄). Hen
e, a natural se
ond stepwill be to follow [JZ12℄ with a 
orresponding entry that applies 
om-putable analysis to the Building Blo
k and Continuity Lemmas, and tothe General Form Theorem.
• Even with the pendulum in
luded, this theory, as it stands 
urrently,
annot be applied to most of the dynami
al systems from elementaryphysi
s (instan
es of the wave equation, heat di�usion, and even merelythe double pendulum). Its relian
e on expli
it formulas is perhaps thebiggest limiting fa
tor. Most of the 
ommon systems of partial di�eren-tial equations and di�erential-algebrai
 equations 
annot be representedexpli
itly the way the pendulum and the mass-spring-damper system
an be written: with isolated (stream) variables ex
lusively on the left-hand side and potentially more 
ompli
ated expressions on the right.While it is 
ertainly more powerful than a dire
t appli
ation of Bana
h'sContra
tion Mapping Prin
iple, the dependen
e upon this form is quitefrustrating. It would enhan
e the theory tremendously if it 
ould beadapted somehow to be appli
able to some of the impli
it forms. Notethat, unlike the GPAC, there is no obvious reason the model presentedhere 
ould not be applied to fun
tions of more than one variable. Whilewe insist on having at least one nonnegative real variable, others 
ouldeasily be in
luded in the Bana
h spa
e and the parameter spa
e (e.g. our�streams� 
ould be 
ontinuous fun
tions of the form u : T→ L2(R)).
• As mentioned in the introdu
tory remarks of Se
tion 3.1.1 on page 51,it is a somewhat intriguing 
oin
iden
e that our theory involves the useof square matri
es whose elements are taken from what turns out bea 
ommutative ring with identity (C[T,S]), and that this just happensto be the minimal algebrai
 stru
ture ne
essary to de�ne determinants[HK71℄. Whether any of the myriad uses for determinants is appli
ableto the theory is unknown to us, but it would seem to warrant at least a
ursory investigation.

79



Chapter 4Resear
h Proje
t #3: Exploringthe More General Case inWhi
h T is Repla
ed by anArbitrary σ-Compa
t Spa
eWhile most of [TZ11, TZ12℄ 
on
erns �streams,� in C[T,A] (where T is a repre-sentation of time, taken to be either N or R≥0, and A is a topologi
al algebra),the �rst paper begins more generally�looking at C[X,A] where X is merelyan arbitrary σ-
ompa
t1 spa
e with some extra 
onditions imposed on it.On page 3380 of [TZ11℄, shortly after mentioning 
ausality (see De�nition 1.3.13on page 16) for the �rst time, Tu
ker and Zu
ker write,�It is not 
lear how to de�ne (or even make sense of)the 
on
ept of 
ausality in the general 
ase for X (tak-ing, for example, X = Z2 or X = R3).�Hen
e, in Se
tion 3 of their paper, where 
ausality be
omes essential to assume,they restri
t X to the spe
ial 
ase in whi
h it serves as a model of time,renaming it to T and taking T = R≥0 (as well as often addressing the 
ase inwhi
h T = N).Their footnote is in
ontrovertible. Causality is an inherently temporal phe-nomenon, and we, as human beings, appear to be hardwired to per
eive timeas a stri
tly one-dimensional entity. Nevertheless, there does seem to be a wayto generalize their properties Caus andWCaus for spa
es like Z2 or R3 whilepreserving their operational role within the theory�even if the new de�nitions
ould no longer be des
ribed as having anything to do with our intuitive notion1A set is σ-
ompa
t if it is a 
ountable union of 
ompa
t sets.80
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ausality. Essentially they are purely abstra
t properties whi
h do the samejob 
ausality does.Loosely speaking, what is spe
ial about T within their theory�the reasonthey appear to have 
hosen it�is the fa
t that it is totally ordered and hasa �rst element (zero). But this is true of their 
ompa
t exhaustion of X aswell. Granted, X itself doesn't ne
essarily have those two properties, but itturns out that this is not a
tually required. We 
an trade T for a 
ompa
texhaustion similar to the way we might use a 
ompa
t exhaustion as a modelof N. There's one property (shift invarian
e) that seems somewhat tri
kyto transpose in this way, but in fa
t, we 
an 
ir
umvent it 
ompletely via theGeneralized Theorem TZJ2 on page 102�whi
h is quite a stroke of lu
k, giventhat I hadn't 
on
eived of the proje
t in this 
hapter ba
k when I proved itspre
ursor (Theorem TZJ2 on page 27).While struggling with what I thought was a problem in their 
omputabilityresults (but turned out to be an embarrassing misunderstanding on my part),I thought of a few variations of their main �workhorse� property Contr (λ, τ)that would produ
e similar results and would work with the more general(smoothie-based) operators as well. I defer those for the Future Work se
tion4.1 Smoothie Spa
e
C[X,A] represents the set of 
ontinuous fun
tions from X into A, equippedwith the 
ompa
t-open topology. The elements of C[X,A] are appropriatelynamed �streams� when X is a model of time, but the metaphor falls apart whenit isn't. For what is, apparently, an a
ute la
k of imagination, I've adoptedthe word smoothie to des
ribe the elements of C[X,A]. They're 
ontinuousfun
tions, but they la
k the total ordering we naturally asso
iate with theword �stream.� So I refer to C[X,A] as smoothie spa
e.Throughout this 
hapter, as in previous 
hapters, we assume A is a 
ompletemetri
 spa
e with metri
 dA. We assume X is a σ-
ompa
t topologi
al spa
e(i.e. it is a 
ountable union of 
ompa
t sets) with a 
ompa
t exhaustion X.De�nition 4.1.1 (Compa
t Exhaustion). Let X = {Xn}n∈N be a family of
ompa
t subsets of X. Then we say X is 
ompa
t exhaustion if

X0 ⊆ X1 ⊆ · · · ⊆ X⋃∞
n=0Xn = Xand for every 
ompa
t set K ⊆ X there is an n ∈ N su
h that K ⊆ Xn (seeRemark 4.1.4 on page 84 if this last 
ondition seems unusual).81



Ph.D. Thesis - N. James; M
Master University - Computing and Software4.1.1 Pseudometri
sAs before, we de�ne the sequen
e of pseudometri
s {dn}n∈N as follows:
dn(u, v) = sup

x∈Xn

dA(u(x), v(x))There are some situations in whi
h it is 
onvenient to apply these pseudomet-ri
s not to C[X,A], but to C[Xn,A] (for some n ∈ N). So here we take thedomain of dn to be C[X,A]2 ∪⋃∞
k=n C[Xk,A]2.And again, sin
e u, v, and dn are 
ontinuous (the latter via Lemma 1.4.1 onpage 21) andXn is 
ompa
t, it follows that ∃y ∈ Xn su
h that dA(u(y), v(y)) =

dn(u, v), and hen
e we 
an write,
dn(u, v) = max

x∈Xn

dA(u(x), v(x))The same sort of metri
 we 
onstru
ted for C[T,A] works here as well, althoughwe have no need for it (the pseudometri
s are more 
onvenient):
dC[X,A](u, v) =

∞∑

n=0

min
{
2−n, dn(u, v)

}It is worthwhile, at this point, to review the use of pseudometri
s in a metri
spa
e.Lemma 4.1.2. A sequen
e {un}n∈N in C[X,A] is Cau
hy i� ∃N : N×R+ → Nsu
h that ∀M ∈ N ∀ε > 0,
n,m ≥ N(M, ε) ⇒ dM(um, un) < εProof. (⇒) Suppose {un}n∈N is Cau
hy. Then ∃N ′ : R+ → N su
h that ∀ε > 0,
n,m ≥ N ′(ε) ⇒ dC[X,A](um, un) < εDe�ne N : N× R+ → N as follows:
N(M, ε) = max

{
N ′(ε), N ′(2−M−1)

}Let M ∈ N, ε > 0, and m,n ≥ N(M, ε). Being just a member of the summa-tion of nonnegative terms,
min

{
2−M , dM(um, un)

}
≤ dC[X,A](um, un)

≤ 2−M−1

< 2−M82
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dM(um, un) = min

{
2−M , dM(um, un)

}

≤ dC[X,A](um, un)

< ε (sin
e m,n ≥ N ′(ε))(⇐) Now suppose ∃N : N × R≥0 → N as des
ribed in the statement of thelemma. De�ne N ′ : R+ → N as follows:
N ′(ε) = N

(
⌈1− log2(ε)⌉ ,

ε

2 ⌈1− log2(ε)⌉

)Let ε > 0. Let m,n ≥ N ′(ε) and for 
onvenien
e, let M = ⌈1− log2(ε)⌉.Then,
dC[X,A](um, un) ≤

M∑

i=0

min
{
2−i, di(um, un)

}
+

∞∑

i=M+1

2−i

≤ MdM(um, un) +
2−(M+1)

1− 1/2

= MdM(um, un) + 2−MBy de�nition of N and M ,
MdM(um, un) < M · ε

2 ⌈1− log2(ε)⌉
=

ε

2and
2−M = 2−⌈1−log2(ε)⌉

= 2−⌈log2(2/ε)⌉

≤ 2log2(ε/2)

=
ε

2Therefore, dC[X,A](um, un) < ε.4.1.2 Completeness of C[X,A]Lemma 4.1.3. If A is 
omplete and X is a σ-
ompa
t spa
e with a 
ompa
texhaustion, then C[X,A] is 
omplete. 83
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ompa
t exhaustion (that every 
om-pa
t set be 
ontained within some member of the exhaustion) is somewhatnonstandard. Some authors omit it, others omit it but insist that for ea
h
n ∈ N, Xn is a subset, not just of Xn+1, but of the interior of Xn+1. It�or atleast something like it�is ne
essary for Lemma 4.1.3 on the pre
eding page.It also ensures that the topology generated by {dn}n∈N is the 
ompa
t-open(and the lo
al uniform and the inverse limit) topology, although that, in andof itself, is not mandatory.Example 4.1.5. It is possible that some other 
ondition would su�
e to en-sure 
ompleteness relative to A (perhaps that every member of the exhaustionbe simply 
onne
ted?), but it's 
lear that without any third 
ondition, we 
an-not be 
ertain C[X,A] will be 
omplete. For example, going ba
k to our oldstandby, X = R≥0 with its usual topology, let A = R and for ea
h n ∈ N de�ne

Xn =

[
0,

n

n+ 1

]
∪ [1, n+ 1]Then ea
hXn is 
ompa
t, X0 ⊆ X1 ⊆ · · · ⊆ X and⋃n∈NXn = X, but of 
oursethere are several 
ompa
t sets that aren't 
ontained in any Xn (e.g. [0, 1]). Forea
h n ∈ N, de�ne un ∈ C[X,A] as follows:

un(x) =





1 if 0 ≤ x < n
n+1

(n + 1)(1− x) if n
n+1
≤ x < 1

0 if x ≥ 1De�ne N : N× R≥0 → N as follows:
N(M, ε) =MLet ε > 0 and let M ∈ N. Let m,n ≥ N(M, ε). Then, for x < M

M+1
,

um(x) = un(x) = 1, and for x ≥ 1, um(x) = un(x) = 0. Thus, um and un agreeon XM and hen
e,
dM(um, un) = 0 < εTherefore, by Lemma 4.1.2 on page 82, {un}n∈N is Cau
hy. It is 
lear, however,that {un}n 
onverges (pointwise) to the following fun
tion:

u(x) =

{
1 if 0 ≤ x < 1

0 if x≥1But u /∈ C[X,A]. 84
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Master University - Computing and Software4.2 Caus, Lip, and Contr for C[X,A]De�nition 4.2.1 (Caus(X)). Let X be a σ-
ompa
t spa
e with 
ompa
t ex-haustion X = {Xk}k∈N. Let F : C[X,A]→ C[X,A]. Then F satis�es Caus(X)if the following 
onditions2 hold:1. ∀u, v ∈ C[X,A] ∀x ∈ X0 F (u)(x) = F (v)(x)2. ∀u, v ∈ C[X,A] ∀n ∈ N dn(u, v) = 0 ⇒ dn(F (u), F (v)) = 0 (or, in otherwords, u ↾Xk
= v ↾Xk

⇒ F (u) ↾Xk
= F (v) ↾Xk

)Remark 4.2.2. It is, perhaps, helpful at this point to re
all Fa
t 1.3.15 onpage 16, whi
h provides a de�nition of Caus equivalent to De�nition 1.3.13on page 16 and upon whi
h the de�nition of Caus(X) is based. Fa
t 1.3.15states thatCaus 
an be expressed as two separate 
onditions: (i) the 
onditionthat the image of every stream under F is the same at time t = 0, and (ii) that
F ∈ WCaus . The �rst 
ondition in the de�nition of Caus(X) is analogousto Condition (i), where the �X0� of Condition (i) is simply the singleton set
{0}. The se
ond 
ondition in the de�nition of Caus(X) is 
learly analogousto Condition (ii) (WCaus).Example 4.2.3. Even when X = R≥0, Caus(X) is more general than theproperty Caus from De�nition 1.3.13 (but anything that satis�es Caus doessatisfy Caus(X)), as the following example shows. Let T be the nonnegativereal numbers with the standard 
ompa
t exhaustion X = {[0, k]}k∈N. De�ne
F : C[T,R]→ C[T,R] as follows for u ∈ C[T,A], t ∈ T :

F (u)(t) = u (⌊t⌋) + (t− ⌊t⌋) (u (⌈t⌉)− u(⌊t⌋))Whenever t is not a natural number, the value of F (u)(t) depends on thevalue of u at the next natural number above t (of 
ourse, it also depends onthe value at the previous natural number, but that's perfe
tly 
onsistent with
ausality)�i.e. at a �future� point of u (see Figure 4.2.1).The fa
t that this F really isn't �
ausal,� by any usual de�nition of the wordis a not a problem. The essential feature of 
ausality within this theory is toensure we 
an get 
onvergen
e of a �xed point in �bite-sized pie
es,� and forthis, Caus(X) works just as well as Caus . In parti
ular, it allows for thefollowing lemma.Lemma 4.2.4. Let F : C[X,A]→ C[X,A] satisfy Caus(X). Then F indu
es asequen
e of unique fun
tions {Fn : C[Xn,A]→ C[Xn,A]}n∈N de�ned as follows:
Fn(u↾Xn) = F (u)↾Xn2Frankly, I would greatly prefer to de�ne Caus(X) using only the se
ond 
ondition,making the �rst one a distin
t property (like initially 
onstant, or something similar), but Ifeel it's probably better to be 
onsistent with [TZ11℄ here to avoid 
onfusion.85



Ph.D. Thesis - N. James; M
Master University - Computing and Software

t

u

F (u)

