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AbstratThe thesis onsists of three researh projets onerning mathematial modelsfor analog omputers, originally developed by John Tuker and Je� Zuker.The models are apable of representing systems that essentially �diverge,� ex-hibiting no valid behaviour�muh the way that digital omputers are apableof running programs that never halt. While there is no solution to the generalHalting Problem, there are ertainly theorems that identify large olletions ofinstanes that are guaranteed to halt. For example, if we use a simpli�ed lan-guage featuring only assignment, branhing, algebrai operations, and loopswhose bounds must be �xed in advane (i.e. at �ompile time�), we know thatall instanes expressible in this language will halt.In this spirit, one of the major objetives of all three thesis projets is identifya large lass of instanes of analog omputation (analog omputer + input)that are guaranteed to �onverge.� In our semanti models, this onvergeneis assured if a ertain operator (representing the omputer and its input) hasa unique �xed point. The �rst projet is based on an original �xed pointonstrution, while the seond and third projets are based on Tuker andZuker's onstrution. The seond projet narrows the sope of the model toa speial ase in order to onretely identify a lass of operators with well-behaved �xed points, and onsiders some appliations. The third projet goesthe opposite way: widening the sope of the model in order to generalize it.
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Chapter 1Introdution
1.1 Analog Computation and Analog NetworksAnalog omputation onerns omputation on ontinua rather than on disretespaes. Where digital omputation uses an abstrat, symboli enoding of dataand expliitly written algorithms to operate upon them, analog omputationuses�as its name would suggest�an analogy or transdution of measured dataand a orresponding physial system whih serves as a model of the originalsystem, i.e. the system about whih we wish to reason or make preditions..The input data an be any sort of measurement (e.g. voltage, pressure, tem-perature, et.) from the world outside the model, and it an be representedby any measurable quantity that is within the model. The model is set upto mimi the initial onditions of the original system, and then set in motionand observed. The �language� of analog omputation omes diretly from thelaws of physis rather than from the minds of instrution set engineers andprogramming language designers.Admittedly, digital omputation often involves analogies as well. An array ofbits in a digital omputer might be used, for example, to diretly representthe status of a series of loks in a anal. Metaphors for data strutures, algo-rithms, and programming language onstruts like binary �trees,� �simulatedannealing,� and �inheritane� permeate the literature on digital omputation.Hene, we might alternatively dihotomize omputation into �algorithmi� and�non-algorithmi� paradigms, but the term, �analog omputation� is alreadywell-established and the notion of analogy is inherent in it (both in its rep-resentation of data and in its atual mehanisms of omputation), while itappears only inidentally in digital omputation, and often for only didatipurposes.Putting aside suh devies as the Antikythera Mehanism [F+06℄, slide rules,planimeters, and similar devies used to ompute individual values (we might1



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareall them analog �alulators� rather than �omputers�), likely the �rst reordedaount of analog omputation was written in 1836 by Gaspard-Gustave Cori-olis [Cor36℄, in whih he desribed using gears and ylinders to integrate �rst-order di�erential equations. These ideas were further developed (or perhapsreinvented) in 1876 to takle di�erential equations of arbitrary order by LordKelvin and his brother, James Thomson [Tho76℄. While Kelvin and Thom-son's ideas were implemented to some extent in the �Argo� �re ontrol systemused by the Royal Navy [Pol80℄, it was Vannevar Bush who designed and builtwhat is likely the most advaned mehanial analog omputer and one of themost famous and pratial omputers of its day: the di�erential analyzer.Claude Shannon, working as a researh assistant in Bush's lab, de�ned a math-ematial model of the di�erential analyzer and named it the �General PurposeAnalog Computer� (or �GPAC�) in [Sha41℄. The GPAC is an example of whatould more generally be alled an analog network, whih may be visualized as airuit: a direted graph in whih the nodes are proessing elements known as�modules� and the edges (known as �hannels�) at as wires or tubes to onveydata streams (whih are funtions of time).The network is merely a oneptual model, however, and is not intended todesribe the atual appearane of the system. An eletroni or hydrauli imple-mentation of an analog network might physially resemble the direted graphitself, while a mehanial implementation often wouldn't. A module to per-form salar multipliation, for example, ould be implemented as a step-uptransformer or a transistor ampli�er in an eletroni iruit (both of whihommonly appear in shematis), whereas the same module ould be imple-mented mehanially as the physial interfae between the teeth of two ogs ofdi�ering diameters (whih does not so neatly suggest a node in a shemati).Hene, a physial system that bears no apparent resemblane to a network atall, may still qualify in our vernaular as an �analog network.�One of the main purposes of de�ning suh a model is to determine the set offuntions it is apable of generating, for if some physial devie an reliablygenerate a partiular funtion, it follows that this funtion is �omputable� inthe plainest and most intuitive sense of the word. Shannon proved1 that theGPAC is apable of generating all and only the di�erentially algebrai fun-tions. This is a very large lass of funtions, inluding polynomials of one realvariable along with sinusoids, exponential funtions, and solutions of ordinarydi�erential equations onsisting of these funtions. It is not, however, withoutsome disappointing limitations�Shannon's poster hild being the well-knowngamma funtion, whih is not di�erentially algebrai.1There were some problems with his proof whih Marian Pour-El addressed and at-tempted to retify in [PE74℄ using an alternative GPAC model. Unfortunately, there werealso problems in her own approah whih were spotted and orreted by Daniel S. Graçaand José Félix Costa in [GC03℄ using a third GPAC model.2



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwarePartially inspired by these limitations and partially by the assumption thatthe brain is a type of analog omputer whih is known to perform spatial aswell as temporal integration, Lee Rubel de�ned the �Extended Analog Com-puter� (or EAC) in [Rub93℄. Rubel's EAC is theoretially apable of solvingboundary value problems for partial di�erential equations, whereas the GPACis limited (aording to Shannon's de�nition) to initial value problems of ordi-nary di�erential equations. Jonathan Mills ran with Rubel's model, reatingfully-funtional analog omputers inspired by the EAC from foam sheets typ-ially used as pakaging material and even bloks of salted gelatin [MPH+06℄.There have been other implementations of analog omputation that repre-sent an even more profound departure from the GPAC model. Slime mold[YMTK95℄ and bees [LCR10℄ have been used to solve small instanes of theTravelling Salesperson Problem and generate near-optimal solutions to largerinstanes.While models of analog omputation o�er one approah for investigating theomputability of funtions involving ontinua, there has been a parallel re-searh e�ort foused on extending lassial omputability theory (as de�nedby Turing, Churh, Kleene, et.) into this realm: omputable analysis. Pio-neered primarily by Andrzej Grzegorzyk [Grz55, Grz57℄ and Daniel Laombe[La55℄, omputable analysis puts real (and omplex) analysis, funtional anal-ysis, and numerial analysis under the mirosope of lassial omputabilitytheory and asks the question entral to most researh on analog omputation:whih funtions are omputable? We already have a lear answer to that ques-tion in the domain of lassial omputability theory (i.e. for funtions of theform f : N → N), as all of the models of digital omputation we've disov-ered so far are in agreement. This is, of ourse, the foundation for the famousChurh-Turing Thesis.Computability theory on ontinua has not yet reahed the same degree ofonsensus, but muh progress is being made. Olivier Bournez et al. showed in[BCGH06℄ that the GPAC is equivalent to Ker-I Ko's model of omputability[Ko91℄ as long as the GPAC is permitted to approximate funtions (to arbitrarypreision) rather than produe them in real time. Viggo Stoltenberg-Hansenand John Tuker used domain representability in [SHT99℄ to prove that �vedi�erent models of omputation on topologial algebras are equivalent (undersome modest onditions). Further equivalene results (and exeptions) an befound in [Wei00℄. The matter is still not entirely settled, so the question ofomputability pertaining to funtions with unountable domains or odomainsremains open for now.In [TZ07, TZ11℄, John Tuker and Je� Zuker turn this question around andask instead, given a partiular analog network, under what onditions does itprodue meaningful output, and under what onditions does this output vary3



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareontinuously with the network's parameters? They argue2 that the signi�aneof the latter question is grounded in the imperative of experimental physisknown as "Hadamard's Priniple," �rst artiulated by Hadamard [Had52℄ andlater re�ned by Courant and Hilbert [CH53℄. Its fundamental tenet is that forthe solution to a problem in physis to be pratially appliable, it must varyontinuously with the parameters of the system so that small disrepanies orinauraies in the input produe only small variations in the output. Thestability of measurements in the presene of noise is an essential feature for aphysial system to qualify as an analog omputer.Like the GPAC, the data streams arried by the analog networks in [TZ07,TZ11℄ are funtions of time. There are, of ourse, various ways of modellingtime. The debate over whether spaetime is ontinuous, disrete, or evenboth simultaneously (see [Kem10℄) is ongoing, but regardless of the outomeof that debate, the majority of our physial laws and theories treat measurablequantities (inluding time) as real numbers. This may suggest using the wholereal line as a model of time, but regardless of the duration a omputer isallowed to run while solving a problem it must at some point atually be built,initialized, and started. For this reason, the authors hose to represent timeusing the only the nonnegative real numbers (as we do here, up until Chapter 4,at whih point several possible representations of time beome merely speialases in a broader theory).1.2 Chapter SummaryChapter 1: Preliminary ConeptsThe three researh projets share a ommon foundation, rooted in [TZ11℄.Brie�y, we take T to be the nonnegative reals, whih will represent time, and
A to be a metri spae whih represents a physially measurable quantity(e.g. voltage, position, pressure, et.) or a olletion of physially measurablequantities. Our fundamental �objet spae� is C[T,A], whih is the spae oftotal ontinuous funtions from T into A, equipped with a metri topology.We all this �stream spae,� and the elements within it, �streams.�The model of omputation in the �rst two projets onerns operators on
C[T,A] whih represent physial systems to be used as omputers. The se-mantis of the model are given by the existene of unique3 �xed points for2Note that I don't fully agree with Hadamard's Priniple, as I explain in Appendix A.3Tehnially, the �xed points need only be distinguishable to provide suh semantis.That is, the model would still work even with a whole set of �xed points, provided there existsa seletion funtion (e.g. least �xed point) with nie properties to provide the uniqueness.This would represent a generalization of the theory suitable for future work.4



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarethese operators. Two theorems from [TZ11℄ are presented here: the �rst pro-vides a set of su�ient onditions for the existene of a unique �xed point,while the seond provides onditions to ensure this �xed point varies ontin-uously with the parameters and input streams. The �rst theorem is provedonstrutively in [TZ11℄, and the onstrution is imperative for most of thesubsequent results. So I reprodue it in Chapter 1 for referene, albeit usingdi�erent notation and slightly di�erent methods, but keeping the spirit of theonstrution the same.There are two operator properties of partiular importane to the theorems:ausality and ontration. Loosely speaking, a �ausal� operator does not de-pend on the future and a �ontrating� operator brings streams loser together(but only loally; this is somewhat di�erent from the usual sense of ontration,as used in analysis). Causality is a basi requirement of the theory, withoutwhih we ouldn't get o� the ground at all, while ontration does most of theheavy lifting. This is not ontration in the usual sense, but rather a domain-restrited, onditional version of ontration. The properties are presented,along with a third whih is essential to [TZ11℄, but less important here: shiftinvariane.Up until Setion 1.4, I stik very losely the original soure material in orderto better set it apart from my own work. After that setion, I introdue somemodest generalizations of the theory and some further preliminary results Ineed to use later.Chapter 2: Construting Fixed Points of Stream Opera-tors Using Vanishing DelaysThis hapter overs the work I did on my original projet, whih I felt I hadto abandon beause I had gone several months without making any progress.Reall that the model of analog omputation upon whih this thesis is basedonerns �xed points of stream operators (aside from Chapter 4, in whih Idepart from streams). Some have �xed points, some don't.If we ompose any suh operator with a delay, however (reating a delayedversion of the original operator), this new operator is guaranteed to have aunique �xed point, and one that an even be onstruted quite mehanially.So the idea explored in this hapter is to see what happens when we omposean operator with a delay, �nd the �xed point of the delayed operator (as afuntion of the delay duration), and then let that delay approah zero.Intuitively, we expet that the �xed point of the delayed operator will onvergeto the �xed point of the original operator, if one exists, and that it will divergeotherwise.Chapter Highlights: 5



Ph.D. Thesis - N. James; MMaster University - Computing and Software1. The Delayed Operator Theorem on page 45: a delayed operator thatsatis�es a ertain ausality ondition always has a unique �xed point.2. The Vanishing Delay Theorem on page 47: if that (parametrized) �xedpoint onverges to a stream as the delay approahes zero, the stream towhih it onverges is a �xed point of the original, non-delayed operator.3. Theorem TZJ1 for Vanishing Delays on page 48: if a ontinuous operatorsatis�es Tuker and Zuker's su�ieny onditions for having a unique�xed point, then my tehnique of vanishing delays will onverge to it(loosely speaking, if their onstrution works, so will mine�at least inthe ase of ontinuous operators).Chapter 3: A Class of Contrating Stream OperatorsIn 2011, I o-authored a paper entitled �A Class of Contrating Stream Oper-ators,� whih has just been published by The Computer Journal [JZ12℄. Sinethat paper and the rest of this thesis share a ommon foundation of theoryand sine the paper was written to be self-ontained, I disassembled it some-what and spread the ontents between Chapter 1 and Chapter 3. There aretwo, fairly distint parts to this hapter. The operators disussed in [TZ11℄ areidenti�ed only indiretly by the properties they possess. In the �rst part of thishapter (the �rst two setions), I expliitly develop a lass of operators whosemembers satisfy those properties. In the seond part (the third setion), I showhow the ase studies in [TZ07℄ and [TZ11℄ (mass-spring-damper systems) anbe reorganized aording to Part 1 to over a broader range of systems, as wellas inluding a new system (the simple pendulum), whih yields only partiallyto the analysis in Part 1.The abstrat from the paper reads as follows:In [TZ07℄ and [TZ11℄, Tuker and Zuker present a model forthe semantis of analog networks operating on streams from topo-logial algebras. Central to their model is a parametrized streamoperator representing the network along with a theory that on-erns the existene, uniqueness, ontinuity, and omputability of a�xed point of that stream operator. We narrow the sope of thispaper from general topologial algebras to algebras of streams thatassume values only from a Banah spae. This restrition faili-tates the de�nition of a fairly broad lass of stream operators towhih the theory desribed in the above two papers applies.As a demonstration in their original work, the authors providetwo ase studies: analog networks whih model the behaviour ofsimple mass-spring-damper systems. The ase studies showase the6



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaretheory well, but they seem to require the imposition of somewhatpeuliar onditions on the parameters (the masses, the spring on-stants, and the damping oe�ients). The extra onditions�whilenot atastrophi to the ase studies�make them somewhat unsat-isfying. We show here that while their original mass-spring-dampermodels do not fall within our new lass, they an be easily reon-�gured into equivalent models that do. This modi�ation obviatesthe extra onditions on the parameters.Chapter Highlights:1. If we take A to be a Banah spae, it is natural to de�ne two or-responding stream spaes: one for salar-valued streams and one forvetor-valued streams. These work together as expeted, using point-wise versions of the algebrai operations on A. In fat, we an evengeneralize the former to salar-matrix-valued streams.2. The Building Blok Lemma on page 55: an investigation into the waythe two essential properties Lip and Caus are a�eted by integrationand the pointwise stream operations on A.3. The Continuity Lemma on page 59: integration and the pointwise streamoperations preserve the ontinuity of stream operators.4. The General Form Theorem on page 65: this theorem identi�es the tit-ular lass of ontrating stream operators by pushing the two lemmasabove as far as they an go without using any �foreign� operators.5. The mass-spring-damper system from [TZ07, TZ11, TZ12℄ is reformu-lated in a way that requires no speial onditions to be imposed on theparameters. Inidentally, my presentation of the mass-spring-dampersystem in Setion 3.3.1.2 is the only proof of whih I am aware that theODE orresponding to the mass-spring-damper system has a solutionfor any ontinuous foring funtion. The versions I've seen presented intextbooks always use a sinusoidal foring funtion. This result may verywell be proven elsewhere, of ourse, but I have never seen it.6. The simplest form of pendulum is examined using this theory, but itrequires the use of a funtion outside the lass identi�ed by the GeneralForm Theorem on page 65.Chapter 4: Generalizing the Theory Beyond Time StreamsThe previous hapters along with most of [TZ07, TZ11, TZ12℄ onern streamoperators, and as noted earlier, streams are funtions of time. We model7



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaretime (primarily) using R≥0, but the theory depends on very few of the speialproperties of R. Tuker and Zuker do start out with a more general framework,using an arbitrary σ-ompat spae X instead of T = R≥0, but they drop downto the speial ase of streams (X = T) as soon as ausality is involved�sinethe onept of ausality is inherently temporal.I was able to generalize their two main properties (ausality and ontration)to σ-ompat spaes, alter the onstrution somewhat to be ompatible inthe more general framework, and prove variants of the two main theorems in[TZ11℄. While I don't use shift invariane in my own theorems, I haven't beenable to prove it is ompletely super�uous, so to help inspire future work, Isuggest a way to generalize the shift operator as well. I also present somealternatives to the ontration property whih may lead to other interestingresults.In the �nal setion, I give a somewhat ursory treatment of the preeding ma-terial from the perspetive of omputability, and prove the �nal major theoremof the thesis.Chapter Highlights:1. De�nitions of Caus(X) and Lip(λ,X) (De�nitions 4.2.1 and 4.2.6) formthe basis of the generalization beyond time streams.2. The de�nition of a retratable exhaustion (De�nition 4.3.2 on page 87)is used to generalize the atual �xed point onstrution.3. The Generalized TZ1 Theorem on page 94 shows that an operator whihsatis�es Caus(X) and Contr (X) has a unique �xed point. This is oneof the main thesis highlights. In addition to being a more general resultthan Theorem TZ1 on page 19, its proof invokes Banah's Fixed PointTheorem rather than annibalizing key steps in the proof of Banah'stheorem. So I believe it is both more general and more elegant than thetheorem it supplants (it is just, admittedly, muh less original, given thatit is supplanting something in the �rst plae).4. The Generalized TZJ2 Theorem on page 102 is a strit generalization ofTheorem TZJ2 on page 27. Loosely speaking, it shows that the �xedpoint of an operator F : P ×C[X,A]→ C[X,A] varies ontinuously withthe parameters. This is perhaps the other main thesis highlight.5. The Conrete Computability Theorem 4.7.11 on page 115 represents the�rst signi�ant step toward generalizing Tuker and Zuker's follow-uppaper to [TZ11℄: [TZ12℄, in whih the authors provide an analysis of theomputability of the operators in [TZ11℄ using two di�erent approahesto omputability for stream operators (onrete and abstrat). In this8



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaretheorem, I provide a set of onditions whih are su�ient to ensure thatthe �xed point from the previous two theorems is onretely omputable.Chapter 5: Conlusion and DisussionGiven that I'm already overing the thesis highlights in this hapter summary,I use Chapter 5 to assess a few of the problems I enountered and review someof the ideas for further researh.AppendiesA. Hadamard's Priniple and Supplementary LemmasHadamard's Priniple is a philosophial statement about the properties amathematial model should possess if it is meant to orrespond to a physialsystem. It was �rst expressed by Jaques Hadamard in [Had52℄, and expliatedfurther by Rihard Courant and David Hilbert in [CH53℄. Its most weightyrequirement is that the solution to suh a problem should vary ontinuouslywith the parameters of the problem (or the input to the system). This is oneof the reasons ontinuity is so heavily emphasized in [TZ11℄.Hadamard's Priniple seemed quite reasonable when it was �rst introduedto me, but something about it just didn't sit right. Despite the fat thatHadamard, Courant, and Hilbert were all far better mathematiians than Iould ever hope to be (although I suppose that doesn't neessarily make thembetter philosophers), and despite the fat that I have yet to enounter anyritiism of Hadamard's Priniple from anyone else, I'm going to risk appearingimpudent and voie my onerns with it in Appendix A, along with o�eringa suggestion about what I think might more aptly replae it. I relegate thisdisussion to the appendies, sine it is more of opinion piee than a researhtopi.B. Supplementary PropositionsAppendix B is small olletion of assorted lemmas that are needed elsewhere,but whih luttered the exposition when inserted near the points in whih theyare invoked.
9



Ph.D. Thesis - N. James; MMaster University - Computing and Software1.3 Preliminaries From Tuker and Zuker'sWorkThis thesis builds upon the work in [TZ11, TZ07, TZ12℄. In order to make thisdoument relatively self-ontained, some of that foundational researh must bereviewed, along with a few de�nitions and results from elementary topologyand analysis. That is the purpose of this setion.1.3.1 The Spae of StreamsLet (A, dA) be a omplete, separable metri spae. We use the symbol T torepresent time, taking4 T = R+ ∪ {0}. We adopt C[T,A]m (for some m ∈ Z+)as our fundamental stream spae: the spae ofm-tuples of ontinuous funtionsfrom T into A.De�nition 1.3.1 (Pseudometris on C[T,A]m). For m = 1 we de�ne a familyof pseudometris5 {da,b : a, b ∈ T and a ≤ b} where ∀u, v ∈ C[T,A],
da,b(u, v) = sup

a≤t≤b
dA (u(t), v(t)) (1.3.1)Observe that if our stream spae were instead C[[a, b],A], then da,b would be ametri. It is a pseudometri only beause it �ignores� any di�erenes betweenits arguments outside the interval [a, b]. For m ∈ Z+ and u = (u1, u2,, . . . , um),

v = (v1, v2, . . . , vm) ∈ C[T,A]m we de�ne,
dma,b(u,v) = max

1≤k≤m
da,b (uk, vk)In pratie, however, we will drop the supersript sine no ambiguity is intro-dued by overloading the symbol da,b. Furthermore, it is so often the ase thatwe set a = 0 that typially we just write db(u,v) to mean dm0,b(u,v).Remark 1.3.2. We will often form a produt spae of some metri spae (X, dX)and C[T,A]m. An equivalent family of pseudometris (�equivalent� in the sensethat they olletively generate the same topology as the metri) on this produtspae an be de�ned as,

d
(X×C[T,A]m)
T ((x,u), (y,v)) = max {dX(x, y), dT (u,v)}Again, without loss of spei�ity, we will drop the supersript and use simply

dT .4Tuker and Zuker also develop their theory to address the ase in whih T = N, buthere we'll be using only the ontinuum of nonnegative reals.5A pseudometri is like a metri exept that it is permitted to be zero even for distintpoints. That is, if d : X2 → Y is a pseudometri, then d is also a metri i� ∀x, y ∈ X

[d(x, y) = 0 ⇒ x = y]. 10



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 1.3.3. In [TZ11℄ it is shown that C[T,A]m is homeomorphi to C[T,Am],so the theory ould be presented equivalently using either C[T,A] or C[T,A]mas the fundamental stream spae. If we adopt the former, we an always take
A = Bm (where B is some other spae) whenever m-tuples are required, andif we adopt the latter, we an always take m = 1 when tuples are not wanted.We hoose C[T,A] for the sake of a leaner exposition wherever possible, butsometimes we do need tuples (in Chapter 3, espeially), so we will alternatebetween them aording to onveniene.De�nition 1.3.4 (Loal Uniform Topology). The family of pseudometris inDe�nition 1.3.1 indues the loal uniform topology on C[T,A]m. A basis forthis topology is given by open balls of the form,

BT,ε(u) = {v ∈ C[T,A]m : dT (u,v) < ε}for u ∈ C[T,A]m, T ∈ T, and ε > 0. See [TZ11℄ for a disussion of itsequivalene to the ompat-open topology and the inverse limit topology inthis ontext. In fat, it is not even neessary to inlude every T ∈ T. We angenerate the topology using only ountably many, equally spaed6 values of
T ∈ T.De�nition 1.3.5 (Metri on C[T,A]). There is atually a lass of metris thatan be de�ned7 on C[T,A] (and hene on C[T,A]m as well) using the family ofpseudometris, given any τ > 0:

dC[T,A](u, v) =

∞∑

k=0

min
{
2−k, dkτ(u, v)

}These metris are rather unwieldy, however. While they are important forshowing that C[T,A] (with the loal uniform topology) is indeed metrizable,we prefer to use the pseudometris when atually reasoning about the spae.Of ourse, metris are more widely known than pseudometris, so I owe thereader some explanation of this last omment. Reall the following de�nitionsfor ontinuity from elementary topology.De�nition 1.3.6 (Continuity on Topologial Spaes). Let X, Y be topologialspaes, let f : X → Y , and let x ∈ X . Then,1. f is ontinuous at x if for every open neighbourhood U ⊆ Y of f(x),there is an open neighbourhood V ⊆ X of x suh that f(V ) ⊆ U .6Even that is overly demanding, but we don't require anything more general at themoment. See Setion 4.1.1 on page 82 for a more general treatment.7Courtesy of Edwin Beggs. 11



Ph.D. Thesis - N. James; MMaster University - Computing and Software2. f is ontinuous if it is ontinuous at every point x ∈ X . Equivalently, fis ontinuous if for every open U ⊆ Y , f−1(U) is open in X .Sine we an de�ne the same topology on C[T,A] using either the metri,
dC[T,A], or the family of pseudometris {dT}T∈T (or, indeed, any subfamily
{dnτ}n∈N, where τ ∈ R+, as mentioned in De�nition 1.3.4), we get the followinglemma (along with Lemma 4.6.5), whih is rather onvenient for proving theontinuity of stream funtions.The proof is routine, and therefore omitted.Lemma 1.3.7. A funtion f : C[T,A]m → C[T,A]m is ontinuous i� ∀ε > 0
∀T ∈ T ∀u ∈ C[T,A]m ∃δ > 0 ∃T ′ ∈ T ∀v ∈ C[T,A]m,

dT ′(u,v) < δ ⇒ dT (f(u), f(v)) < εThat is (loosely speaking), f is ontinuous if and only if the images of u and vunder f an be made arbitrarily lose on any losed interval [0, T ], as long as
u and v are taken to be su�iently lose on some other losed interval [0, T ′].De�nition 1.3.8 (Stream Operations). We'll often make use of the followingthree, time-based stream operations: shift , hold , delay . Given T, t ∈ T, eahoperation is of the form

fT :
∞⋃

k=1

C[T,A]k →
∞⋃

k=1

C[T,A]kFor a stream (or a portion of a stream), u, they are de�ned as follows (alsosee Figure 1.3.1): shiftT (u)(t) = u(t+ T )holdT (u)(t) =

{
u(t) if t ≤ T

u(T ) otherwisedelayT (u)(t) =

{
u(0) if t ≤ T

u(t− T ) otherwiseIn some situations we'll need to treat them as funtions of two variables:shift(T,u), hold (T,u), delay(T,u).Remark 1.3.9. In [TZ11℄, the authors use an operation extT , whih is de�nedthe same as holdT exept that its domain is C[[0, T ],A]. I'm using hold so Ian present a slightly di�erent, but equivalent onstrution in Setion 1.3.5 onpage 19. 12
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T

udelayT (u)holdT (u)shiftT (u) Figure 1.3.1: Time-based Stream Operations1.3.2 The Analog Network ModelThe streams represent data �owing through a network of hannels and modulesover time (whih is onsidered a single, global property of the network). Eahmodule has stream inputs, parameter inputs, and stream outputs, and thus,an be represented by a funtion of the form,
f : Ap × C[T,A]q → C[T,A]rWe refer to the stream inputs and stream outputs as hannels.

-

...--inputstreams { } outputstreamsf

??

. . .

?