0 1 2 3 4 5 6Figure 4.2.1: A stream operator that satis�es Caus(X) but not CausProof. Follows dire
tly from the se
ond property of Caus(X).Remark 4.2.5. While Caus(X) serves the same role in the theory as Caus , itseems to have little to do with 
ausality (at least as we per
eive it). So I'vebeen tempted to name it progressive (and use the notation Prog(X) insteadof Caus(X)) sin
e an operator F ∈ Caus(X) operates �progressively� on the
ompa
t exhaustion. The value of F (u) on Xn depends on the value of u onlyon Xn. I've opted to sti
k with �ba
kwards-
ompatibility� (i.e. Caus(X)) fornow to avoid a surfeit of new, made-up notation and verna
ular.De�nition 4.2.6 (Lip(λ,X) and Contr (X)). Let X be a σ-
ompa
t spa
ewith 
ompa
t exhaustion X = {Kk}k∈N. Let F : C[X,A] → C[X,A]. Let
λ ∈ R+. If ∀k ∈ N ∀u, v ∈ C[X,A],

dk(u, v) = 0 ⇒ dk+1(F (u), F (v)) ≤ λdk+1(u, v)Then we say F ∈ Lip(λ,X). If λ < 1, then we may say simply, F ∈ Contr (X).4.3 Generalizing the hold Operator for Smooth-iesNow that we have versions of Caus and Lip that work on C[X,A], we havealmost everything we need to generalize Theorem TZ1 on page 19. The only86
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ext operator from [TZ11℄). Re
all that holdT (u) agrees with u on [0, T ], andis 
onstant on [T,∞), with the value u(T ). It is essential for the 
onstru
tionof the �xed point (see Constru
tion 1.3.24 on page 20). How 
an we generalizethis idea for X?Obviously we 
an 
hange T ∈ T to k ∈ N (giving us hold k : C[X,A] →
C[X,A] for every k ∈ N instead of holdT : C[T,A] → C[T,A] for every T ∈
T), and then de�ne hold k(u) so that it agrees with u on Xk. But whathappens outside Xk? If we made it 
onstant outside Xk, there would be noway to guarantee hold k(u) would be 
ontinuous�and how would we 
hoosethe 
onstant anyway? Clearly another approa
h is needed.The reason holdT (u) is set to the 
onstant u(T ) outside the interval [0, T ]is mainly to ensure that for any t ≥ 0 and any u, v ∈ C[T,A], we have
dT+t(holdT (u),holdT (v)) = dT (u, v). The existen
e of limk→∞Ψ(n, k) (fromConstru
tion 1.3.24 on page 20) depends on this equation. So how 
an we em-ulate that behaviour on a wild spa
e like X instead of the ni
e, orderly spa
e
T?The key (or a key, at least) is to look at holdT (u), not as a pie
ewise fun
tion(equal to u(t) for t ≤ T , and equal to u(T ) otherwise), but as a 
ompo-sition of fun
tions: holdT (u) = (u ◦ ρT ), where ρT : T → T is de�ned as
ρT (t) = min{t, T}. Sin
e it's a 
omposition of 
ontinuous fun
tions, the resultis 
ontinuous, and it should be immediately apparent to any student of topol-ogy what sort of fun
tion ρT is. Re
all the following de�nition (see [Mun75℄,for example):De�nition 4.3.1 (Retra
t). If X is a subspa
e of Y , then we say X is aretra
t of Y if there exists a 
ontinuous fun
tion, ρ : Y → X su
h that ∀x ∈ X
ρ(x) = x. The fun
tion ρ is 
alled a retra
tion of Y onto X .We are now in a position to generalize the hold operator in a way that willfa
ilitate the 
onstru
tion.De�nition 4.3.2 (Retra
table Exhaustion). Let X be a σ-
ompa
t spa
ewith 
ompa
t exhaustion X = {Xk}k∈N. Then X is retra
table if ∀k ∈ N
Xk is a retra
t of X. In other words, there exists a sequen
e of retra
tions
{ρk : X→ Xk}k∈N of X onto Xk.De�nition 4.3.3. Let X be a retra
table 
ompa
t exhaustion of a spa
e, X,with retra
tions {ρk : X→ Xk}k∈N. For k ∈ N, de�ne hold k : C[X,A] →
C[X,A] as follows: hold k(u) = u ◦ ρkRemark 4.3.4. In fa
t, we have 
onstru
ted hold here only to demonstratethe appli
ation of the retra
tions and their relation to the original 
onstru
-tion. It turns out (as I learned the hard way) that the proofs are a little87
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er if we sti
k with using the retra
tions (ρk) dire
tly and drop the holdnotation altogether. This has the added bene�t of eliminating the rather un-intuitive notation, �holdn.� It makes sense in the 
ontext of C[T,A] as weallow holdT (u(t)) to vary up until t = T , and then �hold� it, �xed at thatvalue forever after. The fun
tion we have de�ned above, however, isn't �hold-ing� anything. It would be more a

urate to say it's propagating or smearingvalues of u taken from Xk throughout X, but we don't a
tually have to sayanything if we just use ρk.Still, while we'll generally avoid the hold notation, we need to establish its
ontinuity.Lemma 4.3.5. ∀u, v ∈ C[X,A] ∀n, k ∈ N dk(u ◦ ρn, v ◦ ρn) = dj(u, v) where
j = min {n, k}.Proof. If k ≤ n, then

dk(u ◦ ρn, v ◦ ρn) = max
x∈Xk

{dA(u(ρn(x)), v(ρn(x)))}

= max
x∈Xk

{dA(u(x), v(x))}

= dk(u, v)Otherwise,
dk(u ◦ ρn, v ◦ ρn) = max

x∈Xk

{dA(u(ρn(x)), v(ρn(x))}

= max
y∈Xn

{dA(u(y), v(y))}

= dn(u, v)Lemma 4.3.6. Let n ∈ N and de�ne holdn : C[X,A]→ C[X,A] as in De�ni-tion 4.3.3. Then holdn is (uniformly) 
ontinuous.Proof. Let ε > 0, k ∈ N. Let δ = ε and j = min {n, k}. Let u, v ∈ C[X,A](or in C[Xi,A] for some i ≥ max {n, k}) su
h that dj(u, v) < δ. Then byLemma 4.3.5
dk(holdnu,holdnv) = dk(u ◦ ρn, v ◦ ρn)

= dj(u, v)

≤ dk(u, v)

< ε
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an be proven trivially (given that
ρn(X) = Xn), but when they appear in the middle of a proof with 
ompli
atedexpressions in the pla
e of u and v, the steps don't seem quite so obvious. Sothe lemma is stated here without proof.Lemma 4.3.7. If u, v ∈ C[X,A] and n ∈ N, then

sup
x∈X

dA ((u ◦ ρn) (x), (v ◦ ρn) (x)) = dn(u ◦ ρn, v ◦ ρn)

= dn(u, v)Lemma 4.3.8. If u ∈ C[X,A] and n ∈ N, then holdn(u) is bounded (that is,the range of holdn(u) is a bounded subset of A).Proof. Let x0 ∈ Xn. De�ne f : X → R as f(x) = dA(u(x), u(x0)). Sin
e uand dA are 
ontinuous (the former by de�nition of C[X,A], and the latter byLemma 1.4.1 on page 21), f is 
ontinuous on X. Thus, f is 
ontinuous on
Xn, whi
h is 
ompa
t. Therefore, f(Xn) is 
ompa
t and sin
e f(Xn) ⊆ R,it follows that f(Xn) is bounded (and 
losed). Hen
e, ∃M > 0 su
h that
∀x ∈ Xn f(x) ≤M .4.3.1 Do We Have the �Right� Retra
table Exhaustion?Remark 4.3.9 (Alternative De�nition of Retra
table Exhaustion). In some sit-uations, it would be 
onvenient to have a di�erent sequen
e of retra
tions:
{ρ′k : Xk+1 → Xk}k∈N. It is, of 
ourse, easy to de�ne ρ′k as simply, ρk↾Xk+1

forany k ∈ N if we already have the sequen
e from De�nition 4.3.2 on page 87.It seems as though we should be able to go the other way too, however�thatis, to start with the sequen
e {ρ′k : Xk+1 → Xk}k∈N, and from it, de�ne thesequen
e {ρk : X→ Xk}k∈N. It is 
lear how this would be done:
ρk(x) =

{(
ρ′k ◦ ρ′k+1 ◦ · · · ◦ ρ′q(x)−1

)
(x) if q(x) > k

x if q(x) ≤ kwhere q(x) = min {i ∈ N : x ∈ Xi} for any x ∈ X.While this ρk is 
learly well-de�ned, unfortunately I'm not sure whether it isne
essarily 
ontinuous. Super�
ially it appears as though it is not de�ned thesame way at every point (it is de�ned above as a pie
ewise fun
tion with a
ountably in�nite number of pie
es), but re
all that retra
tions behave as theidentity on their ranges. If x ∈ Xi then ∀j ≥ i ρ′j(x) = x. Hen
e, retra
tionsof higher index 
an be 
omposed inde�nitely without moving the image of
x. Hen
e, it would appear that ρk is a
tually de�ned 
onsistently a
ross itsdomain as a 
omposition of 
ontinuous fun
tions. The problem is that it's89
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essarily a �nite 
omposition over an open set. One thing I do knowis that if it is 
ontinuous, the proof will depend on that third 
ondition of a
ompa
t exhaustion (that every 
ompa
t set be 
ontained within a member ofthe exhaustion), as the following 
ounterexample3 illustrates.Example 4.3.10. Let X = [0, 1] with the usual subspa
e topology of R. For
k ∈ N, let

Xk = {0} ∪
[

1

k + 1
, 1

]Clearly {Xk}k∈N would be a 
ompa
t exhaustion of X if only it satis�ed theextra requirement that every 
ompa
t set be 
ontained within a member of theexhaustion (and [0, 1/2] isn't, for example). A de�nition for ρ′k : Xk+1 → Xk isimmediately apparent:
ρ′k(x) =

{
1

k+1
if x ∈ [ 1

k+2
, 1
k+1

]

x otherwiseA

ording to the proposed de�nition of ρk : X → Xk as a 
omposition, ρk =
ρ′k ◦ ρ′k+1 ◦ · · · , we obtain (after putting them all together),

ρk(x) =

{
1

k+1
if x ∈ (0, 1

k+1

]

x otherwiseThis ρk is dis
ontinuous, however (for any k ∈ N), and thus it is not a re-tra
tion. Thus, if the 
onstru
tion of {ρk}k∈N from {ρ′k}k∈N des
ribed in Re-mark 4.3.9 is guaranteed to produ
e 
ontinuous fun
tions, this guarantee de-pends upon the extra 
ondition in our de�nition of a 
ompa
t exhaustion. Thewhole question, however, is admittedly somewhat moot when we 
an simplyuse De�nition 4.3.2 on page 87 and have everything we need.4.4 Existen
e of a Unique Fixed Point for Op-eratorsWhi
h Satisfy Caus(X) and Contr(X)We now have all the tools ne
essary to generalize Theorem TZ1 and show thatan operator F : C[X,A]→ C[X,A] that satis�es Caus(X) and Contr (X) hasa unique �xed point, regardless of whether X is a model of time or not. Thereis a qui
k and easy way to do this proof that simply invokes Bana
h's FixedPoint Theorem�allowing it to do all the heavy lifting�and a longer, more3Thanks to Prof. Ja
ques Carette for providing the 
ompa
t exhaustion whi
h inspiredthe 
ounterexample! 90
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tly reprodu
es many of the steps in the proof of thattheorem. Ea
h has a slightly di�erent �xed point 
onstru
tion asso
iated withit. I present the se
ond one only be
ause it uses a 
onstru
tion that is more
onsistent with the one used by Theorem TZJ2 on page 27�lest the readerthink I am pulling some sleight-of-hand.In ea
h 
ase, the expli
ation is a little 
learer if the 
onstru
tion is shown�rst (after some notation is de�ned), and the proof that it works is presentedafterwards. We start with the simpler one. To be 
onsistent with Constru
-tion 1.3.24 on page 20, we would de�ne Ψ : N2 → C[X,A], but in the sim-pler proof we use the form Ψ : N2 → ⋃
n∈N C[Xn,A]. Then, sin
e this nolonger produ
es elements of C[X,A], we de�ne our main 
onvergent sequen
e,

{ψn}n∈N ⊆ C[X,A], from Ψ.De�nition 4.4.1. Let F : C[X,A] → C[X,A], n ∈ N, and u ∈ C[X,A]. If
dn(u, F (u)) = 0 (i.e. u↾Xn= F (u)↾Xn) then u is said to be an Xn-approximate�xed point of F .Lemma 4.4.2 (Fn: Trun
ations of F ). Let F : C[X,A] → C[X,A] satisfyCaus(X). Then F indu
es a sequen
e of unique fun
tions

{Fn : C[Xn,A]→ C[Xn,A]}n∈Nde�ned as follows:
Fn(w) = F (w ◦ ρn)↾XnMoreover, the value of Fn(w) does not depend on the de�nition of ρn (it dependsonly on ρn being a retra
tion from X to Xn).Proof. Sin
e F , w, and ρn are 
ontinuous, so is F (w ◦ ρn). The restri
tion ofthis fun
tion to Xn is obviously 
ontinuous (or see Theorem 7.2, page 107 of[Mun75℄ if it doesn't seem obvious). So given any n ∈ N and w ∈ C[Xn,A],

F (w ◦ ρn)↾Xn∈ C[Xn,A]. Now suppose ρ′n : X → Xn is another retra
tion.Sin
e both ρn and ρ′n behave as the identity on Xn, ∀w ∈ C[X,A]
w ◦ ρn↾Xn= w ◦ ρ′n↾XnSo dn(w◦ρn, w◦ρ′n) = 0. Thus, sin
e F ∈ Caus(X), dn(F (w◦ρn), F (w◦ρ′n)) =

0. Hen
e, Fn does not depend on the retra
tion used.Constru
tion 4.4.3. (Constru
tion for Simpler Proof that F has a UniqueFixed Point)Let F : C[X,A] → C[X,A] satisfy Caus(X) and Contr (X). Then it has aunique �xed point, whi
h 
an be 
onstru
ted as follows (see the GeneralizedTheorem TZ1 on page 94 for proof): 91



Ph.D. Thesis - N. James; M
Master University - Computing and Software1. Let u0 ∈ C[X,A] and set ψ0 = F (u0) ◦ ρ0.Sin
e F ∈ Caus(X), ψ0 is an X0-approximate �xed point of F .2. Let n ∈ N and suppose ψn is an Xn-approximate �xed point of F . De�ne
Ψ(n, 0) = ψn ↾Xn+1, making Ψ(n, 0) an Xn-approximate �xed point of
Fn+1.3. For all k ∈ Z+ de�ne Ψ(n, k) = F k

n+1(Ψ(n, 0)).We will show this sequen
e 
onverges to a unique element of C[Xn+1,A].4. Given an n ∈ N for whi
h the sequen
e {Ψ(n, k)}k∈N exists and 
on-verges, de�ne ψn+1 =(limk→∞Ψ(n, k)) ◦ ρn+1.5. De�ne v = limn→∞ ψnThis will be the unique �xed point of F .Remark 4.4.4. There are really only three things to prove: that the �xedpoint is unique, and that the two limits (in Steps 3 and 5) exist. We'll 
overuniqueness �rst (in Lemma 4.4.5). To prove the other statements, we'll needto go over a few lemmas and Bana
h's 
elebrated Fixed Point Theorem �rst.Lemma 4.4.5 (If F has a �xed point, it's unique). Suppose F : C[X,A] →
C[X,A] satis�es Caus(X) and Contr(X), and has a �xed point, v ∈ C[X,A].Then v is unique.Proof. Suppose u and v are �xed points of F . By de�nition of Caus(X) (Part1, in parti
ular), it follows that u and v agree on X0 sin
e they're both inthe range of F . Hen
e, d0(u, v) = 0. Sin
e F ∈ Contr (X), there is a λ < 1su
h that F ∈ Lip(λ,X). Let n ∈ N and suppose dn(u, v) = 0. Then, sin
e
F ∈ Lip(λ,X),

dn+1(u, v) = dn+1(F (u), F (v))

≤ λ · dn+1(u, v)But 0 < λ < 1, so the only way this is possible is for dn+1(u, v) to be zero.Hen
e, ∀k ∈ N dk(u, v) = 0, and therefore u = v.Theorem 4.4.6 (Bana
h Fixed Point Theorem). Let X be a 
omplete met-ri
 spa
e and f : X → X. Suppose that ∃λ ∈ R+ su
h that λ < 1 and
∀x, y ∈ X d(f(x), f(y)) ≤ λd(x, y). Then f has a unique �xed point given by
limn→∞ fn(x), where x is any element of X.Proof. See any introdu
tory text on real analysis (e.g. Theorem 9.23 in [Rud76℄).Also known as the �
ontra
tion mapping prin
iple.�Lemma 4.4.7. Let F : C[X,A]→ C[X,A] satisfy Caus(X). Let n ∈ N. Then,92
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Master University - Computing and Software1. If u ∈ C[X,A] is an Xn-approximate �xed point of F then u↾Xn is a �xedpoint of Fn.2. If u ∈ C[Xn,A] is a �xed point of Fn then u ◦ ρn is an Xn-approximate�xed point of F .Proof. (1) If u ∈ C[X,A] is anXn-approximate �xed point of F , then dn(u, F (u)) =
dn(u↾Xn, F (u)↾Xn) = 0. Sin
e dn is a metri
 on C[Xn,A], this implies that
u↾Xn= F (u)↾Xn. Sin
e F ∈ Caus(X), F (u)↾Xn= F (u↾Xn).(2) If u ∈ C[Xn,A] is a �xed point of Fn then u = Fn(u). By de�nition (inLemma 4.4.2, Fn(u) = F (u ◦ ρn)↾Xn. Sin
e ρn behaves as the identity on Xn,
u = u ◦ ρn↾Xn. So,

dn(u ◦ ρn, F (u ◦ ρn)) = dn(u ◦ ρn↾Xn, F (u ◦ ρn)↾Xn)

= dn(u, Fn(u))

= 0Remark 4.4.8. In [TZ11℄, Lemma 2.1.2 states that if K is 
ompa
t and A is
omplete, then C[K,A] is 
omplete. This is used to prove that the result holdseven if K is not 
ompa
t, but is σ-
ompa
t (and A is 
omplete). Later inthe paper, however, it is also used in the proof of Theorem TZ1 to establishthe 
onvergen
e of a parti
ular Cau
hy sequen
e (loosely speaking, it's thesequen
e I've 
alled Ψ(n, 0), Ψ(n, 1), . . .). Using the following lemma in pla
eof Lemma 2.1.2 is what allows us to invoke Bana
h's Fixed Point Theoremdire
tly, instead of produ
ing a similar proof from the ground up:Lemma 4.4.9. Let X be a 
ompa
t (or σ-
ompa
t) metri
 spa
e, and let Kbe a 
ompa
t subset of X. Let Y be a 
omplete metri
 spa
e. Let f : K → Ybe 
ontinuous. Let Cf [X, Y ] = {g ∈ C[X, Y ] : g↾K= f}. That is, let Cf [X, Y ]be the set of 
ontinuous fun
tions from X into Y whi
h agree with f on K.Then Cf [X, Y ] (endowed with the subspa
e topology) is 
omplete.Proof. Let {gk}k∈N be a Cau
hy sequen
e in Cf [X, Y ]. Sin
e Cf [X, Y ] ⊆
C[X, Y ] (whi
h is 
omplete, by Lemma B.0.3 on page 133), there exists aunique g ∈ C[X, Y ] su
h that gk → g as k → ∞. If gk 
onverges to g, then it
ertainly 
onverges pointwise to g, and sin
e ∀k ∈ N gk↾K= f , it follows that
g↾K= f also.Lemma 4.4.10 (Convergen
e in Step 3). Suppose F ∈ Caus(X)∩Contr(X).Let n ∈ N and suppose w ∈ C[Xn+1,A] is an Xn-approximate �xed point of
Fn+1. Then Fn+1 has a unique �xed point, whi
h is given by the limit of thesequen
e {F k

n+1(w)
}
k∈N. 93
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itly in the statement of thelemma to establish the existen
e of Fn+1 (via Lemma 4.4.2). Let
Cw[Xn+1,A] = {v ∈ C[Xn+1,A] : dn(v, w) = 0}By Lemma 4.4.9, Cw[Xn+1,A] is 
omplete. Sin
e w is an Xn-approximate�xed point of Fn+1, it follows that Cw[Xn+1,A] is 
losed under Fn+1. Thus,restri
ting the domain of Fn+1 to Cw[Xn+1,A] yields a fun
tion of the form

F̂n+1 : Cw[Xn+1,A]→ Cw[Xn+1,A]Now from the de�nition of dn+1 and from the fa
t that F ∈ Caus(X), for all
u, v ∈ Cw[Xn+1,A],

dn+1(F̂ n+1(u), F̂ n+1(v)) = dn+1(F (u ◦ ρn+1), F (v ◦ ρn+1))Sin
e F ∈ Contr (X), ∃λ < 1 su
h that ∀u, v ∈ C[X,A],
dn(u, v) = 0 ⇒ dn+1(F (u), F (v)) ≤ λdn+1(u, v)But for all u, v ∈ Cw[Xn+1,A] dn(u, v) = 0. Sin
e ρn+1 behaves as the identityon Xn (and on Xn+1, for that matter, but that's not relevant at the moment),it follows that dn(u ◦ ρn+1, v ◦ ρn+1) = 0. Thus, ∀u, v ∈ Cw[Xn+1,A],

dn+1(F̂ n+1(u), F̂ n+1(v)) = dn+1(F (u ◦ ρn+1), F (v ◦ ρn+1))

≤ λdn+1(u ◦ ρn+1, v ◦ ρn+1)

= λdn+1(u, v)Therefore, F̂ n+1 is a 
ontra
tion (in the usual Bana
h sense4) on a 
ompletemetri
 spa
e, Cw[Xn+1,A]. By Bana
h's Fixed Point Theorem, it has a unique�xed point v = limk→∞ F̂ k
n+1(u) = limk→∞ F k

n+1(u) (where u ∈ Cw[Xn+1,A] isan arbitrary initial point).Theorem 4.4.11 (Generalized Theorem TZ1). Constru
tion 4.4.3 on page 91works as advertized. That is, if F : C[X,A] → C[X,A] satis�es Caus(X) andContr(X), then it has a unique �xed point given by the limit in Step 5 ofConstru
tion 4.4.3.Proof. As suggested by the 
onstru
tion, we show by indu
tion on n, thatthere is a sequen
e ψ0, ψ1, . . . ∈ C[X,A] su
h that for any n ∈ N, ψn is an
Xn-approximate �xed point of F . F ∈ Caus(X) yields our basis step: an4De�nition: If (X, d) is a metri
 spa
e and f : X → X , then f is a 
ontra
tion if itsatis�es the ante
edent of Bana
h's Fixed Point Theorem. That is, ∃λ < 1 (λ ∈ R+) su
hthat ∀x, y ∈ X d(f(x), f(y)) ≤ λd(x, y). 94
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X0-approximate �xed point, ψ0. For the indu
tive step, let n ∈ N and assume
ψn ∈ C[X,A] is an Xn-approximate �xed point of F . Then Ψ(n, 0) = ψn↾Xn+1is an Xn-approximate �xed point of Fn+1. By Lemma 4.4.10 on page 93, Fn+1has a unique �xed point given by the limit of sequen
e Ψ(n, 0), Ψ(n, 1), . . .des
ribed in Step 3 of the 
onstru
tion. Extending the domain of this �xedpoint of Fn+1 from Xn+1 to X by 
omposing it with ρn+1 (as suggested byLemma 4.4.7 on page 92) yields an Xn+1-approximate �xed point of F , whi
hwe 
all ψn+1. This 
on
ludes the indu
tion used to show the existen
e of
{ψn}n∈N.What remains to be shown is that {ψn}n∈N is 
onvergent and that it 
onvergesto a �xed point of F . De�ne N : R+ × N→ N as follows:

N(ε,M) =MLet ε > 0 andM ∈ N. Then ∀n,m ≥ M , both ψn and ψm areXM -approximate�xed points of F (as our indu
tion in the beginning of the proof showed).Hen
e,
dM(ψm, ψn) = 0 < εThus, by Lemma 4.1.2 on page 82, {ψn}n∈N is Cau
hy. Sin
e C[X,A] is 
om-plete (by Lemma 4.1.3 on page 83), {ψn}n∈N is 
onvergent. Now, given any

x ∈ X, there is a k ∈ N su
h that x ∈ Xk. For any j ≥ k, ψj is an Xk-approximate �xed point of F . Therefore, ψ is also an Xk-approximate �xedpoint of F (where ψ = limn→∞ ψn). Thus, ψ(x) = F (ψ)(x). Sin
e this holdsfor every point x ∈ X, it follows that ψ is a �xed point of F .4.4.1 An Alternative Constru
tionI developed Constru
tion 4.4.3 on page 91 long after I proved Theorem TZJ2 onpage 27 for stream operators, and I obviously want to generalize that theoremto work with smoothie operators. I'm 
on�dent that I 
ould write a 
ontinuityproof based on Constru
tion 4.4.3 if I had more time, but it would take metoo long to adapt it now. What I 
an do instead is present my original proofwhi
h uses a 
onstru
tion that is a stri
t generalization of Constru
tion 1.3.24.From there, it is easy to generalize Theorem TZJ2.While our sequen
e of retra
tions does the job of the hold fun
tion from Def-inition 1.3.8 on page 12 well enough, it doesn't work quite the same way thatoriginal hold fun
tion does. In parti
ular, for any T, t ∈ T, holdT+t◦holdT =holdT , but this is not a feature shared by the retra
ts of every retra
table ex-haustion. That is, it is not ne
essarily the 
ase that for n, j ∈ N, ρn◦ρn+j = ρn(although that is the 
ase for the standard retra
table exhaustion of T). Thisproperty of the original hold is ne
essary for showing that Constru
tion 1.3.24works (it is used when 
omparing Ψ(n, 0) with Ψ(n, 1)).95
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all that we had de�ned Ψ(0, 0) = hold 0(F (u)) (where u is any stream),but for all k ∈ N, we had Ψ(0, k + 1) = hold τF (Ψ(0, k)). Likewise, we hadde�ned Ψ(n, 0) as the limit of fun
tions whi
h are 
onstant outside [0, nτ ], but
Ψ(n, k+1) = holdn+1F (Ψ(n, k)) (whi
h is 
onstant only outside [0, (n+1)τ ]).To make the 
onstru
tion (or at least the proof for it) work for an arbitrarysequen
e of retra
tions, we'll have to apply ρn+1 expli
itly to every Ψ(n, 0).Constru
tion 4.4.12.1. Let u0 ∈ C[X,A] and set Ψ(0, 0) = F (u0) ◦ ρ1.Sin
e F ∈ Caus(X), every smoothie in the range of F agrees withΨ(0, 0)on X0 (thus, Ψ(0, 0) is an X0-approximate �xed point of F ).2. Let n ∈ N and suppose Ψ(n, 0) is an Xn-approximate �xed point of F .For all k ∈ Z+ de�ne Ψ(n, k) = F k(Ψ(n, 0)) ◦ ρn+1.We will show this sequen
e 
onverges to anXn+1-approximate �xed pointof F .3. Given n ∈ N, de�ne Ψ(n+ 1, 0) = (limk→∞Ψ(n, k)) ◦ ρn+2.This will be the �rst Xn+1-approximate �xed point of F en
ountered inthe 
onstru
tion.4. De�ne v = limn→∞Ψ(n, 0)As before, this will be the �xed point of F .As before, if F is of the form F : P × C[X,A] → C[X,A] (where P is someparameter spa
e), then we de�ne Ψ : P × N2 → C[X,A] as above for ea
h
p ∈ P , along with Φ : P → C[X,A] to be the fun
tion su
h that ∀p ∈ P ,

Φ(p) = lim
n→∞

Ψ(p, n, 0) = F (p,Φ(p)) (4.4.1)Lemma 4.4.13. Let n, k1, k2 ∈ N and suppose Ψ(n, k1) and Ψ(n, k2) are de-�ned as above. Then
sup
x∈X
{dA (Ψ(n, k1)(x),Ψ(n, k2)(x))} = dn+1(Ψ(n, k1),Ψ(n, k2))Proof. If Ψ(n, k1) and Ψ(n, k2) are de�ned as above, then there are smoothies

u1 and u2 su
h that Ψ(n, ki) = ui◦ρn+1 (for i = 1, 2). Sin
e ρn+1 is idempotent,
Ψ(n, ki) = Ψ(n, ki) ◦ ρn+1. Hen
e, the ordered pairs being 
ompared are thefollowing:

{(Ψ(n, k1)(x),Ψ(n, k2)(x)) : x ∈ X}
= {(Ψ(n, k1)(ρn+1(x)),Ψ(n, k2)(ρn+1(x))) : x ∈ X}
= {(Ψ(n, k1)(y),Ψ(n, k2)(y)) : y ∈ Xn+1}96
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F (u ◦ ρn) ◦ ρnProof. Let n ∈ N. Sin
e ρn behaves as the identity on Xn, dn(u, u ◦ ρn) =
0. Thus, sin
e F ∈ Caus(X) dn(F (u), F (u ◦ ρn)) = 0. So ∀x ∈ Xn,
F (u)(x) = F (u ◦ ρn)(x). Sin
e the range of ρn is Xn, ∀x ∈ X (F (u) ◦ ρn) (x) =
(F (u ◦ ρn) ◦ ρn) (x).Theorem 4.4.15 (Generalized TZ1 for the Alternate Constru
tion). Let Xbe a σ-
ompa
t spa
e with a retra
table exhaustion, X = {Xk, ρk}k∈N andlet (A, dA) be a metri
 spa
e. Let {dk}k∈N be the sequen
e of pseudomet-ri
s 
orresponding to X and dA (i.e. dk(u, v) = maxx∈Kk

{dA(u(x), v(x))}.Let F : C[X,A] → C[X,A] satisfy Caus(X) and Lip(λ,X) for some positive
λ < 1. Then F has a unique �xed point.Proof. The proof is, of 
ourse, modelled after Theorem TZ1, but at least su-per�
ially it appears very di�erent. Uniqueness has already been 
overed ina 
onstru
tion-independent way by Lemma 4.4.5 on page 92, so we need onlyshow the �xed point exists.We must show that the limits in Constru
tion 4.4.3 on page 91 exist and that
v = F (v). First we'll show that, assuming Ψ(n, 0) exists, limk→∞Ψ(n, k) exists(in C[X,A]). We do this by demonstrating that the sequen
e {Ψ(n, k)}k∈N isuniformly Cau
hy (see De�nition B.0.4 on page 133). In other words, for any
n, j ∈ N, supx∈X {dA(Ψ(n, k),Ψ(n, k + j))} 
an be made arbitrarily small bymaking k su�
iently large.Let n ∈ N and assume5 Ψ(n, 0) ∈ C[X,A]. For all k > 0, let Ψ(n, k) be de�nedas indi
ated above.De�ne the quantity

D1 = max {1, dn+1 (Ψ(n, 0),Ψ(n, 1))}De�ne N : R+ → R+ as follows:
N(ε) = logλ

(
ε(1− λ)
D1

)Let ε > 0 and let k, j ∈ N with k ≥ N(ε). Then, by Lemma 4.4.13 on theprevious page,
sup
x∈X

dA (Ψ(n, k)(x),Ψ(n, k + j)(x)) = dn+1 (Ψ(n, k),Ψ(n, k + j))5At this point in the proof, we have established the existen
e of only Ψ(0, k) (for all
k ∈ N), so for n > 0, it is ne
essary to assume Ψ(n, 0) exists. It's almost a Cat
h 22indu
tion. 97
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dn+1(Ψ(n, k),Ψ(n, k + j)) ≤

k+j−1∑

i=k

dn+1(Ψ(n, i),Ψ(n, i+ 1))

=

k+j−1∑

i=k

dn+1

(
F i ◦Ψ(n, 0) ◦ ρn+1, F

i ◦Ψ(n, 1) ◦ ρn+1

)

=

k+j−1∑

i=k

dn+1

(
F i ◦Ψ(n, 0), F i ◦Ψ(n, 1)

)

≤ D1

j−1∑

i=0

λi+k

= D1λ
k 1− λj
1− λ

< D1
λk

1− λSin
e k ≥ N(ε) and λ < 1, it follows that
D1

λk

1− λ ≤ D1
λN(ε)

1− λ

= D1
λ
logλ

(

ε(1−λ)
D1

)

1− λ

= D1

(
ε(1−λ)
D1

)

1− λ
= εTherefore, {Ψ(n, k) : k ∈ N} is uniformly Cau
hy and hen
e by Corollary B.0.6on page 134, limk→∞Ψ(n, k) 
onverges to some ψn ∈ C[X,A]. Sin
e ∀i, j ∈ N

dn (Ψ(n, i),Ψ(n, j)) = 0, the limitψn agrees with every member of the sequen
eon Xn as well. That is, ∀k ∈ N dn (ψn,Ψ(n, k)) = 0. Sin
e F ∈ Lip(λ,X),
∀k ∈ N

dn (ψn,Ψ(n, k)) = 0 ⇒ dn+1 (F (ψn) , F (Ψ(n, k))) ≤ λdn+1 (ψn,Ψ(n, k))Thus, sin
e Ψ(n, k)→ ψn as n→∞, we 
an use the same modulus of 
onver-gen
e to show that F (Ψ(n, k)) ◦ ρn+1 → F (ψn) ◦ ρn+1.By Lemma 4.4.14 on the previous page,
F (Ψ(n, k)) ◦ ρn+1 = F