︷ ︸︸ ︷parameters
-

...--Figure 1.3.2: A Module in an Analog NetworkRemark 1.3.10. The use ofAp as the parameter spae is a feature of the originalmodel and in this setion I am striving to hew as losely as possible to thesoure material. In Setion 1.4, this model will be generalized, allowing for theuse of an arbitrary parameter spae.If all our networks were exlusively feed-forward (as in the following example),there would be no reason for any of this theory, and we ould diretly alulatethe network output as a funtion of its input streams and parameters. Wewould simply ompose all the module funtions, working from the networkinput, all the way to the network output hannels. That is, we ould representthe network output as a straight-line program (see Chapter 4 of [BCS97℄).13



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareExample 1.3.11. Suppose f1 : A×C[T,A]→ C[T,A], f2 : C[T,A]→ C[T,A],and f3 : A2 × C[T,A]2 → C[T,A], and they are onneted as shown in Fig-ure 1.3.3. Then ∀c = (c1, c2, c3) ∈ A3 ∀x = (x1, x2) ∈ C[T,A]2, the network'soutput is well-de�ned and given by the funtion f : A3 × C[T,A]2 → C[T,A]de�ned as
f(c,x) = f3(c2, c3, f1(c1, x1), f2(x2))
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Figure 1.3.3: A simple, feedforward networkWith feedbak, however, suh an attempt would lead to in�nite regress (seeExample 2.2.1). So, Tuker and Zuker adopt an alternative approah. Ratherthan looking at f itself, and trying to express the whole network's output asa funtion of its input (and parameters), they reate a system of equations,one for every output hannel. Eah equation's left-hand side onsists of asingle stream variable representing the output of a module. If that hannelis onneted to the input of another module, the stream variable will appearwithin the expression on the right-hand side of another equation.Example 1.3.11 would be written like this:
u1 = f1(c1, x1)

u2 = f2(x2) (1.3.2)
u3 = f3(c2, c3, u1, u2)It is onvenient to express this system as a single equation involving tuples.For a given c, x, de�ne Fc,x : C[T,A]3 → C[T,A]3 as follows:

Fc,x





u1
u2
u3




 =




f1(c1, x1)
f2(x2)

f3(c2, c3, u1, u2)


The semantis of the network are then given by the �xed point for Fc,x (or asolution for Equation 1.3.2), if a unique one exists. Sine the parameters and14



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarethe input streams are meant to be adjustable, we often onsider the funtion
F : Ar × C[T,A]p → (C[T,A]m → C[T,A]m)where F (c,x, ·) = Fc,x. This is the real heart of the model, and along with itwe de�ne a �xed-point funtion:

Φ : U → C[T,A]m (1.3.3)where U ⊆ Ar × C[T,A]p and ∀(c,x) ∈ U Fc,x(Φ(c,x)) = Φ(c,x).While this is onsistent with the onept of �xed points, I always refer to suhoperators F in their unurried form:
F : Aq × C[T,A]p × C[T,A]m → C[T,A]m (1.3.4)Using this form, F an't really be said to have a ��xed point,� per se, butit is isomorphi to an operator that an, hene the onept of �xed points isequally relevant, regardless of the form. So, in what might be onsidered anabuse of the vernaular, I will still refer to ��xed points� and the ��xed-pointfuntion,� even when reasoning about an unurried F .This sort of operator F together with its �xed point funtion Φ is a slightlysimpli�ed version of the model of analog omputation introdued by [TZ11,TZ07℄. There are, of ourse, some properties to be imposed on F , whih will beovered next. There is also one extra omponent to be added to the domainsof the two funtions whih will be done when we turn to the property of shiftinvariane in Setion 1.3.3.2 on page 17. After that, some of this struture willbe undone when I present my own ontributions to theory, but despite thisundoing, it is important to see the intent behind the original model (whihbeomes somewhat less apparent as the model is generalized).1.3.3 Properties of Stream OperatorsAs stated in the previous setion, our objetive is to �nd �xed points for astream operator F . One of the distinguishing features of the theory is thatthese �xed points an be onstruted, analyzed, or shown to exist in pieesrather than all at one. The following de�nition is helpful in this respet.De�nition 1.3.12 (T -approximate Fixed Points). Let f : C[T,A]m → C[T,A]m,

T ∈ T, and u ∈ C[T,A]m. Then we say u is a T -approximate �xed point of fif dT (u, F (u)) = 0.There are two properties we must impose on a stream operator in order tofailitate this pieewise onstrution of the �xed point: ausality and ontra-tion. 15
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T
T

A u

F (u)

Figure 1.3.4: A T-approximate �xed point of a stream funtion, F1.3.3.1 Causality and ContrationDe�nition 1.3.13 (Caus and WCaus). Let F : C[T,A]m → C[T,A]m. If
∀T ∈ T ∀u,v ∈ C[T,A]m,

u ↾[0,T )= v ↾[0,T ) ⇒ F (u)(T ) = F (v)(T )then we say that F satis�es Caus or F ∈ Caus . It is named as suh sinethe property represents a form of ausality. At eah point in time, the valueof F (u) an be determined without any knowledge of future or present valuesof u.If instead,
u ↾[0,T ]= v ↾[0,T ] ⇒ F (u)(T ) = F (v)(T )then we say that F satis�es WCaus (�weak ausality�).Remark 1.3.14. Causality onditions appear throughout ontrol theory andsignal proessing (see [Son90℄ for example), and in several other ontexts aswell. Conditions almost idential to the two versions we de�ne above (di�eringonly in the domains and odomains of the operators involved), WCaus andCaus , are identi�ed in [Tra99℄ and [Rab03℄ as �retrospetive� and �stronglyretrospetive,� respetively.Fat 1.3.15. Sine streams are ontinuous, it follows that

F ∈ Caus i� F ∈WCaus and ∀u,v ∈ C[T,A]m F (u)(0) = F (v)(0)Example 1.3.16. The pointwise addition of a onstant to a real-valued streamis an example of an operator that satis�es WCaus but not Caus . De�ne
F : C[T,R]→ C[T,R] as

F (u)(t) = u(t) + 116



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet T ∈ T and u, v ∈ C[T,R]. If u ↾[0,T ]= v ↾[0,T ], then u(T ) = v(T ). Hene,
F (u)(T ) = u(T ) + 1 = v(T ) + 1 = F (v)(T ). Thus, F satis�es WCaus .But onsider the streams u(t) = 1 and v(t) = 0. At no point t ∈ T is
F (u)(t) = F (v)(t) (the former is the onstant stream 2, while the latter is theonstant stream 1), but the interval [0, T ) is simply the empty set when T = 0.Thus, u ↾[0,0)= v ↾[0,0) holds trivially, and yet F (u)(0) = 2 6= 1 = F (v)(0).Remark 1.3.17. In light of Fat 1.3.15, the reader might wonder why we wouldbother with Caus when we have WCaus . The latter is, indeed, su�ient forsome purposes, but the former is essential for the most important theoremsin whih we prove that a unique �xed point stream of an operator, F , exists(and onstrut it). This �xed point stream is onstruted one portion at atime, eah suessive portion reated from the previous one. For this to work,the initial portion must already be in plae and this is what Caus provides.If F ∈ Caus , then every stream in the range of F is the same at time t = 0.Thus, the image of any stream in the range of F is a 0-approximate �xedpoint. From this, we an build a τ -approximate �xed point (where τ is somepositive real number), and from that, a 2τ -approximate �xed point, and soon. If F satis�es only WCaus , a starting plae�let alone a whole �xed pointstream�may not even exist! Consider the operator in Example 1.3.16, byinspetion, it is lear that it has no T -approximate �xed points for any valueof T , yet it satis�es WCaus .De�nition 1.3.18 (Contr (λ, τ)). Let F : C[T,A]m → C[T,A]m, and λ, τ ∈
R+. If λ < 1 and ∀T ∈ T ∀u,v ∈ C[T,A]m,

dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ (u,v)then we say that F satis�es Contr (λ, τ) or F ∈ Contr (λ, τ), named for thesimilarity this property shares with the notion of ontration8 on a metrispae. We refer to λ as the modulus of ontration of F (some authors useontration ratio), and to τ as the ontration inrement of F .1.3.3.2 Shift InvarianeSomewhat entral to [TZ11, TZ12℄ is the onept of shift invariane; majortheorems in eah of the two papers relies on it.Remark 1.3.19 (Not the usual sort of shift invariane). In signal proessingand ontrol theory a shift invariant operator F is one that simply ommuteswith the shift operator: shiftT ◦ F = F ◦ shiftT (see [Son90℄ for example).This won't work for an F ∈ Caus , however, beause for any suh F there8If (X, dX) and (Y, dY ) are metri spaes, and f : X → Y , then f is ontrating if ∃λ > 0suh that λ < 1 and ∀x, y ∈ X dY (f(x), f(y)) ≤ λdX(x, y).17



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareis a onstant b ∈ A suh that ∀u ∈ C[T,A]m F (u)(0) = b. Thus, if Fwere shift invariant in the usual sense, then ∀u ∈ C[T,A]m ∀t ∈ T F (u)(t) =shift t(F (u))(0) = F (shift t(u))(0) = b. In other words, the range of F wouldbe the singleton set onsisting of the stream with the onstant value b.Shifting the output results in a glimpse of the future, while shifting the inpute�etively erases some of the past upon whih that future output depends.So Tuker and Zuker's formulation of shift invariane avoids this problemby introduing a tuple of initial values whih enodes the entire history of theinput before T in a single snapshot, thus preserving all the essential informationabout the past input.The spae of parametersAq from 1.3.4 on page 15 is fatorized asAq = Ar×As,where c ∈ Ar is a tuple of system parameters (essentially these are freelyon�gurable module settings), and a ∈ As is a tuple of initial values, whihomprises the aforementioned snapshot. The number s is hosen to be lessthan or equal to m and represents the number of omponents of u whih mustbe �initialized� to reonstrut the past portions of u whih are lost in the shift.The symbol us is used in this limited ontext to represent a tuple onsistingof the �rst s omponents of u (i.e. a projetion of u onto C[T,A]s).De�nition 1.3.20 (Invar ). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mSuppose that ∀T ∈ T, ∀(c, a,x,u) ∈ Ar×As×C[T,A]p×C[T,A]m, whenever

F (c, a,x,u)↾T= u↾Tthe following two onditions also hold:
u
s(0) = a

F (c,us(T ), shiftT (x), shiftT (u)) = shift(F (c, a,x,u))Then we say F satis�es Invar (or F ∈ Invar ).De�nition 1.3.21 (Closure of a domain under shifts). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mand suppose that the �xed point funtion Φ for F is de�ned on a set U ⊆

Ar×As×C[T,A]p (i.e. ∀(c, a,x) ∈ U ∃!u ∈ C[T,A]m suh that F (c, a,x,u) =
u = Φ(c, a,x)). Then U is losed under shifts with respet to Φ if ∀T ∈ T
∀(c, a,x) ∈ U

(c,Φ(c, a,x)s(T ), shiftT (x)) ∈ U18



Ph.D. Thesis - N. James; MMaster University - Computing and Software1.3.4 The Main Theorems From [TZ11℄Theorem 1.3.22 (Theorem TZ1). If F : C[T,A]m → C[T,A]m satis�es Causand Contr(λ, τ) for some τ > 0 and 0 ≤ λ < 1, then F has a unique �xedpoint.Proof. See Theorem 1 from [TZ11℄.Theorem 1.3.23 (Theorem TZ2). Let
F : Ar ×As × C[T,A]p × C[T,A]m → C[T,A]mand use the notation Fc,a,x to represent the funtion F (c, a, x, ·) : C[T,A]m →

C[T,A]m. Let U ⊆ Ar×As×C[T,A]p be an open set. Let λ = {λc,a,x : (c, a, x) ∈ U}be a family of ontration moduli and τ = {τc,a,x : (c, a, x) ∈ U} be a family ofinrements. Suppose the following onditions hold:1. Fc,a,x ∈ Contr(λc,a,x, τc,a,x) for all (c, a, x) ∈ U2. F ∈ Caus3. F ∈ Invar4. F is ontinuous on U5. λ and τ are loally bounded on U (i.e. every point of U has a neighbour-hood within whih λ has an upper bound stritly less than 1, and τ hasa positive lower bound)6. U is losed under shifts with respet to Φ (where Φ is the �xed pointfuntion de�ned in (1.3.3) on page 15)Then Φ is ontinuous on U .Proof. See Theorem 2 from [TZ11℄.1.3.5 The Mathematial Constrution of the Fixed PointAs Theorem TZ1 on this page assures us, if F : C[T,A] → C[T,A] satis�esCaus and Contr (λ, τ) (for some λ, τ > 0 with λ < 1)9, then it has a unique�xed point. The proof is onstrutive and while it is not neessary to inludethe whole thing in this thesis, we often need to refer to the onstrution it uses.The onstrution below is nearly idential to the one used in that proof, but9Using the vernaular from De�nition 1.4.2 on page 22, F satis�es Caus and Contr .19



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaresine we're not reproduing the whole proof, we an simplify the expositiona bit. I'm also using rather di�erent notation here, whih (I think) greatlyimproves the larity of some of my subsequent proofs. In my notation, given
F ∈ Caus∩Contr (λ, τ), we de�ne a funtion Ψ : N×N→ C[T,A] indutivelyas follows:Constrution 1.3.24.1. Let Ψ(0, 0) be the onstant stream, Ψ(0, 0)(t) = c ∀t ∈ T, where c ∈ Ais the initial value onstant assoiated with F ∈ Caus . That is, ∀u ∈

C[T,A] F (u)(0) = c.2. For n, k ∈ N, Ψ(n, k + 1) = holdnτ (F (Ψ(n, k))), where τ is a numbersuh that F ∈ Contr (λ, τ).3. Given n ∈ N de�ne10 Ψ(n+ 1, 0) = limk→∞Ψ(n, k)See Figure 1.3.5 for an overview. The entral feature of the onstrution isthat for any n, k ∈ N, Ψ(n, k) is an nτ -approximate �xed point. That is,
∀t ∈ [0, nτ ] Ψ(n, k)(t) = F (Ψ(n, k))(t).

c = Ψ(0, 0)
Ψ(0, 1) = hold τ (F (Ψ(0, 0))) Ψ(0, 2) = hold τ (F (Ψ(0, 1))) · · · → Ψ(1, 0)
Ψ(1, 1) = hold 2τ (F (Ψ(1, 0))) Ψ(1, 2) = hold 2τ (F (Ψ(1, 1))) · · · → Ψ(2, 0)
Ψ(2, 1) = hold 3τ (F (Ψ(2, 0))) Ψ(2, 2) = hold 3τ (F (Ψ(2, 1))) · · · → Ψ(3, 0)... ... ...

↓
vFigure 1.3.5: Constrution of the �xed point v = F (v)Remark 1.3.25. Ordinarily it would be more natural to use a double sequene,but I've opted for a funtion on N2 to make it easier to talk about stages ofthe onstrution when F is augmented with parameters. When F is of theform F : P × C[T,A] → C[T,A] instead of merely F : C[T,A] → C[T,A], wean easily (in terms of notational onsisteny) de�ne

Ψ : P × N× N→ C[T,A]Hene, for any r ∈ P , Φ(r) = limn→∞Ψ(r, n, 0). The operator F and itsinterval of ontration τ are obviously entral aspets of the onstrution, butunlike the parameter, they are always impliitly spei�ed by the ontext.10Theorem TZ1 proves that this limit exists using�as the reader might well guess fromthe invoation of ontration�mehanisms shared by the proof of Banah's Fixed PointTheorem on page 92. 20



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 1.3.26. At this point, the reader ould hardly be blamed for wonderingjust how suh a onstrution an possibly be related to omputability. Afterall, we must perform in�nitely many appliations of F before we an evenbegin to approximate its �xed point at values of t ∈ [τ, 2τ), and then in�nitelymany again before we an go beyond 2τ . The important thing to realize isthat the purpose of this onstrution is to serve as a framework in whih the�xed point an be analyzed (and shown to exist); it is learly not suited toserve as a viable approximation algorithm.This onludes the bulk of the prerequisite material from other soures. Theremainder of this hapter will be used to over a few of my own ontributionsto these rudiments whih apply to at least two of the researh projets (andhene belong in the neutral territory of the introdutory thesis hapter ratherthan in any of the three projet�spei� hapters).1.4 Observations and Addenda to the CorePreliminariesThere are a few more de�nitions and results to over that apply to the wholethesis, but they are (for the most part) my own and not part of Tuker andZuker's researh. Beause of that and beause I feel they enumber the ex-position somewhat if they are inluded in the setion above, I've put them intheir own setion here.1.4.1 Replae sup with max in De�nition 1.3.1This is admittedly somewhat pedanti, but if we wish to refer to da,b fromDe�nition 1.3.1 on page 10 as a pseudometri, and we de�ne it as the supremumof a set of reals, it is inumbent on us to show that the set is always bounded.By the de�nition of a pseudometri, its odomain is the set of nonnegative realnumbers (or just R in some texts), while the odomain of sup is the two-pointompati�ation of the real numbers (R∪{−∞,∞}). Not only is it possible toshow that the set is bounded, however, but it is also possible to show that it islosed. Hene, its supremum is not only �nite, but atually ontained withinthe set itself. Thus, it makes more sense to simply use max instead of sup.While it is fairly straightforward to show that this is possible, it is surprisinglynontrivial. First, we need a lemma.Lemma 1.4.1 (Metris are ontinuous). Let (X, d) be a metri spae11. Then11In fat, this lemma holds even if d is only a pseudometri, but stating it this way wouldonly lead to unneessary onfusion here sine we need this lemma only for dA, whih is ametri. 21



Ph.D. Thesis - N. James; MMaster University - Computing and Software
d is ontinuous with respet to the topology it indues on X2.Proof. Sine the produt is �nite, we an work with the box topology on X2,whih onsists of basi open sets

Bε(x, y) =
{
(x′, y′) ∈ X2 : max {d(x, x′), d(y, y′)} < ε

}Let (x, y) ∈ X2 and let U ⊆ R≥0 be an open set that ontains d(x, y). Thenthere is an open interval I ⊆ R≥0 (open with respet to the subspae topologyon R≥0) suh that d(x, y) ⊆ I ⊆ U . Let r > 0 be the length of that interval.Let V = Br(x, y). Then d(x, y) ∈ d (Br(x, y)) (sine d(x, x) = d(y, y) =
0 < r). Sine ∀(x′, y′) ∈ Br(x, y) d(x, x

′) < r and d(y, y′) < r, it followsthat d(Br(x, y)) ⊆ I. By De�nition 1.3.6 on page 11, it follows that d isontinuous.Returning to the issue hand (replaing sup with max), sine u and v areontinuous on T and sine dA is ontinuous on A2 (by Lemma 1.4.1), it followsthat dA (u(t), v(t)) is ontinuous on [a, b], whih is ompat with respet tothe subspae topology on T ⊆ R. The ontinuous image of a ompat set isompat, and a ompat subset of R is losed and bounded. Thus, it ontainsits supremum, whih is �nite.1.4.2 Generalize Contr(λ, τ)Remark 1.4.2. There are times at whih we need to refer to an operator F thatsatis�es Contr (λ, τ) for some τ, λ > 0 and λ < 1, but we don't are aboutthe values of λ and τ . In suh ases, it seems espeially umbersome to beobligated to speify that λ, τ > 0 and λ < 1 sine all three inequalities musthold just to satisfy De�nition 1.3.18 on page 17. In these situations, it makessense to write simply, �F ∈ Contr � or �F satis�es Contr .�While writing [JZ12℄, I found it neessary to be able to identify operators thatwould satisfy Contr (λ, τ), but for values of λ that may be greater than orequal to one. Although suh operators don't o�er ontration per se, theyare uniquely positioned to be omposed with other operators to produe suhontration, so it is quite useful to be able to refer to this property. This isthe subjet of the Building Blok Lemma (Lemma 3.2.1 on page 55).De�nition 1.4.3 (Lip). Let F : C[T,A]m → C[T,A]m. If ∃τ, λ ∈ R+ ∪ {0}suh that ∀T ∈ T ∀u,v ∈ C[T,A]m,
dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ(u,v)then we say that F satis�es Lip(λ, τ) or F ∈ Lip(λ, τ). The name is due tothe similarity this property shares with the well-known Lipshitz ontinuityproperty from analysis (although traditionally α is in plae of our λ).22



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 1.4.4. It may seem as though F ∈ Lip(λ, τ) ⇒ F ∈WCaus . Afterall, if we take any T ≥ τ and a pair of streams u,v ∈ C[T,A]m suh that
dT (u,v) = 0, then ertainly dT−τ(u,v) = 0. Hene, dA (F (u)(T ), F (v)(T )) ≤
dT (F (u), F (v)) = d(T−τ)+τ (F (u), F (v)) ≤ λd(T−τ)+τ (u,v) = λdT (u,v) = 0.And therefore, F (u)(T ) = F (v)(T ). Hene, any F ∈ Lip(λ, τ) ould be saidto satisfy WCaus on [τ,∞) ⊆ T.There is, however, no way to establish the ausality (weak or otherwise) ofsuh an F on [0, τ), as the following example demonstrates.Example 1.4.5 (Lip ; WCaus). Take A = R with the usual metri, let
τ ∈ R+, and hoose m = 1. De�ne F : C[T,R]→ C[T,R] as follows:

F (u)(t) =

{
1
2
u(τ) if 0 ≤ t ≤ τ

1
2
u(t) if t > τThen F ∈ Lip(1/2, τ) (and it's even ontinuous), but it does not satisfyWCaus . To see this, onsider u(t) = t and v(t) = −t. Taking T = 0,we see that ∀t ≤ T u(T ) = v(T ) = 0, but F (u)(0) = τ/2 6= −τ/2 = F (v)(0).Note that suh an example would not be possible if we were to take T = R(Lip(λ, τ) would give us WCaus �for free� on suh a stream spae), butadapting the rest of the theory to work on C[R,A] would not be trivial andnor would it neessarily be an improvement overall (see Setion 3.1 on page 50for an explanation).Lemma 1.4.6. If F ∈ Lip(λ, τ) and F ∈ WCaus then ∀τ ′ ≤ τ , ∀λ′ ≥ λ,

F ∈ Lip(λ′, τ ′).Proof. Let u1,u2 ∈ C[T,A]m, T ∈ T and suppose dT (u1,u2) = 0. For λ′ ≥ λ,it is obvious that F ∈ Lip(λ′, τ):
dT+τ (F (u1), F (u2)) ≤ λdT+τ(u1,u2) ≤ λ′dT+τ (u1,u2)The τ ′ assertion is less trivial. For i = 1, 2, de�ne u

∗
i ∈ C[T,A]m as follows:

u
∗
i (t) =

{
ui(t) if t < T + τ ′

ui(T + τ ′) if t ≥ T + τ ′Then for 0 < τ ′ < τ,

dT+τ ′ (F (u1), F (u2)) = dT+τ ′ (F (u∗
1) , F (u∗

2)) sine F ∈WCaus and dT+τ ′(u
∗
i ,ui) = 0

≤ dT+τ (F (u∗
1) , F (u∗

2)) sine t < r ⇒ dt(v,w) ≤ dr(v,w)

≤ λ′dT+τ (u
∗
1,u

∗
2) sine F ∈ Lip(λ′, τ)

= λ′dT+τ ′ (u
∗
1,u

∗
2) sine uiare onstant beyond T + τ ′

= λ′dT+τ ′ (u1,u2) sine dT+τ ′(u
∗
i ,ui) = 023



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 1.4.7. As in Remark 1.4.4 on the preeding page, the only reason wemust require F to satisfy WCaus in the proof of Lemma 1.4.6 is to establishthe inequality for T < τ − τ ′. For if T ≥ τ − τ ′ then,
dT (u1,u2) = 0 ⇒ dT−τ+τ ′(u1,u2) = 0

⇒ d(T−τ+τ ′)+τ (Fu1, Fu2) ≤ λ′d(T−τ+τ ′)+τ (u1,u2)

= λ′dT+τ ′(u1,u2)This argument doesn't rely onWCaus at all, but it does require T−τ+τ ′ ≥ 0(so it isn't quite su�ient to show F ∈ Lip(λ′, τ ′)).Remark 1.4.8. Note that for any λ ≥ 0, WCaus is atually equivalent toLip(λ, 0). Putting this observation together with Lemma 1.4.6 yields thefollowing result:
F ∈ Lip(λ, τ) ∩WCaus ⇐⇒ (∀τ ′ ≤ τ) F ∈ Lip(λ, τ ′)Remark 1.4.9. In order to be more onsistent with [TZ11℄ and to get the mostgeneral results possible, it would seem preferable to de�ne Lip(λ, τ) using theapparently weaker ondition,
dT (u,v) = 0⇒ dT,T+τ (F (u), F (v)) ≤ λdT,T+τ(u,v)Call this ondition Lip ′(λ, τ). One ould not be faulted for thinking this def-inition is stritly more inlusive than Lip(λ, τ), and it mathes the de�nitionof Contr (λ, τ) in [TZ11℄ muh more losely. In fat, it turns out that the twode�nitions are equivalent (so we stand by De�nition 1.4.3).Proposition 1.4.10 (Equivalene of Lip de�nitions). Let F : C[T,A]m →

C[T,A]m, λ ∈ R+, τ ∈ T. Then F ∈ Lip(λ, τ) if and only if F ∈ Lip′(λ, τ).Proof. Let T ∈ T and u,v ∈ C[T,A]m suh that dT (u,v) = 0.(⇒) Suppose F ∈ Lip(λ, τ). Then
dT,T+τ(F (u), F (v)) ≤ dT+τ (F (u), F (v))

≤ λdT+τ (u,v)The �rst inequality holds beause
dT+τ (F (u), F (v)) = max {dT (F (u), F (v)), dT,T+τ(F (u), F (v))}and the seond beause F ∈ Lip(λ, τ).Now,

λdT+τ(u,v) = λmax {dT (u,v), dT,T+τ(u,v)}
= λmax {0, dT,T+τ(u,v)}
= λdT,T+τ(u,v)24



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareTherefore, dT,T+τ(F (u), F (v)) ≤ λdT,T+τ(u,v).(⇐) Suppose F ∈ Lip ′(λ, τ). We must show that dT+τ(F (u), F (v)) ≤ λdT+τ(u,v).As before, note that λdT+τ (u,v) = λdT,T+τ(u,v). Similarly, dT+τ(F (u), F (v)) =
max {dT (F (u), F (v)), dT,T+τ(F (u), F (v))}. Hene, we need to establish thefollowing inequalities:

dT (F (u), F (v)) ≤ λdT,T+τ(u,v)

dT,T+τ (F (u), F (v)) ≤ λdT,T+τ(u,v)The latter follows diretly from the hypothesis, but the former requires a bit ofwork. We'll use an indutive approah for this. For the base ase, suppose 0 ≤
T < τ . Sine dT (u,v) = 0, it follows that d0(u,v) = 0. Sine F ∈ Lip ′(λ, τ),

dτ (F (u), F (v)) = d0,0+τ (F (u), F (v))

≤ λd0,0+τ (u,v)

= λdτ (u,v)Sine T < τ , dT (F (u), F (v)) ≤ dτ(F (u), F (v)).Sine T + τ ≥ τ , λdτ(u,v) ≤ λdT+τ(u,v).Putting these last three results together we get,
dT (F (u), F (v)) ≤ dτ (F (u), F (v))

≤ λdτ(u,v)

≤ λdT+τ(u,v)

= λdT,T+τ(u,v)Now, for the indutive step, let n ∈ Z+ and assume that ∀t < nτ ∀u, v ∈
C[T,A],

dt(u,v) = 0 ⇒ dt+τ (F (u), F (v)) ≤ λdt+τ (u,v)Suppose nτ ≤ T < (n+ 1)τ . We must show that
dT (u,v) = 0 ⇒ dT+τ (F (u), F (v)) ≤ λdT+τ (u,v)Sine dT (u,v) = 0 and 0 ≤ T − τ ≤ T , it follows that,

dT−τ (u,v) = 0So, by the indutive hypothesis and the fat that T − τ < nτ ,
d(T−τ)+τ (F (u), F (v)) ≤ λd(T−τ)+τ (u,v)

= λdT (u,v)

= 0

≤ λdT,T+τ(u,v)25



Ph.D. Thesis - N. James; MMaster University - Computing and Software1.4.3 Doesn't Continuity Follow from Caus and Contr?Perhaps it's just my own �awed intuition, but it seemed to me that if anoperator F : C[T,A] → C[T,A] satis�ed Caus and Contr , surely it mustbe ontinuous. I was partiularly motivated to onsider this assertion afterhaving written Theorem TZJ1 for Vanishing Delays on page 48 (as it wouldhave allowed me to omit one of the anteedents). After trying to prove itunsuessfully for a while, a ounterexample almost immediately ourred tome when I abandoned the proof attempt and tried to think of one.Example 1.4.11. De�ne F : C[T,R]→ C[T,R] as follows:
F (u)(t) =

{
t if u(0) is rational
−t if u(0) is irrationalLet u, v ∈ C[T,R] and let T ∈ T. Then F (u)(0) = F (v)(0) = 0, and if

dT (u, v) = 0 then u(0) = v(0). Hene F (u) = F (v). That means F (u)(T ) =
F (v)(T ) and therefore, F ∈ Caus . It also means that for any λ, τ > 0,
dT+τ(F (u), F (v)) = 0 ≤ λdT+τ (u, v). Hene, F ∈ Contr .As for ontinuity, let ε = Tε = 1, let δ, Tδ > 0, and let u ∈ C[T,R]. Nowhoose a number a ∈ (0, δ) suh that if u(0) ∈ Q then u(0) + a /∈ Q, and if
u(0) /∈ Q then u(0) + a ∈ Q. Let v(t) = u(t) + a. Then dTδ

(u, v) = a < δ, but
dTε(F (u), F (v)) = 2 ≥ ε. Therefore, F is not ontinuous (by Lemma 1.3.7 onpage 12).1.4.4 Parameter-Relaying Tilde FuntionsThere are a few plaes in whih I need to transmit a parameter value through afuntion that does not otherwise inlude the parameter spae in its odomain.Up until my pre-defene revisions, I was unfamiliar with any notational on-vention for doing so. In the absene of suh a onvention, I began adorning myfuntion names with a tilde when I needed to do this. It was only during theselate-hour revisions that my attention was direted to the onept of �arrows�in funtional programming (thanks to Prof. Jaques Carette!). Unfortunately,at this point I had tildes liberally sprinkled throughout my thesis, and moreimportantly, the notation for arrows does not appear to be well�suited for theuse to whih I would need to put them here. Consequently, I have left thetildes untouhed.Notation 1.4.12 (Tilde funtions). Let X and Y be sets and let f : X ×
Y → Y . Then we de�ne f̃ : X × Y → X × Y as f̃(x, y) = (x, f(x, y)) for
(x, y) ∈ X × Y . 26



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 1.4.13. Let X and Y1, Y2, . . . , Yn be topologial spaes. Let x0 ∈ X.For i = 1, 2, . . . , n, let fi : X → Yi be a funtion whih is ontinuous at x0.Let f : X →
∏n

i=1 Yi be de�ned as f(x) = (f1(x), f2(x), . . . , fn(x)). Then f isontinuous at x0.Proof. Let Y =
∏n

i=1 Yi (with the produt topology) and for eah i, let πi :
Y → Yi be the projetion of Y on Yi. Let V ⊆ Y be an open neighbourhoodof f(x0). Then, by de�nition of the produt topology, there is a basi openset B = B1 × B2 × · · · × Bn ⊆ V , where eah Bi ⊆ πi(V ) and f(x0) ∈ B.Sine eah fi is ontinuous at x0, there is an open neighbourhood Ui ⊆ X of
x0 suh that fi(Ui) ⊆ Bi. Let U =

⋂n
i=1 Ui. Then U is an open neighbourhoodof x0 (sine it's only a �nite union of open sets, eah of whih ontains x0),and f(U) ⊆ B ⊆ V .Corollary 1.4.14. Let X and Y be topologial spaes and suppose a funtion

f : X × Y → Y is ontinuous at a point (x0, y0) ∈ X × Y . Then f̃ (as de�nedin Notation 1.4.12) is also ontinuous at (x0, y0).Proof. f̃ an be rewritten as f̃(x, y) = (πX(x, y), f(x, y)) (where πX : X×Y →
X is the projetion of X×Y on X). Both omponent funtions are ontinuousat (x0, y0), so the result follows from Lemma 1.4.13.1.4.5 My Version of Theorem TZ2While working on my original researh projet (Chapter 2), I found myself inneed of something like Theorem TZ2 on page 19, but muh to my hagrin,the funtion to whih I needed to apply this theorem was not shift invariantand ould not be made so by simply augmenting it with the extra initial valueparameters. After many failed attempts using other theorems and onstru-tions to get around this, I deided to dive into the proof to see whether I ouldsubstitute some other property for Invar .Muh to my surprise, it initially appeared I didn't need to substitute anythingfor Invar ! My proof went through by apparently just omitting it. Upon laterinspetion, my supervisor and I together realized that indeed I had substitutedsomething to replae Invar : ontinuity on the entire domain rather than ononly the parameter spae. This leads to the following modi�ed version ofTheorem TZ2:Theorem 1.4.15 (Theorem TZJ2 ). Let (P, dP ) be a metri spae and let
F : P × C[T,A] → C[T,A]. Let p ∈ P and let V ⊆ P be a neighbourhood of
p. Let τ, λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u), suppose thatfor all r ∈ V Fr satis�es Caus and Lip(λ, τ), and that for all u ∈ C[T,A], Fis ontinuous at (p, u). Then Φ : V → C[T,A] (as desribed in (1.3.3) on 15),whose existene is assured by Theorem TZ1 on page 19 is ontinuous at p.27



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. Deferred to Chapter 4, sine this is now12 merely a speial ase of thegeneralized version on page 102.Remark 1.4.16 (How do Theorems TZ2 and TZJ2 ompare?). One obviousadvantage to my requirement that F be ontinuous at (p, u) for every u ∈
C[T,A] (instead of being ontinuous on merely a subset of P , without regardto its behaviour on P × C[T,A]) over Tuker and Zuker's requirement that
F ∈ Invar is that the latter plaes muh heavier demands on the domain of
F . In their version, P must be of the form Ar×As×C[T,A]q, where r, s, q ∈ Nand it must ontain a subset U whih has a nonempty interior and whih islosed under shifts with respet to Φ. In my version, P is just an arbitrarymetri spae (whih ould be of the form Ar×As×C[T,A]q, or of some otherform).Another (possible) advantage is that my version is pointwise rather than set-wise. They require F to be ontinuous on U ⊆ P (whih, as mentioned above,has a nonempty interior and is losed under shifts with respet to Φ), insteadof at a single point p ∈ P . Of ourse, they do establish ontinuity on all of
U�not at just a single point�so if one has no need for a pointwise version ofthe theorem, mine would o�er no partiular advantage in this respet.Finally, the most obvious question to ask is how the two onditions overlap.That is, if we put aside the two advantages above (assume P is of the form
Ar×As×C[T,A]q and F is ontinuous on U), are there any stream operators
F : P×C[T,A]m → C[T,A]m that would satisfy one version and not the other?Are they, perhaps, the same under these onditions on the domain? After all, inmany ases13 it would be little more than a matter of bookkeeping (possibilityrather elaborate and arduous bookkeeping, but bookkeeping nonetheless) tostart with an operator F : P × C[T,A]m → C[T,A]m where P is a metrispae that doesn't onform to the struture demanded by Invar and reatean equivalent operator F ′ : Ar ×As × C[T,A]q × C[T,A]m → C[T,A]m whihis at least eligible to satisfy Invar .Unfortunately, I don't have the omplete answer for this question, but do Ihave half the answer: there are some stream operators (in whih P is of theorret form for Invar ) that satisfy the anteedents of my Theorem TZJ2,but not the anteedents of Tuker and Zuker's Theorem TZ2. Hene, theirtheorem may be a speial ase of mine, but the onverse is not a possibility(even when the domain has the right form), as the following ounterexampleshows.12Originally I proved this theorem diretly, and that was long before the GeneralizedTheorem TZJ2 on page 102 even ourred to me. To prove the more general theoremrequired only a few adjustments in the proof of this theorem.13In partiular, I'm thinking of ases in whih P an be embedded in a spae of the form
Ar ×As × C[T,A]q, for some r, s, q ∈ N. 28



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareExample 1.4.17 (A non-Invar stream operator). Take A = R+ and P =
A×A× C[T,A] with the metri,

dP ((c1, a1, x1) , (c2, a2, x2)) = max
{
|c1 − c2| , |a1 − a2| , dC[T,A](x1, x2)

}De�ne F : P × C[T,A]→ C[T,A] as follows, for (c, a, x, u) ∈ P × C[T,A]:
F (c, a, x, u) = delay cx

• ∀ (c, a, x) ∈ P F (c, a, x, ·) ∈ Caus . This is obvious sine the value of
F (c, a, x, u)(t) doesn't depend on any values of u, let alone future orpresent values.
• F is ontinuous (on P × C[T,A]). See Corollary 2.5.8 on page 45.
• F (c, a, x, ·) ∈ Contr (λ, |c|) for λ = 1/2 (in fat, for any λ < 1). SeeLemma 2.5.1 on page 41.Thus, F satis�es all the anteedents of Theorem TZJ2 on page 27, and it islear by inspetion that its �xed point is u = delay cx.Now, take x to be a monophoni reording of somebody shouting14, �Eho!�,starting at time t = 0 and falling silent at t = 1 (and obviously transposedwith diret urrent to ensure the reording stays in C[T,R+] and never venturesbelow the T-axis into C[T,R]). Let c = 1. Then for any a ∈ A, u ∈ C[T,A],

F (c, a, x, u) is a reording of the same shout, but starting at time t = 1 andending at time t = 2. Therefore, shiftc (F (c, a, x, u)) = x (more generally, forany T ∈ T shiftT ◦ delayT is the identity on a stream spae). But shiftc(x),on the other hand, is simply the zero stream, and no matter how muh wedelay it, we an never get the �Eho!� part bak.So for any u ∈ C[T,A],
F (c, a, shiftc(x), shift c(u)) = delay c (shiftc(x)) = 0 6= x = shift c (F (c, a, x, u))(where 0 is the zero stream). Thus, F does not satisfy Invar , and moreover,we've done everything possible to make it satisfy Invar without hanging itsbehaviour.

14Or to be less olourful, take x to be any nonzero stream with support [0, 1).29



Chapter 2Researh Projet #1: SolvingNetwork Equations UsingVanishing Delays
2.1 OverviewTuker and Zuker's theory entres around their onstrution of the �xed pointalong with a set of omplementary properties (Caus , Contr , Invar , as wellas several others without speial names). All four of their main theoremsuse that onstrution as theoretial sa�olding to draw onlusions about the�xed point of a stream operator. I thought of an altogether di�erent sortof onstrution for the �xed point and attempted to emulate their work usingthat. My onstrution involves introduing a delay in the stream transformer�making an operator with a guaranteed �xed point that is muh easier to �nd�and then letting that delay approah zero, sort of like a homotopy in operatorspae. The main hallenge I set for myself was to �nd su�ient (and ideallyneessary) riteria to guarantee that the �xed point of the delayed transformeronverges to a �xed point of the original stream transformer. Overomingthis hallenge would give me an analogue of Theorem TZ1 (existene anduniqueness of the �xed point) from [TZ11℄.Unfortunately, I never did overome that hallenge�at least not to my satis-fation. I was able to show that if the �xed point of the delayed transformeronverges (to a stream), then indeed it onverges to a �xed point of the origi-nal transformer. I was also able to show that my vanishing delay onstrutiondoes work under the same onditions (F ∈ Caus ∩ Contr ) that Tuker andZuker's onstrution works. But what I really wanted to �nd was my own setof properties�spei�ally tailored for my onstrution�that would serve thesame funtion as Caus and Contr (i.e. to test whether the onstrution will30



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarework at all for a given stream transformer). The losest I ame was to devisea set of properties whih I think might work, and to sketh out the beginningof a proof, but I got stuk (for several months) trying to �nish that proof andrealized I was probably going to drown in it if I didn't abandon ship.2.2 Imposing a Delay on the Network ModelThere is a (potentially profound) simpli�ation built into Tuker and Zuker'snetwork model, along with most similar models: the omission of propagationdelay. Streams are arried from module to module over hannels instanta-neously, and this will obviously not be true in any physial implementation ofa network. The delay usually makes qualitatively little di�erene in a purelyfeed-forward network with modules onsisting of total funtions. The output isalways well-de�ned and perhaps only slightly phase-shifted, but when feedbakis involved, the situation hanges.Example 2.2.1. Consider the following network in whih f : C[T,R] →
C[T,R] is some linear (and total) funtion that satis�es WCaus (see De�-nition 1.3.13):

��
��

- -

?

�+ f

x(t) y(t)Figure 2.2.1: A Simple Feedbak NetworkThe network output, if indeed it is well-de�ned, beomes an in�nite regress ifwe attempt to solve it diretly:
y(t) = x(t) + f(y)(t)

= x(t) + f(x)(t) + f 2(y)(t)

= x(t) + f(x)(t) + f 2(x)(t) + f 3(x)(t) + f 4(y)(t)

=
...Expressed in the notation of our network models, the network behaviour wouldbe given by the (hopefully unique) solution of the following equation�if suha solution exists: [

x
y

]
(t) = F

[
x
y

]
(t)

=

[
x

x+ f(y)

]
(t)31



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareBut what if the solution doesn't exist? What does that mean about the systemfor whih it serves as a model? Aside, perhaps, from pathologial exampleslike blak holes and misfortunate ats imprisoned opaquely with poisonous,nulear-triggered deathtraps in paradoxial gedankenexperiments, there areno �unde�ned� values in nature (whih is, in fat, the very raison d'être ofthe aforementioned felines). The system will exhibit some sort of behaviour,whether or not the equation model has a solution, and this disparity indiatesa de�ieny in the model.Now, suppose we introdue a delay of γ ∈ R+ on every hannel. We wouldhave (for t ≥ γ)
[
x
y

]
(t) = F

[
x
y

]
(t− γ)

=

[
x

x+ f(y)

]
(t− γ) (2.2.1)and for t ≤ γ, there would be onstants x0, y0 ∈ R suh that

[
x
y

]
(t) =

[
x0
y0

] (2.2.2)This system leads to only �nite regress. We an solve it diretly for any value of
t ∈ T. If t ≤ γ, the solution is given diretly by (2.2.2). If nγ ≤ t ≤ (n+ 1) γfor some n ∈ Z+, then we an use the onstant solution on [0, γ] together with(2.2.1) to �nd the solution on [γ, 2γ], whih we an then use to �nd the solutionon [2γ, 3γ], and so on, until we reah our target interval: [nγ, (n + 1)γ]. Aslong as F is total, the network behaviour is always well-de�ned with the delayimposed (see the Delayed Operator Theorem on page 45).Of ourse, to be even more physially aurate, we should equip eah hannelwith its own delay, γx, γy > 0, and solve the system on the sequene of (possiblyirregular) intervals with the endpoints given by multiples of γx and γy, but thatlevel of generality is beyond the sope of our disussion.2.3 The Problem with Imposing Delays andthe Conept of Vanishing DelaysImposing a mandatory delay (even an arbitrary delay of γ > 0) on everyhannel would make our mathematial model somewhat more aurate if thesystem being modelled diretly resembles the network. For example, if webuild an eletroni iruit that looks exatly like a network diagram, it willindeed exhibit some lateny as the signal travels from module to module. The32



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarelateny would, of ourse, be di�erent on eah hannel, but it still would benonzero, so a uniformly delayed model would be at least somewhat loser tothe real thing.Analog omputation involves building analogies of a real system, however, notbuilding sale models. Consider, for example, the model of a mass-spring-damper system overed Chapter 3 (or in [TZ11℄). We over three di�erentmodels, and eah of them uses a di�erent number of hannels. Even if weimposed the same delay on eah of them, the three systems would exhibitdi�erent solutions. But they're all supposed to be a model of the same system!Moreover, the system for whih they serve as models would exhibit no suhdelays beause information arried on separate hannels of the models are, infat, di�erent physial properties (position, veloity, and aeleration). Theidea of �propagation delay� between any two of those properties in the physialsystem is simply nonsensial. It is only when that network represents an atualiruit (and one that resembles the network exatly) that the delay makes anysense. Thus, while an expliit �delay module� ould ertainly be a usefuladdition to our modelling toolbox (along with adders, integrators, multipliers,et.), foring a delay into the very alulus of models would be a mistake.The fat remains that a network with a delay on every hannel always has asolution (and one that an be found diretly) but a network without delaysmay not. So what if we introdue the delay temporarily, �nd a solution tothe delayed system, and then see what happens to that solution as the delayapproahes zero? This is the question I explored in Projet #1.2.4 Case Study: Linear Homogeneous SystemsBefore engaging in the development of a theory based on vanishing delays,it seemed prudent to test the idea on a simple type of system with a knownsolution�just to serve as a proof-of-onept. Linear homogeneous systems�t the bill, and indeed, everything fell into plae as I had hoped (as I'll nowdemonstrate).In this setion, we'll take A = R (although A = C would work just as well),hoose some m ∈ N. Let A ∈ Rm×m and c ∈ Rm. Take F : C[T,R]m →
C[T,R]m to be,

F (u)(t) =

ˆ t

0

Au(s)ds+ c (2.4.1)It is well known from the theory of ordinary di�erential equations (see [BD01℄,for example) that F has a unique �xed point, u0 ∈ C[T,R]m, given by, u0(t) =

33
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eAt

c, where
eAt =

∞∑

k=0

tk

k!
AkWhat we need to do is introdue a delay of γ > 0 to F , �nd the �xed point(if there is one1) of this delayed F , and then hek whether that �xed pointapproahes eAt

c as γ → 0+.Given any γ > 0, any u ∈ C[T,R]m, and any t ∈ T,delayγF (u)(t) =

{
c if t ≤ γ
´ t−γ

0
Au(s)ds+ c if t ≥ γ

(2.4.2)Lemma 2.4.1. delayγF (as de�ned by Equation (2.4.2)) has a unique �xedpoint:
uγ(t) =

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak
c (2.4.3)Proof. We must �rst verify that uγ is atually a stream; in partiular, itmust be ontinuous. It is obviously ontinuous on any interval of the form,

[nγ, (n+ 1)γ) (where n ∈ N) beause it is de�ned as a sum of a �xed numberof ontinuous terms there (⌊t/γ⌋ + 1 of them). One t rosses into the nextsuh interval, however, a new term is added. So we need to hek only thatfor n ∈ N, uγ(t)→ uγ((n+ 1)γ) as t→ (n+ 1)γ− (i.e. from the left). This isreadily apparent sine that new term ontains the fator, t− (n + 1)γ, whihis zero at the left endpoint of the next interval (when t = (n+1)γ). With thatformality out of the way, we an demonstrate that uγ is atually a �xed pointfor delayγF .Let t ∈ T. If t < γ then,delayγF (uγ)(t) = c =
0∑

k=0

(t− kγ)k
k!

Ak
c = uγ(t) (2.4.4)So suppose t ≥ γ and let N = ⌊t/γ⌋ − 1 (making (N + 1)γ ≤ t < (N + 2)γ).1Admittedly, this seems somewhat oy in light of Setions 2.6 and 2.7. By inspetion,it is lear that F satis�es Caus and has a unique 0-approximate �xed point�namely, c.Therefore, by The Delayed Operator Theorem on page 45, the delayed operator, delayγF ,has a unique �xed point uγ (given by the onstrution in Proof 2 of that theorem) for every

γ > 0. The work in this setion, however, was a feasibility study whih neessarily preededall that.
34
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ˆ t−γ

0

Auγ(s) ds+ c

=

N−1∑

n=0

ˆ (n+1)γ

nγ

Auγ(s) ds+

ˆ t−γ

Nγ

Auγ(s) ds+ c

=
N−1∑

n=0

ˆ (n+1)γ

nγ

A




⌊s/γ⌋∑

k=0

(s− kγ)k
k!

Ak
c


 ds

+

ˆ t−γ

Nγ

A




⌊s/γ⌋∑

k=0

(s− kγ)k
k!

Ak
c


 ds+ c

=

N−1∑

n=0

ˆ (n+1)γ

nγ

n∑

k=0

(s− kγ)k
k!

Ak+1
c ds

+

ˆ t−γ

Nγ

N∑

k=0

(s− kγ)k
k!

Ak+1
c ds+ c

=

N−1∑

n=0

n∑

k=0

ˆ (n+1)γ

nγ

(s− kγ)k
k!

dsAk+1
c

+

N∑

k=0

ˆ t−γ

Nγ

(s− kγ)k
k!

dsAk+1
c+ c

=
N−1∑

n=0

n∑

k=0

(s− kγ)k+1

(k + 1)!

∣∣∣∣
(n+1)γ

nγ

Ak+1
c

+

N∑

k=0

(s− kγ)k+1

(k + 1)!

∣∣∣∣
t−γ

Nγ

Ak+1
c+ c

=
N−1∑

n=0

n∑

k=0

((n+ 1)γ − kγ)k+1 − (nγ − kγ)k+1

(k + 1)!
Ak+1

c

+

N∑

k=0

(t− γ − kγ)k+1 − (Nγ − kγ)k+1

(k + 1)!
Ak+1

c+ c

=
N−1∑

n=0

n∑

k=0

(n− k + 1)k+1 − (n− k)k+1

(k + 1)!
γk+1Ak+1

c

+
N∑

k=0

(t/γ − (k + 1))k+1 − (N − k)k+1

(k + 1)!
γk+1Ak+1

c+ c
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=

N−1∑

k=0

(
N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1

)
γk+1Ak+1

(k + 1)!
c

+

N∑

k=0

((
t

γ
− k − 1

)k+1

− (N − k)k+1

)
γk+1Ak+1

(k + 1)!
c+ c

=
N−1∑

k=0

((
N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1

)
− (N − k)k+1

)
γk+1Ak+1

(k + 1)!
c

+

N∑

k=0

((
t

γ
− (k + 1)

)k+1
)
γk+1Ak+1

(k + 1)!
c+ cThe nested sum above (the one indexed by n) telesopes:

N−1∑

n=k

(n− k + 1)k+1 − (n− k)k+1 = 1k+1 − 0k+1 + 2k+1 − 1k+1 + · · ·

· · ·+ (N − k)k+1 − (N − 1− k)k+1

= (N − k)k+1 − 0k+1Thus, the summand in the �rst summation is zero for every value of k from 0to N − 1, whih leaves only,delayγF (uγ)(t) =

N∑

k=0

((
t

γ
− (k + 1)

)k+1
)
γk+1Ak+1

(k + 1)!
c+ c

=
N+1∑

k=1

((
t

γ
− k
)k
)
γkAk

k!
c+ c

=

N+1∑

k=1

(t− kγ)k
k!

Ak
c+ c

=
N+1∑

k=0

(t− kγ)k
k!

Ak
c

=

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak
c

= uγ(t)

uγ an easily be shown to be unique by indution on N . In Equation (2.4.4),it an be seen that the value of delay γF (uγ) on [0, γ) is independent of uγ�so we know at least that portion of the �xed point is unique. The rest of36



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarethe alulations show that given any N ∈ N, the value of delay γF (uγ) on
[(N +1)γ, (N +2)γ) depends on uγ(t) only for t < (N +1)γ. Therefore, uγ isthe unique �xed point of delayγF .What must be shown next is that this solution approahes the stream, u0(t) =
eAt

c (whih is the �xed point of F ) as γ → 0+. First, a quik lemma. Reallthat for a real number x, the power series for ex is given by
ex =

∞∑

k=0

xk

k!
= lim

n→∞

n∑

k=0

xk

k!What the following lemma shows is that we an �pollute� the terms of thisexpansion (in a partiular way that suits our purposes) and a�et only therate of onvergene, but not the end result.Lemma 2.4.2. For all x ∈ R≥0

lim
n→∞

n∑

k=0

xk

k!

(
1− k

n

)k

= exProof. Let x ≥ 0 and ε > 0. By de�nition,
lim
n→∞

n∑

k=0

xk

k!
= exHene, there is an N > 0 suh that ∀n ≥ N

∣∣∣ex −
∑n

k=0
xk

k!

∣∣∣ < ε/2. Clearlyfor any �xed k ≥ 0,

lim
n→∞

(
1− k

n

)k

= 1So, ∀k > 0 ∀ε′ > 0 ∃Mk > 0 ∀n ≥Mk

∣∣∣∣∣

(
xk

k!

)(
1−

(
1− k

n

)k
)∣∣∣∣∣ < ε′Let M0 = 1 and for k = 1, 2, . . . , N , let Mk be suh that ∀n ≥Mk

∣∣∣∣∣

(
xk

k!

)(
1−

(
1− k

n

)k
)∣∣∣∣∣ <

ε

2N + 2
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∣∣∣∣∣e

x −
n∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣ ≤

∣∣∣∣∣e
x −

N∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣

(sine 0 ≤ xk

k!

(
1− k

n

)k

≤ xk

k!
for k = N,N + 1, . . . , n

)

=

∣∣∣∣∣e
x −

N∑

k=0

xk

k!
+

N∑

k=0

xk

k!
−

N∑

k=0

xk

k!

(
1− k

n

)k
∣∣∣∣∣

≤
∣∣∣∣∣e

x −
N∑

k=0

xk

k!

∣∣∣∣∣+
∣∣∣∣∣

N∑

k=0

xk

k!

(
1−

(
1− k

n

)k
)∣∣∣∣∣

<
ε

2
+ (N + 1)

ε

2N + 2
= εNow we an �nish the job by showing that uγ → u0 as γ → 0+. The fol-lowing theorem shows that my tehnique of introduing vanishing delays isapable of solving linear homogeneous systems (and with that, we bring thease study to a lose). This is reassuring, ertainly, and a modest vitory,but it is not terribly exiting sine there are muh better ways to solve thesesystems already.Theorem 2.4.3 (Vanishing Delay Theorem for Linear Homogeneous Sys-tems). If A is an m×m matrix (real or omplex) then ∀t ∈ T

lim
γ→0+

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak = eAtProof. It is onvenient to use a matrix norm to show this. The partiular onehosen is unimportant so long as it is submultipliative (‖A1A2‖ ≤ ‖A1‖‖A2‖).The operator norm, whih is de�ned as follows for any matrix B, is suh anorm:
‖B‖ = max

x 6=0

‖Bx‖
‖x‖The symbol ‖ · ‖ is overloaded here, representing the vetor norm on the right-hand side and the operator norm on the left. In addition to being submulti-
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Ph.D. Thesis - N. James; MMaster University - Computing and Softwarepliative, the operator norm satis�es all the usual norm axioms2Let t ∈ T, and ε > 0. We must �nd a Γ > 0 suh that ∀γ < Γ,
∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥
< εSine the operator norm is subadditive,

∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∞∑

k=0

tk

k!
Ak −

⌊t/γ⌋∑

k=0

(t− kγ)k
k!

Ak

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∞∑

k=⌊t/γ⌋+1

tk

k!
Ak +

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∞∑

k=⌊t/γ⌋+1

tk

k!
Ak

∥∥∥∥∥∥
+

∥∥∥∥∥∥

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥
(2.4.5)Sine ∑∞

k=0
tk

k!
Ak = eAt, it follows that, ∃N1 > 0 ∀n ≥ N1

∥∥∥∥∥

∞∑

k=n

tk

k!
Ak

∥∥∥∥∥ <
ε

2
(2.4.6)Let N1 be as suh, and let Γ1 < t/N1. Then ∀γ ∈ (0,Γ1), the �rst term of(2.4.5) is less than ε/2. We now turn to the seond term.2For matries B, B1, B2, and salars α,

i. B = 0 ⇔ ‖B‖ = 0

ii. ‖αB‖ = |α| ‖B‖
iii. ‖B1 +B2‖ ≤ ‖B1‖+ ‖B2‖
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∥∥∥∥∥∥

⌊t/γ⌋∑

k=0

(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥∥∥
≤

⌊t/γ⌋∑

k=0

∥∥∥∥
(
tk − (t− kγ)k

) Ak

k!

∥∥∥∥ (2.4.7)
=

⌊t/γ⌋∑

k=0

∣∣∣∣
(
tk − (t− kγ)k

) 1

k!

∣∣∣∣
∥∥Ak

∥∥ (2.4.8)
≤

⌊t/γ⌋∑

k=0

‖A‖k
k!

∣∣∣tk − (t− kγ)k
∣∣∣ (2.4.9)Inequality (2.4.7) follows sine the matrix norm is subadditive. Equation(2.4.8) follows sine ‖αB‖ = |α| ‖B‖ (for all salars α and all matries B).Inequality (2.4.9) follows sine the matrix norm is submultipliative. For on-veniene, let Q(γ) represent the summation on line (2.4.9).If t < γ, then Q(γ) = 0 whih would allow us to ignore the whole term,but we're looking for an upper bound for γ that ensures Q(γ) < ε/2 when γ issu�iently small. So we must assume γ ≤ t (in fat, we should assume γ ≪ t).Let q(γ) = ⌊t/γ⌋. Then (onsidering the kγ near the end of line (2.4.9)),

kγ ≤ k
t

q(γ)and hene ∀γ ≤ t,
Q(γ) ≤

q(γ)∑

k=0

‖A‖k
k!

∣∣∣∣∣t
k −

(
t− k t

q(γ)

)k
∣∣∣∣∣

=

q(γ)∑

k=0

(‖A‖t)k
k!

(
1−

(
1− k

q(γ)

)k
)From Lemma 2.4.2 on page 37 and the fat that ex an also be written as∑∞

k=0
xk

k!
, it follows that ∃N2 > 0 ∀n ≥ N2

n∑

k=0

(‖A‖t)k
k!

−
n∑

k=0

(‖A‖t)k
k!

(
1− k

n

)k

=
n∑

k=0
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1− k

n

)k
)

<
ε

2So hoose Γ2 = t/N2. Then ∀γ ≤ Γ2 q(γ) ≥ N2, and hene Q(γ) < ε/2, asdesired. 40
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0 < γ < Γ ⇒

∥∥∥∥∥∥
eAt −

⌊t/γ⌋∑

k=0

t− kγ
k!

Ak

∥∥∥∥∥∥
< ε

2.5 Properties of the Delay OperatorHaving established that the vanishing delay tehnique works in some situations,we an proeed to studying it theoretially. We begin with some elementaryproperties of delay , whih will be essential for the investigation.2.5.1 delayγ is nonexpansive and preserves LipLemma 2.5.1. ∀u, v ∈ C[T,A] ∀γ, T ∈ T

dT+γ(delayγu,delayγv) = dT (u, v)Proof. Obvious (see Figure 2.5.1). Here is a proper proof, though:
dT (u, v) = max

0≤t≤T
dA(u(t), v(t))

= max
0≤t≤T

dA(u(t− γ + γ), v(t− γ + γ))

= max
γ≤t≤T+γ

dA(u(t− γ), v(t− γ))

= max
γ≤t≤T+γ

dA
((delay γu

)
(t),
(delay γv

)
(t)
)

= max
0≤t≤T+γ

dA
((delay γu

)
(t),
(delay γv

)
(t)
)

= dT+γ

((delayγu
)
,
(delayγv

))The seond last equation holds sine delay γu and delayγv are onstant on
[0, γ].Lemma 2.5.2. For any γ ≥ 0, delayγ is nonexpansive (i.e. it is Lipshitz�in the traditional sense�with a Lipshitz onstant of α = 1). That is, ∀u, v ∈
C[T,A] ∀γ ≥ 0 dC[T,A](delayγu,delayγv) ≤ dC[T,A](u, v).Proof. Let γ ≥ 0. For any T ≤ γ,

dT (delay γu,delayγv) = dA(u(0), v(0))

≤ dT (u, v)41
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T + γ

A

T

u

v

A
T

Tγ

delayγv

delayγu

Figure 2.5.1: An Illustration of why dT+γ(delay γu,delayγv) = dT (u, v)By Lemma 2.5.1, for any T > γ,

dT (delayγu,delayγv) = dT−γ(u, v)

≤ dT (u, v)The result then follows from the de�nition of dC[T,A] (eah term is individuallynonexpansive, so the summation is as well).Corollary 2.5.3. Let F : C[T,A] → C[T,A], let λ, τ ∈ R+, and suppose
F ∈ Lip(λ, τ). Then delayγF ∈ Lip(λ, τ + γ).Proof. Trivial, using Lemma 2.5.1:

dT+τ+γ(delay γF (u),delayγF (v)) = dT+τ (F (u), F (v))

2.5.2 delay preserves Caus, WCausLemma 2.5.4. Let F : C[T,A] → C[T,A] and γ > 0, then F ∈ WCaus ⇒delayγF ∈WCaus and F ∈ Caus⇒ delayγF ∈ Caus.42



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. We'll skip ahead here and use the Building Blok Lemma (Lemma 3.2.1on page 55) together with Lemma 2.5.2 on page 41. By the latter, for all
T, γ ∈ T, u, v ∈ C[T,A],

dT (delayγu,delayγv) ≤ dT (u, v)So if dT (u, v) = 0, so does dT (delay γu,delayγv). Thus, delayγ satis�esWCaus . The result follows from Part 3 of the Building Blok Lemma.Remark 2.5.5. In fat, we might say that delay γF is �superausal� when F isausal sine the value of delay γF (u) at any point in time annot even dependupon values of u that are too reent, let alone upon present or future valuesof u. For T ≤ γ,
u(0) = v(0)⇒ delay γF (u)(T ) = delayγF (v)(T )and for T ≥ γ,
dT−γ(u, v) = 0⇒ delay γF (u)(T ) = delayγF (v)(T )2.5.3 delay is ontinuousThe following lemma deals with uniform ontinuity rather than (nonuniform)ontinuity and while the latter generalizes to topologial spaes�and thus anbe easily de�ned using pseudometris�the most general setting for the formeris uniform spaes, whih is a topi that requires a fair bit of development. Asa result, I'll use the metri de�ned in De�nition 1.3.5 on page 11.Lemma 2.5.6 (delay is uniformly ontinuous on ross-setions). For anygiven u ∈ C[T,A], the stream delay operator is uniformly ontinuous on T ×

{u}. That is, ∀u ∈ C[T,A] ∀ε > 0 ∃δ > 0 ∀γ1, γ2 ∈ T

|γ1 − γ2| < δ ⇒ dC[T,A](delayγ1u,delayγ2u) < εProof. Let u ∈ C[T,A] and ε > 0. Let N be the smallest integer suh that
2−N < ε/2. De�ne û : R→ Am

û(t) =

{
u(0) if t ≤ 0
u(t) if t ≥ 0Then ∀γ, t ∈ T delayγu(t) = û(t − γ). Sine û is ontinuous on R, it isuniformly ontinuous on any losed interval. Moreover, this oupled with thefat that û is onstant on (−∞, 0], ensures that it is also uniformly ontinuouson any half-open interval of the form, (−∞, x]. In partiular, ∃δ > 0 ∀t1, t2 ∈

(−∞, N ]

|t1 − t2| < δ ⇒ dA(û(t1), û(t2)) <
ε

2N43



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet γ1, γ2 ∈ T suh that |γ1 − γ2| < δ. Then,
dC[T,A](delayγ1u,delayγ2u) =

∞∑

k=1

min

(
2−k, max

t∈[0,k]
dA
(delayγ1u(t),delayγ2u(t)

))

=

∞∑

k=1

min

(
2−k, max

t∈[0,k]
dA (û(t− γ1), û(t− γ2))

)

≤
N∑

k=1

max
t∈[0,k]

dA (û(t− γ1), û(t− γ2)) +
∞∑

k=N+1

2−k

≤ N max
t∈[0,N ]

dA (û(t− γ1), û(t− γ2)) + 2−N

< N
ε

2N
+
ε

2
(↑ sine (t− γ1), (t− γ2) ∈ (−∞, N ]and |(t− γ1)− (t− γ2)| < δ)