(
F k (Ψ(n, 0)) ◦ ρn+1

)
◦ ρn+1

= F k+1 (Ψ(n, 0)) ◦ ρn+1

= Ψ(n, k + 1)98
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F (ψn) ◦ ρn+1 = lim

k→∞
F (Ψ(n, k)) ◦ ρn+1

= lim
k→∞

Ψ(n, k)

= ψnHen
e, dn+1(ψn, F (ψn)) = 0. In other words, ∀n ∈ N, ψn is an Xn+1-approximate �xed point of F . The remainder of the proof is identi
al tothe proof of the Generalized Theorem TZ1 on page 944.5 The shift Operator for SmoothiesGiven that I was unable to show (see Remark 1.4.16 on page 28 and Exam-ple 1.4.17 on page 29) that my Theorem TZJ2 is a stri
t generalization ofTu
ker and Zu
ker's Theorem TZ2 (from [TZ11℄), there may still be a pla
efor shift invarian
e in this theory. This is one of the most 
hallenging 
on
eptsto generalize to arbitrary σ-
ompa
t spa
es, but I see one way it might be donethat I believe would still allow it to perform its intended role in (a generalizedversion of) the proof of Theorem TZ2.De�nition 4.5.1 (Shiftable). Let X be a σ-
ompa
t spa
e with 
ompa
t ex-haustion X = {Xk}k∈N. Then X is shiftable if there is a 
ontinuous fun
tion
ζ : X→ X su
h that ∀k ∈ N,

ζ(Xk+1 \Xk) = Xk+2 \Xk+1In other words, if for all k ≥ 1 we de�ne ζk as the restri
tion of ζ to Xk \Xk−1,then ζk : Xk \Xk−1 → Xk+1 \Xk is surje
tive.De�nition 4.5.2 (shift). Let X be a σ-
ompa
t spa
e with a shiftable 
om-pa
t exhaustion X = {Xk}k∈N. De�ne shift : C[X,A]→ C[X,A] asshift(u) = u ◦ ζRemark 4.5.3. There may be a more general way to de�ne shift on C[X,A],and the 
ondition that ζ be 
ontinuous 
ould possibly be relaxed, but its
ontinuity does ensure the range of shift is C[X,A] sin
e the 
omposition of
ontinuous fun
tions is again 
ontinuous.Example 4.5.4. We 
an see that this de�nition of shift is a generalizationof the previous one from De�nition 1.3.8 on page 12. Let X = T, �x T ∈ R+,and 
hoose X = {[0, kT ]}k∈N. Take ζ : T → T as the fun
tion ζ(t) = t + T .Then it's 
lear that the two de�nitions of shiftT agree.99
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al spa
es and suppose X is metrizable.Let f : X → Y . Then f is 
ontinuous if and only if for every 
onvergentsequen
e xn → x, the sequen
e f(xn) 
onverges to f(x).Proof. See Theorem 10.3, page 128 of [Mun75℄Lemma 4.6.2. Let {uk}k∈N ⊆ C[X,A] and suppose ∃u ∈ C[X,A] ∃n ∈ N su
hthat limk→∞ (uk ◦ ρn) = u. Then u ◦ ρn = u.Proof. Re
all that holdn : C[X,A]→ C[X,A] is de�ned as holdn(v) = v ◦ ρn.Sin
e ρn is idempotent,
u = lim

k→∞
(uk ◦ ρn)

= lim
k→∞

(uk ◦ ρn ◦ ρn)
= lim

k→∞
(holdn (uk ◦ ρn))Sin
e holdn is 
ontinuous (see Lemma 4.3.6 on page 88) and C[X,A] is metriz-able, Lemma 4.6.1 asserts that holdn 
ommutes with limk→∞. Thus,

lim
k→∞

(holdn (uk ◦ ρn)) = holdn

(
lim
k→∞

(uk ◦ ρn)
)

= holdn(u)

= u ◦ ρnLemma 4.6.3. Let Ψ : P × N2 → C[X,A] and Φ : P → C[X,A] be given asin Constru
tion 4.4.12 on page 96 (the parametrized versions), and let n ∈ N,
p, p′ ∈ P . Then dn(Φ(p),Φ(p′)) = dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)).Proof. The n = 0 is almost identi
al to the n > 0 
ase, but it's simpler. Sowe'll skip dire
tly to the latter 
ase. Let p, p′ ∈ P and suppose n > 0. Then,
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dn(Φ(p),Φ(p

′)) = dn(Ψ(p, n, 0),Ψ(p′, n, 0)) (4.6.1)
= dn

((
lim
k→∞

Ψ(p, n− 1, k)
)
◦ ρn+1,

(
lim
k→∞

Ψ(p′, n− 1, k)
)
◦ ρn+1

)

= dn

(
lim
k→∞

Ψ(p, n− 1, k), lim
k→∞

Ψ(p′, n− 1, k)
) (4.6.2)

= dn

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
))

= dn

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
◦ ρn,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)
◦ ρn

) (4.6.3)
= dn+1

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
◦ ρn,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)
◦ ρn

) (4.6.4)
= dn+1

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)) (4.6.5)

= dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))Step Justi�
ations:(4.6.1) It was shown in the proof of Theorem 4.4.15 on page 97 that for all
j ≥ n (and for any r ∈ P ), Ψ(r, j, 0) is an Xn-approximate �xed pointof F (r, ·). Sin
e Ψ(r, j, 0)→ Φ(r), Φ(r)↾Xn= Ψ(r, n, 0)↾Xn.(4.6.2) By de�nition of dn and ρn, ∀u, v ∈ C[X,A] ∀j ≥ n dn(u ◦ ρj , v ◦ ρj) =
dn(u, v).(4.6.3) By Lemma 4.6.2 on the previous page, 
omposing ea
h of the argu-ments of dn(4.6.4) Similar justi�
ation to line (4.6.2), but this time we're using the fa
tthat ∀u, v ∈ C[X,A] ∀j ≥ n dj(u ◦ ρn, v ◦ ρn) = dn(u ◦ ρn, v ◦ ρn).(4.6.5) Again, using Lemma 4.6.2 on the pre
eding page.The other lines follow by de�nition of Ψ.The proofs of the following two lemmas are routine, and thus, have been omit-ted. 101
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al spa
es, ea
h with two topologies:
TX and T′

x for X, and TY and T′
Y for Y . Suppose TX is 
oarser than T′

X(i.e. TX ⊆ T′
X), and that TY is 
oarser than T′

Y . Let f : X → Y and x ∈ X.Then we have the following lo
al 
ontinuity properties for f , relative to thetopologies on its domain and 
o-domain:1. If f is 
ontinuous at x when X is equipped with TX then it is also 
on-tinuous at x when X is equipped with T′
X .2. If f is 
ontinuous at x when Y is equipped with T

′
Y then it is also 
on-tinuous at x when Y is equipped with TY .Lemma 4.6.5. Let X be a topologi
al spa
e, let x ∈ X, and let f : X →

C[X,A]. If f is 
ontinuous at x with respe
t to every pseudometri
 in {dn}n∈N,then f is 
ontinuous at x.Theorem 4.6.6 (Generalized Theorem TZJ2). Let (P, dP ) be a metri
 spa
eand let F : P × C[X,A] → C[X,A]. Let p ∈ P and let V ⊆ P be a neigh-bourhood of p. Let λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u),suppose ∀r ∈ V Fr satis�es Caus(X) and Lip(λ,X), and that ∀u ∈ C[X,A]
F is 
ontinuous at (p, u). Then Φ : V → C[X,A] (as des
ribed in (4.4.1)on page 96, whose existen
e is assured by the Generalized Theorem TZ1 onpage 94) is 
ontinuous at p.Proof. We begin by showing that Φ is 
ontinuous with respe
t to the topologyindu
ed by the d0 pseudometri
. We then pro
eed by indu
tion, showing thatfor any k ∈ N, if Φ is 
ontinuous with respe
t to the topology indu
ed by dnthen it is 
ontinuous with respe
t to the topology indu
ed by dn+1. Pairingthis with Lemma 4.6.5 
ompletes the proof.Basis StepSin
e Fr satis�es Caus(X) for any r ∈ V , it follows that ∀u, v ∈ C[X,A],

F (r, F (r, u))↾X0= F (r, u)↾X0= F (r, v)↾X0In other words, ∀r ∈ V , ∀u ∈ C[X,A],
Φ(r)↾X0= F (r, u)↾X0 (4.6.6)By Lemma 4.6.4, sin
e ∀u ∈ C[X,A] F is 
ontinuous at (p, u) with respe
tto the lo
al uniform topology on C[X,A], it is also 
ontinuous at (p, u) withrespe
t to the topology indu
ed by the d0 pseudometri
 (whi
h is 
oarser thanthe lo
al uniform topology). Thus, there exists a fun
tion, δ : R+×C[X,A]→

R+ su
h that ∀ε > 0 ∀p′ ∈ V ∀u ∈ C[X,A],102
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dP (p, p

′) < δ(ε, u) ⇒ d0(F (p, u), F (p
′, u)) < εIn fa
t, sin
e the 
hoi
e of u is irrelevant when we're using the d0 pseudometri
,

δ is 
onstant on its se
ond parameter. So 
hoose an arbitrary u ∈ C[X,A] andde�ne δ0 : R+ → R+ as simply δ0(ε) = δ(ε, u).By Equation (4.6.6),
d0(Φ(p),Φ(p

′)) = d0(F (p, u0), F (p
′, u0))Thus, ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δ0(ε) ⇒ d0(Φ(p),Φ(p

′)) < εTherefore, Φ is 
ontinuous at p with respe
t to the d0 pseudometri
.Indu
tive StepFor the indu
tive hypothesis, assume that for some n ∈ N, there is a fun
tion
δn : R+ → R+ su
h that ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δn(ε) ⇒ dn(Φ(p),Φ(p

′)) < ε (4.6.7)We must show that there is a fun
tion δn+1 : R+ → R+ su
h that ∀ε > 0
∀p′ ∈ V ,

dP (p, p
′) < δn+1(ε) ⇒ dn+1(Φ(p),Φ(p

′)) < εTo do this, we will analyze Φ(p) using Constru
tion 4.4.12 on page 96 (be
auseit's 
loser to the 
onstru
tion I used to prove the original, spe
ial 
ase of thistheorem). The tri
k is to observe that a dn+1-modulus of 
ontinuity for Ψ(·, n+
1, 0) at p will serve as the desired δn+1 modulus for Φ, sin
e Φ(r)↾Xn+1= Ψ(r, n+
1, 0)↾Xn+1 for all r ∈ V . We 
an get that modulus of 
ontinuity by beatingthe 
onstru
tion utterly senseless with a 
ountably in�nite appli
ation of thetriangle inequality. Essentially, we're building a ladder of moduli of 
ontinuitybetween the two sequen
es: Ψ(p, n, 0), Ψ(p, n, 1),Ψ(p, n, 2),. . . and Ψ(p′, n, 0),
Ψ(p′, n, 1),Ψ(p′, n, 2),. . .. We build only a �nite portion of the ladder�up tothe N th rung�where N is a 
arefully 
hosen number whi
h depends upon
λ, upon the �xed distan
e, dn+1 (Ψ(p, n, 0),Ψ(p, n, 1)), and upon the ε > 0desired. Finally, using a pair of geometri
 series together with that N th rung,we 
an 
onstru
t the �nal rung (between Ψ(p, n + 1, 0) and Ψ(p′, n + 1, 0)),using the triangle inequality with Ψ(p, n,N) and Ψ(p′, n, N) as intermediate103
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tion and never does anything interesting).To begin, we need the bottom re
tangle of the ladder. We 
an simply re
ordthe distan
e (with respe
t to the dn+1 pseudometri
) between Ψ(p, n, 0) and
Ψ(p, n, 1)�although to avoid a potential problem with inequalities, we'll re
orda stri
tly positive number (1 works as well any) if that distan
e happens tobe zero; all we really need is a positive upper bound for it, and any one willdo. The modulus of 
ontinuity δn given in the indu
tive hypothesis providesthe lowest rung (between Ψ(p, n, 0) and Ψ(p′, n, 0)). A single appli
ation of
F gives us the next rung. Finally, all three 
an be put together with thetriangle inequality to se
ure an upper bound on the distan
e between Ψ(p′, n, 0)and Ψ(p′, n, 1), thus 
ompleting the bottom re
tangle (or more a

urately, thequadrilateral).In a

ordan
e with our �rst task, let,

Dp = max {1, dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))} (4.6.8)Next, observe that for any r ∈ V ,
Ψ(r, n, 0)↾Xn= Φ(r)↾XnBy Lemma 4.6.3, ∀p′ ∈ V ,

dn(Φ(p),Φ(p
′)) = dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))Thus, we 
an rewrite (4.6.7) as follows: ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δn(ε) ⇒ dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)) < ε (4.6.9)Before we pro
eed, there is a bit notation that will greatly assist with theexposition. We de�ne a family of fun
tions, {Hk : P × C[X,A]→ C[X,A]}k∈Nas follows:

H0(r, u) = u (i.e. H0is the proje
tion fun
tion π2)
H1(r, u) = F (r, u) ◦ ρn+1

Hk(r, u) = H1 ◦
(
H̃k−1

1

) for k > 1The purpose of de�ning Hk is that ∀k,m ∈ N ∀r ∈ V ,
Ψ(r, n, k +m) = Hk(r,Ψ(r, n,m))

F is 
ontinuous at (p, u) ∀u ∈ C[X,A] by hypothesis and holdn+1 (for la
k of abetter name) is 
ontinuous everywhere by Lemma 4.3.6. Therefore, H1�being104
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omposition of these fun
tions�is 
ontinuous at (p, u) ∀u ∈ C[X,A]. FromCorollary 1.4.14, for any k > 0, Hk is also 
ontinuous at (p, u) ∀u ∈ C[X,A].Thus, there exists6 a fun
tion δ(1)n : R+ → R+ su
h that ∀(p′, u) ∈ V ×C[X,A]
∀ε > 0,

dn+1 (H1(p,Ψ(p, n, 0)), H1(p
′, u)) = dn+1 (Ψ(p, n, 1), H1(p

′, u))

< ε (4.6.10)whenever,
max {dP (p, p′), dn+1 (Ψ(p, n, 0), u)} < δ(1)n (ε) (4.6.11)We now have the �rst and se
ond rungs (δn and δ(1)n , respe
tively), along withthe strut that joins them on the p side. All we need now is the strut that joinsthem on the p′ side: a radius around p whi
h will ensure a �xed upper bound(of, say, 2Dp) on the distan
e between Ψ(p′, n, 0) and Ψ(p′, n, 1), whi
h we'll
all Dp′. More pre
isely, we need a number, R ∈ R+su
h that,

dP (p, p
′) < R ⇒ Dp′ = dn+1(Ψ(p′, n, 0),Ψ(p′, n, 1)) < 2DpThis is easy to obtain by going around the ba
k, using δ(1)n , δn, and the triangleinequality. Choose,

R = min

{
δn

(
Dp

2

)
, δ(1)n

(
Dp

2

)
, δ(1)n

(
δn

(
Dp

2

))} (4.6.12)Then, given any p′ ∈ V su
h that dp(p, p′) < R, we get the following twoinequalities:
dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) <

Dp

2
(4.6.13)

dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1)) <
Dp

2
(4.6.14)Equation 4.6.13 
omes dire
tly from 4.6.9 and 4.6.12. Equation 4.6.14 is some-what more tri
ky. Re
all from line 4.6.11 that we need both dP (p, p
′) and

dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) to be less than δ
(1)
n

(
Dp

2

) in order to ensure that
dn+1 (H1 (p,Ψ(p, n, 0)) , H1 (p

′,Ψ(p′, n, 0))) (whi
h is simply dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1)))6This step would obviously not be possible if F were 
ontinuous only w.r.t. P�as Tu
kerand Zu
ker require in their theorem. We need it to be 
ontinuous on a portion of its entiredomain; 
ontinuity on only a proje
tion of the domain is insu�
ient. This is what wesa
ri�
e in order to liberate F from the ne
essity of being shift invariant.105
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2
. The se
ond term in the de�nition of R ensures that dP (p, p′) <

δ
(1)
n

(
Dp

2

), and the third term ensures that dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) < δ
(1)
n

(
Dp

2

).Therefore, ∀p′ ∈ V , if dP (p, p′) < R then,
Dp′ = dn+1 (Ψ(p′, n, 0),Ψ(p′, n, 1))