= εIn 1821, Cauhy infamously stated that a funtion ontinuous in eah of itsvariables separately is ontinuous [Cau21℄. While this is stritly false, we anprove something similar.Lemma 2.5.7. If X, Y, Z are metri spaes, f : X × Y → Z is ontinuous ineah of its variables separately, and f is equiontinuous3 in one of them (i.e.taking f as an X-indexed family of funtions from Y into Z, or as a Y -indexedfamily of funtions from X into Z), then f itself is ontinuous (with respetto the produt topology on X × Y ).Proof. Suppose, without loss of generality, that the family, {f(·, y)}y∈Y isequiontinuous. That is, suppose there exists a funtion δX : X × R+ → R+suh that ∀x0, x ∈ X ∀ε > 0 ∀y ∈ Y ,
dX(x0, x) < δX(x0, ε) ⇒ dZ(f(x0, y), f(x, y)) < εSine f is ontinuous in Y separately, there is a funtion δY : X×Y ×R+ suhthat ∀ε > 0 ∀x0 ∈ X ∀y0, y ∈ Y ,

dY (y0, y) < δY (x0, y0, ε) ⇒ dZ(f(x0, y0), f(x0, y)) < εWe hoose the most onvenient metri for our purposes that indues the prod-ut topology on X × Y , namely the �maximum� metri:
dX×Y ((x, y), (x

′, y′)) = max {dX(x, x′), dY (y, y′)}3A family of funtions is equiontinuous if they all share the same modulus of ontinuity.44



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet (x0, y0), (x, y) ∈ X × Y and let ε > 0. Suppose
dX×Y ((x0, y0) , (x, y)) < min

{
δX

(
x0,

ε

2

)
, δY

(
x0, y0,

ε

2

)}Then it follows that,
dZ(f(x0, y0), f(x, y)) ≤ dZ(f(x0, y0), f(x0, y)) + dZ(f(x0, y), f(x, y))

<
ε

2
+
ε

2Therefore, f is ontinuous at (x0, y0).Corollary 2.5.8. The stream delay operator delay : T×C[T,A]→ C[T,A] isontinuous.Proof. By Lemma 2.5.2 on page 41, delay is equiontinuous in its seond vari-able separately (in fat, more than that, it's globally Lipshitz with Lipshitzonstant α = 1 for all values of γ). That is, the family {delay γ

}
γ∈T is equion-tinuous. By Lemma 2.5.6 on page 43, delay is ontinuous (uniformly so) inits �rst variable. That is, all the funtions in the family {delay(·, u)}u∈C[T,A]are uniformly ontinuous. Thus, delay is ontinuous in eah of its variablesseparately, and is equiontinuous in one of them. By Lemma 2.5.7 on thepreeding page, delay is ontinuous.Corollary 2.5.9. If F : C[T,A] → C[T,A] is ontinuous then delay ◦ F̃ :

T × C[T,A] → C[T,A] (whih is given by delay ◦ F̃ (γ, u) = delayγF (u)) isalso ontinuous.Proof. F̃ is ontinuous by Corollary 1.4.14 on page 27, delay is ontinuous byCorollary 2.5.8, and a omposition of ontinuous funtions is ontinuous.
2.6 Delayed Operators Always Have UniqueFixed PointsTheorem 2.6.1 (Delayed Operator Theorem). Let F : C[T,A] → C[T,A]satisfy Caus with F (u)(0) = c ∈ A for all u ∈ C[T,A]. Then ∀γ > 0 ∃!uγ ∈
C[T,A] whih satis�es the system,

uγ = delayγF (uγ) (2.6.1)
uγ(0) = c (2.6.2)45



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. [Short Version℄ Let u, v ∈ C[T,A] T ∈ T, and γ ∈ R+. Suppose
dT (u, v) = 0. Then, by Lemma 2.5.1 on page 41

dT+γ(delay γF (u),delayγF (v)) = dT (F (u), F (v))And sine F ∈ Caus ,
dT (F (u), F (v)) = dT (u, v)

= 0Therefore, delay γF satis�es Lip(0, γ) (and thus Contr ). By Lemma 2.5.4on page 42, delayγF satis�es Caus . Hene, by Theorem TZ1 on page 19,delayγF has a unique �xed point.Remark 2.6.2. It is interesting to note that the ontinuity of F is not requiredto establish the existene of a �xed point. In fat, if F is ontinuous, a diretproof of the Delayed Operator Theorem (that does not invoke Theorem TZ1)beomes fairly trivial.2.7 The Delay Vanishes42.7.1 Why the Vanishing Delay Constrution Produesthe Fixed Point of FThe Delayed Operator Theorem on the preeding page tells us that everystream operator that satis�es Caus has an assoiated family of streams,
{uγ}γ∈R+ , eah of whih satisfy Equations 2.6.1 on the previous page and(2.6.2). It is onvenient, then, to de�ne a orresponding struture:De�nition 2.7.1. Let F : C[T,A]m → C[T,A]m satisfy Caus , and suppose
F (u)(0) = c (for all u ∈ C[T,A]m). De�ne U : R+ → C[T,A]m as, U(γ) = uγ(as de�ned in the Delayed Operator Theorem). Then the pair, (F,U), is a delaysystem. This provides a ontext for the symbol, uγ (and similar variations),whih will often be used in plae of U(γ) without expliitly aknowledging it.Remark 2.7.2. Given a delay system (F,U), we're hoping to �nd a �xed pointfor F by �nding the limit of U(γ) as γ → 0+. So our big question is �when doesthat limit exist?� But before we get to that question, how do we know thislimit will even work? That is, even if limγ→0+ U(γ) exists (in C[T,A]), how dowe know it's a �xed point of F ? This is addressed by our next theorem, andhere we do use ontinuity (although I have a hunh it's not neessary).4No opyright infringement here sine the syllables of �lady� have been reversed.46



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareTheorem 2.7.3 (The Vanishing Delay Theorem). Suppose F : C[T,A]m →
C[T,A]m is ontinuous and satis�es Caus. Let {γk}k∈N ⊆ R+ be a sequenesuh that γk → 0 as k →∞, and suppose that limk→∞ U(γk) = u ∈ C[T,A]m.Then u = F (u).Proof.
u = lim

k→∞
uγk (by hypothesis)

= lim
k→∞

(delay ◦ F̃ )(uγk , γk)

= (delay ◦ F̃ )( lim
k→∞

(uγk , γk)) (sine delay ◦ F̃ is ontinuous)
= (delay ◦ F̃ )(u, 0)
= F (u) (sine delay(·, 0) is the identity on C[T,A]m)The operative step is the third one, in whih delay ◦ F̃ is moved outside thelimit. Some explanation is warranted here. Sine F is ontinuous, so is F̃ (byCorollary 1.4.14 on page 27). Thus, sine delay is ontinuous (by Lemma 2.5.6on page 43), delay◦F̃ is too. Aording to a well-known theorem5 in Topology,if f : X → Y is ontinuous, X is metrizable, and {xn}n∈N ⊆ X is onvergent,then limn→∞ f(xn) = f(limn→∞ xn). In our ase, X = Y = C[T,A]m, whih ismetrizable, and ∀n ∈ N xn = (uγn , γn).2.7.2 When Does the Limit Exist?This is the �rst major question about the vanishing delay onstrution, andthe biggest obstale I faed during this projet (indeed, it was big enough thatI never quite overame it). While my e�orts failed to provide a satisfatoryanswer, they did lead indiretly to the Generalized Theorem TZJ2 on page 102,whih I onsider to be among the most signi�ant results of this thesis.Sine my vanishing delay onstrution is meant to be an alternative to theonstrution presented in [TZ11℄, an obvious question is whether it is at leastas widely appliable. That is, if Tuker and Zuker's Theorem TZ1 guaranteesthe existene of a unique �xed point for an operator F : C[T,A] → C[T,A],will the vanishing delay onstrution neessarily onverge to it?I wasn't able to answer even this question ompletely, but I ame lose (fallingshort by having to assume ontinuity in addition to the anteedents of The-orem TZ1). Furthermore, it was in the proess of answering this questionthat I developed Theorem TZJ2 on page 27�whih led to the GeneralizedTheorem TZJ2 on page 102.5See Theorem 10.3 of [Mun75℄, for example.47



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareTheorem 2.7.4 (Theorem TZJ1 for Vanishing Delays). Let (F,U) be a on-tinuous delay system (where F : C[T,A] → C[T,A]). Suppose F satis�esCaus and Contr. Then the unique �xed point of F (guaranteed to exist byTheorem TZ1) is given by u = limγ→0+ U(γ).Proof. The idea is to use Theorem TZJ2 on page 27, taking our parameterto be γ in the operator delay ◦ F̃ , and then U essentially beomes the Φ inTheorem TZJ2. Let P = R≥0. De�ne G : P × C[T,A]→ C[T,A] as follows:
G(γ, u) = delay γF (u) = delay ◦ F̃ (γ, u)By Lemma 2.5.4 on page 42, G satis�es Caus . By Corollary 2.5.9 on page 45,

G is everywhere ontinuous, and in partiular it is ontinuous at (0, u) ∀u ∈
C[T,A]. Finally, by Corollary 2.5.3 on page 42, G satis�es Contr .Thus G satis�es all the onditions of the operator in Theorem TZJ2 for p = 0,and hene the Φ funtion for G is ontinuous at 0. The relevane of thisobservation is the fat that the Φ funtion for G is simply U, ontinuouslyextend from R+ to R≥0. Therefore, limγ→0+ U(γ) exists and by the VanishingDelay Theorem on the previous page, this limit is the �xed point of F .2.7.3 Addendum: What happens if delayγ ommuteswith F?Many of the results would be rendered fantastially simpler if only delayγwould be so kind as to ommute with F . In the last proof, we onstruted afuntion, uγ, suh that for any t ∈ T, as long as we take a su�iently large
n ∈ N, uγ(t) = (delay γF )

n(v1)(t). If we ould interhange delay γ and F , wewould have,
uγ(t) = (delayn

γF
n)(v1)(t) = (delaynγF

n)(v1)(t)As it happens, this is not only a surprisingly unrealisti expetation, but italso auses big trouble.Proposition 2.7.5. Let F, γ,uγ be as in the Delayed Operator Theorem onpage 45, and suppose that6
uγ = delayγFuγ = FdelayγuγThen uγ is onstant (uγ ≡ c, where c is the 0-afp of F , to be spei�).6Alternatively, we ould assume that ∀u ∈ C[T,A]m u = delayγFu = Fdelayγu, butwe needn't go so far for this proposition. 48



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. Let t ∈ T and let n ∈ Z+ suh that nγ ≥ t. Then,
uγ(t) = (delayγF )

n(uγ)(t) (sine uγ is a �xed point of delayγF )
= delayn

γF
n(uγ)(t) (sine delayγ ommutes with F by assumption)

= delaynγF
n(uγ)(t) (sine delay γ1delayγ2 = delay γ1+γ2)

= F n(uγ)(0) (sine t ≤ nγ)
= c (sine c is a 0-afp of F )Remark 2.7.6. Proposition 2.7.5 shows that imposing suh a ondition on Fdrastially undermines the potential power of the theory, and yet it seems likea suh a natural and benign property that may well apply to several ommonstream operators. It is, however, a muh more restritive ondition than itmight appear.Example 2.7.7. Take F (u)(t) = ´ t

0
au(s)ds+ c (for some a, c ∈ R), and let ube the onstant funtion, c. Then,delay γF (u)(t) = delay γc · (at+ 1) =

{
c if t ≤ γ
ca · (t− γ) + c if t ≥ γConversely,

F◦delayγ(u)(t) = F (u)(t) = c·(at+1) 6= delayγF (u)(t) (unless γ · t · a · c = 0)Hene, even the members of this simple, general lass of operators don't om-mute with delay γ.

49



Chapter 3Researh Projet #2: Exploringthe Speial Case in Whih A isa Banah SpaeIn this hapter, I will present the main portions of the paper [JZ12℄ whihhas been published in The Computer Journal. Both the paper and this thesiswere written to be relatively self-ontained, so if I were to paste the paperhere, wholesale, muh of the preliminary ontent in Chapter 1 would need-lessly ome with it. So in addition to omitting the redundant setions, I'vemade some minor edits to smooth the exposition from paper to thesis hapter.Furthermore, there are a few proofs that were omitted from the paper for thesake of brevity, and in plae of those proofs, I refer the reader to this thesis.Hene, those have been inluded here.3.1 IntrodutionIn [TZ11℄, Tuker and Zuker show that an operator whih satis�es Caus andContr has a unique �xed point, but whih operators satisfy those proper-ties? The authors o�er two mass-spring-damper systems as examples, whihis ertainly very helpful, but it still leaves us with little intuition about whihoperators would have those properties and whih ones wouldn't. Without im-posing some restritions on A, there likely isn't muh to be done about this.There just isn't enough to work with if we want to be more spei�. If we re-strit our attention to the ase in whih A = R, however, then we have a rihalgebrai struture upon whih to build operators that satisfy the properties.That's going a little further than neessary, though. It turns out that there isquite a lot we an say about the properties if we go only as far as making Aa Banah spae. 50



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThere are two main parts to this hapter. In the �rst part I ondut a thor-ough inventory of the pointwise stream operations indued by the algebraioperations of the Banah spae, and examine the way eah of them a�etsthe stream properties overed in Chapter 1. While the pointwise operationsyield a wide assortment of operators that satisfy the Lipshitz ondition, thereal engine behind the results is integration. An operator whih satis�es theLipshitz ondition is all well and good, but in order to work with the two�xed point theorems, the operator must be ontrating, and that is what inte-gration provides. The integral (with respet to time) of a Lipshitz operatorsatis�es Contr . All of these results are onsolidated into a pair of lemmas(the Building Blok and Continuity lemmas) and a single main theorem (theGeneral Form Theorem on page 65).In the seond part, I move on to disuss two appliations from mehanialphysis. The �rst is the mass-spring-damper system desribed in [TZ07, TZ11℄,whih the general form is more than powerful enough to handle on its own. Theseond�whih is only a simple pendulum�neatly highlights the limitationsof that form, as it is apparently not general enough to apply to that system.If we introdue a prede�ned operator (the sin funtion, in this ase), however,we an still apply the two main lemmas separately to do the work the theoremannot.3.1.1 Algebra of Streams over a Banah SpaeThe operators with whih we are onerned in this hapter operate on streamsfrom C[T,B]m, where B is a Banah spae over a �eld of salars S. Thenorm on B will be denoted using double bars, ‖ · ‖, and it indues a metri
dB(x, y) = ‖x− y‖. The same m-tuple onvention used for the stream metriwill be used for the norms on both B and S: ‖(u1, . . . , um)‖ = max1≤k≤m ‖uk‖and |(a1, . . . , ak)| = max1≤k≤m |ak|. Furthermore, orresponding to eah pseu-dometri dT (for T ∈ T) is a seminorm (or a �pseudonorm,� using the verna-ular in [Roy63℄) ‖u‖T = dT (u, 0).
C[T,B]m inherits several properties diretly from B�almost enough to make ita Banah spae itself. The addition operation on B naturally indues (point-wise) addition on C[T,B]m (the ontinuity of the sum of two streams is assuredby the subadditivity of the norm on B). Salars from S operate on C[T,B]mas they do on B (e.g. a(u+ v) = au+ av, (ab)u = a(bu), et.). It is shown in[TZ11℄ that if B is separable and omplete (whih it is, being a Banah spae),then so too is C[T,B]m. Similarly (although not addressed in [TZ11℄), the loalonvexity of B assures the loal onvexity of C[T,B]m.This olletion of properties ensures that C[T,B]m is at least a Fréhet spae11A Fréhet spae is like a Banah spae, exept it laks a norm. In its plae, however, a51



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareover S, but sine the origin of C[T,B]m does not neessarily ontain an openbounded neighbourhood2, it follows from Theorem 1.39 in [Rud91℄ that C[T,B]mis not normable. Hene it is not, itself, a Banah spae.For our purposes, however, a more useful observation is that C[T,S]m ouldalmost serve as the set of salars for the Fréhet spae C[T,B]m. Addition andmultipliation on S indue orresponding pointwise operations under whih
C[T,S]m is losed, and whih ommute, assoiate, and distribute aording tothe �eld axioms. Pointwise multipliation of a stream from C[T,S]m with astream from C[T,B]m produes a stream from C[T,B]m. Being rife with zerodivisors, however, C[T,S]m is not a �eld (it is only a ommutative ring), andthus it annot serve as a proper �eld of salars in a topologial vetor spae.Despite this shortoming, pairing C[T,S]m with C[T,B]m produes a usefulalgebra of pointwise operations�one whih lays the foundation for matrixmultipliation of streams in C[T,B]m by matries in C[T,S]m×m. In fat, mem-bership in a ommutative ring is all that is required of the entries of a matrixin order to de�ne a determinant (see [HK71℄). That fat, in and of itself, isnot immediately relevant to our researh here, but it does suggest promisingavenues of exploration in future researh.Most of the observations noted above follow readily, but we will take are toprove that pointwise multipliation between C[T,B]m and C[T,S]m works as wehave laimed beause that statement, in partiular, is not ompletely trivial.Lemma 3.1.1. If a ∈ C[T,S]m and u ∈ C[T,B]m, then au ∈ C[T,B]m, where
au is the pointwise multipliation of a and u:

(au) (t) = (a1(t)u1(t), . . . , am(t)um(t))Proof. What must be shown is that au is ontinuous. Let t0 ∈ T and ε > 0.Let,
ε′ =

1

2

(√
(|a(t0)|+ ‖u(t0)‖)2 + 4ε− |a(t0)| − ‖u(t0)‖

)Sine a and u are ontinuous, ∃δa, δu > 0 suh that ∀t ∈ T,
|t− t0| < δa ⇒ |a(t)− a(t0)| < ε′ and
|t− t0| < δu ⇒ ‖u(t)− u(t0)‖ < ε′Fréhet spae has a ountable olletion of seminorms that indue its topology. See [Rud91℄for details.2In this ontext a subset X ⊆ C[T,B]m is bounded if for every neighbourhood B of

0 ∈ C[T,B]m there is an R > 0 suh that for all r ∈ S with |r| > R, X ⊆ rB. This meansthat unless B is the trivial spae B = {0} (or perhaps a rather esoteri and pathologialspae) we have that for every T ∈ T and ε > 0, BT,ε(0) = {u ∈ C[T,B]m : dT (u,0) < ε} isunbounded. This is beause for any r ∈ S there is (for all the ommon Banah spaes, atleast) a stream u ∈ C[T,B]m suh that ‖u(T + 1)‖ > |r|, and hene BT,ε(0) * r BT+1,ε(0).52



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet δ = min {δa, δu}. Then for t suh that |t− t0| < δ,
‖(au) (t)− (au) (t0)‖ = ‖ (a(t)− a(t0)) (u(t)− u(t0))

+ (a(t)− a(t0))u(t0) + a(t0) (u(t)− u(t0)) ‖
≤ ‖(a(t)− a(t0)) (u(t)− u(t0))‖

+ ‖(a(t)− a(t0))u(t0)‖+ ‖a(t0) (u(t)− u(t0))‖
= |a(t)− a(t0)| ‖u(t)− u(t0)‖

+ |a(t)− a(t0)| ‖u(t0)‖+ |a(t0)| ‖(u(t)− u(t0))‖
< (ε′)

2
+ ε′ (‖u(t0)‖+ |a(t0)|)

= ε (after simpli�ation)Corollary 3.1.2. If A ∈ C[T,S]m×m and u ∈ C[T,B]m, then Au ∈ C[T,B]mWhile the algebrai operations on C[T,B]m failitate the onstrution of manyinteresting stream operators, they would be of rather limited utility to thetheory without integration (or something like it).Lemma 3.1.3. The Riemann integral3 is well-de�ned on C[T,B]m and ∀u ∈
C[T,B]m ∀a, b ∈ T, ∥∥∥∥

ˆ b

a

u(s) ds

∥∥∥∥ ≤
ˆ b

a

‖u(s)‖ dsProof. See Theorems 2.1 and 5.1 in [Fea99℄ for the de�nition and the inequality,respetively.Remark 3.1.4. Iterated integrals are of partiular importane to our theory, butstandard integral notation beomes a little umbersome for representing them.So we'll be using the following notational onventions. Given u ∈ C[T,B]m,
a, t ∈ T (with a ≤ t), and n ∈ N,

ˆ (0)

a

u(t) = u(t)

ˆ (n+1)

a

u(t) =

ˆ t

a

(
ˆ (n)

a

u(s)

)
dsEquivalently,

ˆ (n)

a

u(t) =

ˆ t

a

ˆ s1

a

ˆ s2

a

· · ·
ˆ sn−1

a

u(sn) dsn dsn−1 . . . ds13More aurately, the generalized Riemann integral, as de�ned by Feauveau [Fea99℄. Foran exposition of generalized integrals, see [Bar01℄.53



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 3.1.5. Let u ∈ C[T,B]m, n ∈ Z+, and a, b ∈ T with a < b. Then,
∥∥∥∥∥

ˆ (n)

a

u(b)

∥∥∥∥∥ ≤
(b− a)n
n!

max
a≤t≤b

‖u(t)‖Proof. The base ase, for n = 1, follows from Lemma 3.1.3, along with thefat that for a real funtion, f : R → R (like the ‖u(s)‖ from the right-handside of the inequality in Lemma 3.1.3), ´ b
a
f(s) ds ≤ (b− a)maxa≤s≤b |f(s)|.Now if we suppose that the inequality holds for all u ∈ C[T,B]m, a, b ∈ T(a < b), and for some n > 0 then

∥∥∥∥∥

ˆ (n+1)

a

u(b)

∥∥∥∥∥ =

∥∥∥∥∥

ˆ b

a

ˆ (n)

a

u(s) ds

∥∥∥∥∥

≤
ˆ b

a

∥∥∥∥∥

ˆ (n)

a

u(s)

∥∥∥∥∥ ds (by Lemma 3.1.3)
≤
ˆ b

a

(s− a)n
n!

max
a≤t≤s

‖u(t)‖ ds (by the indutive hypothesis)
≤ max

a≤t≤b
‖u(t)‖

ˆ b

a

(s− a)n
n!

ds

=
(b− a)n+1

(n + 1)!
max
a≤t≤b

‖u(t)‖

3.2 Operators Whih Satisfy the Fixed PointTheoremsHaving established in Setion 3.1.1 some of the basi operations we an use toreate stream operators, we an now proeed to examine the way the propertiesdisussed in Setion 1.3.3 are a�eted by these operations. In the BuildingBlok and Continuity Lemmas (Lemmas 3.2.1 on the following page and 3.2.2on page 59 below), we will simply audit the e�ets of the algebrai operationsso that when building operators from them or deonstruting operators interms of them, we an diretly alulate their properties. In the General FormTheorem on page 65, all these results are onsolidated into the most generallass of operators de�nable using these algebrai operations exlusively. TheBuilding Blok Lemma and the Continuity Lemma an also be used à la arte,however, with prede�ned operators that annot be expressed using only thealgebrai operations from Setion 3.1.1 (see Setion 3.3.2 on page 74 for anexample). 54



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 3.2.1 (The Building Blok Lemma). Given stream operators F,G :
C[T,B]m → C[T,B]m, salar stream a = (a1, a2, . . . , am) ∈ C[T,S]m, and ma-trix stream A ∈ C[T,S]m×m, the properties of Caus, WCaus, and Lip(λ, τ)are preserved by the basi stream operations as follows:1. Primitive Operators(a) Given w ∈ C[T,B]m, the onstant operator Fw(v) = w satis�esCaus and Lip(0, τ) for any τ ≥ 0.(b) The identity on C[T,B]m satis�es WCaus and Lip(1, τ) for all

τ ≥ 0.2. Addition of Operators(a) F,G ∈WCaus ⇒ (F +G) ∈WCaus(b) F,G ∈ Caus ⇒ (F +G) ∈ Caus() F ∈ Lip(λF , τF ), G ∈ Lip(λG, τG)⇒ (F +G) ∈ Lip (λF + λG,min {τF , τG})3. Composition of Operators(a) F,G ∈WCaus ⇒ (F ◦G) ∈WCaus(b) F ∈ Caus and G ∈WCaus ⇒ (F ◦G) , (G ◦ F ) ∈ Caus() If F ∈ Lip(λF , τF ), G ∈ Lip(λG, τG), and F,G ∈ WCaus then
(F ◦G) ∈ Lip (λFλG,min {τF , τG})4. Pointwise Multipliation by a Salar Stream(a) F ∈WCaus ⇒ aF ∈WCaus(b) F ∈ Caus ⇒ aF ∈ Caus() Let α ≥ 0. If F ∈ Lip(λ, τ) and ∀t ∈ T max

1≤i≤m
|ai(t)| ≤ α then

aF ∈ Lip(αλ, τ)5. Pointwise Multipliation by a Salar Matrix(a) F ∈WCaus ⇒AF ∈WCaus(b) F ∈ Caus ⇒ AF ∈ Caus() F ∈WCaus and A(0) = 0 ⇒ AF ∈ Caus(d) Let α ≥ 0. If F ∈ Lip(λ, τ) and ∀t ∈ T ‖A(t)‖ ≤ α then AF ∈Lip(αλ, τ) 55



Ph.D. Thesis - N. James; MMaster University - Computing and Software6. IntegrationDe�ne F´ : C[T,B]m → C[T,B]m as follows:
F´ (u)(t) =

ˆ t

0

u(s) ds =

(
ˆ t

0

u1(s) ds,

ˆ t

0

u2(s) ds, . . . ,

ˆ t

0

um(s) ds

)where u = (u1, u2, . . . , um) ∈ C[T,B]m. Then,(a) F´ ∈ Caus(b) F´ ∈ Lip(λ, λ) ∀λ ∈ R+Proof.(1a) ∀u,v ∈ C[T,B]m [Fw(u) = Fw(v)℄, so both results follow trivially.(1b) ∀T ∈ T ∀u,v ∈ C[T,B]m [(u↾[0,T ] = v↾[0,T ] ⇒ id(u)(T ) = id(v)(T )) and
dT+τ (u,v) ≤ 1 · dT+τ (id (u) , id (v))℄.(2a) dT (u,v) = 0 ⇒ (F +G) (u)(T ) = F (u)(T ) + G(u)(T ) = F (v)(T ) +
G(v)(T ) = (F +G) (v)(2b) By Remark 1.3.15, all that remains to be shown (given Part (2a)) isthat ∀u,v ∈ C[T,B]m [(F +G) (u)(0) = (F +G) (v)(0)℄. This followsdiretly from the fat that ∀u,v ∈ C[T,B]m [F (u)(0) = F (v)(0) and
G(u)(0) = G(v)(0)℄.(2) Let τ = min {τF , τG}. By Lemma 1.4.6, F ∈ Lip (λF , τ) and G ∈Lip (λG, τ). The result follows readily by taking u,v ∈ C[T,B]m andexpanding

dT+τ ((F +G) (u), (F +G) (v))into
max

0≤t≤T+τ
‖F (u)(t) +G(u)(t)− F (v)(t)−G(v)(t)‖Then �nally rearranging the terms and using the subadditivity of ‖ · ‖ toobtain the result.(3a) F,G ∈WCaus ⇒∀T ∈ T ∀u,v ∈ C[T,B]m [dT (u,v) = 0⇒ dT (G(u), G(v)) =

0 ⇒ F (G(u))(T ) = F (G(v))(T )℄.(3b) Given any ∀u,v ∈ C[T,B]m, it may be the ase that G(u)(0) 6= G(v)(0),but under F the image of all streams (inluding those two) at time t = 0is the same. Thus F ◦ G ∈ Caus . As for G ◦ F , we do know that
F (u)(0) = F (v)(0), and sine G ∈ WCaus, that equality �up to 0� ispreserved: G (F (u)) (0) = G (F (v)) (0).56



Ph.D. Thesis - N. James; MMaster University - Computing and Software(3) By Lemma 1.4.6, F ∈ Lip(λF , τ) and G ∈ Lip(λG, τ), where τ =
min {τF , τG}. So, given T ∈ T and u,v ∈ C[T,B]m suh that dT (u,v) =
0, it follows from (3a) that dT (F (G(u)), F (G(v))) = 0 also. Hene,
dT+τ (F (G(u)), F (G(v))) ≤ λ1dT+τ (G(u), G(v)) ≤ λFλGdT+τ (u,v).(4a) dT (u,v) = 0 ⇒ F (u)(T ) = F (v)(T ) ⇒ aF (u)(T ) = aF (v)(T )(4b) F (u)(0) = F (v)(0) ⇒aF (u)(0) = aF (v)(0)(4) Consider F as an m-tuple of funtions: for w ∈ C[T,B]m F (w) =
(F1(w), . . . , Fm(w)). Then,
dT+τ(aF (u),aF (v)) = max

0≤t≤T+τ
1≤k≤m

‖ak(t)Fk(u)(t)− ak(t)Fk(v)(t)‖

= max
0≤t≤T+τ
1≤k≤m

|ak(t)| ‖Fk(u)(t)− Fk(v)(t)‖

≤ max
0≤t≤T+τ
1≤k≤m

|ak(t)| max
0≤t≤T+τ
1≤k≤m

‖Fk(u)(t)− Fk(v)(t)‖

≤ αdT+τ(F (u), F (v))

≤ αλdT+τ(u,v)(5a, 5b) Same as (4a, 4b).(5) A(0) = 0 ∈ C[T,S]m×m ⇒ (AF )(u)(0) = (AF )(v)(0) = 0 ∈ C[T,B]m.The rest is given by (5a).(5d) Similar to (4), but using the matrix norm ‖A(t)‖ in plae of |ak(t)|.(6a) Let u,v ∈ C[T,B]m suh that ∀t < T u(t) = v(t). Then, using the normon Bm,
∥∥F´ (u)(T )− F´ (v)(T )

∥∥ =

∥∥∥∥
ˆ T

0

u(s) ds−
ˆ T

0

v(s) ds

∥∥∥∥

=

∥∥∥∥
ˆ T

0

(u(s)− v(s)) ds

∥∥∥∥

≤
ˆ T

0

‖(u(s)− v(s))‖ ds

= 0The linearity of the integral in the seond line omes from Theorem 3.1 in[Fea99℄, and the inequality arises from 3.1.3. Sine ‖·‖ is a norm (ratherthan a mere seminorm), it follows that F´ (u)(T ) = F´ (v)(T ).57



Ph.D. Thesis - N. James; MMaster University - Computing and Software(6b) Let u,v ∈ C[T,B]m suh that dT (u,v) = 0. Let λ ≥ 0. Then,
dT+λ

(
F´ (u), F´ (v)

)
= max

0≤t≤T+λ

∥∥∥∥
ˆ t

0

u(s) ds−
ˆ t

0

v(s) ds

∥∥∥∥

= max
0≤t≤T+λ

∥∥∥∥
ˆ t

0

(u(s)− v(s)) ds

∥∥∥∥ (3.2.1)
≤ max

0≤t≤T+λ

ˆ t

0

‖u(s)− v(s)‖ ds (3.2.2)
=

ˆ T+λ

0

‖u(s)− v(s)‖ ds (3.2.3)
=

ˆ T+λ

T

‖u(s)− v(s)‖ ds (3.2.4)
≤ λ max

T≤s≤T+λ
‖u(s)− v(s)‖ (3.2.5)

= λ max
0≤s≤T+λ

‖u(s)− v(s)‖ (3.2.6)
= λdT+λ(u,v)Step Justi�ations (unnumbered steps require no further eluidation):(3.2.1) By Theorem 3.1 in [Fea99℄.(3.2.2) By Lemma 3.1.3. Note that this onverts the Banah-valued integralto an ordinary integral over R.(3.2.3) Sine the integrand is nonnegative, the maximum will be at t =

T + λ.(3.2.4) dT (u,v) = 0 ⇒
´ T

0
‖u(s)− v(s)‖ ds = 0.(3.2.5) By Lemma 3.1.5.(3.2.6) Sine

max
0≤s≤T+λ

‖u(s)− v(s)‖ = max

{
max
0≤s≤T

‖u(s)− v(s)‖ ,

max
T≤s≤T+λ

‖u(s)− v(s)‖
}

= max

{
0, max

T≤s≤T+λ
‖u(s)− v(s)‖

}

= max
T≤s≤T+λ

‖u(s)− v(s)‖

58



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 3.2.2 (The Continuity Lemma). Let (P, dP ) be a metri spae (whihwill serve as a parameter spae) and let p ∈ P . Let F,G : P × C[T,B]m →
C[T,B]m and suppose that for all u ∈ C[T,B]m F and G are ontinuous at
(p,u). Let A : P → C[T,S]m×m be ontinuous at p. Then the funtions
H : P × C[T,B]m → C[T,B]m de�ned below for (r,u) ∈ P × C[T,B]m, t ∈ T,are all ontinuous at every point in {p} × C[T,B]m ⊆ P × C[T,B]m:1. Addition: H(r,u)(t) = (F +G) (r,u)(t) = F (r,u)(t) +G(r,u)(t)2. Composition: H(r,u)(t) = F (r, G(r,u))(t)3. Matrix Multipliation: H(r,u)(t) = (AF ) (r,u)(t) = A(r)(t)F (r,u)(t)4. Integration: H(r,u)(t) =

´ t

0
F (r,u)(s) dsProof.(1) Follows from the subadditivity of the seminorms on C[T,B]m: ‖u‖T =

dT (u, 0).(2) Let u ∈ C[T,B]m. Let ε > 0. Sine F is ontinuous on {p} × C[T,B]m,there is a δF > 0 suh that ∀v ∈ C[T,B]m ∀r ∈ P ,
dP×C[T,A]m ((p,G(p,u)) , (r,v)) < δF ⇒ dC (F (p,G(p,u)) , F (r,v)) < εSine G is ontinuous on {p} × C[T,B]m, there is a δG > 0 suh that
∀(r,w) ∈ P × C[T,B]m,

dP×C[T,A]m ((p,u), (r,w)) < δG ⇒ dC (G(p,u), G(r,w)) < δF(3) Let u ∈ C[T,B]m. Let ε > 0, T ∈ T. For the sake of tidiness, we'lloverload the symbol ‖ · ‖T using it as a seminorm on both C[T,B]m and
C[T,S]m×m. In the latter ase, ‖A(p)‖T = max0≤t≤T ‖A(p)(t)‖, where
‖ · ‖ is the matrix norm on Bm×m. Let
ε′ =

1

2

(√
(‖A(p)‖T + ‖F (p,u)‖T )

2 + 4ε− ‖A(p)‖T − ‖F (p,u)‖T
)Then ∃δF , δA > 0 ∃TF , TA ∈ T suh that ∀(r,v) ∈ P × C[T,B]m,

dTF
((p,u), (r.v)) < δF ⇒ dT (F (p,u), F (r.v)) < ε′

dTA
((p,u), (r.v)) < δA ⇒ dT (A(p,u), A(r.v)) < ε′
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet T ′ = max {TA, TF} and take (r,v) ∈ P×C[T,B]m suh that dT ′ ((p,u), (r.v))
< min {δF , δA}. Then,
dT (A(p)F (p,u), A(r)F (r,v)) = ‖A(p)F (p,u)− A(r)F (r,v)‖T

≤ ‖A(p)−A(r)‖T ‖F (p,u)− F (r.v)‖T
+ ‖A(p)− A(r)‖T ‖F (p,u)‖T
+ ‖A(p)‖T ‖F (p,u)− F (r.v)‖T

< ε(4) Choose ε > 0, T ∈ T, and u ∈ C[T,B]m. Sine F is ontinuous on
{p}×C[T,B]m, there is an open neighbourhood of (p,u) in P ×C[T,B]msuh that T · dT (F (p,u), F (r,v)) < ε holds for all points, (r,v), in theneighbourhood. Reusing several steps from the proof of the BuildingBlok Lemma (6b), it is easy to show that dT (F (p,u), F (r,v)) ≤ T ·
dT ((p,u), (r,v)).Remark 3.2.3. The Building Blok Lemma and the Continuity Lemma natu-rally omplement Theorems TZ1 and TZJ2 ( on page 19 and page 27), respe-tively. The former suggests ways to onstrut operators that satisfy TheoremTZ1 and the latter merely assures us that there will be no unpleasant surpriseswhen we hope for them to satisfy Theorem TZJ2. The key observation hereis that most operators we might build from these theorems�starting with theidentity operator as our foundation�will satisfy only WCaus and Lip(λ, τ)for some λ ≥ 1. There are only two operations in the list that an be appliedto modify suh an operator into one whih will satisfy Caus and Lip(λ, τ) fora λ < 1:
• integration, and
• multipliation by a matrix stream A(t) that begins at 0 (at t = 0) andwhose norm remains bounded by some λ < 1.Remark 3.2.4. This suggests the following lass of operators, at least as astarting point.Corollary 3.2.5. Let (P, dP ) be a metri spae (of parameter values), let

p ∈ P , and let V ⊆ P be a neighbourhood of p. Let y : P → C[T,B]m beontinuous at p. Let A,B : P → C[T,S]m×m be funtions suh that
• A and B are ontinuous at p
• ∀r ∈ V B(r)(0) = 0 ∈ Bm×m 60
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• ∃MA,MB ∈ R+ ∀t ∈ T ∀r ∈ V ,
‖A(r)(t)‖ ≤MA and ‖B(r)(t)‖ ≤MB < 1De�ne F : P × C[T,B]m → C[T,B]m, as follows for u ∈ C[T,B]m, r ∈ P :

F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +

ˆ t

0

A(r)(s)u(s) dsThen for every r ∈ V , the funtion F (r, ·) : C[T,B]m → C[T,B]m has a �xedpoint v ∈ C[T,B]m, and its �xed point funtion Φ : V → C[T,B]m (as desribedin (1.3.3) on page 15) is ontinuous at p.Remark 3.2.6. Sine C[T,B]m and C[T,S]m×m are losed under their variousalgebrai operations and sine integration is linear, a single y, B, and A arelearly su�ient here (e.g. the sum of two onstant streams y1(r)(t)+y2(r)(t)ould obviously be expressed using a single onstant stream y(r)(t) and like-wise for the other terms). Nested integrals, however, annot be simpli�ed intoa single integral. So Corollary 3.2.5 an be generalized further in the followingway.Corollary 3.2.7. Let (P, dP ), p, V , y, and B be as de�ned in Corollary 3.2.5.Let n ∈ Z+ and let A1, A2, . . . , An all be as A is de�ned (all ontinuous at pand all having bounded norms throughout V and T). Then the same results anbe obtained by de�ning F as follows (using the notation introdued in Remark3.1.4):
F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +

n∑

k=1

ˆ (k)

0

(Ak(r)u) (t)Remark 3.2.8. Corollary 3.2.7 is the most general result that an be obtaineddiretly (and exlusively) from the Building Blok Lemma and the ContinuityLemma, but with a bit of extra work, we an go further to takle in�nite seriesof nested integrals instead of merely �nite sums of them.Lemma 3.2.9. Let4 M ∈ R+ and let A1, A2, A3, . . . ∈ C[T,S]m×m be a se-quene of matrix streams suh that ∀t ∈ T ∀k ∈ Z+ ‖Ak(t)‖ ≤ M . Then thefollowing operator is well-de�ned on C[T,B]m:
F (u)(t) =

∞∑

k=1

ˆ (k)

0

(Aku) (t) (3.2.7)4In fat, the lemma holds if M is any funtion of the form M : T → R+, but we an'tmake use of this generality here and it beomes merely inonvenient for our purposes.
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. For u ∈ C[T,B]m, n ∈ Z+, and t ∈ T, de�ne the partial sum Fn asfollows:
Fn(u)(t) =

n∑

k=1

ˆ (k)

0

(Aku) (t)Then by Lemma 3.1.5, for any T ∈ T, and any N > 0 and n > N ,
dT (Fn(u), FN(u)) = ‖Fn(u)− FN(u)‖T

=

∥∥∥∥∥

n∑

k=N+1

ˆ (k)

0

(Aku)

∥∥∥∥∥
T

≤
n∑

k=N+1

∥∥∥∥∥

ˆ (k)

0

(Aku)

∥∥∥∥∥
T

=

n∑

k=N+1

max
0≤t≤T

∥∥∥∥∥

ˆ (k)

0

(Aku) (t)

∥∥∥∥∥

≤ M ‖u‖T
n∑

k=N+1

max
0≤t≤T

tk

k!

= M ‖u‖T
n∑

k=N+1

T k

k!Given u and T , this distane an be made arbitrarily small by making N su�-iently large (and keeping n > N). Thus, for every u ∈ C[T,B]m, {Fn(u)}∞n=1 isa loally uniform Cauhy sequene and sine C[T,B]m is omplete, limn→∞ Fn(u)exists (and hene de�nes F (u)).Lemma 3.2.10. For all λ > 0 the operator F : C[T,B]m → C[T,B]m de�nedin (3.2.7) on the preeding page satis�es Caus and Lip(λ, τ) with τ = λ
M+λ(where M is the upper bound for ‖Ak(t)‖ indiated in Lemma 3.2.9).Proof. By the Building Blok Lemma, Parts (1b), (2b), (3b), and (6a), Fn ∈Caus for every n ∈ Z+. Loally uniform onvergene implies pointwise on-vergene, so if for some T ∈ T, u,v ∈ C[T,B]m ∀n ∈ Z+ Fn(u)(T ) = Fn(v)(T ),then the same is true of the limits of eah side of the equation as well. This istrue whether T = 0 or T > 0. Thus, it follows that the limit F also satis�esCaus .Let T ∈ T and u,v ∈ C[T,B]m suh that dT (u,v) = 0. Let λ > 0 and

τ = λ
M+λ

. Then by the Building Blok Lemma (1b), (3), (5d), and (6b),
∀n ∈ Z+ the operator u 7→ ´ (n)

0
(Anu) satis�es Lip(τnM, τ). Thus, using (2),

Fn ∈ Lip (M n∑

k=1

τk, τ

)
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dT+τ (Fn(u), Fn(v)) ≤M

n∑

k=1

τkdT+τ(u,v)Now, dT+τ (F (u), F (v)) = dT+τ (limn→∞ Fn(u), limn→∞ Fn(v)), and sine dT+τis ontinuous,
dT+τ

(
lim
n→∞

Fn(u), lim
n→∞

Fn(v)
)

= lim
n→∞

dT+τ (Fn(u), Fn(v))

≤ M
∞∑

k=1

τkdT+τ (u,v)

=
Mτ

1− τ dT+τ (u,v)

= λdT+τ (u,v)Remark 3.2.11. Lemmas 3.2.9 and 3.2.10 o�er onditions su�ient to guaran-tee a �xed point for integral series operator (3.2.7) using Theorem TZ1. Wenow wish to augment the domain of this operator with a parameter spae anddetermine a (ideally modest) set of onditions to be imposed on the matrixstreams {An}∞1 to ensure suh an operator is ontinuous at a given point inits parameter spae (the main requirement demanded by Theorem TZJ2).Lemma 3.2.12 (The Equiontinuity Lemma). Let (X,TX) be a topologialspae (where TX is the topology on X) and (Y, dY ) be a metri spae. Let
{fn}∞n=1 be a sequene of funtions fn : X → Y that onverges pointwise to afuntion f : X → Y . If {fn}∞n=1 is equiontinuous at a point x ∈ X, then f isontinuous at x.Proof. If {fn}∞n=1 is equiontinuous at x, then ∃δx : R+ → TX suh that ∀ε > 0
x ∈ δx(ε) and ∀n ∈ Z+ ∀y ∈ X y ∈ δx(ε) ⇒ dY (fn(x), fn(y)) < ε. Sine fnonverges pointwise to f , ∃N : X × R+ → N suh that ∀y ∈ X ∀ε > 0
∀k > N(y, ε) d(fk(y), f(y)) < ε. Let ε > 0. Let y ∈ δ(ε/3). Choose any
n > max {N(x, ε/3), N(y, ε/3)}. Then,
dY (f(x), f(y)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 3.2.13. Let (P, dP ) be a metri spae and let {An}∞n=1 be a sequene offuntions An : P → C[T,S]m×m. For eah n ∈ Z+ de�ne Hn : P ×C[T,B]m →
C[T,B]m as Hn(r,v)(t) = (An(r)(t)) (v(t)) (pointwise matrix multipliation).If {An}∞n=1 are equiontinuous at a point p ∈ P and ∃M : T → R+ suh that
∀T ∈ T ∀n ∈ Z+ ‖An‖T ≤ M(T ), then {Hn}∞n=1 are equiontinuous at (p,u)for every u ∈ C[T,B]m.Proof. Let δA : R+ × T→ R+ be the modulus of ontinuity for {An}∞n=1 at p.That is, ∀ε > 0 ∀T ∈ T ∀n ∈ Z+∀r ∈ P ,

dP (r, p) < δA(ε, T )⇒ ‖An(p)− An(r)‖T < εWe an then derive a modulus of ontinuity for {Hn}∞n=1 using only δA, M(T ),and a stream u ∈ C[T,B]m (and, in partiular, not using n) by following theproof of the Continuity Lemma part (3), taking F to be the projetion funtion
F : P ×C[T,B]m → C[T,B]m, de�ned for (r,v) ∈ P ×C[T,B]m as F (r,v) = v.Spei�ally, given ε > 0, u ∈ C[T,B]m, and T ∈ T, we take

ε′ =
1

2

(√
(M(T ) + ‖u‖T )

2 + 4ε−M(T )− ‖u‖T
)(f. proof of the Continuity Lemma (3.2.2), part (3)). Then de�ne δ(ε, T,u) =

min {ε′, δA(ε′, T )}.Lemma 3.2.14. Let (P, dP ) be a metri spae and let {fn}∞n=1 be a sequeneof funtions fn : P → C[T,B]m whih is equiontinuous at every point in someset Q ⊆ P . De�ne Fn : P → C[T,B]m as follows for r ∈ P , n ∈ Z+, and
t ∈ T:

Fn(r) =
n∑

k=1

ˆ (k)

0

(fk(r)) (t)Then {Fn}∞n=1 is equiontinuous on Q.Proof. Sine {fn}∞n=1 is equiontinuous on Q, there is a modulus of ontinuityfuntion δf : R+ × T × Q → R+ suh that ∀ε > 0 ∀n ∈ Z+ ∀T ∈ T ∀q ∈ Q
∀p ∈ P dP (p, q) < δf (ε, T, q) ⇒ dT (fn(p), fn(q)) < ε. De�ne δ(ε, T, p) =
δf(e

−T ε, T, p). Then for any T ∈ T, n ∈ Z+, and q ∈ Q suh that dP (p, q) <
64
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δ(ε, T, p),

dT (Fn(p), Fn(q)) =

∥∥∥∥∥

n∑

k=1

ˆ (k)

0

(fk(p))−
n∑

k=1

ˆ (k)

0

(fk(q))

∥∥∥∥∥
T

=

∥∥∥∥∥

n∑

k=1

ˆ (k)

0

(fk(p)− fk(q))
∥∥∥∥∥
T

≤
n∑

k=1

∥∥∥∥∥

ˆ (k)

0

(fk(p)− fk(q))
∥∥∥∥∥
T

=

n∑

k=1

max
0≤t≤T

∥∥∥∥∥

ˆ (k)

0

(fk(p)− fk(q)) (t)
∥∥∥∥∥

≤
n∑

k=1

max
0≤t≤T

tk

k!
max
0≤s≤t

‖(fk(p)− fk(q)) (s)‖ (3.2.8)
=

n∑

k=1

max
0≤t≤T

tk

k!
dt (fk(p), fk(q))

≤
n∑

k=1

T k

k!
dT (fk(p), fk(q))

< e−T ε

n∑

k=1

T k

k!

< e−T ε

∞∑

k=1

T k

k!

= e−T εeT = εThe inequality in (3.2.8) is from Lemma 3.1.5 on page 54.Theorem 3.2.15 (The General Form Theorem). Let (P, dp) be a metri spae(of parameters). Let V ⊆ P be a neighbourhood of a point p ∈ P . Let y : P →
C[T,B]m be ontinuous at p. Let B,A1, A2, . . . : P → C[T,S]m×m be funtionssuh that
• B is ontinuous at p, and {An}∞n=1 are equiontinuous at p,
• ∀r ∈ V B(r)(0) = 0 ∈ C[T,S]m×m, and
• ∃MA,MB ∈ R+ ∀r ∈ V ∀t ∈ T ∀n ∈ Z+ ‖An(r)(t)‖ ≤MA and ‖B(r)‖ ≤
MB < 1
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareDe�ne F : P × C[T,B]m → C[T,B]m as follows for r ∈ P , u ∈ C[T,B]m, and
t ∈ T:

F (r,u)(t) = y(r)(t) +B(r)(t)u(t) +
∞∑

k=1

ˆ (k)

0

(Ak(r)u) (t) (3.2.9)For each r ∈ P de�ne Fr : C[T,B]m → C[T,B]m as Fr(u) = F (r,u).Then for eah r ∈ P , Fr has a unique �xed point Φ(r), and the �xed pointfuntion Φ : V → C[T,B]m for F is ontinuous at p.Proof. First we'll show that ∀r ∈ P Fr satis�es Caus and Contr . TheoremTZ1 on page 19 informs us that these onditions are su�ient to guaranteethat Fr has a unique �xed point for all r ∈ P . Finally we show that for every
u ∈ C[T,B]m, F is ontinuous at (p,u), and thus, Theorem TZJ2 on page 27provides the onlusion.[Fr ∈ Caus ℄ Lemma 3.2.9 establishes the fat that Fr(u) onverges to a streamfor all (r,u) ∈ P × C[T,B]m. Using the Building Blok Lemma, Parts (1a),(1b), (3b), (5a), (5), and (3.2.10), we �nd that eah of the main three termssatis�es Caus for any �xed r ∈ P . Part (2b) assembles them to show that Fr,itself, satis�es Caus .[Fr ∈ Contr ℄ Let λΣ = 1−MB

2
and τ = λΣ

MA+λΣ
. From (1a) the �rst term of Frsatis�es Lip(0, τ). From (1b) and (5) the seond term satis�es Lip(MB, τ).From Lemma 3.2.10, the third term (the summation) satis�es Lip (λΣ, τ).Putting the three results together, we onlude from (2) that for all r ∈ P ,

Fr satis�es Lip(λ, τ) with λ = 0 +MB + λΣ = 1+MB

2
< 1.[F ontinuous at (p,u)℄ By Lemma 3.2.13, the set of integrands is equiontin-uous at every point in the set Q = {p} × C[T,B]m. Thus, by Lemma 3.2.14,the set of partial sums {∑n

k=1

´ (k)

0
(Ak(r)u) (t)

}∞

n=1
is equiontinuous at everypoint in Q. Sine the series onverges pointwise, the Equiontinuity Lemmathen asserts that its limit is ontinuous at every point of Q. It is then trivialto use the Continuity Lemma to show that F is ontinuous at every point in

Q, and hene by Theorem TZJ2, Φ is ontinuous at p.3.3 Appliations3.3.1 The Mass-Spring-Damper System Revisited3.3.1.1 Case Study 1The simple mass-spring-damper system (see Figure 3.3.1) was introdued in[TZ07℄ as an analog network ase study. The system is typially expressed as66



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarea seond-order, homogeneous ODE with onstant oe�ients:
Mẍ(t) +Dẋ(t) +Kx(t) = f(t)where M is the mass, D is the damping oe�ient, K is the spring onstant,

f is the foring funtion, and x is the displaement. The initial onditions aregiven as
x(0) = x0 ∈ R (initial displaement)
ẋ(0) = v0 ∈ R (initial veloity)
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Figure 3.3.1: Mass-Spring-Damper SystemIt is typial to redue the seond-order equation to a �rst-order system usingthe substitutions v(t) = ẋ(t) and a(t) = v̇(t). Integrating this system withrespet to t and solving for the initial onditions gives us a system of integralequations equivalent to the original initial value problem:
a(t) =

f(t)−Dv(t)−Kx(t)
M

v(t) =

ˆ t

0

a(s) ds+ v0

x(t) =

ˆ t

0

v(s) ds+ x0This system is the mass-spring-damper system as it is represented in [TZ07℄and [TZ11℄ as their �rst ase study. For eah parameter hoie p = (M,K,D, v0, x0, f),it indues the operator Fp : C[T,R]3 → C[T,R]3 de�ned for u(t) = (a, v, x)⊺ (t)as
Fp



a
v
x


 (t) =




1
M

(f(t)−Dv(t)−Kx(t))
´ t

0
a(s) ds+ v0

´ t

0
v(s) ds+ x0


 (3.3.1)67



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareA �xed point of this operator represents both a solution the original initialvalue problem (with the given parameters), and the semantis for the analognetwork shown in Figure 3.3.2 (whih is a slightly less formal version of theone used by Tuker and Zuker):
-

f(t)

-
x(t)

-
v(t)

Weighted Sum︸ ︷︷ ︸(weights)?

1
M

?

−K
M

?

− D
M

-
a(t) ´ t

0
+c

v0

?

-
v(t) ´ t

0
+c

x0

?

-
x(t)

Figure 3.3.2: Analog Network for Simple Mass-Spring-Damper SystemTuker and Zuker prove that this operator Fp satis�es the Contr ondition if
M > max {K, 2D}, and hene their theory guarantees the existene of a �xedpoint under that ondition. It is unlear whether this is a neessary ondition,however, but while it may be weakened to some degree, it annot be disposedaltogether, as the following example demonstrates.Example 3.3.1. Let T ≥ 0. Take the onstants M = D = K = 1, v0 =
x0 = 0, and let u1 = (a1, v1, x1)

⊺,u2 = (a2, v2, x2)
⊺ be stream tuples suh that

x1 = x2 = a1 = a2 (for all time), and v1↾[0,T ]= v2↾[0,T ] but ∃t ∈ (T, T + τ ] suhthat v1(t) 6= v2(t). For onveniene, write (a′i, v
′
i, x

′
i)
⊺ = Fp(ui) for i = 1, 2.
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThen for any τ > 0, λ < 1, and any input stream f ,
dT+τ (Fpu1, Fpu2) = max{dT+τ(a

′
1, a

′
2), dT+τ(v

′
1, v

′
2), dT+τ (x

′
1, x

′
2)}

≥ dT+τ (a
′
1, a

′
2)

= dT+τ

(
f −Dv1 −Kx1

M
,
f −Dv2 −Kx2

M

)

= dT+τ ((f − v1 − x1), (f − v2 − x2))
= max

0≤t≤T+τ
|(f(t)− v1(t)− x1(t))− (f(t)− v2(t)− x2(t))|

= max
T≤t≤T+τ

|(f(t)− v1(t)− x1(t))− (f(t)− v2(t)− x2(t))|

= max
T≤t≤T+τ

|v2 − v1|

= dT+τ(v1, v2)

= max{dT+τ(v1, v2), 0, 0}
= max{dT+τ(v1, v2), dT+τ(x1, x2), dT+τ(a1, a2)}
= dT+τ(u1,u2)

> λdT+τ(u1,u2)Thus, Fp with p = (1, 1, 1, 0, 0, f) does not satisfy the Contr ondition.3.3.1.2 A More Robust FormulationExample 3.3.1 shows that there are parameter values whih ause Tuker andZuker's model of the mass-spring-damper system to fail to satisfy Contr ,and hene also to fail to satisfy their speial ondition, M > max{K, 2D}.In other words, the speial ondition is not simply an artifat of alulation(or an �idle threat,� as it were); it does identify systems whih do not satisfyContr . While somewhat disappointing, it is not ompletely unexpeted thatsuh systems would exist. In partiular, it is oneivable to think we mightsee the Contr ondition fail in regions of the parameter spae in whih thesystem behaves erratially or in whih the system is most sensitive to parametervariation. Oddly enough, that does not appear to be the ase.Reall that there are three types of behaviour a mass-spring-damper systeman exhibit (see [BD01℄, for example, or almost any elementary text on or-dinary di�erential equations): overdamped, ritially damped, and under-damped. An overdamped system behaves as if submerged in molasses�ifthe mass is displaed (and no other foring funtion ats on it), it graduallyand monotonially returns to the equilibrium position. A ritially dampedsystem monotonially returns to its equilibrium position as well, but as quiklyas possible (like an optimized overdamped system). An underdamped systemwill osillate with exponentially dereasing amplitude.69



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThe value of the damping ratio ζ = D/
√
4MK determines whih behaviour asystem will exhibit. If ζ > 1 the system is overdamped, if ζ < 1 the systemis underdamped, and if ζ = 1 it is ritially damped. Sine the motion of anunderdamped system is the least onstrained, we might expet that if Tukerand Zuker's ondition (M > max{K,D}) is to fail, an underdamped systemis where it would happen; and likewise, if it ever holds, surely it would hold foran overdamped system. In fat, for eah type of behaviour there is a systemwhih satis�es the speial ondition and a system whih doesn't.Example 3.3.2. Let D ∈ R+ and set M = 3D. Then

ζ =
D√

12DK
=

√
D

12KThe system is overdamped if K < D/12, ritially damped if K = D/12, andunderdamped if K > D/12. As long as K < 3D (whih leaves plenty of wiggleroom), we have M > max{K, 2D}. So there are systems of every type whihsatisfy the ondition.Now let K ∈ R+, and let M = K. Then
ζ =

D

2
√
MK

=
D

2KThe system is overdamped if D > 2K, ritially damped if D = 2K, andunderdamped if D < 2K. Regardless of the value of D, M ≤ max{K, 2D}.So there are also systems of every type whih do not satisfy the ondition.Fortunately, by simply making the aeleration stream impliit, we an rear-range the system into an equivalent one that satis�es the Contr ondition forany hoie of M,K,D > 0 (so while the speial ondition was not merely anartifat of alulation, it was only an idiosynray of that partiular model ofthe system).De�ne the operatorG : P×C[T,R]2 → C[T,R]2 as follows for p = (M,K,D, v0, x0, f) ∈
(R+)

3 × R2 × C[T,R] = P and (v, x)⊺ ∈ C[T,R]2 (f. (3.3.1)):
G

(
p,

[
v
x

])
(t) =

[
1
M

´ t

0
(f(s)−Dv(s)−Kx(s)) ds+ v0

´ t

0
v(s) ds+ x0

] (3.3.2)For onveniene, we'll use the notation Gp(u) = G(p,u) for u ∈ C[T,R]2 and
p ∈ P .The orresponding network is shown in Figure 3.3.3. We will now show that
G satis�es the onditions demanded of F from the General Form Theorem.De�ne 70
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Figure 3.3.3: Revised Mass-Spring-Damper Network
A1(p)(t) =

[
− D

M
−K

M

1 0

] and y(p)(t)=

[
1
M

´ t

0
f(s) ds+ v0
x0

]Let all the other matries from the General Form Theorem (B and Ak for
k = 2, 3, . . .) be zero. Rewrite Equation (3.3.2) as follows to put it in the formof (3.2.9):

G

(
p,

[
v
x

])
(t) = y(p)(t) +

ˆ (1)

0

(
A1(p)

[
v
x

])
(t)It is relatively straightforward to show that y and A1 are ontinuous on P�and hene, on any neighbourhood V ⊆ P of p. So take V to be the open ballof radius M

2
, entred at p = (M,K,D, v0, x0, f). More preisely,

V = P ∩
(
M

2
,
3M

2

)
×
(
K − M

2
, K +

M

2

)
×
(
D − M

2
, D +

M

2

)

×
(
v0 −

M

2
, v0 +

M

2

)
×
(
x0 −

M

2
, x0 +

M

2

)

×
{
g ∈ C[T,R] : dC(f, g) <

M

2

}Let MA = 1 + 2D+2K
M

. Then, as required by the General Form Theorem,
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∀p′ = (M ′, K ′, D′, v′0, x

′
0, f

′) ∈ V ∀t ∈ T,
‖A1(r)(t)‖ = sup

{∥∥∥∥
[
− D′

M ′
−K ′

M ′

1 0

]
u

∥∥∥∥ : u =

[
u1
u2

]
∈ R2 and ‖u‖ ≤ 1

}

= max

{
D′ +K ′

M ′ , 1

}

≤ max

{
D + M

2
+K + M

2

M − M
2

, 1

}
=MAThere is no matrix stream B, so using the proof of the General Form Theorem,a straightforward alulation reveals that G ∈ Lip(λ, τ) for

λ =
1

2
and τ =

M

4D + 4K + 3MThe remaining anteedents of the General Form Theorem follow trivially for
G. Hene, for every p = (M,K,D, v0, x0, f), Gp has a unique �xed point Φ(p),and the orresponding �xed-point funtion

Φ :
(
R+
)3 × R2 × C[T,R]→ C[T,R]2for G is also ontinuous.The haraterization of G as a �formulation� of F is justi�ed by the fat thatany �xed point of Gp uniquely spei�es a �xed point for Fp and vie versa. Inpartiular,

[
v
x

] is a �xed point for Gp ⇔




1

M
(f −Dv −Kx)

v
x


 is a �xed point for FpHene, as intuition would suggest, Tuker and Zuker's theory an indeed beapplied to mass-spring-damper systems with any positive values for K, D, and

M . Admittedly G is not stritly equivalent to F (being two-dimensional), butif an expliit aeleration stream is desired, it an introdued to the system
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A′(p)(t) =




0 D2

M2 − K
M

DK
M2

0 − D
M

−K
M

0 1 0




y′(p)(t) =




1
M

(
f(t)− D

M

´ t

0
f(s) ds− v0 − x0

)

1
M

´ t

0
f(s) ds+ v0
x0




F ′
p



a
v
x


 (t) =

ˆ t

0

A′(p)(s)



a
v
x


 (s) ds+ y′(p)(t)Alternatively, we ould skip the order-redution step and simply integrate theoriginal ODE twie with respet to t, solving for the onstants of integrationusing the initial onditions to yield

x(t) =
1

M

ˆ t

0

(
ˆ s

0

(f(r)−Kx(r)) dr +Dx(s) + v0

)
ds+ x0

=
1

M

ˆ t

0

(
−K
ˆ s

0

x(r) dr +Dx(s)