≤ dn+1 (Ψ(p′, n, 0),Ψ(p, n, 0)) + dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

+ dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1))

<
Dp

2
+Dp +

Dp

2
= 2DpSin
e Dp and λ are �xed and λ < 1, there exists a fun
tion N : R+ → Z+ su
hthat, given any ε > 0,

λN(ε)

1− λ2Dp < ε (4.6.15)The reason for the expression above will be
ome 
lear soon enough (if thereader hasn't guessed it already). We will now begin to apply the real starof the show: the 
ontra
tion property! Sin
e Fr ∈ Lip(λ,X) for all r ∈ V , itfollows that ∀u, v ∈ C[X,A],
dn(u, v) = 0 ⇒ dn+1 (Hk(r, u), Hk(r, v)) ≤ λkdn+1(u, v)Thus, sin
e limj→∞Ψ(p, n, j) = Ψ(p, n+ 1, 0), it follows that ∀ε > 0,

dn+1 (Ψ(p, n,N(ε)),Ψ(p, n+ 1, 0))

≤
∞∑

j=N(ε)

dn+1 (Ψ(p, n, j),Ψ(p, n, j + 1))

=

∞∑

j=N(ε)

dn+1 (Hj (p,Ψ(p, n, 0)) , Hj (p,Ψ(p, n, 1)))

≤
∞∑

j=0

dn+1

(
Hj+N(ε) (p,Ψ(p, n, 0)) , Hj+N(ε) (p,Ψ(p, n, 1))

)

≤
∞∑

j=0

λj+N(ε)dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

≤ λN(ε)dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

∞∑

j=0

λj

≤ λN(ε)

1− λDp 106
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dn+1(Ψ(p′, n, N(ε)),Ψ(p′, n+ 1, 0)) ≤ λN(ε)

1− λDp′ <
λN(ε)

1− λ2Dp (4.6.16)Sin
e every Hk is 
ontinuous at (p, u) ∀u ∈ C[X,A], there is a δHn : R+×Z+ →
R+ su
h that, ∀ε > 0 ∀(p′, u) ∈ V × C[X,A] ∀k ∈ Z+,

dn+1 (Hk(p,Ψ(p, n, 0)), Hk(p
′, u)) = dn+1 (Ψ(p, n, k), Hk(p

′, u))(4.6.17)
< εwhenever,

max{dP (p, p′), dn+1(Ψ(p, n, 0), u)} < δHn (ε, k) (4.6.18)We now use δHn to obtain the fun
tion δ∗n : R+ → R+, whi
h will allow us tomake the N th rung (loosely speaking, sin
e N is a fun
tion of ε), partway upthe ladder, arbitrarily short.
δ∗n(ε) = min

{
δHn (ε,N(ε)), δn

(
δHn (ε,N(ε))

)}Now, ∀p′ ∈ V ∀ε > 0, if dP (p, p′) < δ∗n(ε) then,
dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)) < δHn (ε,N(ε))(thanks to the se
ond term in δ∗n(ε)), and therefore,

max{dP (p, p′), dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))} < δHn (ε,N(ε))So by (4.6.18) and (4.6.17), it follows that whenever dP (p, p′) < δ∗n(ε), we get,
dn+1

(
Ψ(p, n,N(ε)), HN(ε)(p

′,Ψ(p′, n, 0))
) (4.6.19)

= dn+1 (Ψ(p, n,N(ε)),Ψ(p′, n, N(ε)))

< εFinally, de�ne δn+1 : R+ → R+ as follows:
δn+1(ε) = min

{
R, δ∗n

(ε
3

)}Let ε > 0 and let M = N(ε/3). Then ∀p′ ∈ V su
h that dP (p′, p) < δn+1(ε),we obtain the following three inequalities:
dn+1(Ψ(p, n+ 1, 0),Ψ(p, n,M)) <

λM

1− λDp <
ε

3

dn+1(Ψ(p, n,M),Ψ(p′, n,M)) <
ε

3

d(n+1)τ (Ψ(p′, n,M),Ψ(p′, n+ 1, 0)) <
λM

1− λ2Dp <
ε

3107
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Ψ(p, n, 0)
Ψ(p′, n, 0)

Ψ(p, n, 1)

Ψ(p, n,N)

Ψ(p, n+ 1, 0)

Ψ(p′, n, 1)

Ψ(p′, n, N)

Ψ(p′, n+ 1, 0)

ε
3

ε
3

ε
3

Dp

Dp′

Figure 4.6.1: Inequalities used in the Generalized Theorem TZJ2The �rst and third 
ome from (4.6.15) and the se
ond 
omes from (4.6.19).Merging the left-hand sides using two appli
ations of the triangle inequalityyields the �nal result: if p′ ∈ V and dP (p, p′) < δn+1(ε) then,
dn+1(Ψ(p, n+ 1, 0),Ψ(p′, n+ 1, 0)) < εWe 
an now present the proof of Theorem TZJ2 on page 27, whi
h follows asa 
orollary to Generalized Theorem TZJ2.Theorem 1.4.15 (Theorem TZJ2) Let (P, dP ) be a metri
 spa
e and let F :

P × C[T,A] → C[T,A]. Let p ∈ P and let V ⊆ P be a neighbourhood of p.Let τ, λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u), suppose thatfor all r ∈ V Fr satis�es Caus and Lip(λ, τ), and that for all u ∈ C[T,A]
F is 
ontinuous at (p, u). Then Φ : V → C[T,A] (as des
ribed in (1.3.3) onpage 15, whose existen
e is assured by Theorem TZ1 on page 19) is 
ontinuousat p.Proof. To prove that this is merely a spe
ial 
ase of the Generalized Theo-rem TZJ2, we must �nd a 
ompa
t exhaustion X for T, and show that Fsatis�es Caus(X) and Lip(λ,X). 108



Ph.D. Thesis - N. James; M
Master University - Computing and SoftwareLet X = T (= R≥0) and for all n ∈ N, let Xn = [0, nτ ]. Let X = {Xn}n∈N.Obviously, X0 ⊆ X1 ⊆ · · · ⊆ X and ⋃n∈NXn = X. The third property followsfrom the Heine-Borel Theorem7: every 
ompa
t subset of X is bounded, andevery bounded set is 
ontained within a member of the exhaustion (i.e. if K isbounded, then ∃n ∈ N su
h that K ⊆ Xn). Thus X satis�es De�nition 4.1.1on page 81.Let r ∈ V , n ∈ N, and let u, v ∈ C[T,A] su
h that dnτ (u, v) = 0. Then ∀t ≤ nτ
dt(u, v) = 0. Sin
e Fr ∈ Caus , it follows that ∀t ≤ nτ Fr(u)(t) = Fr(v)(t).Therefore, dnτ(Fr(u), Fr(v)) = 0, and hen
e Fr ∈ Caus(X). Furthermore,sin
e Fr ∈ Lip(λ, τ) it follows that d(n+1)τ (Fr(u), Fr(v)) ≤ λd(n+1)τ (u, v).Thus, Fr ∈ Lip(λ,X). By the Generalized Theorem TZJ2 on page 102, Φis 
ontinuous at p.4.7 Con
rete Computability of ΦThe theory we have developed is part of a general framework for studyinganalog 
omputation. The prevailing notion in analog 
omputation resear
his that the Chur
h-Turing Thesis extends to all manner of 
omputation (see[BCGH06, TZ04, Wei00℄, for example). Part of the job of testing this variantof the Chur
h-Turing thesis is to verify that anything �
omputable� within ourframework is 
omputable in others as well. In our models of analog 
omputa-tion, a fun
tion is (impli
itly de�ned as being) �
omputable� if it is the �xedpoint of a smoothie operator.Given that X and A are fairly abstra
t spa
es, how 
an we relate the obje
ts inthis model to 
lassi
al 
omputability theory? One way is to determine whetheran operator and its �xed point 
an be 
odi�ed somehow, using only naturalnumbers and 
omputable fun
tions on natural numbers. This is essentially aform of meta-
omputation. The idea behind 
on
rete 
omputability is some-what similar to the 
entral idea in many areas of mathemati
s (
ategory theory,in parti
ular). It is possible to develop an abstra
t mathemati
al stru
ture anddis
over that there are morphisms whi
h �translate� this stru
ture to anotherone whi
h appears to be 
ompletely unrelated, developed from within an en-tirely di�erent 
ontext, as though it is a distorted mirror image of the originalstru
ture. Our original stru
ture is C[X,A] (or a multisorted algebra whi
hin
ludes C[X,A]) along with a parameter spa
e P , and the �mirror image� is
lassi
al 
omputability theory on N.This analysis has already been done for C[T,A] (where T = R≥0 or N) in[TZ12℄. Tu
ker and Zu
ker identify a set of 
onditions, su�
ient to ensure7For K ⊆ Rm, K is 
ompa
t if and only if K is 
losed and bounded. See [Rud76℄, or anyelementary text on real analysis for details.109



Ph.D. Thesis - N. James; M
Master University - Computing and Softwarethat the �xed point fun
tion Φ of F is 
on
retely 
omputable, and it appearsthat their arguments 
an be extended naturally to the more general 
ase inwhi
h T is repla
ed by a σ-
ompa
t spa
e X with a retra
table exhaustion.To show this in full detail, however, I would need to border on plagiarismsin
e little of the theory from [TZ12℄ needs to be 
hanged. So instead, I willpresent a summary of the 
ore ideas and put parti
ular emphasis on the fewdetails that need to be 
hanged to a

ommodate smoothies. One of the mainaspe
ts of their theory I will be glossing over is the allowan
e of partial streamoperators. I do not address that here simply be
ause of a la
k of time. Thereis nothing T-spe
i�
 about it, however. Similarly, they insist on the e�e
tivelo
al uniform 
ontinuity8 of their streams and I impose no su
h requirementhere. It is not stri
tly ne
essary for establishing the 
on
rete 
omputability of
Φ, but it is a useful 
ondition to have when de�ning interesting operators. Iomit this treatment for both the la
k of time and for the sake of brevity andsimpli
ity.Before we 
ontinue, we must en
umber our spa
es with a few additional prop-erties. Up until now, P has been an arbitrary metri
 spa
e, A has been anarbitrary 
omplete metri
 spa
e, and X has been a retra
table σ-
ompa
t topo-logi
al spa
e. There was no need to assume anything more about them in this
hapter. For the following material, however, we require ea
h of these spa
es tobe 
omplete, separable metri
 spa
es. Re
all that a spa
e is 
omplete if everyCau
hy sequen
e 
onverges, and a spa
e is separable if it 
ontains a 
ountabledense9 subset. The reason for this will be made 
lear as we go along, but it ishelpful to know this in advan
e.4.7.1 The Codes: α-
omputabilityTo model 
omputation on C[X,A] using 
omputation on N, we must en
odethe spa
es and operators in our theory using natural numbers. The problem,of 
ourse, is that (in all but trivial 
ases) there simply aren't enough naturalnumbers to go around. If C[X,A], X, A, and/or P are un
ountable (as wetypi
ally imagine them to be), then most of the elements in these spa
es and thefun
tions on them won't be lu
ky enough to get their own 
ode numbers andhen
e 
annot be represented exa
tly using our N-based model of 
omputationfor smoothies. Hen
e, we must settle for en
oding only 
ountable subsets8Loosely speaking, the streams in C[T,A] are e�e
tively lo
ally uniformly 
ontinuous(with respe
t to an exhaustion) if there is a single 
omputable parametrized modulus oflo
al 
ontinuity that works for all streams and all members of the exhaustion. That is, thereis a 
omputable fun
tion that a

epts a (
ode for a) stream, a member of the exhaustion,and an ε > 0 (used in its traditional sense with respe
t to 
ontinuity), and it returns a
orresponding δ su�
ient for the spe
i�ed stream, restri
ted to the spe
i�ed member of theexhaustion.9A subset X is �dense� in a topologi
al spa
e Y if the 
losure of X is Y .110
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ZS ⊆ S, where S = X,A, P, C[X,A], and we do this using surje
tive fun
tionsof the form αS : N→ ZS.There are all sorts of 
ountable subsets we 
ould 
hoose for this purpose, butsin
e we're trying to en
ode as mu
h of these spa
es as we 
an, we need subsetsthat are dense. That way, even if an element is not in ZS, we 
an approximateit arbitrarily 
losely using elements that are in ZS. Thus, we need X, A, P ,and C[X,A] to be separable (i.e. have a 
ountable dense subset).In fa
t, it 
an be shown (see [TZ12℄) that if both X and A are separable,then C[X,A] is too. So this one 
omes �for free,� but it should be noted thatin [TZ12℄ the authors require a spe
ial form of separability whi
h must beassumed of C[T,A] even if both T and A are separable. This assumption,however, 
an be made for C[X,A] as just easily as it 
an be for C[T,A], ifne
essary for a parti
ular purpose (in [TZ12℄, the authors need it to ensurethat there are parti
ularly ni
e Cau
hy sequen
es in C[T,A] that fa
ilitatesome useful operations like integration to be proven 
omputable).We develop these αS fun
tions to analyze the 
omputability of fun
tions amongthe four spa
es above rather than the spa
es themselves. Some of the fun
tionsof interest have domains and/or 
odomains whi
h are produ
ts of these spa
es.In parti
ular, we obviously need to look at fun
tions of the form F : P ×
C[X,A] → C[X,A] and Φ : P → C[X,A]. The details are somewhat involved,so I will indulge in a bit of hand-waving and simply state that we 
an assumethere is a single, universal en
oding fun
tion α : N→ Z, where Z is the unionof all �nite produ
ts of ZX, ZA, ZP , and ZC[X,A]. This is possible sin
e a
ountable union of 
ountable sets is 
ountable.With α-
omputable elements in hand (those in Z), we pro
eed to de�ne α-
omputable sequen
es. The following de�nition is adapted from [PER89℄.De�nition 4.7.1 (α-
omputable sequen
e). A sequen
e {xn} ⊆ Z is α-
omputable if there is a re
ursive fun
tion e : N→ N su
h that for all n ∈ N,

xn = α (e(n))Using the limited en
oding we have developed so far, we 
an already introdu
ea primitive notion of operator 
omputability:De�nition 4.7.2 (α-
omputable fun
tion). Let S1 and S2 be �nite produ
tsof X, A, P , and C[X,A], and suppose f : S1 → S2. Then f is α-
omputable ifthere is a 
omputable10 fun
tion (
alled a tra
king fun
tion) ϕ : N → N su
hthat ∀k ∈ α−1 (S1 ∩ Z)
f (α(k)) = α (ϕ(k))10�Computable� in the usual sense, i.e. re
ursive.111
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Master University - Computing and SoftwareThe problem with this form of 
omputability is that Z is a relatively �sparse�subset (in most 
ommon 
hoi
es, it will ex
lude in�nitely many limit pointswhi
h 
ould be easily en
oded), and this permits only a relatively limiteden
oding. We 
an do better than α.4.7.2 The Computable Closure of Z and α-
omputabilityLet S be a �nite produ
t of X, A, P , and C[X,A]. Sin
e ea
h of these spa
esis 
omplete and separable, so is S (although I have omitted the proof). Fur-thermore, it 
an be shown that a produ
t of 
ountable dense subsets is densein the 
orresponding produ
t of spa
es (proof also omitted). Therefore, S ∩Zis a 
ountable dense subset of S. For 
onvenien
e, let ZS = S ∩ Z. Sin
e S is
omplete and ZS ⊆ S, every Cau
hy sequen
e in ZS 
onverges to an elementof S. Sin
e ZS is dense in S, every element in S has su
h a Cau
hy sequen
e.So we 
an refer to any element of S using a Cau
hy sequen
e in ZS (i.e. thereexists a surje
tion from the set of Cau
hy sequen
es in ZS onto S).Now, sin
e we have an en
oding α : N → Z of Z, Cau
hy sequen
es (andany other sequen
es, for that matter) in ZS ⊆ Z 
an be represented by totalfun
tions of the form e : N → N. For any sequen
e {un}n∈N ⊆ ZS there isa fun
tion e : N → N su
h that for all n ∈ N, un = α(e(n)). Here is where
lassi
al 
omputability theory enters the pi
ture. Some of these fun
tions on
N will be (
lassi
ally) 
omputable and some of them won't be. It is plainlythe former 
lass with whi
h we are 
on
erned, and it is these fun
tions, to-gether with α, that determine the 
omputable 
losure of ZS (whi
h we write as
Cα(ZS)). On
e we have Cα(ZS) for every S, we 
an de�ne a new (and better)en
oding α : N → Cα(Z), and then de�ne α-
omputability exa
tly as we didfor α-
omputability in De�nition 4.7.2 above. There is also one further sub-tlety to be addressed: it is not enough for the fun
tions e : N→ N representingCau
hy sequen
es to be 
omputable; the modulus of 
onvergen
e of the Cau
hysequen
e ea
h e represents must also be 
omputable (see Remark 4.7.4).De�nition 4.7.3 (α-e�e
tive Cau
hy Sequen
e). Let {un}n∈N ⊆ Z be aCau
hy sequen
e. Then {un}n∈N is an α-e�e
tive Cau
hy sequen
e if the fol-lowing two 
onditions hold:1. The sequen
e itself is α-
omputable. That is, there is a total 
omputablefun
tion e : N→ N su
h that for all n ∈ N