)
ds+

1

M

(
ˆ t

0

ˆ s

0

f(r) dr ds+ tv0

)
+ x0In this ase we use 1× 1 �matries,� setting

A1(p) =
D

M

A2(p) = −K
M

B(p) = A3 = A4 = · · · = 0

y(p)(t) =
1

M

(
ˆ (2)

0

f(t) + tv0

)
+ x0Finally, returning to the issue of molasses-submerged systems and similarlywhimsial ontrivanes (along with more pratial ones), observe that the ma-tries employed in this appliation have made no use of the dimension of time,whih is built into the model. Thus, K, D, and M an be made to varysmoothly over time if, for example, one wishes to model suh systems as amass-spring-damper in a medium of varying visosity and/or temperature.3.3.1.3 Case Study 2The seond ase study in [TZ07℄ involves a oupled mass-spring-damper sys-tem: two MSD systems with one onneted to the mass of the other. The73



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareauthors derive a similar system of integral equations (with two of everythinginvolved in Case Study 1) and determine that the system satis�es Contr aslong as M1 > max(2K1, 2D1) and M2 > max(2K1 + 2K2, 2D2). Fortunately,this an be modi�ed in the same way as Case Study 1 to yield an equiva-lent system that satis�es Contr for any parameter values. Just as in thesimpler version, the orresponding parametrized operator is ontinuous, andhene, Theorem TZJ2 an be applied to it to obtain a ontinuous �xed-pointfuntion Φ : (R+)
6 × R4 → C[T,R]k (where k an be hosen to be 2, 4, or 6,depending on whether aeleration and veloity are to be expliitly representedby streams).3.3.2 Simple PendulumThe simple, fritionless pendulum with a single, rigid arm, onstrained tomove within a vertial plane is another staple of elementary mehanis. It isrepresented using the following seond-order ODE (see [Ah97℄):

θ̈(t) = −g
ℓ
sin (θ(t)) (3.3.3)where θ(t) is the angle formed by the bob and its equilibrium position at time

t, g is the gravitational onstant, and ℓ is the length of the arm. Using theorder-redution trik from the last example, let φ = θ̇. Then (3.3.3) an berepresented by the following equivalent system:
φ(t) = −

ˆ t

0

g

ℓ
sin (θ(s)) ds+ φ0

θ(t) =

ˆ t

0

φ(s) ds+ θ0Our parameter spae is P = R+ × R2 (ondense g/ℓ into a single, positiveparameter, leaving φ0 and θ0 as real numbers). In this ase, the GeneralForm Theorem is of no help at all sine the sin funtion is nonlinear. We an,however, still use the Building Blok Lemma diretly and treat the sin funtionas a sort of magially-bestowed, primitive operator like the identity and theonstant funtions from (1a) and (1b) of the Building Blok Lemma. De�ne5
G : P × C[T,R]2 → C[T,R]2 and y : P → C[T,R]2 as follows:

G

(
p,

[
φ
θ

])
(t) =

[
−g

ℓ
sin (θ(t))
φ(t)

] and y(p)(t) =

[
φ0

θ0

]5Note that G ould instead be de�ned using the simpler form G : P ×R2 → R2, but suha de�nition�while ertainly more elegant here�introdues awkwardness in the next step.74
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F

(
p,

[
φ
θ

])
(t) =

ˆ (1)

0

G

(
p,

[
φ
θ

])
(t) + y(p)(t)WhileG is de�ned above as a stream operator, it atually uses only the urrentvalue of the input stream (see Footnote 5). Hene, it learly satis�es WCaus .It takes a bit of work to develop the formal details, but di�erentiating Gpwith respet to φ and θ reveals that Gp satis�es Lip(λG, τ) for any τ ∈ R+and λG = max {1, g/ℓ}. This is beause the magnitude of the slope of the �rstomponent of G (with respet to θ rather than t) never exeeds g/ℓ, and theslope of the seond (with respet to φ) is always 1.Thus, we an apply the Building Blok Lemma to dedue that Fp satis�esCaus and Lip(1/2, τ) for τ = 1

2
min {1, ℓ/g}. It is lear by inspetion that G isontinuous, and hene, by the Continuity Lemma, so is F . Hene, by TheoremTZJ2, so is the �xed point funtion for F .The ontinuity of the �xed point may be somewhat surprising in this ase sine,for any g/ℓ, there is a ertain ritial angular veloity (or position/veloity pair)whih will be preisely the right amount to turn the bob upright and leave itthere forever in its unstable equilibrium position. Even the slightest amountless and the bob falls bak down on the side from whih it approahed thevertial. The slightest amount more, and it goes over the top, swinging bakdown on the other side. This would seem to represent a disontinuity at thatpoint of ritial veloity, but in fat, it doesn't. Theorem TZJ2 assures us ofthis, but it o�ers little in the way of insight.What drives our pereption of a disontinuity is the abrupt hange in theasymptoti behaviour of the system in response to arbitrarily small hangesin the initial onditions. Qualitatively speaking, there is a profound di�erenebetween a pendulum that falls bak down and one that remains upright. Whatthis observation fails to onsider is the length of time the bob spends in a near-upright position. As the initial veloity approahes that ritial value whihleaves the pendulum upright forever, the bob spends more and more timein that very slow-moving limbo state in whih it would appear to have anunertain future.Now onsider this fat in light of the topology on C[T,R]. Inreasingly largevalues of T must be used to enounter any signi�ant di�erene (with respet tothe pseudometris dT ) between the trajetory of the perpetually upright bob,and those with su�iently similar initial veloity. This phenomenon is plottedin Figure 3.3.4. Eah urve orresponds to the trajetory of the bob, startingat θ(0) = 0 (hanging straight down initially), with a ertain initial veloity.The trajetory marked �≈� is the one orresponding to the perfet amountof initial veloity to push the bob upright and leave it there forever. The75
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Figure 3.3.4: Pendulum trajetories approahing perfet equilibriumtrajetories that slope downward are produed by less initial veloity (someare trunated in the plot for the sake of larity), and those whih slope upwardare produed by an exessive initial veloity, whih pushes the bob over thetop. The important thing to note is that�regardless of whether too littleor too muh initial veloity is involved�the time at whih the non-uprighttrajetories distinguish themselves beomes later and later, the loser theirinitial veloity is to the ritial value. From this, we may onlude that whileinstability likely always results in a (loally) smaller modulus of ontinuity, itdoes not neessarily imply atual disontinuity�i.e. the modulus of ontinuitywill get very small around an unstable equilibrium point, but it may stillremain stritly positive.3.4 Future Work3.4.1 Develop Building Bloks to Handle Cases Like thePendulumIt is, of ourse, disappointing that for all the power of the General Form Theo-rem, it is still insu�ient to handle an appliation as basi as the most simplependulum from elementary mehanis. This is one prie we pay for keepingour Banah spae B distint from its set of salars S. By letting B = S (whihholds for many ommon vetor spaes anyway), we an introdue exponen-76



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaretiation, whih in turn, allows for power series and hene trigonometri andexponential operators. This is not, by any means, a straightforward additionto the theory, however. Consider, for example, the prospet of inluding therather modest, pointwise squaring operator to C[T,R]:Example 3.4.1. Let id
2 : C[T,R] → C[T,R] be de�ned as follows for u ∈

C[T,R]:
id

2(u)(t) = (u(t))2

id
2 ertainly satis�es WCaus , but what about Lip(λ, τ)? Let λ, τ ∈ R+ andonsider the following two streams:

u(t) =
λ+ 1

τ
t

v(t) = 0Then d0(u, v) = 0, but d0+τ (id
2(u), id2(v)) = (λ+ 1)2 > λ(λ+1) = λd0+τ (u, v).Thus, ∀λ, τ ∈ R+

id
2 /∈ Lip(λ, τ).The problem here is ultimately due to the fat that the derivative of f(x) = x2is unbounded on R. No matter how leniently we hoose λ (and τ), we analways �nd a steep enough stream to deny id

2 its oveted membership in thelass of Lip(λ, τ) operators. One way we might be able to irumvent thisproblem is by developing a nested exhaustion B1 ⊆ B2 ⊆ · · · ⊆ B of theodomain of the streams. After all, given any R, τ ∈ R+ and any u, v ∈
C[T, [−R,R]] ⊆ C[T,R], we see that

dT+τ (id
2(u), id2(v)) = max

0≤t≤T+τ

∣∣u2(t)− v2(t)
∣∣

= max
0≤t≤T+τ

|u(t) + v(t)| |u(t)− v(t)|

≤ 2R max
0≤t≤T+τ

|u(t)− v(t)|

= 2RdT+τ(u, v)Therefore, id2 an be said to satisfy the Lip(2R, τ) ondition on C[T, [−R,R]].Returning to the example of the pendulum, reall the Malaurin series for
sin(t):

sin(t) =

∞∑

k=0

(−1)kt2k+1

(2k + 1)!Let sn be the derivative of the nth partial sum:
sn(t) =

n∑

k=0

(−1)kt2k
(2k)!77
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s1s15Figure 3.4.1: Partial sums in the Malaurin expansion for cos(t)The preimage of any bounded interval entred at 0 (say, [−1, 1]) ontinues toexpand as we examine suessively larger partial sums. Turning our attentionto Figure 3.4.1, we see that the preimage of [−1, 1] under s1 is [−2, 2]. Under
s8, it's roughly [−6.1, 6.1], and by s15, the preimage has expanded to approxi-mately [−13.1, 13.1]. As n→∞, this preimage of [−1, 1] under sn approahes
R.So while none of these partial sums satisfy the Lip ondition on C[T,R], theoperator to whih they onverge does. This observation o�ers some hope thatwith a bit of are, power series might be inorporated into the theory. Themain value of doing so is in their tremendous versatility. We ould, of ourse,simply throw spei� analyti funtions like sin into the theory individually,but it would be far more powerful (and elegant) to ath them all in a single net.Furthermore, it allows for greater generality. The sin funtion traditionallyassumes only real or omplex values, but its power series expansion ould beused to de�ne versions of it (along with several other funtions) on more exotispaes.3.4.2 Other Lines of Inquiry
• A network model (or rather a mathematial model that an be inter-preted as a network model) along with a system of �xed-point semantisis presented in [TZ11℄. The authors desribe a set of onditions su�ientto guarantee that the model operates properly. The abstratness of the78



Ph.D. Thesis - N. James; MMaster University - Computing and Softwaremodel neessarily imposes a orresponding level of abstratness on theseonditions. This hapter is meant to be a ompanion work in whih someof that abstratness is sari�ed in an attempt to get loser to a moreonrete, GPAC-like result�a result in whih a tangible lass of fun-tions is identi�ed that satis�es Tuker and Zuker's onditions. [TZ11℄ is,however, only the �rst of a two-part series, the seond of whih examinestheir model from the framework of omputable analysis (spei�ally, theomputable analysis overed in [TZ04℄). Hene, a natural seond stepwill be to follow [JZ12℄ with a orresponding entry that applies om-putable analysis to the Building Blok and Continuity Lemmas, and tothe General Form Theorem.
• Even with the pendulum inluded, this theory, as it stands urrently,annot be applied to most of the dynamial systems from elementaryphysis (instanes of the wave equation, heat di�usion, and even merelythe double pendulum). Its reliane on expliit formulas is perhaps thebiggest limiting fator. Most of the ommon systems of partial di�eren-tial equations and di�erential-algebrai equations annot be representedexpliitly the way the pendulum and the mass-spring-damper systeman be written: with isolated (stream) variables exlusively on the left-hand side and potentially more ompliated expressions on the right.While it is ertainly more powerful than a diret appliation of Banah'sContration Mapping Priniple, the dependene upon this form is quitefrustrating. It would enhane the theory tremendously if it ould beadapted somehow to be appliable to some of the impliit forms. Notethat, unlike the GPAC, there is no obvious reason the model presentedhere ould not be applied to funtions of more than one variable. Whilewe insist on having at least one nonnegative real variable, others ouldeasily be inluded in the Banah spae and the parameter spae (e.g. our�streams� ould be ontinuous funtions of the form u : T→ L2(R)).
• As mentioned in the introdutory remarks of Setion 3.1.1 on page 51,it is a somewhat intriguing oinidene that our theory involves the useof square matries whose elements are taken from what turns out bea ommutative ring with identity (C[T,S]), and that this just happensto be the minimal algebrai struture neessary to de�ne determinants[HK71℄. Whether any of the myriad uses for determinants is appliableto the theory is unknown to us, but it would seem to warrant at least aursory investigation.

79



Chapter 4Researh Projet #3: Exploringthe More General Case inWhih T is Replaed by anArbitrary σ-Compat SpaeWhile most of [TZ11, TZ12℄ onerns �streams,� in C[T,A] (where T is a repre-sentation of time, taken to be either N or R≥0, and A is a topologial algebra),the �rst paper begins more generally�looking at C[X,A] where X is merelyan arbitrary σ-ompat1 spae with some extra onditions imposed on it.On page 3380 of [TZ11℄, shortly after mentioning ausality (see De�nition 1.3.13on page 16) for the �rst time, Tuker and Zuker write,�It is not lear how to de�ne (or even make sense of)the onept of ausality in the general ase for X (tak-ing, for example, X = Z2 or X = R3).�Hene, in Setion 3 of their paper, where ausality beomes essential to assume,they restrit X to the speial ase in whih it serves as a model of time,renaming it to T and taking T = R≥0 (as well as often addressing the ase inwhih T = N).Their footnote is inontrovertible. Causality is an inherently temporal phe-nomenon, and we, as human beings, appear to be hardwired to pereive timeas a stritly one-dimensional entity. Nevertheless, there does seem to be a wayto generalize their properties Caus andWCaus for spaes like Z2 or R3 whilepreserving their operational role within the theory�even if the new de�nitionsould no longer be desribed as having anything to do with our intuitive notion1A set is σ-ompat if it is a ountable union of ompat sets.80



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareof ausality. Essentially they are purely abstrat properties whih do the samejob ausality does.Loosely speaking, what is speial about T within their theory�the reasonthey appear to have hosen it�is the fat that it is totally ordered and hasa �rst element (zero). But this is true of their ompat exhaustion of X aswell. Granted, X itself doesn't neessarily have those two properties, but itturns out that this is not atually required. We an trade T for a ompatexhaustion similar to the way we might use a ompat exhaustion as a modelof N. There's one property (shift invariane) that seems somewhat trikyto transpose in this way, but in fat, we an irumvent it ompletely via theGeneralized Theorem TZJ2 on page 102�whih is quite a stroke of luk, giventhat I hadn't oneived of the projet in this hapter bak when I proved itspreursor (Theorem TZJ2 on page 27).While struggling with what I thought was a problem in their omputabilityresults (but turned out to be an embarrassing misunderstanding on my part),I thought of a few variations of their main �workhorse� property Contr (λ, τ)that would produe similar results and would work with the more general(smoothie-based) operators as well. I defer those for the Future Work setion4.1 Smoothie Spae
C[X,A] represents the set of ontinuous funtions from X into A, equippedwith the ompat-open topology. The elements of C[X,A] are appropriatelynamed �streams� when X is a model of time, but the metaphor falls apart whenit isn't. For what is, apparently, an aute lak of imagination, I've adoptedthe word smoothie to desribe the elements of C[X,A]. They're ontinuousfuntions, but they lak the total ordering we naturally assoiate with theword �stream.� So I refer to C[X,A] as smoothie spae.Throughout this hapter, as in previous hapters, we assume A is a ompletemetri spae with metri dA. We assume X is a σ-ompat topologial spae(i.e. it is a ountable union of ompat sets) with a ompat exhaustion X.De�nition 4.1.1 (Compat Exhaustion). Let X = {Xn}n∈N be a family ofompat subsets of X. Then we say X is ompat exhaustion if

X0 ⊆ X1 ⊆ · · · ⊆ X⋃∞
n=0Xn = Xand for every ompat set K ⊆ X there is an n ∈ N suh that K ⊆ Xn (seeRemark 4.1.4 on page 84 if this last ondition seems unusual).81



Ph.D. Thesis - N. James; MMaster University - Computing and Software4.1.1 PseudometrisAs before, we de�ne the sequene of pseudometris {dn}n∈N as follows:
dn(u, v) = sup

x∈Xn

dA(u(x), v(x))There are some situations in whih it is onvenient to apply these pseudomet-ris not to C[X,A], but to C[Xn,A] (for some n ∈ N). So here we take thedomain of dn to be C[X,A]2 ∪⋃∞
k=n C[Xk,A]2.And again, sine u, v, and dn are ontinuous (the latter via Lemma 1.4.1 onpage 21) andXn is ompat, it follows that ∃y ∈ Xn suh that dA(u(y), v(y)) =

dn(u, v), and hene we an write,
dn(u, v) = max

x∈Xn

dA(u(x), v(x))The same sort of metri we onstruted for C[T,A] works here as well, althoughwe have no need for it (the pseudometris are more onvenient):
dC[X,A](u, v) =

∞∑

n=0

min
{
2−n, dn(u, v)

}It is worthwhile, at this point, to review the use of pseudometris in a metrispae.Lemma 4.1.2. A sequene {un}n∈N in C[X,A] is Cauhy i� ∃N : N×R+ → Nsuh that ∀M ∈ N ∀ε > 0,
n,m ≥ N(M, ε) ⇒ dM(um, un) < εProof. (⇒) Suppose {un}n∈N is Cauhy. Then ∃N ′ : R+ → N suh that ∀ε > 0,
n,m ≥ N ′(ε) ⇒ dC[X,A](um, un) < εDe�ne N : N× R+ → N as follows:
N(M, ε) = max

{
N ′(ε), N ′(2−M−1)

}Let M ∈ N, ε > 0, and m,n ≥ N(M, ε). Being just a member of the summa-tion of nonnegative terms,
min

{
2−M , dM(um, un)

}
≤ dC[X,A](um, un)

≤ 2−M−1

< 2−M82
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dM(um, un) = min

{
2−M , dM(um, un)

}

≤ dC[X,A](um, un)

< ε (sine m,n ≥ N ′(ε))(⇐) Now suppose ∃N : N × R≥0 → N as desribed in the statement of thelemma. De�ne N ′ : R+ → N as follows:
N ′(ε) = N

(
⌈1− log2(ε)⌉ ,

ε

2 ⌈1− log2(ε)⌉

)Let ε > 0. Let m,n ≥ N ′(ε) and for onveniene, let M = ⌈1− log2(ε)⌉.Then,
dC[X,A](um, un) ≤

M∑

i=0

min
{
2−i, di(um, un)

}
+

∞∑

i=M+1

2−i

≤ MdM(um, un) +
2−(M+1)

1− 1/2

= MdM(um, un) + 2−MBy de�nition of N and M ,
MdM(um, un) < M · ε

2 ⌈1− log2(ε)⌉
=

ε

2and
2−M = 2−⌈1−log2(ε)⌉

= 2−⌈log2(2/ε)⌉

≤ 2log2(ε/2)

=
ε

2Therefore, dC[X,A](um, un) < ε.4.1.2 Completeness of C[X,A]Lemma 4.1.3. If A is omplete and X is a σ-ompat spae with a ompatexhaustion, then C[X,A] is omplete. 83



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. See Lemma 2.3.11, Part () from [TZ11℄.Remark 4.1.4. The third property of a ompat exhaustion (that every om-pat set be ontained within some member of the exhaustion) is somewhatnonstandard. Some authors omit it, others omit it but insist that for eah
n ∈ N, Xn is a subset, not just of Xn+1, but of the interior of Xn+1. It�or atleast something like it�is neessary for Lemma 4.1.3 on the preeding page.It also ensures that the topology generated by {dn}n∈N is the ompat-open(and the loal uniform and the inverse limit) topology, although that, in andof itself, is not mandatory.Example 4.1.5. It is possible that some other ondition would su�e to en-sure ompleteness relative to A (perhaps that every member of the exhaustionbe simply onneted?), but it's lear that without any third ondition, we an-not be ertain C[X,A] will be omplete. For example, going bak to our oldstandby, X = R≥0 with its usual topology, let A = R and for eah n ∈ N de�ne

Xn =

[
0,

n

n+ 1

]
∪ [1, n+ 1]Then eahXn is ompat, X0 ⊆ X1 ⊆ · · · ⊆ X and⋃n∈NXn = X, but of oursethere are several ompat sets that aren't ontained in any Xn (e.g. [0, 1]). Foreah n ∈ N, de�ne un ∈ C[X,A] as follows:

un(x) =





1 if 0 ≤ x < n
n+1

(n + 1)(1− x) if n
n+1
≤ x < 1

0 if x ≥ 1De�ne N : N× R≥0 → N as follows:
N(M, ε) =MLet ε > 0 and let M ∈ N. Let m,n ≥ N(M, ε). Then, for x < M

M+1
,

um(x) = un(x) = 1, and for x ≥ 1, um(x) = un(x) = 0. Thus, um and un agreeon XM and hene,
dM(um, un) = 0 < εTherefore, by Lemma 4.1.2 on page 82, {un}n∈N is Cauhy. It is lear, however,that {un}n onverges (pointwise) to the following funtion:

u(x) =

{
1 if 0 ≤ x < 1

0 if x≥1But u /∈ C[X,A]. 84



Ph.D. Thesis - N. James; MMaster University - Computing and Software4.2 Caus, Lip, and Contr for C[X,A]De�nition 4.2.1 (Caus(X)). Let X be a σ-ompat spae with ompat ex-haustion X = {Xk}k∈N. Let F : C[X,A]→ C[X,A]. Then F satis�es Caus(X)if the following onditions2 hold:1. ∀u, v ∈ C[X,A] ∀x ∈ X0 F (u)(x) = F (v)(x)2. ∀u, v ∈ C[X,A] ∀n ∈ N dn(u, v) = 0 ⇒ dn(F (u), F (v)) = 0 (or, in otherwords, u ↾Xk
= v ↾Xk

⇒ F (u) ↾Xk
= F (v) ↾Xk

)Remark 4.2.2. It is, perhaps, helpful at this point to reall Fat 1.3.15 onpage 16, whih provides a de�nition of Caus equivalent to De�nition 1.3.13on page 16 and upon whih the de�nition of Caus(X) is based. Fat 1.3.15states thatCaus an be expressed as two separate onditions: (i) the onditionthat the image of every stream under F is the same at time t = 0, and (ii) that
F ∈ WCaus . The �rst ondition in the de�nition of Caus(X) is analogousto Condition (i), where the �X0� of Condition (i) is simply the singleton set
{0}. The seond ondition in the de�nition of Caus(X) is learly analogousto Condition (ii) (WCaus).Example 4.2.3. Even when X = R≥0, Caus(X) is more general than theproperty Caus from De�nition 1.3.13 (but anything that satis�es Caus doessatisfy Caus(X)), as the following example shows. Let T be the nonnegativereal numbers with the standard ompat exhaustion X = {[0, k]}k∈N. De�ne
F : C[T,R]→ C[T,R] as follows for u ∈ C[T,A], t ∈ T :

F (u)(t) = u (⌊t⌋) + (t− ⌊t⌋) (u (⌈t⌉)− u(⌊t⌋))Whenever t is not a natural number, the value of F (u)(t) depends on thevalue of u at the next natural number above t (of ourse, it also depends onthe value at the previous natural number, but that's perfetly onsistent withausality)�i.e. at a �future� point of u (see Figure 4.2.1).The fat that this F really isn't �ausal,� by any usual de�nition of the wordis a not a problem. The essential feature of ausality within this theory is toensure we an get onvergene of a �xed point in �bite-sized piees,� and forthis, Caus(X) works just as well as Caus . In partiular, it allows for thefollowing lemma.Lemma 4.2.4. Let F : C[X,A]→ C[X,A] satisfy Caus(X). Then F indues asequene of unique funtions {Fn : C[Xn,A]→ C[Xn,A]}n∈N de�ned as follows:
Fn(u↾Xn) = F (u)↾Xn2Frankly, I would greatly prefer to de�ne Caus(X) using only the seond ondition,making the �rst one a distint property (like initially onstant, or something similar), but Ifeel it's probably better to be onsistent with [TZ11℄ here to avoid onfusion.85
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t

u

F (u)

0 1 2 3 4 5 6Figure 4.2.1: A stream operator that satis�es Caus(X) but not CausProof. Follows diretly from the seond property of Caus(X).Remark 4.2.5. While Caus(X) serves the same role in the theory as Caus , itseems to have little to do with ausality (at least as we pereive it). So I'vebeen tempted to name it progressive (and use the notation Prog(X) insteadof Caus(X)) sine an operator F ∈ Caus(X) operates �progressively� on theompat exhaustion. The value of F (u) on Xn depends on the value of u onlyon Xn. I've opted to stik with �bakwards-ompatibility� (i.e. Caus(X)) fornow to avoid a surfeit of new, made-up notation and vernaular.De�nition 4.2.6 (Lip(λ,X) and Contr (X)). Let X be a σ-ompat spaewith ompat exhaustion X = {Kk}k∈N. Let F : C[X,A] → C[X,A]. Let
λ ∈ R+. If ∀k ∈ N ∀u, v ∈ C[X,A],

dk(u, v) = 0 ⇒ dk+1(F (u), F (v)) ≤ λdk+1(u, v)Then we say F ∈ Lip(λ,X). If λ < 1, then we may say simply, F ∈ Contr (X).4.3 Generalizing the hold Operator for Smooth-iesNow that we have versions of Caus and Lip that work on C[X,A], we havealmost everything we need to generalize Theorem TZ1 on page 19. The only86



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarething missing is the hold operator from De�nition 1.3.8 on page 12 (or the
ext operator from [TZ11℄). Reall that holdT (u) agrees with u on [0, T ], andis onstant on [T,∞), with the value u(T ). It is essential for the onstrutionof the �xed point (see Constrution 1.3.24 on page 20). How an we generalizethis idea for X?Obviously we an hange T ∈ T to k ∈ N (giving us hold k : C[X,A] →
C[X,A] for every k ∈ N instead of holdT : C[T,A] → C[T,A] for every T ∈
T), and then de�ne hold k(u) so that it agrees with u on Xk. But whathappens outside Xk? If we made it onstant outside Xk, there would be noway to guarantee hold k(u) would be ontinuous�and how would we hoosethe onstant anyway? Clearly another approah is needed.The reason holdT (u) is set to the onstant u(T ) outside the interval [0, T ]is mainly to ensure that for any t ≥ 0 and any u, v ∈ C[T,A], we have
dT+t(holdT (u),holdT (v)) = dT (u, v). The existene of limk→∞Ψ(n, k) (fromConstrution 1.3.24 on page 20) depends on this equation. So how an we em-ulate that behaviour on a wild spae like X instead of the nie, orderly spae
T?The key (or a key, at least) is to look at holdT (u), not as a pieewise funtion(equal to u(t) for t ≤ T , and equal to u(T ) otherwise), but as a ompo-sition of funtions: holdT (u) = (u ◦ ρT ), where ρT : T → T is de�ned as
ρT (t) = min{t, T}. Sine it's a omposition of ontinuous funtions, the resultis ontinuous, and it should be immediately apparent to any student of topol-ogy what sort of funtion ρT is. Reall the following de�nition (see [Mun75℄,for example):De�nition 4.3.1 (Retrat). If X is a subspae of Y , then we say X is aretrat of Y if there exists a ontinuous funtion, ρ : Y → X suh that ∀x ∈ X
ρ(x) = x. The funtion ρ is alled a retration of Y onto X .We are now in a position to generalize the hold operator in a way that willfailitate the onstrution.De�nition 4.3.2 (Retratable Exhaustion). Let X be a σ-ompat spaewith ompat exhaustion X = {Xk}k∈N. Then X is retratable if ∀k ∈ N
Xk is a retrat of X. In other words, there exists a sequene of retrations
{ρk : X→ Xk}k∈N of X onto Xk.De�nition 4.3.3. Let X be a retratable ompat exhaustion of a spae, X,with retrations {ρk : X→ Xk}k∈N. For k ∈ N, de�ne hold k : C[X,A] →
C[X,A] as follows: hold k(u) = u ◦ ρkRemark 4.3.4. In fat, we have onstruted hold here only to demonstratethe appliation of the retrations and their relation to the original onstru-tion. It turns out (as I learned the hard way) that the proofs are a little87



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarenier if we stik with using the retrations (ρk) diretly and drop the holdnotation altogether. This has the added bene�t of eliminating the rather un-intuitive notation, �holdn.� It makes sense in the ontext of C[T,A] as weallow holdT (u(t)) to vary up until t = T , and then �hold� it, �xed at thatvalue forever after. The funtion we have de�ned above, however, isn't �hold-ing� anything. It would be more aurate to say it's propagating or smearingvalues of u taken from Xk throughout X, but we don't atually have to sayanything if we just use ρk.Still, while we'll generally avoid the hold notation, we need to establish itsontinuity.Lemma 4.3.5. ∀u, v ∈ C[X,A] ∀n, k ∈ N dk(u ◦ ρn, v ◦ ρn) = dj(u, v) where
j = min {n, k}.Proof. If k ≤ n, then

dk(u ◦ ρn, v ◦ ρn) = max
x∈Xk

{dA(u(ρn(x)), v(ρn(x)))}

= max
x∈Xk

{dA(u(x), v(x))}

= dk(u, v)Otherwise,
dk(u ◦ ρn, v ◦ ρn) = max

x∈Xk

{dA(u(ρn(x)), v(ρn(x))}

= max
y∈Xn

{dA(u(y), v(y))}

= dn(u, v)Lemma 4.3.6. Let n ∈ N and de�ne holdn : C[X,A]→ C[X,A] as in De�ni-tion 4.3.3. Then holdn is (uniformly) ontinuous.Proof. Let ε > 0, k ∈ N. Let δ = ε and j = min {n, k}. Let u, v ∈ C[X,A](or in C[Xi,A] for some i ≥ max {n, k}) suh that dj(u, v) < δ. Then byLemma 4.3.5
dk(holdnu,holdnv) = dk(u ◦ ρn, v ◦ ρn)

= dj(u, v)

≤ dk(u, v)

< ε

88



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareBoth equations in the following lemma an be proven trivially (given that
ρn(X) = Xn), but when they appear in the middle of a proof with ompliatedexpressions in the plae of u and v, the steps don't seem quite so obvious. Sothe lemma is stated here without proof.Lemma 4.3.7. If u, v ∈ C[X,A] and n ∈ N, then

sup
x∈X

dA ((u ◦ ρn) (x), (v ◦ ρn) (x)) = dn(u ◦ ρn, v ◦ ρn)