un = α(e(n))2. The 
onvergen
e of the sequen
e is e�e
tive (it has a 
omputable modulusof 
onvergen
e). That is, there is a total 
omputable fun
tionM : N→ Nsu
h that for all j, k, n ∈ N,
j, k ≥M(n) ⇒ d (uj, uk) < 2−n112
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ondition is obvious. Ea
h of the elements in thesequen
e must be 
omputable (w.r.t. α), and so too must be the sequen
eitself. Otherwise it 
ould hardly be regarded as an α-e�e
tive sequen
e of anykind. The se
ond 
ondition is less obvious. As long as we 
an 
ompute thesequen
e, and we know that it 
onverges, why must we be able to 
ompute inadvan
e how far out in the sequen
e we must go to get within a 
ertain radiusof the limit? It may seem to be a super�uous 
ondition, but without it, we
annot legitimately 
laim that the limit is 
omputable.It's not a matter of being able to 
ompute in advan
e how far along we mustgo in the sequen
e; it's a matter of being able to determine�at any point�whether we're even remotely 
lose to the limit. If we 
laim that an elementis 
omputable, we mean that we have a me
hanism for generating a pointarbitrarily 
lose to it. A Cau
hy sequen
e will eventually 
ontain su
h points,but it is under no obligation to begin mar
hing steadily toward its limit rightfrom the start. The �rst million points of the sequen
e may appear to besteadily 
onverging within a tiny portion of the spa
e, and then suddenly, inthe next point, it might spontaneously veer quite far away and appear to begin
onverging in a region very distant from the previous one. This may happenany number of times before it begins to 
onverge in earnest. Without beingable to 
ompute its modulus of 
onvergen
e, how 
an we be at all justi�ed in
laiming the sequen
e is e�e
tive? We have a way of generating our sequen
eand we know that it will eventually generate a satisfa
tory point (one 
loseenough), but unless its modulus is 
omputable, we have no way of sele
tingsu
h a point. Hen
e, we may as well be generating a 
ompletely randomsequen
e of points.That is the reason for insisting on a 
omputable modulus of 
onvergen
e.Lemma 4.7.5 (�Fast� Cau
hy Sequen
es). Without loss of generality, we 
anassume that the modulus of 
onvergen
e of an α-e�e
tive Cau
hy sequen
e (insome metri
 spa
e with metri
 d) is simply the identity fun
tion.That is, suppose {xn}n∈N is an α-e�e
tive Cau
hy sequen
e with asso
iatedre
ursive fun
tions e,M : N→ N su
h that ∀n ∈ N xn = e(n) and ∀j, k, ℓ ∈ N,
j, k ≥ M(ℓ) ⇒ d(xj , xk) < 2−ℓ. Then there exists another α-e�e
tive Cau
hysequen
e {x′n}n∈N su
h that ∀j, k, ℓ ∈ N, j, k ≥ ℓ ⇒ d(x′j, x

′
k) < 2−ℓ (i.e. M ′,if it were to be de�ned, would be merely the identity).Proof. First, without loss of generality, we 
an assume that M is monotoni
(in
reasing). This is a fairly standard assumption for moduli of 
onvergen
eand 
ontinuity in any 
ontext, and it is easy to show that 
omputability is notthreatened by it.Any �nite 
omposition of re
ursive fun
tions is re
ursive, so simply de�ne

e′ : N→ N as follows:
e′(n) = e(M(n))113
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ourse, set x′n = e′(n) for all n. Then e′ is re
ursive and ∀j, k, ℓ ∈ N, if
j, k ≥ ℓ, it follows that M(j),M(k) ≥M(ℓ). Thus,

d(x′j , x
′
k) = d(e′(j), e′(k))

= d (e(M(j)), e(M(k)))

< 2−ℓNotation 4.7.6. Let Cα(Z) be the set of all limits of α-e�e
tive Cau
hy se-quen
es in Z (and likewise for Cα(ZS), given any produ
t S of spa
es).De�nition 4.7.7 (Ωα and α). By de�nition, for every element of Cα(Z), thereis an α-e�e
tive Cau
hy sequen
e with two asso
iated 
omputable fun
tions (eand M). Every 
omputable fun
tion 
an be uniquely represented as a Gödelnumber in N, and every pair of natural numbers 
an be en
oded as a singlenatural number (using, for example, a se
ond Gödel numbering). Therefore,there is a set Ωα ⊆ N with a surje
tive fun
tion α : Ωα → Cα(Z) that en
odes
Cα(Z).De�nition 4.7.8 (α-
omputable fun
tion). As in De�nition 4.7.2, let S1 and
S2 be �nite produ
ts of X, A, P , and C[X,A], and suppose f : S1 → S2. Then
f is α-
omputable if there is a 
omputable (tra
king) fun
tion ϕ : N→ N su
hthat ∀k ∈ α−1 (Cα(ZS1))

f (α (k)) = α (ϕ (k))Remark 4.7.9. It is natural, at this point, to wonder whether we need to be
on
erned with α-e�e
tive Cau
hy sequen
es (and 
onsequently, α-
omputableoperators). Fortunately, the answer is no. Cα(Z) is �α-
omputably 
losed.�Lemma 4.7.10. Let S be any �nite produ
t of our four spa
es (as in Def-inition 4.7.2), and let {sn}n∈N ⊆ Cα(ZS) be an α-e�e
tive Cau
hy sequen
e(i.e. the sequen
e satis�es De�nition 4.7.3 when α is repla
ed by α) whi
h
onverges to an element s ∈ S . Then there is an α-e�e
tive Cau
hy sequen
ewhi
h also 
onverges to s.Proof. If {sn}n∈N is an α-
omputable sequen
e, then there is a re
ursive fun
-tion e : N→ N su
h that for ea
h n ∈ N, sn = α(e(n)). Now, any su
h e(n) isa
tually the Gödel number for a pair of other re
ursive fun
tions: en and Mn.
en is the fun
tion whi
h de�nes the α-e�e
tive Cau
hy sequen
e {snk}k∈N and
Mn is its modulus of 
onvergen
e (however, as we observed in Lemma 4.7.5,we 
an assume without loss of generality that ea
h Mn is simply the identityand thus ignore it). De
oding a Gödel number for a re
ursive fun
tion andevaluating it at a given point is, itself, re
ursive (e.g. 
onsider the Universal114
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hine). Therefore, there is a re
ursive fun
tion e : N× N→ N su
hthat ∀n, k ∈ N, e(n, k) = snk and ∀n, j, k, ℓ ∈ N,
j, k ≥ ℓ ⇒ dS(snj , snk) < 2−ℓThus, {snk}n,k∈N is an α-
omputable double sequen
e, ea
h row of whi
h 
on-verges at a brisk minimum rate (at least as fast as 2−n → 0 as n→∞).While Lemma 4.7.5 speaks only of α-e�e
tive Cau
hy sequen
es, it is equallyappli
able to α-
omputable Cau
hy sequen
es with α-e�e
tive moduli of 
on-vergen
e. Thus, we 
an assume that ∀j, k, ℓ ∈ N,
j, k ≥ ℓ ⇒ dS(sj , sk) < 2−ℓSin
e {snk}n,k∈N is α-
omputable, so is the sequen
e {rn = snn}n∈N. For thissequen
e, we 
an use the (obviously re
ursive) modulus of 
onvergen
eM(ℓ) =

ℓ+ 2, as we now demonstrate. For any n ∈ N,
dS(rn, sn) = dS(rn, lim

k→∞
snk)

= lim
k→∞

dS(rn, snk) (sin
e dS is 
ontinuous by Lemma1.4.1)
≤ 2−nTherefore, given any ℓ ∈ N, for all j, k ≥ ℓ+ 2,
dS(rj , rk) ≤ dS(rj, sj) + dS(sj , sk) + dS(sk, rk)

< 2−ℓ−2 + 2−ℓ−2 + 2−ℓ−2

= 3 · 2−ℓ−2

< 2−ℓ

4.7.3 The α-
omputability of ΦThe obje
tive in this line of inquiry is to establish a set of 
onditions on anoperator F : P × C[X,A] → C[X,A], along with the spa
es 
omprising itsdomain and 
odomain su�
ient to ensure that if F has a �xed point fun
tion
Φ de�ned on P , then this Φ is 
on
retely 
omputable.Theorem 4.7.11 (Con
rete Computability Theorem). Suppose the ante
edentsof the Generalized TZ1 Theorem for the Alternate Constru
tion on page 97 aresatis�ed by some operator F : P × C[X,A] → C[X,A] at every point p ∈ P .That is, 115
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 spa
e.(b) ∀p ∈ Cα (ZP ) λp is a real number with 0 < λp < 1.(
) X is a σ-
ompa
t spa
e with a retra
table 
ompa
t exhaustion X = {Xn}n∈Nand retra
tions {ρn}n∈N.(d) ∀p ∈ P , F (p, ·) : C[X,A] → C[X,A] satis�es Caus(X) and Lip(λp,X)for all u ∈ C[X,A].And further, suppose(e) P , X, and A are 
omplete separable metri
 spa
es.(f) For ea
h n ∈ N, Cα(ZC[X,A]) is 
losed under holdn.(g) hold : N × C[X,A] → C[X,A] is α-
omputable11 (this impli
itly requires(e), of 
ourse).(h) F is α-
omputable.(i) The parametrized pseudometri
 d : N×C[X,A]2 → R≥0 (where d(n, u, v) =
dn(u, v)) is α-
omputable.(j) There is an α-
omputable fun
tion Λ : P → R+ su
h that ∀p ∈ P
Λ(p) = λpThen the �xed-point fun
tion Φ : P → C[X,A] for F is α-
omputable.Proof. It is easiest to use Constru
tion 4.4.12 to prove this sin
e it involvesfewer spa
es (it never uses any of the C[Xn,A] spa
es) and no indu
ed operators(trun
ations of F ), both of whi
h would require extra 
are to be taken at ea
hstep.To show that Φ is α-
omputable, we must �rst show thatΨ is α-
omputable. InConstru
tion 4.4.12, we 
hose an arbitrary initial point u0 and set Ψ(p, 0, 0) =

F (p, u0) ◦ ρ1 = hold 1 (F (p, u0)) for all p ∈ P . If we wish for Ψ(·, 0, 0) :
P → C[X,A] to be α-
omputable, however, u0 must obviously be 
hosen from
Cα(Z). Sin
e F : P × C[X,A] → C[X,A] and hold 1 are α-
omputable (byhypothesis) and the proje
tion fun
tion π1 : N2 → N (whi
h maps (i, j) → ifor all (i, j) ∈ N2) is re
ursive, it follows that both F (·, u0) : P → C[X,A]and Ψ(·, 0, 0) are α-
omputable (sin
e a 
omposition of �nitely many re
ursive11I am un
ertain whether the α-
omputability of hold : N × C[X,A] → C[X,A] wouldne
essarily follow from the α-
omputability of ρ : N × X → X (if we were to insist onit instead), but the former 
omputability is the one required for this theorem, so I havein
luded it in the ante
edent dire
tly. 116
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tions is re
ursive). From the former it follows that, for any k ∈ N, F k(·, u0)is α-
omputable, and thus so is Ψ(·, 0, k + 1) = hold 1

(
F k(·,Ψ(·, 0, k))

).We must be 
autious with the notation and the verna
ular here sin
e thereis a di�eren
e between showing that every point in the range of a fun
tionis α-
omputable, and showing that the fun
tion itself is α-
omputable. Wehave shown both above (for Ψ(·, 0, ·) : P × N → C[X,A]), although the latteronly loosely. To see it more 
learly, note that if ϕF : N → N is an α-tra
kingfun
tion for F (·, u0), then the α-tra
king fun
tion ϕG for G(p, k) = F k(p, u0)is a
tually primitive re
ursive (not just re
ursive):
ϕG(j, 0) = ϕF (j)

ϕG(j, k + 1) = ϕF (ϕG(j, k))Alternatively, we 
ould invoke the Chur
h-Turing Thesis and express the tra
k-ing fun
tion for Ψ(p, 0, k) using a programming language together with ϕF andthe tra
king fun
tion for hold 1.All of the above is 
learly appli
able to Ψ(p, n, k) for any values of n, k > 0�provided that Ψ(p, n, k) is α-
omputable for k = 0. We've shown above that
Ψ(p, n, k) is α-
omputable for k = 0 when n = 0, but getting Ψ(p, n, 0) for
n > 0 is more 
hallenging. Re
all that for n > 0, we have de�ned

Ψ(p, n+ 1, 0) = holdn+2

(
lim
k→∞

Ψ(p, n, k)
)From the argument above, {Ψ(p, n, k)}k∈N is 
ertainly an α-
omputable se-quen
e, but we must show that it is also an α-e�e
tive Cau
hy sequen
e to en-sure its limit is α-
omputable. That is, we must show there is an α-
omputable

M : P × N× N→ N su
h that ∀p ∈ P , ∀k1, k2, n, ℓ ∈ N,
k1, k2 ≥M(p, n, ℓ) ⇒ dC[X,A](Ψ(p, n, k1),Ψ(p, n, k2)) < 2−ℓAlmost exa
tly this was done already in the development of N(ε) in the proofof the Generalized TZ1 Theorem for the Alternate Constru
tion on page 97,but our requirements here are a little more stringent. In parti
ular, we mustensure that

• M has the form P ×N×N→ N, instead of R+ → R+ (as N has in thatproof).
• M is an α-
omputable fun
tion (whi
h is obviously a requirement Ndidn't have to satisfy).
• M is developed with respe
t to the metri
 dC[X,A] rather than the pseu-dometri
 dn+1. This is, however, required merely by the exposition. For117
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ity, I've negle
ted to develop a �lo
al� version of the αtheory in this 
hapter (that would allow for a pseudometri
 modulus of
onvergen
e), but Tu
ker and Zu
ker develop this for streams in [TZ12℄and their work appears to 
arry over to smoothies naturally (although Iwould need more time to 
on�rm that there are no snags along the way).It is possible to show (although I won't do it here), that the following de�nitionfor M : P × N× N→ N is α-
omputable:
M(p, n, ℓ) =

⌊
logΛ(p)

(
ℓ− n+ 1

D(n)
(1− Λ(p)) 2−ℓ−1

)⌋
+ 1where ∀n ∈ N,

D(n) = max {1, d(n+ 1,Ψ(p, n, 0),Ψ(p, n, 1))}We knowM is α-
omputable be
ause d and Λ are α-
omputable by hypothesis(for pre
isely this purpose, in fa
t), and the rest is 
omposed of elementaryreal fun
tions whi
h 
an be shown to be α-
omputable.We now prove that M is a modulus of 
onvergen
e for {Ψ(p, n, k)}k∈N. Let
ℓ, n ∈ N, and assume without loss of generality that ℓ ≥ n. Let k1, k2 ≥
M(p, n, ℓ), and assume (again without loss of generality) that k1 ≤ k2. Then,

dC[X,A](Ψ(p, n, k1),Ψ(p, n, k2))

=

∞∑

i=0

min
(
2−i, di(Ψ(p, n, k1),Ψ(p, n, k2))

)

=
∞∑

i=n+1

min
(
2−i, di(Ψ(p, n, k1),Ψ(p, n, k2))

) (4.7.1)
≤

∞∑

i=n+1

min
(
2−i, dn+1(Ψ(p, n, k1),Ψ(p, n, k2))

) (4.7.2)(4.7.1) follows from the fa
t that Ψ(p, n, k1) and Ψ(p, n, k2) agree on Xn and(4.7.2) follows from Lemma 4.4.13.The remaining steps are familiar from several earlier proofs in the thesis. Con-tinuing from (4.7.2),
118
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∞∑

i=n+1

min
(
2−i, dn+1(Ψ(p, n, k1),Ψ(p, n, k2))

)

≤
ℓ+1∑

i=n+1

dn+1(Ψ(p, n, k1),Ψ(p, n, k2)) +

∞∑

i=ℓ+2

2−i

= (ℓ− n + 1) dn+1(Ψ(p, n, k1),Ψ(p, n, k2)) + 2−ℓ−1

≤ (ℓ− n+ 1)

k2−1∑

i=k1

dn+1(Ψ(p, n, i),Ψ(p, n, i+ 1)) + 2−ℓ−1

≤ (ℓ− n+ 1)D(n)
k2−1∑

i=k1

λip + 2−ℓ−1

= (ℓ− n + 1)D(n) λk1p
1− λk2−k1

p

1− λp
+ 2−ℓ−1

≤ (ℓ− n+ 1)D(n) λk1p
1

1− λp
+ 2−ℓ−1

< 2−ℓ−1 + 2−ℓ−1

= 2−ℓTherefore, Ψ is α-
omputable.What remains to be shown is that there is also an α-
omputable modulus of
onvergen
e
M ′ : P × N→ Nfor limn→∞Ψ(p, n, 0). Mer
ifully, this ismu
h more straightforward: {Ψ(p, n, 0)}n∈Nis already (almost) a �fast� Cau
hy sequen
e! Its modulus of 
onvergen
e isgiven by M ′(p, ℓ) = ℓ+1, whi
h we will now show as the �nal step.As we have established previously, given any n ∈ N, ∀m ≥ n, Ψ(p,m, 0) is an

Xn-approximate �xed point of F . Thus, if ℓ ∈ N and m,n ≥ ℓ+ 1,
dC[X,A](Ψ(p, n, 0),Ψ(p,m, 0)) =

∞∑

i=0

min
(
2−i, di (Ψ(p, n, 0),Ψ(p,m, 0))

)

=
∞∑

i=ℓ+2

min
(
2−i, di (Ψ(p, n, 0),Ψ(p,m, 0))

)

≤
∞∑

i=ℓ+2

2−i

= 2−ℓ−1

< 2−ℓ119
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Master University - Computing and SoftwareRemark 4.7.12. There is a somewhat major weakness in the Con
rete Com-putability Theorem that prevents it from being a generalization of Theorem1 from [TZ12℄ (whi
h was my original goal): it relies on a single retra
tableexhaustion, X. In Tu
ker and Zu
ker's paper, there is a family of 
ontra
-tion moduli λc,a,x and a family of in
rements τc,a,x su
h that F lo
ally satis�esContr (λc,a,x, τc,a,x). In the theorem above, we do have a parametrized familyof 
ontra
tion moduli λp, but essentially we have only the one �in
rement�(exhaustion). I do believe it would be relatively easy to expand the theo-rem, allowing for a family of 
ompa
t exhaustions {Xp}p∈P su
h that for ea
h
p ∈ P , F satis�es Caus(Xp) and Contr (λp,Xp), but I haven't taken the timeto attempt the theorem this way. Hen
e, I will relegate that proje
t for futurework, along with the following additional ideas.4.8 Future Work4.8.1 Study the Abstra
t Computability of ΦIn [TZ12℄, the 
omputability of the model presented in [TZ11℄ is analyzed fromtwo di�erent perspe
tives: 
on
rete 
omputability and abstra
t 
omputability.I believe I have done the bulk of the work in generalizing 
on
rete 
omputabil-ity to C[X,A] (although, 
learly mu
h remains to be done before that work
an be 
onsidered 
omplete), and it seems to hold up very well. It wouldbe interesting to see whether the same is true of abstra
t 
omputability. Inabstra
t 
omputability, a more algebrai
 approa
h is taken (verses the ana-lyti
 approa
h of 
on
rete 
omputability) and the stream/smoothie operatorsare approximated using a simple imperative language that is independent ofthe data representation and is augmented by the operations de�ned on thedata types being used. The language used by Tu
ker and Zu
ker is 
alledWhileCC*, and it in
ludes �while� loops, a nondeterministi
 
ountable 
hoi
efun
tion (the �CC� part of the name), and arrays of arbitrary length (the �*�part of the name).4.8.2 Generalize A from metri
 spa
es to uniform Haus-dor� spa
esThere is a way to generalize Bana
h's Fixed Point Theorem so that it doesn'trequire a metri
. I thought of a way to do this, myself, but E. Tarafdarappears to have beat me by a few de
ades [Tar74℄ (although, admittedly, witha mu
h more thoroughly-developed idea than I had). Rather than working120
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 spa
e, we work within a uniform spa
e�whi
h is a type oftopologi
al spa
e stri
tly more general than a metri
 spa
e. In a uniformspa
e, we don't (ne
essarily) have anything like a metri
; instead we have afamily of �entourages.� An entourage of a uniform spa
e X is a 
olle
tionof subsets of X2 that satisfy 
ertain properties devised to impart a notion ofproximity without ne
essitating a
tual �distan
e.�If (X, d) is a metri
 spa
e, the uniformity indu
ed by the metri
 
onsists ofone entourage for every r ∈ R+. The entourage asso
iated with r is the set ofall pairs of points no further than r of ea
h other. That is,
Er =

{
(x, y) ∈ X2 : d(x, y) ≤ r

}With a system of entourages, it is possible to de�ne 
ontra
tions and nonex-pansions in a few di�erent ways, ea
h of whi
h permits a variation of Bana
h'sFixed Point Theorem. Some approa
hes are outlined in [Tar74℄, and I believethey might be appli
able here. Generalizing the 
on
rete 
omputability of Φto uniform spa
es would require the use of Cau
hy �lters in pla
e of Cau
hysequen
es, so this 
ould be a major undertaking, but it seems quite feasible.4.8.3 An Alternative to ContrAnother generalization of Bana
h's Fixed Point Theorem o

urred to me aswell: the theorem would still hold for an operator f that isn't 
ontra
ting,as long as there is some n ∈ N su
h that fn is 
ontra
ting. Again, this wastoo obvious not to have been studied already. The obvious name for a su
ha property would be �eventually 
ontra
ting,� and qui
k sear
h reveals thefollowing de�nition from [HK03℄:De�nition 4.8.1. Let X be a metri
 spa
e, C ∈ R+, λ ∈ (0, 1), and f : X →
X . Then f is eventually 
ontra
ting if ∀n ∈ N ∀x, y ∈ X ,

d (fn(x), fn(y)) ≤ Cλnf(x, y)This is my de�nition (whi
h I suspe
t is roughly equivalent):De�nition 4.8.2. F : C[X,A]→ C[X,A] is progressively 
ontra
ting (or F ∈
PContr(λ, η,X)) if there is a fun
tion η : N → N and a 
onstant λ (with
0 < λ < 1) su
h that ∀N ∈ N ∀u, v ∈ C[T,A],

dN
(
F η(N)u, F η(N)v

)
≤ λdN(u, v)Furthermore, we say F is e�e
tively progressively 
ontra
ting if η is re
ursive.Example 4.8.3. F : C[T,R]→ C[T,R] where F (u)(t) = ´ t

0
u(s) ds+f(t) (and

f ∈ C[T,R]) is e�e
tively progressively 
ontra
ting.121
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dN(F

ku, F kv) ≤ Nk

k!
· dN(u, v)Sin
e F 0 is simply the identity on C[T,R] and N0

0!
= 1, the statement holds for

k = 0.Now let k ∈ N and suppose that ∀N ∈ N ∀u, v ∈ C[T,R] dN
(
F k(u), F k(v)

)
≤

Nk

k!
dN(u, v). Then, ∀N ∈ N ∀u, v ∈ C[T,R],

dN
(
F k+1(u), F k+1(v)

)
= max

0≤t≤N

∣∣∣∣
(
ˆ t

0

F k(u)(s) ds+ f(t)

)

−
(
ˆ t

0

F k(v)(s) ds+ f(t)

)∣∣∣∣

= max
0≤t≤N

∣∣∣∣
ˆ t

0

(
F k(u)(s)− F k(v)(s)

)
ds

∣∣∣∣

≤ max
0≤t≤N

ˆ t

0

∣∣F k(u)(s)− F k(v)(s)
∣∣ ds

=

ˆ N

0

∣∣F k(u)(s)− F k(v)(s)
∣∣ ds

≤
ˆ N

0

max
0≤r≤s

∣∣F k(u)(r)− F k(v)(r)
∣∣ ds

=

ˆ N

0

ds
(
F k(u), F k(v)

)
ds

≤
ˆ N

0

sk

k!
ds (u, v)ds

≤ dN(u, v)

ˆ N

0

sk

k!
ds

=
Nk+1

(k + 1)!
dN(u, v)De�ne η(N) = max {3N, 1}. Then ∀N ∈ N+, with k = η(N) (for 
onvenien
e),we observe that

Nk

k!
=

(
k

3

)k
1

k!
<

(
k

e

)k
1

k!
<
√
k

(
k

e

)k
1

k!
=

1√
2π

(
√
2πk

(
k

e

)k
1

k!

)Stirling's Formula provides the following inequality for any k ∈ N,
√
2πk

(
k

e

)k

< k!122
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2π
, we 
ompute,

Nk

k!
< λ

(
√
2πk

(
k

e

)k
1

k!

)
< λ < 1Hen
e, ∀u, v ∈ C[T,R] ∀N ∈ N+,

dN(F
η(N)u, F η(N)v) ≤ Nη(N)

η(N)!
· dN(u, v) ≤ λdN(u, v)For N = 0, dN(F η(N)u, F η(N)v) = d0(Fu, Fv) = 0 ≤ λd0(u, v).Thus, F is progressively 
ontra
ting, and sin
e η is 
learly re
ursive, this 
on-tra
tion is e�e
tive.Remark 4.8.4. I'm sure this argument 
an be adapted to work for any F :

C[T,R]m → C[T,R]m of the form,
F (u)(t) =

ˆ t

0

Au(s) ds+ f(t)where A ∈ Rm×m and f ∈ C[T,R]m. I just wanted to 
he
k that the simplerversion works �rst.Hen
e, this version of the theory�while possibly not quite as broad as theversions whi
h use Contr(λ, τ) and Contr (λ,X)�should still work with thetwo mass-spring-damper 
ase studies in [TZ11℄ and it o�ers a diagonal 
on-stru
tion whi
h will obviously 
onverge to the same stream as the �ω2� pro
essfrom that paper and the other 
onstru
tions in this thesis do.Theorem 4.8.5 (Progressive Contra
tion Theorem). If F : C[X,A]→ C[X,A]is progressively 
ontra
ting, then it has a unique �xed point.Proof. Let v0 ∈ C[X,A] and de�ne the sequen
e, {vk = F k (v0)
}
k∈N, whi
h wewill show is lo
ally uniformly Cau
hy. To do so, we must show that ∀N ∈ N

∀ε > 0 ∃M ∈ N su
h that ∀n,m ≥M ,
dN(vm, vn) < εWithout loss of generality, assume η(N) ≥ 2 and let12,

r = max
0≤m,n≤η(N)

dN (vm, vn)12It may appear at �rst glan
e (if you see where this is going) that r should be de�nedas max0≤m,n≤η(N)−1 dN (vk, vj) sin
e vη(N) = F η(N)v0. The in
lusion of vη(N) itself seemssuper�uous, but this in
lusion is a
tually deliberate and essential.123
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e F is progressively 
ontra
ting, ∀m,n ∈ {0, 1, . . . , η(N)− 1} ∀k ≥ 0,
dN
(
F k·η(N) (vm) , F

k·η(N) (vn)
)
≤ λkdN (vm, vn) ≤ λkrLet M ∈ N be a number su
h that,

λM <
ε(1− λ)

rFor example, we 
ould take,
M =

⌈
logλ

ε(1− λ)
r

⌉Let m,n ∈ N. Then ∃m1, n1 ∈ N ∃m2, n2 ∈ {0, 1, . . . , η(N)− 1} su
h that
m = m1 · η(N) +m2, n = n1 · η(N) + n2. Without loss of generality, assume
m1 ≤ n1 and let q = n1 −m1. Then,

dN (vm, vn) = dN
(
Fm1·η(N) (vm2) , F

n1·η(N) (vn2)
)

= dN
(
Fm1·η(N) (vm2) , F

m1·η(N)
(
F q·η(N) (vn2)

))

≤ λm1dN
(
vm2 , F

q·η(N) (vn2)
)

≤ λm1

(
dN
(
vm2 , vη(N)

)
+

q−1∑

i=1

dN
(
vi·η(N), v(i+1)η(N)

)

+dN
(
vq·η(N), vq·η(N)+n2

))

≤ λm1

(
r +

q−1∑

i=1

dN
(
F i·η(N) (v0) , F

i·η(N)
(
vη(N)

))

+dN
(
F q·η(N) (v0) , F

q·η(N) (vn2)
))

≤ λm1

(
r +

q−1∑

i=1

λidN
(
v0, vη(N)

)
+ λqdN (v0, vn2)

)

≤ λm1

(
r +

q−1∑

i=1

λir + λqr

)

≤ λm1

(
q∑

i=0

λir

)

= λm1
1− λq+1

1− λ r

< λm1
1

1− λr

≤ λM
1

1− λr
≤ εBy Corollary B.0.6 on page 134, ∃v ∈ C[X,A] su
h that vn → v as n→∞.124



Chapter 5Con
lusion and Dis
ussionThe highlights and su

esses of my Ph.D. resear
h were 
overed adequately inthe Chapter Summary (Se
tion 1.2), so in this se
tion, I will take the oppor-tunity to examine some of the short
omings of the work and look ahead to seehow it might be improved.The three resear
h proje
ts 
overed in the thesis extend the work in [TZ11℄ indi�erent dire
tions. In the �rst resear
h proje
t, I thought of a di�erent wayto 
onstru
t a �xed point and tried to repli
ate the approa
h in [TZ11℄ usingthe new 
onstru
tion in pla
e of Tu
ker and Zu
ker's. I 
onsider this to bethe most original work in the thesis (to the best of my knowledge), but alsothe least su

essful of the three proje
ts. The underlying idea seems obvious(to me), so its apparent absen
e from the literature arouses my suspi
ion. Myguess is that a few people have toyed with it in the past and dismissed itas impra
ti
al. In most nontrivial 
ases, the limit of the delayed �xed-pointfun
tion probably be
omes too unwieldy to be of any use. I do, however, thinkit's likely that there is a mu
h better �xed point theorem for it (than TheoremTZJ1 for Vanishing Delays on page 48). I believe this would be the most usefulnext step for the proje
t if anyone were to pursue it in the future: �nding aset of 
onditions (ideally whi
h do not in
lude Contr ) on a stream operator,su�
ient to ensure the operator has a unique �xed point.The se
ond proje
t began as a reformulation of the mass-spring-damper 
asestudy (as seen in Se
tion 3.3.1.2), motivated by the unusual 
ondition on theparametersM , K, and D required by [TZ07, TZ11℄. After the reforumulation,it seemed natural to ask what other sorts of operators would satisfy Contr ,and the 
hoi
e of a Bana
h spa
e o�ered an ideal venue to begin answeringthat question. While the answer I was able to provide was somewhat disap-pointing (very few dynami
al systems 
an be expressed in the required form),I do believe it was at least somewhat illuminating and it attained a level ofgenerality beyond what I had initially aspired to rea
h. It is obviously mu
htoo restri
tive, however, essentially allowing for only one kind of module in125
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luded by the Gen-eral Form Theorem. There should be a way to relax that theorem somewhatto allow a greater diversity of modules.The third proje
t was, in my opinion, the most su

essful, but the resear
hwas done in a relatively short period of time. As a result, it's a bit messyhaving two equivalent 
onstru
tions. I have little doubt that there is a wayto prove the Generalized Theorem TZJ2 on page 102 and the Con
rete Com-putability Theorem on page 115 using Constru
tion 4.4.3 on page 91, ratherthan Constru
tion 4.4.12 on page 96. If so, the latter 
onstru
tion would berendered entirely super�uous (as it should be). I simply didn't have time toattempt these proofs. That, as well as fully generalizing the 
omputability the-ory from [TZ12℄, I feel is the (relatively) easy part. The hard part is �nding asuitable 
ase study like the mass-spring-damper system to whi
h the smoothietheory 
an be applied, but to whi
h the stream theory 
annot. I spent a rathersigni�
ant amount of time trying to �nd one. I looked at Nash Equilibriumand physi
al models involving partial di�erential equations�paying parti
ularattention to the rather simple model of heat di�usion along a �xed-length rodwhose ends are held 
onstant at 0◦C. The sequen
e of retra
tions I developedfor that system were fairly elaborate (at least for what was meant to be a sim-ple 
ase study), but ultimately I failed to represent the physi
al model with a
ontra
ting operator1.

1I have Prof. Ja
ques Carette to thank for res
uing me from the potentially endlesspursuit down that blind alley. I may have still been trying (with red-rimmed eyes andgrinding teeth) to make it work today if not for him).126



Appendix AThoughts on Hadamard'sPrin
iple
A.1 Continuity isn't doing quite what we wantContinuity pervades every nook and 
ranny of both [TZ11℄ and this thesis.Mu
h of this is due to the mathemati
al 
onvenien
e a�orded by 
ontinuity:
ontinuous fun
tions have very ni
e properties whi
h make them easy to workwith. If one is presented with both a 
ontinuous model of a phenomenon anda dis
ontinuous one�the former is nearly always preferable. Furthermore,sin
e the �eld of 
omputable analysis typi
ally de�nes 
omputable fun
tionsas being 
ontinuous, it's mu
h easier to 
ompare analog 
omputation withdigital 
omputation if the analog models are 
ontinuous as well.In [TZ11℄, however, the authors o�er a di�erent reason for the importan
ethey pla
e on 
ontinuity: Hadamard's Prin
iple. On page 3380 of [TZ11℄ theyintrodu
e this prin
iple:
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an
e of Theorems 1 and 2 is that 
onti-nuity implies the stability of the �xed point solution
Φ to the spe
i�
ation given by F with respe
t to thesystem parameters, initial values and input streams.This means that small 
hanges in tuples of system pa-rameters c ∈ Ar, initial values a ∈ As and inputstreams x ∈ C[T,A]p will result in small 
hanges inthe behaviour of the systems as de�ned by Φ(c, a, x) ∈
C[T,A]m. Here �small� is measured by any topology
hosen for the task in hand. The signi�
an
e of 
on-tinuity is expressed in Hadamard's prin
iple whi
h, inthe present 
ontext, 
an be (re-)formulated in the form:for a model of a physi
al system to be a

eptable, thebehaviour of the model must depend 
ontinuously onthe data. This prin
iple formalises the fa
t that if thesystem's behaviour depends signi�
antly on small per-turbations in its data, then it 
annot behave in a stablefashion and its physi
al observation 
annot be reliable.This is be
ause, for example, repeating an experimentor 
omputation will involve small variations of physi-
al data, and for the system to be observable the 
orre-sponding variation in behaviour must also be small.On page 3402, they 
ontinue,An important aspe
t of Hadamard's prin
iple is that it
an be viewed as making 
lassi
al experimental physi
spossible. Suppose, for example, that one wants to ver-ify any of the well-known relations of 
lassi
al physi
s� Hooke's Law or Charles's Law, for example�by tak-ing measurements and drawing a graph of the relation-ship between the �independent� and �dependent vari-ables��for
e vs displa
ement of a spring in the �rstexample, and temperature vs volume of a gas (at 
on-stant pressure) in the se
ond. ... The experimentalresults, and 
onsequent graph, only make sense on theassumption that the fun
tion that one is attempting toplot is 
ontinuous, so that small dis
repan
ies or in-a

ura
ies in the inputs produ
e only small variationsin the outputs. Moreover, this is needed to guaranteerepeatability of experiments.I agree with the spirit and the motivation behind Hadamard's Prin
iple, but128
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ription of 
ontinuity. Certainly small variations in the in-put data must yield small 
hanges in the behaviour of the system, but thisis signi�
antly di�erent from insisting that arbitrarily small 
hanges in thebehaviour of the system always be attainable via su�
iently small variationsin the input.In the 
ontext of experimental s
ien
e, �small� will depend on our measuringinstruments and the obje
t under study. A light-year is �small� when measur-ing the diameter of a galaxy, while even a nanometre is not when measuring anatom. Suppose our instruments are 
apable of taking measurements to within
ε > 0 of the �true value� of the quantity (if, indeed, su
h a value even exists).Now suppose we have a mathemati
al model f : X → Y of some physi
alsystem. That is, if we take a measurement x ∈ X from the system, the value
f(x) 
an be 
al
ulated and yields a predi
tion about the system's behaviourwhi
h 
an be 
ompared with a measurement. And remember: we have amargin of error of ε in both the input and the output measurements. Considerthe following examples of models we might have.Example A.1.1.

f : R→ R

f(x) =





0 if x ≤ 0
x
ε

if 0 < x ≤ ε

1 if x > εThis system is 
ontinuous but it is experimentally indistinguishable from the(dis
ontinuous) step fun
tion. The dis
ontinuity in the step fun
tion would beunmeasurable if it were present in the physi
al system, and if it weren't present,that too would be an unmeasurable aspe
t of its behaviour. If we were toverify the a

ura
y of this model experimentally, it would be indistinguishablefrom the step fun
tion. Both fun
tions would be either 
on�rmed or falsi�edtogether by any 
on
eivable experiment. They are e�e
tively both membersof the same experimental equivalen
e 
lass.Yet a

ording to Hadamard's Prin
iple, the step fun
tion would be an �una
-
eptable� model of a physi
al system (or as Courant and Hilbert would say,the problem whi
h produ
ed it was �ill-posed�). I 
an appre
iate that we mighthave reasons to prefer one model over the other, depending on the situation,but to reje
t the step fun
tion re�exively as part of philosophi
al moratoriumon all dis
ontinuity for its own sake seems absurd to me.Now 
onsider a more extreme example:Example A.1.2.
f : R→ R129



Ph.D. Thesis - N. James; M
Master University - Computing and Software
f(x) =

{
sin(x) + ε

2
if x is rational

sin(x) if x is irrationalThis system is nowhere 
ontinuous, but that seems to have almost no adversee�e
ts on its predi
tive 
apabilities. The only impa
t these dis
ontinuities haveon the viability of the model is that they slightly enlarge the margin of error.For example, a measurement of 5ε/4 at x = 0 (whi
h would be attainablewith our hypotheti
al measuring instrument and read as being di�erent froma measurement of 0) would be 
onsistent with this model, but not 
onsistentwith the model sin(x).Obviously we'd prefer to work with sin(x) over f(x) be
ause it's mu
h simplerand far more well-behaved. All else being equal, there would 
ertainly beno reason to favour the dis
ontinuous model. It goes out of its way to beunwieldy and it does so for no apparent reason, o�ering nothing but slightlyfuzzier predi
tions. That is hardly grounds for dismissing su
h a model ashaving no experimental value, however.Example A.1.3.
f : R→ [−1, 1]

f(x) = sin

(
2πx

ε

)This system is everywhere 
ontinuous and even in�nitely di�erentiable (on
(0, 1)), but it assumes every possible value in its range within the input marginof error. Thus, it has absolutely no predi
tive 
apabilities whatsoever. It
ouldn't be more 
ontinuous, yet even unmeasurably small 
hanges in theinput result in arbitrarily large 
hanges in the output.Even worse, perhaps, 
onsider the (in)famous example of the �Topologist's SineCurve� (but restri
ted to R+):

f(x) = sin

(
1

x

)No matter how pre
ise your measuring instruments are, if you need a measure-ment near 0, you're out of lu
k.Remark A.1.4. Examples A.1.1 on the pre
eding page and A.1.2 on the pre-vious page show that 
ontinuity is not ne
essary to ensure that a model isexperimentally viable, and Example A.1.3 shows that nor is 
ontinuity su�-
ient. Thus, it appears it has no role to play as a 
riterion of experimentalappli
ability.Ri
hard Courant and David Hilbert write (in [CH53℄)130
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ontinuity℄ is ne
essary if themathemati
al formulation is to des
ribe observable nat-ural phenomena. Data in nature 
annot possibly be
on
eived as rigidly �xed; the mere pro
ess of mea-suring them involves small errors. For example, pre-s
ribed values for spa
e or time 
oordinates are alwaysgiven within 
ertain margins of pre
ision. Therefore,a mathemati
al problem 
annot be 
onsidered as real-isti
ally 
orresponding to physi
al phenomena unless avariation of the given data in a su�
iently small rangeleads to an arbitrarily small 
hange in the solution.This paragraph appears to me to 
ontradi
t itself. If the mere pro
ess ofmeasuring data ne
essarily involves small errors, then why must the solutionto a mathemati
al problem 
orresponding to physi
al phenomena be requiredto exhibit arbitrarily small 
hanges? It is impossible (and we 
an only assumeit will always be impossible) to measure arbitrarily small 
hanges, so this ismu
h too extreme a limitation to impose on mathemati
al models of physi
alphenomena.In a later se
tion entitled �Remarks about `Improperly Posed' Problems,�Courant and Hilbert write,Nonlinear phenomena, quantum theory, and the adventof powerful numeri
al methods have shown that �prop-erly posed� problems are by far not the only ones whi
happropriately re�e
t real phenomena.With this, I agree, and I struggle to see how it is 
onsistent with their earlierstatement.A.2 If not 
ontinuity, then what?I believe the aim of Hadamard's Prin
iple is to ensure that in any s
ienti�
model, an unmeasurable di�eren
e between two input values should not re-sult in a measurable1 di�eren
e between their images. We might 
odify thismathemati
ally as follows2:1Just to dispel any possible 
onfusion, I use the term �measurable� here in the ordinarysense rather than the mathemati
al sense. There are no σ-algebras or measures involved.2This de�nition has surely been proposed before, but by whom and what it has beennamed, I have no idea.
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 spa
es, let εX , εY > 0, andlet f : X → Y . Then f is (εX , εY )-stable if ∀x, y ∈ X
dX(x, y) < εX ⇒ dY (f(x), f(y)) < εYThe values εX and εY might represent the pre
ision of our measuring instru-ments. That is, εX is so small that if dX(x, y) < εX , we la
k the te
hnology todetermine it (and likewise for εY ). This is obviously mu
h messier and far lesssatisfying than 
ontinuity sin
e the pre
ision of our measuring instruments isalways improving, but I feel this pair of pre
isions is absolutely essential tothe mandate we are attempting to draft. I don't believe 
ontinuity is ful�llingthe role that Hadamard intended for it, so its elegan
e is moot.One way we might liberate this admittedly awkward 
ondition from the pre-
ision of a
tual measuring devi
es is to assume theoreti
al limits su
h as thePlan
k length on the quantities involved rather than te
hnologi
al ones. An-other possibility (whi
h I think is insu�
ient, but at least a step in the rightdire
tion) would be to repla
e 
ontinuity with bounded variation.Remark A.2.2. Even using this alternative 
riterion, I feel the prin
iple is toostri
t, as it suggests we 
ompletely dismiss any model or solution that doesnot 
onform to it�that we would be utterly wasting our time with any su
hmodels as they have no s
ienti�
 value. On this point I defer to Karl Popper'sphilosophy of s
ien
e and maintain that a s
ienti�
 statement need only befalsi�able to have s
ienti�
 value. As long as it makes some predi
tion abouta system that 
an be proven in
orre
t in the fa
e of the right observation, itshould not be reje
ted as being experimentally worthless. It may obviouslybe repla
ed by a superior model that makes stronger predi
tions or has ni
erproperties, but that's rather di�erent from reje
ting a model altogether.In the 
ase of Example A.1.3 on page 130, that model makes no falsi�ablepredi
tions. There is no measurement of the system that would be in
onsistentwith the model. Therefore, I agree that it should be reje
ted from the realmof experimental s
ien
e. The 
ase of the Topologist's Sine Curve is ratherdi�erent sin
e it does make falsi�able predi
tions when we move su�
ientlyfar away from zero. It may still be 
onsistent with several di�erent possiblemeasurements, but as long as there is at least one measurement that the modelrules out as being impossible, it is an experimentally viable model.At the opposite extreme, when a model rules out all but one measurement asbeing impossible (i.e. it makes predi
tions with the same or greater pre
isionthan our measuring devi
es or our assumptions of theoreti
al limits), that is anideal model in the sense of experimental viability. I believe there is a spe
trumof models in between the two extremes, and models that make stronger (moreeasily falsi�able) predi
tions should typi
ally be favoured over those whi
hmake weaker predi
tions, but the latter should not be dismissed altogether theway Hadamard's Prin
iple suggests. 132



Appendix BSupplementary PropositionsLemma B.0.3. If K is a 
ompa
t metri
 spa
e and A is a 
omplete metri
spa
e, then C[K,A] (with the 
ompa
t-open topology) is 
omplete.Proof. See [TZ11, Mun75℄.De�nition B.0.4 (Uniformly Cau
hy Sequen
e). Let X be a set and Y be ametri
 spa
e (with the metri
 dY ). Let F = {fn : X → Y }n∈N be a sequen
e offun
tions. We say F is uniformly Cau
hy if there exists a fun
tionN : R+ → Nsu
h that ∀ε > 0 ∀m,n ∈ N,
m,n ≥ N(ε) ⇒ sup

x∈X
{dY (fn(x), fm(x))} < εI know the following lemma must be in some textbook, somewhere, and I'drather just refer to it, but I 
ouldn't �nd a solid referen
e that stated it at thislevel of generality (without the domain or 
odomain being Rn). At this point,I'm thinking I'll waste less time by just re-inventing the wheel here.Lemma B.0.5. Let X be a set and Y be a 
omplete metri
 spa
e (with themetri
 dY ). Let {fn : X → Y }n∈N be a sequen
e of uniformly Cau
hy fun
-tions. Then there exists a unique fun
tion f : X → Y su
h that fn 
onvergesuniformly to f .Proof. It's 
lear from De�nition B.0.4 that for any x ∈ X , the sequen
e

{fn(x)}n∈N is a Cau
hy sequen
e in Y , and sin
e Y is 
omplete, that sequen
emust 
onverge. Hen
e, the sequen
e {fn}n∈N 
onverges pointwise to a uniquefun
tion f : X → Y . What is perhaps not entirely obvious (albeit, thoroughlyunsurprising) is that the 
onvergen
e is uniform.Let N : R+ → N be the (uniformly Cau
hy) modulus fun
tion from De�-nition B.0.4 for the sequen
e {fn}n∈N and de�ne Nf : R+ → N as Nf(ε) =
N(ε/2). We will show that Nf is modulus of 
onvergen
e for {fn}n∈N.133
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e fn → f (pointwise) as n→∞, there is another (pointwise 
onvergen
e)modulus fun
tion for fn. Call it N ′
f : X × R+ → N. Then ∀x ∈ X ∀ε > 0

∀n ∈ N,
n ≥ N ′

f (x, ε) ⇒ dY (fn(x), f(x)) < εLet ε > 0 and let n > Nf (ε). Let x ∈ X and let m ≥ max
{
n,N ′

f(x, ε/2)
}.Then,

dY (fn(x), f(x)) ≤ dY (fn(x), fm(x)) + dY (fm(x), f(x))

≤ ε

2
+
ε

2
= εThus, fn → f uniformly as n → ∞ with (uniform) modulus of 
ontinuity

Nf .Corollary B.0.6. Let X be a topologi
al spa
e, and Y be a 
omplete metri
spa
e. Let {fn : X → Y }n∈N be a uniformly Cau
hy sequen
e of 
ontinuousfun
tions. Then there exists a unique, 
ontinuous fun
tion f : X → Y su
hthat fn → f as n→∞.Proof. By Lemma B.0.5, there exists a unique f : X → Y su
h that fn → funiformly as n → ∞. Sin
e all the fn fun
tions are 
ontinuous, the UniformLimit Theorem (see [Mun75℄, for example) states that f will be 
ontinuous aswell.
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