= dn(u, v)Lemma 4.3.8. If u ∈ C[X,A] and n ∈ N, then holdn(u) is bounded (that is,the range of holdn(u) is a bounded subset of A).Proof. Let x0 ∈ Xn. De�ne f : X → R as f(x) = dA(u(x), u(x0)). Sine uand dA are ontinuous (the former by de�nition of C[X,A], and the latter byLemma 1.4.1 on page 21), f is ontinuous on X. Thus, f is ontinuous on
Xn, whih is ompat. Therefore, f(Xn) is ompat and sine f(Xn) ⊆ R,it follows that f(Xn) is bounded (and losed). Hene, ∃M > 0 suh that
∀x ∈ Xn f(x) ≤M .4.3.1 Do We Have the �Right� Retratable Exhaustion?Remark 4.3.9 (Alternative De�nition of Retratable Exhaustion). In some sit-uations, it would be onvenient to have a di�erent sequene of retrations:
{ρ′k : Xk+1 → Xk}k∈N. It is, of ourse, easy to de�ne ρ′k as simply, ρk↾Xk+1

forany k ∈ N if we already have the sequene from De�nition 4.3.2 on page 87.It seems as though we should be able to go the other way too, however�thatis, to start with the sequene {ρ′k : Xk+1 → Xk}k∈N, and from it, de�ne thesequene {ρk : X→ Xk}k∈N. It is lear how this would be done:
ρk(x) =

{(
ρ′k ◦ ρ′k+1 ◦ · · · ◦ ρ′q(x)−1

)
(x) if q(x) > k

x if q(x) ≤ kwhere q(x) = min {i ∈ N : x ∈ Xi} for any x ∈ X.While this ρk is learly well-de�ned, unfortunately I'm not sure whether it isneessarily ontinuous. Super�ially it appears as though it is not de�ned thesame way at every point (it is de�ned above as a pieewise funtion with aountably in�nite number of piees), but reall that retrations behave as theidentity on their ranges. If x ∈ Xi then ∀j ≥ i ρ′j(x) = x. Hene, retrationsof higher index an be omposed inde�nitely without moving the image of
x. Hene, it would appear that ρk is atually de�ned onsistently aross itsdomain as a omposition of ontinuous funtions. The problem is that it's89



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarenot neessarily a �nite omposition over an open set. One thing I do knowis that if it is ontinuous, the proof will depend on that third ondition of aompat exhaustion (that every ompat set be ontained within a member ofthe exhaustion), as the following ounterexample3 illustrates.Example 4.3.10. Let X = [0, 1] with the usual subspae topology of R. For
k ∈ N, let

Xk = {0} ∪
[

1

k + 1
, 1

]Clearly {Xk}k∈N would be a ompat exhaustion of X if only it satis�ed theextra requirement that every ompat set be ontained within a member of theexhaustion (and [0, 1/2] isn't, for example). A de�nition for ρ′k : Xk+1 → Xk isimmediately apparent:
ρ′k(x) =

{
1

k+1
if x ∈ [ 1

k+2
, 1
k+1

]

x otherwiseAording to the proposed de�nition of ρk : X → Xk as a omposition, ρk =
ρ′k ◦ ρ′k+1 ◦ · · · , we obtain (after putting them all together),

ρk(x) =

{
1

k+1
if x ∈ (0, 1

k+1

]

x otherwiseThis ρk is disontinuous, however (for any k ∈ N), and thus it is not a re-tration. Thus, if the onstrution of {ρk}k∈N from {ρ′k}k∈N desribed in Re-mark 4.3.9 is guaranteed to produe ontinuous funtions, this guarantee de-pends upon the extra ondition in our de�nition of a ompat exhaustion. Thewhole question, however, is admittedly somewhat moot when we an simplyuse De�nition 4.3.2 on page 87 and have everything we need.4.4 Existene of a Unique Fixed Point for Op-eratorsWhih Satisfy Caus(X) and Contr(X)We now have all the tools neessary to generalize Theorem TZ1 and show thatan operator F : C[X,A]→ C[X,A] that satis�es Caus(X) and Contr (X) hasa unique �xed point, regardless of whether X is a model of time or not. Thereis a quik and easy way to do this proof that simply invokes Banah's FixedPoint Theorem�allowing it to do all the heavy lifting�and a longer, more3Thanks to Prof. Jaques Carette for providing the ompat exhaustion whih inspiredthe ounterexample! 90



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareinvolved proof that diretly reprodues many of the steps in the proof of thattheorem. Eah has a slightly di�erent �xed point onstrution assoiated withit. I present the seond one only beause it uses a onstrution that is moreonsistent with the one used by Theorem TZJ2 on page 27�lest the readerthink I am pulling some sleight-of-hand.In eah ase, the expliation is a little learer if the onstrution is shown�rst (after some notation is de�ned), and the proof that it works is presentedafterwards. We start with the simpler one. To be onsistent with Constru-tion 1.3.24 on page 20, we would de�ne Ψ : N2 → C[X,A], but in the sim-pler proof we use the form Ψ : N2 → ⋃
n∈N C[Xn,A]. Then, sine this nolonger produes elements of C[X,A], we de�ne our main onvergent sequene,

{ψn}n∈N ⊆ C[X,A], from Ψ.De�nition 4.4.1. Let F : C[X,A] → C[X,A], n ∈ N, and u ∈ C[X,A]. If
dn(u, F (u)) = 0 (i.e. u↾Xn= F (u)↾Xn) then u is said to be an Xn-approximate�xed point of F .Lemma 4.4.2 (Fn: Trunations of F ). Let F : C[X,A] → C[X,A] satisfyCaus(X). Then F indues a sequene of unique funtions

{Fn : C[Xn,A]→ C[Xn,A]}n∈Nde�ned as follows:
Fn(w) = F (w ◦ ρn)↾XnMoreover, the value of Fn(w) does not depend on the de�nition of ρn (it dependsonly on ρn being a retration from X to Xn).Proof. Sine F , w, and ρn are ontinuous, so is F (w ◦ ρn). The restrition ofthis funtion to Xn is obviously ontinuous (or see Theorem 7.2, page 107 of[Mun75℄ if it doesn't seem obvious). So given any n ∈ N and w ∈ C[Xn,A],

F (w ◦ ρn)↾Xn∈ C[Xn,A]. Now suppose ρ′n : X → Xn is another retration.Sine both ρn and ρ′n behave as the identity on Xn, ∀w ∈ C[X,A]
w ◦ ρn↾Xn= w ◦ ρ′n↾XnSo dn(w◦ρn, w◦ρ′n) = 0. Thus, sine F ∈ Caus(X), dn(F (w◦ρn), F (w◦ρ′n)) =

0. Hene, Fn does not depend on the retration used.Constrution 4.4.3. (Constrution for Simpler Proof that F has a UniqueFixed Point)Let F : C[X,A] → C[X,A] satisfy Caus(X) and Contr (X). Then it has aunique �xed point, whih an be onstruted as follows (see the GeneralizedTheorem TZ1 on page 94 for proof): 91



Ph.D. Thesis - N. James; MMaster University - Computing and Software1. Let u0 ∈ C[X,A] and set ψ0 = F (u0) ◦ ρ0.Sine F ∈ Caus(X), ψ0 is an X0-approximate �xed point of F .2. Let n ∈ N and suppose ψn is an Xn-approximate �xed point of F . De�ne
Ψ(n, 0) = ψn ↾Xn+1, making Ψ(n, 0) an Xn-approximate �xed point of
Fn+1.3. For all k ∈ Z+ de�ne Ψ(n, k) = F k

n+1(Ψ(n, 0)).We will show this sequene onverges to a unique element of C[Xn+1,A].4. Given an n ∈ N for whih the sequene {Ψ(n, k)}k∈N exists and on-verges, de�ne ψn+1 =(limk→∞Ψ(n, k)) ◦ ρn+1.5. De�ne v = limn→∞ ψnThis will be the unique �xed point of F .Remark 4.4.4. There are really only three things to prove: that the �xedpoint is unique, and that the two limits (in Steps 3 and 5) exist. We'll overuniqueness �rst (in Lemma 4.4.5). To prove the other statements, we'll needto go over a few lemmas and Banah's elebrated Fixed Point Theorem �rst.Lemma 4.4.5 (If F has a �xed point, it's unique). Suppose F : C[X,A] →
C[X,A] satis�es Caus(X) and Contr(X), and has a �xed point, v ∈ C[X,A].Then v is unique.Proof. Suppose u and v are �xed points of F . By de�nition of Caus(X) (Part1, in partiular), it follows that u and v agree on X0 sine they're both inthe range of F . Hene, d0(u, v) = 0. Sine F ∈ Contr (X), there is a λ < 1suh that F ∈ Lip(λ,X). Let n ∈ N and suppose dn(u, v) = 0. Then, sine
F ∈ Lip(λ,X),

dn+1(u, v) = dn+1(F (u), F (v))

≤ λ · dn+1(u, v)But 0 < λ < 1, so the only way this is possible is for dn+1(u, v) to be zero.Hene, ∀k ∈ N dk(u, v) = 0, and therefore u = v.Theorem 4.4.6 (Banah Fixed Point Theorem). Let X be a omplete met-ri spae and f : X → X. Suppose that ∃λ ∈ R+ suh that λ < 1 and
∀x, y ∈ X d(f(x), f(y)) ≤ λd(x, y). Then f has a unique �xed point given by
limn→∞ fn(x), where x is any element of X.Proof. See any introdutory text on real analysis (e.g. Theorem 9.23 in [Rud76℄).Also known as the �ontration mapping priniple.�Lemma 4.4.7. Let F : C[X,A]→ C[X,A] satisfy Caus(X). Let n ∈ N. Then,92



Ph.D. Thesis - N. James; MMaster University - Computing and Software1. If u ∈ C[X,A] is an Xn-approximate �xed point of F then u↾Xn is a �xedpoint of Fn.2. If u ∈ C[Xn,A] is a �xed point of Fn then u ◦ ρn is an Xn-approximate�xed point of F .Proof. (1) If u ∈ C[X,A] is anXn-approximate �xed point of F , then dn(u, F (u)) =
dn(u↾Xn, F (u)↾Xn) = 0. Sine dn is a metri on C[Xn,A], this implies that
u↾Xn= F (u)↾Xn. Sine F ∈ Caus(X), F (u)↾Xn= F (u↾Xn).(2) If u ∈ C[Xn,A] is a �xed point of Fn then u = Fn(u). By de�nition (inLemma 4.4.2, Fn(u) = F (u ◦ ρn)↾Xn. Sine ρn behaves as the identity on Xn,
u = u ◦ ρn↾Xn. So,

dn(u ◦ ρn, F (u ◦ ρn)) = dn(u ◦ ρn↾Xn, F (u ◦ ρn)↾Xn)

= dn(u, Fn(u))

= 0Remark 4.4.8. In [TZ11℄, Lemma 2.1.2 states that if K is ompat and A isomplete, then C[K,A] is omplete. This is used to prove that the result holdseven if K is not ompat, but is σ-ompat (and A is omplete). Later inthe paper, however, it is also used in the proof of Theorem TZ1 to establishthe onvergene of a partiular Cauhy sequene (loosely speaking, it's thesequene I've alled Ψ(n, 0), Ψ(n, 1), . . .). Using the following lemma in plaeof Lemma 2.1.2 is what allows us to invoke Banah's Fixed Point Theoremdiretly, instead of produing a similar proof from the ground up:Lemma 4.4.9. Let X be a ompat (or σ-ompat) metri spae, and let Kbe a ompat subset of X. Let Y be a omplete metri spae. Let f : K → Ybe ontinuous. Let Cf [X, Y ] = {g ∈ C[X, Y ] : g↾K= f}. That is, let Cf [X, Y ]be the set of ontinuous funtions from X into Y whih agree with f on K.Then Cf [X, Y ] (endowed with the subspae topology) is omplete.Proof. Let {gk}k∈N be a Cauhy sequene in Cf [X, Y ]. Sine Cf [X, Y ] ⊆
C[X, Y ] (whih is omplete, by Lemma B.0.3 on page 133), there exists aunique g ∈ C[X, Y ] suh that gk → g as k → ∞. If gk onverges to g, then itertainly onverges pointwise to g, and sine ∀k ∈ N gk↾K= f , it follows that
g↾K= f also.Lemma 4.4.10 (Convergene in Step 3). Suppose F ∈ Caus(X)∩Contr(X).Let n ∈ N and suppose w ∈ C[Xn+1,A] is an Xn-approximate �xed point of
Fn+1. Then Fn+1 has a unique �xed point, whih is given by the limit of thesequene {F k

n+1(w)
}
k∈N. 93



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareProof. First note that Caus(X) is used impliitly in the statement of thelemma to establish the existene of Fn+1 (via Lemma 4.4.2). Let
Cw[Xn+1,A] = {v ∈ C[Xn+1,A] : dn(v, w) = 0}By Lemma 4.4.9, Cw[Xn+1,A] is omplete. Sine w is an Xn-approximate�xed point of Fn+1, it follows that Cw[Xn+1,A] is losed under Fn+1. Thus,restriting the domain of Fn+1 to Cw[Xn+1,A] yields a funtion of the form

F̂n+1 : Cw[Xn+1,A]→ Cw[Xn+1,A]Now from the de�nition of dn+1 and from the fat that F ∈ Caus(X), for all
u, v ∈ Cw[Xn+1,A],

dn+1(F̂ n+1(u), F̂ n+1(v)) = dn+1(F (u ◦ ρn+1), F (v ◦ ρn+1))Sine F ∈ Contr (X), ∃λ < 1 suh that ∀u, v ∈ C[X,A],
dn(u, v) = 0 ⇒ dn+1(F (u), F (v)) ≤ λdn+1(u, v)But for all u, v ∈ Cw[Xn+1,A] dn(u, v) = 0. Sine ρn+1 behaves as the identityon Xn (and on Xn+1, for that matter, but that's not relevant at the moment),it follows that dn(u ◦ ρn+1, v ◦ ρn+1) = 0. Thus, ∀u, v ∈ Cw[Xn+1,A],

dn+1(F̂ n+1(u), F̂ n+1(v)) = dn+1(F (u ◦ ρn+1), F (v ◦ ρn+1))

≤ λdn+1(u ◦ ρn+1, v ◦ ρn+1)

= λdn+1(u, v)Therefore, F̂ n+1 is a ontration (in the usual Banah sense4) on a ompletemetri spae, Cw[Xn+1,A]. By Banah's Fixed Point Theorem, it has a unique�xed point v = limk→∞ F̂ k
n+1(u) = limk→∞ F k

n+1(u) (where u ∈ Cw[Xn+1,A] isan arbitrary initial point).Theorem 4.4.11 (Generalized Theorem TZ1). Constrution 4.4.3 on page 91works as advertized. That is, if F : C[X,A] → C[X,A] satis�es Caus(X) andContr(X), then it has a unique �xed point given by the limit in Step 5 ofConstrution 4.4.3.Proof. As suggested by the onstrution, we show by indution on n, thatthere is a sequene ψ0, ψ1, . . . ∈ C[X,A] suh that for any n ∈ N, ψn is an
Xn-approximate �xed point of F . F ∈ Caus(X) yields our basis step: an4De�nition: If (X, d) is a metri spae and f : X → X , then f is a ontration if itsatis�es the anteedent of Banah's Fixed Point Theorem. That is, ∃λ < 1 (λ ∈ R+) suhthat ∀x, y ∈ X d(f(x), f(y)) ≤ λd(x, y). 94
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X0-approximate �xed point, ψ0. For the indutive step, let n ∈ N and assume
ψn ∈ C[X,A] is an Xn-approximate �xed point of F . Then Ψ(n, 0) = ψn↾Xn+1is an Xn-approximate �xed point of Fn+1. By Lemma 4.4.10 on page 93, Fn+1has a unique �xed point given by the limit of sequene Ψ(n, 0), Ψ(n, 1), . . .desribed in Step 3 of the onstrution. Extending the domain of this �xedpoint of Fn+1 from Xn+1 to X by omposing it with ρn+1 (as suggested byLemma 4.4.7 on page 92) yields an Xn+1-approximate �xed point of F , whihwe all ψn+1. This onludes the indution used to show the existene of
{ψn}n∈N.What remains to be shown is that {ψn}n∈N is onvergent and that it onvergesto a �xed point of F . De�ne N : R+ × N→ N as follows:

N(ε,M) =MLet ε > 0 andM ∈ N. Then ∀n,m ≥ M , both ψn and ψm areXM -approximate�xed points of F (as our indution in the beginning of the proof showed).Hene,
dM(ψm, ψn) = 0 < εThus, by Lemma 4.1.2 on page 82, {ψn}n∈N is Cauhy. Sine C[X,A] is om-plete (by Lemma 4.1.3 on page 83), {ψn}n∈N is onvergent. Now, given any

x ∈ X, there is a k ∈ N suh that x ∈ Xk. For any j ≥ k, ψj is an Xk-approximate �xed point of F . Therefore, ψ is also an Xk-approximate �xedpoint of F (where ψ = limn→∞ ψn). Thus, ψ(x) = F (ψ)(x). Sine this holdsfor every point x ∈ X, it follows that ψ is a �xed point of F .4.4.1 An Alternative ConstrutionI developed Constrution 4.4.3 on page 91 long after I proved Theorem TZJ2 onpage 27 for stream operators, and I obviously want to generalize that theoremto work with smoothie operators. I'm on�dent that I ould write a ontinuityproof based on Constrution 4.4.3 if I had more time, but it would take metoo long to adapt it now. What I an do instead is present my original proofwhih uses a onstrution that is a strit generalization of Constrution 1.3.24.From there, it is easy to generalize Theorem TZJ2.While our sequene of retrations does the job of the hold funtion from Def-inition 1.3.8 on page 12 well enough, it doesn't work quite the same way thatoriginal hold funtion does. In partiular, for any T, t ∈ T, holdT+t◦holdT =holdT , but this is not a feature shared by the retrats of every retratable ex-haustion. That is, it is not neessarily the ase that for n, j ∈ N, ρn◦ρn+j = ρn(although that is the ase for the standard retratable exhaustion of T). Thisproperty of the original hold is neessary for showing that Constrution 1.3.24works (it is used when omparing Ψ(n, 0) with Ψ(n, 1)).95



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareReall that we had de�ned Ψ(0, 0) = hold 0(F (u)) (where u is any stream),but for all k ∈ N, we had Ψ(0, k + 1) = hold τF (Ψ(0, k)). Likewise, we hadde�ned Ψ(n, 0) as the limit of funtions whih are onstant outside [0, nτ ], but
Ψ(n, k+1) = holdn+1F (Ψ(n, k)) (whih is onstant only outside [0, (n+1)τ ]).To make the onstrution (or at least the proof for it) work for an arbitrarysequene of retrations, we'll have to apply ρn+1 expliitly to every Ψ(n, 0).Constrution 4.4.12.1. Let u0 ∈ C[X,A] and set Ψ(0, 0) = F (u0) ◦ ρ1.Sine F ∈ Caus(X), every smoothie in the range of F agrees withΨ(0, 0)on X0 (thus, Ψ(0, 0) is an X0-approximate �xed point of F ).2. Let n ∈ N and suppose Ψ(n, 0) is an Xn-approximate �xed point of F .For all k ∈ Z+ de�ne Ψ(n, k) = F k(Ψ(n, 0)) ◦ ρn+1.We will show this sequene onverges to anXn+1-approximate �xed pointof F .3. Given n ∈ N, de�ne Ψ(n+ 1, 0) = (limk→∞Ψ(n, k)) ◦ ρn+2.This will be the �rst Xn+1-approximate �xed point of F enountered inthe onstrution.4. De�ne v = limn→∞Ψ(n, 0)As before, this will be the �xed point of F .As before, if F is of the form F : P × C[X,A] → C[X,A] (where P is someparameter spae), then we de�ne Ψ : P × N2 → C[X,A] as above for eah
p ∈ P , along with Φ : P → C[X,A] to be the funtion suh that ∀p ∈ P ,

Φ(p) = lim
n→∞

Ψ(p, n, 0) = F (p,Φ(p)) (4.4.1)Lemma 4.4.13. Let n, k1, k2 ∈ N and suppose Ψ(n, k1) and Ψ(n, k2) are de-�ned as above. Then
sup
x∈X
{dA (Ψ(n, k1)(x),Ψ(n, k2)(x))} = dn+1(Ψ(n, k1),Ψ(n, k2))Proof. If Ψ(n, k1) and Ψ(n, k2) are de�ned as above, then there are smoothies

u1 and u2 suh that Ψ(n, ki) = ui◦ρn+1 (for i = 1, 2). Sine ρn+1 is idempotent,
Ψ(n, ki) = Ψ(n, ki) ◦ ρn+1. Hene, the ordered pairs being ompared are thefollowing:

{(Ψ(n, k1)(x),Ψ(n, k2)(x)) : x ∈ X}
= {(Ψ(n, k1)(ρn+1(x)),Ψ(n, k2)(ρn+1(x))) : x ∈ X}
= {(Ψ(n, k1)(y),Ψ(n, k2)(y)) : y ∈ Xn+1}96



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 4.4.14. If F ∈ Caus(X) and u ∈ C[X,A], then ∀n ∈ N F (u) ◦ ρn =
F (u ◦ ρn) ◦ ρnProof. Let n ∈ N. Sine ρn behaves as the identity on Xn, dn(u, u ◦ ρn) =
0. Thus, sine F ∈ Caus(X) dn(F (u), F (u ◦ ρn)) = 0. So ∀x ∈ Xn,
F (u)(x) = F (u ◦ ρn)(x). Sine the range of ρn is Xn, ∀x ∈ X (F (u) ◦ ρn) (x) =
(F (u ◦ ρn) ◦ ρn) (x).Theorem 4.4.15 (Generalized TZ1 for the Alternate Constrution). Let Xbe a σ-ompat spae with a retratable exhaustion, X = {Xk, ρk}k∈N andlet (A, dA) be a metri spae. Let {dk}k∈N be the sequene of pseudomet-ris orresponding to X and dA (i.e. dk(u, v) = maxx∈Kk

{dA(u(x), v(x))}.Let F : C[X,A] → C[X,A] satisfy Caus(X) and Lip(λ,X) for some positive
λ < 1. Then F has a unique �xed point.Proof. The proof is, of ourse, modelled after Theorem TZ1, but at least su-per�ially it appears very di�erent. Uniqueness has already been overed ina onstrution-independent way by Lemma 4.4.5 on page 92, so we need onlyshow the �xed point exists.We must show that the limits in Constrution 4.4.3 on page 91 exist and that
v = F (v). First we'll show that, assuming Ψ(n, 0) exists, limk→∞Ψ(n, k) exists(in C[X,A]). We do this by demonstrating that the sequene {Ψ(n, k)}k∈N isuniformly Cauhy (see De�nition B.0.4 on page 133). In other words, for any
n, j ∈ N, supx∈X {dA(Ψ(n, k),Ψ(n, k + j))} an be made arbitrarily small bymaking k su�iently large.Let n ∈ N and assume5 Ψ(n, 0) ∈ C[X,A]. For all k > 0, let Ψ(n, k) be de�nedas indiated above.De�ne the quantity

D1 = max {1, dn+1 (Ψ(n, 0),Ψ(n, 1))}De�ne N : R+ → R+ as follows:
N(ε) = logλ

(
ε(1− λ)
D1

)Let ε > 0 and let k, j ∈ N with k ≥ N(ε). Then, by Lemma 4.4.13 on theprevious page,
sup
x∈X

dA (Ψ(n, k)(x),Ψ(n, k + j)(x)) = dn+1 (Ψ(n, k),Ψ(n, k + j))5At this point in the proof, we have established the existene of only Ψ(0, k) (for all
k ∈ N), so for n > 0, it is neessary to assume Ψ(n, 0) exists. It's almost a Cath 22indution. 97



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareUsing the triangle inequality,
dn+1(Ψ(n, k),Ψ(n, k + j)) ≤

k+j−1∑

i=k

dn+1(Ψ(n, i),Ψ(n, i+ 1))

=

k+j−1∑

i=k

dn+1

(
F i ◦Ψ(n, 0) ◦ ρn+1, F

i ◦Ψ(n, 1) ◦ ρn+1

)

=

k+j−1∑

i=k

dn+1

(
F i ◦Ψ(n, 0), F i ◦Ψ(n, 1)

)

≤ D1

j−1∑

i=0

λi+k

= D1λ
k 1− λj
1− λ

< D1
λk

1− λSine k ≥ N(ε) and λ < 1, it follows that
D1

λk

1− λ ≤ D1
λN(ε)

1− λ

= D1
λ
logλ

(

ε(1−λ)
D1

)

1− λ

= D1

(
ε(1−λ)
D1

)

1− λ
= εTherefore, {Ψ(n, k) : k ∈ N} is uniformly Cauhy and hene by Corollary B.0.6on page 134, limk→∞Ψ(n, k) onverges to some ψn ∈ C[X,A]. Sine ∀i, j ∈ N

dn (Ψ(n, i),Ψ(n, j)) = 0, the limitψn agrees with every member of the sequeneon Xn as well. That is, ∀k ∈ N dn (ψn,Ψ(n, k)) = 0. Sine F ∈ Lip(λ,X),
∀k ∈ N

dn (ψn,Ψ(n, k)) = 0 ⇒ dn+1 (F (ψn) , F (Ψ(n, k))) ≤ λdn+1 (ψn,Ψ(n, k))Thus, sine Ψ(n, k)→ ψn as n→∞, we an use the same modulus of onver-gene to show that F (Ψ(n, k)) ◦ ρn+1 → F (ψn) ◦ ρn+1.By Lemma 4.4.14 on the previous page,
F (Ψ(n, k)) ◦ ρn+1 = F

(
F k (Ψ(n, 0)) ◦ ρn+1

)
◦ ρn+1

= F k+1 (Ψ(n, 0)) ◦ ρn+1

= Ψ(n, k + 1)98
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F (ψn) ◦ ρn+1 = lim

k→∞
F (Ψ(n, k)) ◦ ρn+1

= lim
k→∞

Ψ(n, k)

= ψnHene, dn+1(ψn, F (ψn)) = 0. In other words, ∀n ∈ N, ψn is an Xn+1-approximate �xed point of F . The remainder of the proof is idential tothe proof of the Generalized Theorem TZ1 on page 944.5 The shift Operator for SmoothiesGiven that I was unable to show (see Remark 1.4.16 on page 28 and Exam-ple 1.4.17 on page 29) that my Theorem TZJ2 is a strit generalization ofTuker and Zuker's Theorem TZ2 (from [TZ11℄), there may still be a plaefor shift invariane in this theory. This is one of the most hallenging oneptsto generalize to arbitrary σ-ompat spaes, but I see one way it might be donethat I believe would still allow it to perform its intended role in (a generalizedversion of) the proof of Theorem TZ2.De�nition 4.5.1 (Shiftable). Let X be a σ-ompat spae with ompat ex-haustion X = {Xk}k∈N. Then X is shiftable if there is a ontinuous funtion
ζ : X→ X suh that ∀k ∈ N,

ζ(Xk+1 \Xk) = Xk+2 \Xk+1In other words, if for all k ≥ 1 we de�ne ζk as the restrition of ζ to Xk \Xk−1,then ζk : Xk \Xk−1 → Xk+1 \Xk is surjetive.De�nition 4.5.2 (shift). Let X be a σ-ompat spae with a shiftable om-pat exhaustion X = {Xk}k∈N. De�ne shift : C[X,A]→ C[X,A] asshift(u) = u ◦ ζRemark 4.5.3. There may be a more general way to de�ne shift on C[X,A],and the ondition that ζ be ontinuous ould possibly be relaxed, but itsontinuity does ensure the range of shift is C[X,A] sine the omposition ofontinuous funtions is again ontinuous.Example 4.5.4. We an see that this de�nition of shift is a generalizationof the previous one from De�nition 1.3.8 on page 12. Let X = T, �x T ∈ R+,and hoose X = {[0, kT ]}k∈N. Take ζ : T → T as the funtion ζ(t) = t + T .Then it's lear that the two de�nitions of shiftT agree.99



Ph.D. Thesis - N. James; MMaster University - Computing and Software4.6 Continuity Theorem for Smoothie Opera-torsLemma 4.6.1. Let X and Y be topologial spaes and suppose X is metrizable.Let f : X → Y . Then f is ontinuous if and only if for every onvergentsequene xn → x, the sequene f(xn) onverges to f(x).Proof. See Theorem 10.3, page 128 of [Mun75℄Lemma 4.6.2. Let {uk}k∈N ⊆ C[X,A] and suppose ∃u ∈ C[X,A] ∃n ∈ N suhthat limk→∞ (uk ◦ ρn) = u. Then u ◦ ρn = u.Proof. Reall that holdn : C[X,A]→ C[X,A] is de�ned as holdn(v) = v ◦ ρn.Sine ρn is idempotent,
u = lim

k→∞
(uk ◦ ρn)

= lim
k→∞

(uk ◦ ρn ◦ ρn)
= lim

k→∞
(holdn (uk ◦ ρn))Sine holdn is ontinuous (see Lemma 4.3.6 on page 88) and C[X,A] is metriz-able, Lemma 4.6.1 asserts that holdn ommutes with limk→∞. Thus,

lim
k→∞

(holdn (uk ◦ ρn)) = holdn

(
lim
k→∞

(uk ◦ ρn)
)

= holdn(u)

= u ◦ ρnLemma 4.6.3. Let Ψ : P × N2 → C[X,A] and Φ : P → C[X,A] be given asin Constrution 4.4.12 on page 96 (the parametrized versions), and let n ∈ N,
p, p′ ∈ P . Then dn(Φ(p),Φ(p′)) = dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)).Proof. The n = 0 is almost idential to the n > 0 ase, but it's simpler. Sowe'll skip diretly to the latter ase. Let p, p′ ∈ P and suppose n > 0. Then,
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dn(Φ(p),Φ(p

′)) = dn(Ψ(p, n, 0),Ψ(p′, n, 0)) (4.6.1)
= dn

((
lim
k→∞

Ψ(p, n− 1, k)
)
◦ ρn+1,

(
lim
k→∞

Ψ(p′, n− 1, k)
)
◦ ρn+1

)

= dn

(
lim
k→∞

Ψ(p, n− 1, k), lim
k→∞

Ψ(p′, n− 1, k)
) (4.6.2)

= dn

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
))

= dn

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
◦ ρn,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)
◦ ρn

) (4.6.3)
= dn+1

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
◦ ρn,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)
◦ ρn

) (4.6.4)
= dn+1

((
lim
k→∞

F k(Ψ(p, n− 1, 0)) ◦ ρn
)
,

(
lim
k→∞

F k(Ψ(p′, n− 1, 0)) ◦ ρn
)) (4.6.5)

= dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))Step Justi�ations:(4.6.1) It was shown in the proof of Theorem 4.4.15 on page 97 that for all
j ≥ n (and for any r ∈ P ), Ψ(r, j, 0) is an Xn-approximate �xed pointof F (r, ·). Sine Ψ(r, j, 0)→ Φ(r), Φ(r)↾Xn= Ψ(r, n, 0)↾Xn.(4.6.2) By de�nition of dn and ρn, ∀u, v ∈ C[X,A] ∀j ≥ n dn(u ◦ ρj , v ◦ ρj) =
dn(u, v).(4.6.3) By Lemma 4.6.2 on the previous page, omposing eah of the argu-ments of dn(4.6.4) Similar justi�ation to line (4.6.2), but this time we're using the fatthat ∀u, v ∈ C[X,A] ∀j ≥ n dj(u ◦ ρn, v ◦ ρn) = dn(u ◦ ρn, v ◦ ρn).(4.6.5) Again, using Lemma 4.6.2 on the preeding page.The other lines follow by de�nition of Ψ.The proofs of the following two lemmas are routine, and thus, have been omit-ted. 101



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLemma 4.6.4. Let X and Y be topologial spaes, eah with two topologies:
TX and T′

x for X, and TY and T′
Y for Y . Suppose TX is oarser than T′

X(i.e. TX ⊆ T′
X), and that TY is oarser than T′

Y . Let f : X → Y and x ∈ X.Then we have the following loal ontinuity properties for f , relative to thetopologies on its domain and o-domain:1. If f is ontinuous at x when X is equipped with TX then it is also on-tinuous at x when X is equipped with T′
X .2. If f is ontinuous at x when Y is equipped with T

′
Y then it is also on-tinuous at x when Y is equipped with TY .Lemma 4.6.5. Let X be a topologial spae, let x ∈ X, and let f : X →

C[X,A]. If f is ontinuous at x with respet to every pseudometri in {dn}n∈N,then f is ontinuous at x.Theorem 4.6.6 (Generalized Theorem TZJ2). Let (P, dP ) be a metri spaeand let F : P × C[X,A] → C[X,A]. Let p ∈ P and let V ⊆ P be a neigh-bourhood of p. Let λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u),suppose ∀r ∈ V Fr satis�es Caus(X) and Lip(λ,X), and that ∀u ∈ C[X,A]
F is ontinuous at (p, u). Then Φ : V → C[X,A] (as desribed in (4.4.1)on page 96, whose existene is assured by the Generalized Theorem TZ1 onpage 94) is ontinuous at p.Proof. We begin by showing that Φ is ontinuous with respet to the topologyindued by the d0 pseudometri. We then proeed by indution, showing thatfor any k ∈ N, if Φ is ontinuous with respet to the topology indued by dnthen it is ontinuous with respet to the topology indued by dn+1. Pairingthis with Lemma 4.6.5 ompletes the proof.Basis StepSine Fr satis�es Caus(X) for any r ∈ V , it follows that ∀u, v ∈ C[X,A],

F (r, F (r, u))↾X0= F (r, u)↾X0= F (r, v)↾X0In other words, ∀r ∈ V , ∀u ∈ C[X,A],
Φ(r)↾X0= F (r, u)↾X0 (4.6.6)By Lemma 4.6.4, sine ∀u ∈ C[X,A] F is ontinuous at (p, u) with respetto the loal uniform topology on C[X,A], it is also ontinuous at (p, u) withrespet to the topology indued by the d0 pseudometri (whih is oarser thanthe loal uniform topology). Thus, there exists a funtion, δ : R+×C[X,A]→

R+ suh that ∀ε > 0 ∀p′ ∈ V ∀u ∈ C[X,A],102
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dP (p, p

′) < δ(ε, u) ⇒ d0(F (p, u), F (p
′, u)) < εIn fat, sine the hoie of u is irrelevant when we're using the d0 pseudometri,

δ is onstant on its seond parameter. So hoose an arbitrary u ∈ C[X,A] andde�ne δ0 : R+ → R+ as simply δ0(ε) = δ(ε, u).By Equation (4.6.6),
d0(Φ(p),Φ(p

′)) = d0(F (p, u0), F (p
′, u0))Thus, ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δ0(ε) ⇒ d0(Φ(p),Φ(p

′)) < εTherefore, Φ is ontinuous at p with respet to the d0 pseudometri.Indutive StepFor the indutive hypothesis, assume that for some n ∈ N, there is a funtion
δn : R+ → R+ suh that ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δn(ε) ⇒ dn(Φ(p),Φ(p

′)) < ε (4.6.7)We must show that there is a funtion δn+1 : R+ → R+ suh that ∀ε > 0
∀p′ ∈ V ,

dP (p, p
′) < δn+1(ε) ⇒ dn+1(Φ(p),Φ(p

′)) < εTo do this, we will analyze Φ(p) using Constrution 4.4.12 on page 96 (beauseit's loser to the onstrution I used to prove the original, speial ase of thistheorem). The trik is to observe that a dn+1-modulus of ontinuity for Ψ(·, n+
1, 0) at p will serve as the desired δn+1 modulus for Φ, sine Φ(r)↾Xn+1= Ψ(r, n+
1, 0)↾Xn+1 for all r ∈ V . We an get that modulus of ontinuity by beatingthe onstrution utterly senseless with a ountably in�nite appliation of thetriangle inequality. Essentially, we're building a ladder of moduli of ontinuitybetween the two sequenes: Ψ(p, n, 0), Ψ(p, n, 1),Ψ(p, n, 2),. . . and Ψ(p′, n, 0),
Ψ(p′, n, 1),Ψ(p′, n, 2),. . .. We build only a �nite portion of the ladder�up tothe N th rung�where N is a arefully hosen number whih depends upon
λ, upon the �xed distane, dn+1 (Ψ(p, n, 0),Ψ(p, n, 1)), and upon the ε > 0desired. Finally, using a pair of geometri series together with that N th rung,we an onstrut the �nal rung (between Ψ(p, n + 1, 0) and Ψ(p′, n + 1, 0)),using the triangle inequality with Ψ(p, n,N) and Ψ(p′, n, N) as intermediate103



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarepoints. See Figure 4.6.1 on page 108 for an overview (the �ladder� is bent onlyto avoid the suggestion that F is some dull, orderly isometry that just moveseverything in one diretion and never does anything interesting).To begin, we need the bottom retangle of the ladder. We an simply reordthe distane (with respet to the dn+1 pseudometri) between Ψ(p, n, 0) and
Ψ(p, n, 1)�although to avoid a potential problem with inequalities, we'll reorda stritly positive number (1 works as well any) if that distane happens tobe zero; all we really need is a positive upper bound for it, and any one willdo. The modulus of ontinuity δn given in the indutive hypothesis providesthe lowest rung (between Ψ(p, n, 0) and Ψ(p′, n, 0)). A single appliation of
F gives us the next rung. Finally, all three an be put together with thetriangle inequality to seure an upper bound on the distane between Ψ(p′, n, 0)and Ψ(p′, n, 1), thus ompleting the bottom retangle (or more aurately, thequadrilateral).In aordane with our �rst task, let,

Dp = max {1, dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))} (4.6.8)Next, observe that for any r ∈ V ,
Ψ(r, n, 0)↾Xn= Φ(r)↾XnBy Lemma 4.6.3, ∀p′ ∈ V ,

dn(Φ(p),Φ(p
′)) = dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))Thus, we an rewrite (4.6.7) as follows: ∀ε > 0 ∀p′ ∈ V ,

dP (p, p
′) < δn(ε) ⇒ dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)) < ε (4.6.9)Before we proeed, there is a bit notation that will greatly assist with theexposition. We de�ne a family of funtions, {Hk : P × C[X,A]→ C[X,A]}k∈Nas follows:

H0(r, u) = u (i.e. H0is the projetion funtion π2)
H1(r, u) = F (r, u) ◦ ρn+1

Hk(r, u) = H1 ◦
(
H̃k−1

1

) for k > 1The purpose of de�ning Hk is that ∀k,m ∈ N ∀r ∈ V ,
Ψ(r, n, k +m) = Hk(r,Ψ(r, n,m))

F is ontinuous at (p, u) ∀u ∈ C[X,A] by hypothesis and holdn+1 (for lak of abetter name) is ontinuous everywhere by Lemma 4.3.6. Therefore, H1�being104



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarea omposition of these funtions�is ontinuous at (p, u) ∀u ∈ C[X,A]. FromCorollary 1.4.14, for any k > 0, Hk is also ontinuous at (p, u) ∀u ∈ C[X,A].Thus, there exists6 a funtion δ(1)n : R+ → R+ suh that ∀(p′, u) ∈ V ×C[X,A]
∀ε > 0,

dn+1 (H1(p,Ψ(p, n, 0)), H1(p
′, u)) = dn+1 (Ψ(p, n, 1), H1(p

′, u))

< ε (4.6.10)whenever,
max {dP (p, p′), dn+1 (Ψ(p, n, 0), u)} < δ(1)n (ε) (4.6.11)We now have the �rst and seond rungs (δn and δ(1)n , respetively), along withthe strut that joins them on the p side. All we need now is the strut that joinsthem on the p′ side: a radius around p whih will ensure a �xed upper bound(of, say, 2Dp) on the distane between Ψ(p′, n, 0) and Ψ(p′, n, 1), whih we'llall Dp′. More preisely, we need a number, R ∈ R+suh that,

dP (p, p
′) < R ⇒ Dp′ = dn+1(Ψ(p′, n, 0),Ψ(p′, n, 1)) < 2DpThis is easy to obtain by going around the bak, using δ(1)n , δn, and the triangleinequality. Choose,

R = min

{
δn

(
Dp

2

)
, δ(1)n

(
Dp

2

)
, δ(1)n

(
δn

(
Dp

2

))} (4.6.12)Then, given any p′ ∈ V suh that dp(p, p′) < R, we get the following twoinequalities:
dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) <

Dp

2
(4.6.13)

dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1)) <
Dp

2
(4.6.14)Equation 4.6.13 omes diretly from 4.6.9 and 4.6.12. Equation 4.6.14 is some-what more triky. Reall from line 4.6.11 that we need both dP (p, p
′) and

dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) to be less than δ
(1)
n

(
Dp

2

) in order to ensure that
dn+1 (H1 (p,Ψ(p, n, 0)) , H1 (p

′,Ψ(p′, n, 0))) (whih is simply dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1)))6This step would obviously not be possible if F were ontinuous only w.r.t. P�as Tukerand Zuker require in their theorem. We need it to be ontinuous on a portion of its entiredomain; ontinuity on only a projetion of the domain is insu�ient. This is what wesari�e in order to liberate F from the neessity of being shift invariant.105
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2
. The seond term in the de�nition of R ensures that dP (p, p′) <

δ
(1)
n

(
Dp

2

), and the third term ensures that dn+1 (Ψ(p, n, 0),Ψ(p′, n, 0)) < δ
(1)
n

(
Dp

2

).Therefore, ∀p′ ∈ V , if dP (p, p′) < R then,
Dp′ = dn+1 (Ψ(p′, n, 0),Ψ(p′, n, 1))

≤ dn+1 (Ψ(p′, n, 0),Ψ(p, n, 0)) + dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

+ dn+1 (Ψ(p, n, 1),Ψ(p′, n, 1))

<
Dp

2
+Dp +

Dp

2
= 2DpSine Dp and λ are �xed and λ < 1, there exists a funtion N : R+ → Z+ suhthat, given any ε > 0,

λN(ε)

1− λ2Dp < ε (4.6.15)The reason for the expression above will beome lear soon enough (if thereader hasn't guessed it already). We will now begin to apply the real starof the show: the ontration property! Sine Fr ∈ Lip(λ,X) for all r ∈ V , itfollows that ∀u, v ∈ C[X,A],
dn(u, v) = 0 ⇒ dn+1 (Hk(r, u), Hk(r, v)) ≤ λkdn+1(u, v)Thus, sine limj→∞Ψ(p, n, j) = Ψ(p, n+ 1, 0), it follows that ∀ε > 0,

dn+1 (Ψ(p, n,N(ε)),Ψ(p, n+ 1, 0))

≤
∞∑

j=N(ε)

dn+1 (Ψ(p, n, j),Ψ(p, n, j + 1))

=

∞∑

j=N(ε)

dn+1 (Hj (p,Ψ(p, n, 0)) , Hj (p,Ψ(p, n, 1)))

≤
∞∑

j=0

dn+1

(
Hj+N(ε) (p,Ψ(p, n, 0)) , Hj+N(ε) (p,Ψ(p, n, 1))

)

≤
∞∑

j=0

λj+N(ε)dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

≤ λN(ε)dn+1 (Ψ(p, n, 0),Ψ(p, n, 1))

∞∑

j=0

λj

≤ λN(ε)

1− λDp 106



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareSimilarly, ∀p′ ∈ V , if dP (p, p′) < R (thus ensuring Dp′ < 2Dp), then ∀ε > 0,
dn+1(Ψ(p′, n, N(ε)),Ψ(p′, n+ 1, 0)) ≤ λN(ε)

1− λDp′ <
λN(ε)

1− λ2Dp (4.6.16)Sine every Hk is ontinuous at (p, u) ∀u ∈ C[X,A], there is a δHn : R+×Z+ →
R+ suh that, ∀ε > 0 ∀(p′, u) ∈ V × C[X,A] ∀k ∈ Z+,

dn+1 (Hk(p,Ψ(p, n, 0)), Hk(p
′, u)) = dn+1 (Ψ(p, n, k), Hk(p

′, u))(4.6.17)
< εwhenever,

max{dP (p, p′), dn+1(Ψ(p, n, 0), u)} < δHn (ε, k) (4.6.18)We now use δHn to obtain the funtion δ∗n : R+ → R+, whih will allow us tomake the N th rung (loosely speaking, sine N is a funtion of ε), partway upthe ladder, arbitrarily short.
δ∗n(ε) = min

{
δHn (ε,N(ε)), δn

(
δHn (ε,N(ε))

)}Now, ∀p′ ∈ V ∀ε > 0, if dP (p, p′) < δ∗n(ε) then,
dn+1(Ψ(p, n, 0),Ψ(p′, n, 0)) < δHn (ε,N(ε))(thanks to the seond term in δ∗n(ε)), and therefore,

max{dP (p, p′), dn+1(Ψ(p, n, 0),Ψ(p′, n, 0))} < δHn (ε,N(ε))So by (4.6.18) and (4.6.17), it follows that whenever dP (p, p′) < δ∗n(ε), we get,
dn+1

(
Ψ(p, n,N(ε)), HN(ε)(p

′,Ψ(p′, n, 0))
) (4.6.19)

= dn+1 (Ψ(p, n,N(ε)),Ψ(p′, n, N(ε)))

< εFinally, de�ne δn+1 : R+ → R+ as follows:
δn+1(ε) = min

{
R, δ∗n

(ε
3

)}Let ε > 0 and let M = N(ε/3). Then ∀p′ ∈ V suh that dP (p′, p) < δn+1(ε),we obtain the following three inequalities:
dn+1(Ψ(p, n+ 1, 0),Ψ(p, n,M)) <

λM

1− λDp <
ε

3

dn+1(Ψ(p, n,M),Ψ(p′, n,M)) <
ε

3

d(n+1)τ (Ψ(p′, n,M),Ψ(p′, n+ 1, 0)) <
λM

1− λ2Dp <
ε

3107
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Ψ(p′, n, 1)
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ε
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ε
3

ε
3

Dp

Dp′

Figure 4.6.1: Inequalities used in the Generalized Theorem TZJ2The �rst and third ome from (4.6.15) and the seond omes from (4.6.19).Merging the left-hand sides using two appliations of the triangle inequalityyields the �nal result: if p′ ∈ V and dP (p, p′) < δn+1(ε) then,
dn+1(Ψ(p, n+ 1, 0),Ψ(p′, n+ 1, 0)) < εWe an now present the proof of Theorem TZJ2 on page 27, whih follows asa orollary to Generalized Theorem TZJ2.Theorem 1.4.15 (Theorem TZJ2) Let (P, dP ) be a metri spae and let F :

P × C[T,A] → C[T,A]. Let p ∈ P and let V ⊆ P be a neighbourhood of p.Let τ, λ ∈ R+ with λ < 1. Using the notation Fr(u) = F (r, u), suppose thatfor all r ∈ V Fr satis�es Caus and Lip(λ, τ), and that for all u ∈ C[T,A]
F is ontinuous at (p, u). Then Φ : V → C[T,A] (as desribed in (1.3.3) onpage 15, whose existene is assured by Theorem TZ1 on page 19) is ontinuousat p.Proof. To prove that this is merely a speial ase of the Generalized Theo-rem TZJ2, we must �nd a ompat exhaustion X for T, and show that Fsatis�es Caus(X) and Lip(λ,X). 108



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareLet X = T (= R≥0) and for all n ∈ N, let Xn = [0, nτ ]. Let X = {Xn}n∈N.Obviously, X0 ⊆ X1 ⊆ · · · ⊆ X and ⋃n∈NXn = X. The third property followsfrom the Heine-Borel Theorem7: every ompat subset of X is bounded, andevery bounded set is ontained within a member of the exhaustion (i.e. if K isbounded, then ∃n ∈ N suh that K ⊆ Xn). Thus X satis�es De�nition 4.1.1on page 81.Let r ∈ V , n ∈ N, and let u, v ∈ C[T,A] suh that dnτ (u, v) = 0. Then ∀t ≤ nτ
dt(u, v) = 0. Sine Fr ∈ Caus , it follows that ∀t ≤ nτ Fr(u)(t) = Fr(v)(t).Therefore, dnτ(Fr(u), Fr(v)) = 0, and hene Fr ∈ Caus(X). Furthermore,sine Fr ∈ Lip(λ, τ) it follows that d(n+1)τ (Fr(u), Fr(v)) ≤ λd(n+1)τ (u, v).Thus, Fr ∈ Lip(λ,X). By the Generalized Theorem TZJ2 on page 102, Φis ontinuous at p.4.7 Conrete Computability of ΦThe theory we have developed is part of a general framework for studyinganalog omputation. The prevailing notion in analog omputation researhis that the Churh-Turing Thesis extends to all manner of omputation (see[BCGH06, TZ04, Wei00℄, for example). Part of the job of testing this variantof the Churh-Turing thesis is to verify that anything �omputable� within ourframework is omputable in others as well. In our models of analog omputa-tion, a funtion is (impliitly de�ned as being) �omputable� if it is the �xedpoint of a smoothie operator.Given that X and A are fairly abstrat spaes, how an we relate the objets inthis model to lassial omputability theory? One way is to determine whetheran operator and its �xed point an be odi�ed somehow, using only naturalnumbers and omputable funtions on natural numbers. This is essentially aform of meta-omputation. The idea behind onrete omputability is some-what similar to the entral idea in many areas of mathematis (ategory theory,in partiular). It is possible to develop an abstrat mathematial struture anddisover that there are morphisms whih �translate� this struture to anotherone whih appears to be ompletely unrelated, developed from within an en-tirely di�erent ontext, as though it is a distorted mirror image of the originalstruture. Our original struture is C[X,A] (or a multisorted algebra whihinludes C[X,A]) along with a parameter spae P , and the �mirror image� islassial omputability theory on N.This analysis has already been done for C[T,A] (where T = R≥0 or N) in[TZ12℄. Tuker and Zuker identify a set of onditions, su�ient to ensure7For K ⊆ Rm, K is ompat if and only if K is losed and bounded. See [Rud76℄, or anyelementary text on real analysis for details.109



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarethat the �xed point funtion Φ of F is onretely omputable, and it appearsthat their arguments an be extended naturally to the more general ase inwhih T is replaed by a σ-ompat spae X with a retratable exhaustion.To show this in full detail, however, I would need to border on plagiarismsine little of the theory from [TZ12℄ needs to be hanged. So instead, I willpresent a summary of the ore ideas and put partiular emphasis on the fewdetails that need to be hanged to aommodate smoothies. One of the mainaspets of their theory I will be glossing over is the allowane of partial streamoperators. I do not address that here simply beause of a lak of time. Thereis nothing T-spei� about it, however. Similarly, they insist on the e�etiveloal uniform ontinuity8 of their streams and I impose no suh requirementhere. It is not stritly neessary for establishing the onrete omputability of
Φ, but it is a useful ondition to have when de�ning interesting operators. Iomit this treatment for both the lak of time and for the sake of brevity andsimpliity.Before we ontinue, we must enumber our spaes with a few additional prop-erties. Up until now, P has been an arbitrary metri spae, A has been anarbitrary omplete metri spae, and X has been a retratable σ-ompat topo-logial spae. There was no need to assume anything more about them in thishapter. For the following material, however, we require eah of these spaes tobe omplete, separable metri spaes. Reall that a spae is omplete if everyCauhy sequene onverges, and a spae is separable if it ontains a ountabledense9 subset. The reason for this will be made lear as we go along, but it ishelpful to know this in advane.4.7.1 The Codes: α-omputabilityTo model omputation on C[X,A] using omputation on N, we must enodethe spaes and operators in our theory using natural numbers. The problem,of ourse, is that (in all but trivial ases) there simply aren't enough naturalnumbers to go around. If C[X,A], X, A, and/or P are unountable (as wetypially imagine them to be), then most of the elements in these spaes and thefuntions on them won't be luky enough to get their own ode numbers andhene annot be represented exatly using our N-based model of omputationfor smoothies. Hene, we must settle for enoding only ountable subsets8Loosely speaking, the streams in C[T,A] are e�etively loally uniformly ontinuous(with respet to an exhaustion) if there is a single omputable parametrized modulus ofloal ontinuity that works for all streams and all members of the exhaustion. That is, thereis a omputable funtion that aepts a (ode for a) stream, a member of the exhaustion,and an ε > 0 (used in its traditional sense with respet to ontinuity), and it returns aorresponding δ su�ient for the spei�ed stream, restrited to the spei�ed member of theexhaustion.9A subset X is �dense� in a topologial spae Y if the losure of X is Y .110
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ZS ⊆ S, where S = X,A, P, C[X,A], and we do this using surjetive funtionsof the form αS : N→ ZS.There are all sorts of ountable subsets we ould hoose for this purpose, butsine we're trying to enode as muh of these spaes as we an, we need subsetsthat are dense. That way, even if an element is not in ZS, we an approximateit arbitrarily losely using elements that are in ZS. Thus, we need X, A, P ,and C[X,A] to be separable (i.e. have a ountable dense subset).In fat, it an be shown (see [TZ12℄) that if both X and A are separable,then C[X,A] is too. So this one omes �for free,� but it should be noted thatin [TZ12℄ the authors require a speial form of separability whih must beassumed of C[T,A] even if both T and A are separable. This assumption,however, an be made for C[X,A] as just easily as it an be for C[T,A], ifneessary for a partiular purpose (in [TZ12℄, the authors need it to ensurethat there are partiularly nie Cauhy sequenes in C[T,A] that failitatesome useful operations like integration to be proven omputable).We develop these αS funtions to analyze the omputability of funtions amongthe four spaes above rather than the spaes themselves. Some of the funtionsof interest have domains and/or odomains whih are produts of these spaes.In partiular, we obviously need to look at funtions of the form F : P ×
C[X,A] → C[X,A] and Φ : P → C[X,A]. The details are somewhat involved,so I will indulge in a bit of hand-waving and simply state that we an assumethere is a single, universal enoding funtion α : N→ Z, where Z is the unionof all �nite produts of ZX, ZA, ZP , and ZC[X,A]. This is possible sine aountable union of ountable sets is ountable.With α-omputable elements in hand (those in Z), we proeed to de�ne α-omputable sequenes. The following de�nition is adapted from [PER89℄.De�nition 4.7.1 (α-omputable sequene). A sequene {xn} ⊆ Z is α-omputable if there is a reursive funtion e : N→ N suh that for all n ∈ N,

xn = α (e(n))Using the limited enoding we have developed so far, we an already introduea primitive notion of operator omputability:De�nition 4.7.2 (α-omputable funtion). Let S1 and S2 be �nite produtsof X, A, P , and C[X,A], and suppose f : S1 → S2. Then f is α-omputable ifthere is a omputable10 funtion (alled a traking funtion) ϕ : N → N suhthat ∀k ∈ α−1 (S1 ∩ Z)
f (α(k)) = α (ϕ(k))10�Computable� in the usual sense, i.e. reursive.111



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThe problem with this form of omputability is that Z is a relatively �sparse�subset (in most ommon hoies, it will exlude in�nitely many limit pointswhih ould be easily enoded), and this permits only a relatively limitedenoding. We an do better than α.4.7.2 The Computable Closure of Z and α-omputabilityLet S be a �nite produt of X, A, P , and C[X,A]. Sine eah of these spaesis omplete and separable, so is S (although I have omitted the proof). Fur-thermore, it an be shown that a produt of ountable dense subsets is densein the orresponding produt of spaes (proof also omitted). Therefore, S ∩Zis a ountable dense subset of S. For onveniene, let ZS = S ∩ Z. Sine S isomplete and ZS ⊆ S, every Cauhy sequene in ZS onverges to an elementof S. Sine ZS is dense in S, every element in S has suh a Cauhy sequene.So we an refer to any element of S using a Cauhy sequene in ZS (i.e. thereexists a surjetion from the set of Cauhy sequenes in ZS onto S).Now, sine we have an enoding α : N → Z of Z, Cauhy sequenes (andany other sequenes, for that matter) in ZS ⊆ Z an be represented by totalfuntions of the form e : N → N. For any sequene {un}n∈N ⊆ ZS there isa funtion e : N → N suh that for all n ∈ N, un = α(e(n)). Here is wherelassial omputability theory enters the piture. Some of these funtions on
N will be (lassially) omputable and some of them won't be. It is plainlythe former lass with whih we are onerned, and it is these funtions, to-gether with α, that determine the omputable losure of ZS (whih we write as
Cα(ZS)). One we have Cα(ZS) for every S, we an de�ne a new (and better)enoding α : N → Cα(Z), and then de�ne α-omputability exatly as we didfor α-omputability in De�nition 4.7.2 above. There is also one further sub-tlety to be addressed: it is not enough for the funtions e : N→ N representingCauhy sequenes to be omputable; the modulus of onvergene of the Cauhysequene eah e represents must also be omputable (see Remark 4.7.4).De�nition 4.7.3 (α-e�etive Cauhy Sequene). Let {un}n∈N ⊆ Z be aCauhy sequene. Then {un}n∈N is an α-e�etive Cauhy sequene if the fol-lowing two onditions hold:1. The sequene itself is α-omputable. That is, there is a total omputablefuntion e : N→ N suh that for all n ∈ N

un = α(e(n))2. The onvergene of the sequene is e�etive (it has a omputable modulusof onvergene). That is, there is a total omputable funtionM : N→ Nsuh that for all j, k, n ∈ N,
j, k ≥M(n) ⇒ d (uj, uk) < 2−n112



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 4.7.4. The �rst ondition is obvious. Eah of the elements in thesequene must be omputable (w.r.t. α), and so too must be the sequeneitself. Otherwise it ould hardly be regarded as an α-e�etive sequene of anykind. The seond ondition is less obvious. As long as we an ompute thesequene, and we know that it onverges, why must we be able to ompute inadvane how far out in the sequene we must go to get within a ertain radiusof the limit? It may seem to be a super�uous ondition, but without it, weannot legitimately laim that the limit is omputable.It's not a matter of being able to ompute in advane how far along we mustgo in the sequene; it's a matter of being able to determine�at any point�whether we're even remotely lose to the limit. If we laim that an elementis omputable, we mean that we have a mehanism for generating a pointarbitrarily lose to it. A Cauhy sequene will eventually ontain suh points,but it is under no obligation to begin marhing steadily toward its limit rightfrom the start. The �rst million points of the sequene may appear to besteadily onverging within a tiny portion of the spae, and then suddenly, inthe next point, it might spontaneously veer quite far away and appear to beginonverging in a region very distant from the previous one. This may happenany number of times before it begins to onverge in earnest. Without beingable to ompute its modulus of onvergene, how an we be at all justi�ed inlaiming the sequene is e�etive? We have a way of generating our sequeneand we know that it will eventually generate a satisfatory point (one loseenough), but unless its modulus is omputable, we have no way of seletingsuh a point. Hene, we may as well be generating a ompletely randomsequene of points.That is the reason for insisting on a omputable modulus of onvergene.Lemma 4.7.5 (�Fast� Cauhy Sequenes). Without loss of generality, we anassume that the modulus of onvergene of an α-e�etive Cauhy sequene (insome metri spae with metri d) is simply the identity funtion.That is, suppose {xn}n∈N is an α-e�etive Cauhy sequene with assoiatedreursive funtions e,M : N→ N suh that ∀n ∈ N xn = e(n) and ∀j, k, ℓ ∈ N,
j, k ≥ M(ℓ) ⇒ d(xj , xk) < 2−ℓ. Then there exists another α-e�etive Cauhysequene {x′n}n∈N suh that ∀j, k, ℓ ∈ N, j, k ≥ ℓ ⇒ d(x′j, x

′
k) < 2−ℓ (i.e. M ′,if it were to be de�ned, would be merely the identity).Proof. First, without loss of generality, we an assume that M is monotoni(inreasing). This is a fairly standard assumption for moduli of onvergeneand ontinuity in any ontext, and it is easy to show that omputability is notthreatened by it.Any �nite omposition of reursive funtions is reursive, so simply de�ne

e′ : N→ N as follows:
e′(n) = e(M(n))113



Ph.D. Thesis - N. James; MMaster University - Computing and Softwareand, of ourse, set x′n = e′(n) for all n. Then e′ is reursive and ∀j, k, ℓ ∈ N, if
j, k ≥ ℓ, it follows that M(j),M(k) ≥M(ℓ). Thus,

d(x′j , x
′
k) = d(e′(j), e′(k))

= d (e(M(j)), e(M(k)))

< 2−ℓNotation 4.7.6. Let Cα(Z) be the set of all limits of α-e�etive Cauhy se-quenes in Z (and likewise for Cα(ZS), given any produt S of spaes).De�nition 4.7.7 (Ωα and α). By de�nition, for every element of Cα(Z), thereis an α-e�etive Cauhy sequene with two assoiated omputable funtions (eand M). Every omputable funtion an be uniquely represented as a Gödelnumber in N, and every pair of natural numbers an be enoded as a singlenatural number (using, for example, a seond Gödel numbering). Therefore,there is a set Ωα ⊆ N with a surjetive funtion α : Ωα → Cα(Z) that enodes
Cα(Z).De�nition 4.7.8 (α-omputable funtion). As in De�nition 4.7.2, let S1 and
S2 be �nite produts of X, A, P , and C[X,A], and suppose f : S1 → S2. Then
f is α-omputable if there is a omputable (traking) funtion ϕ : N→ N suhthat ∀k ∈ α−1 (Cα(ZS1))

f (α (k)) = α (ϕ (k))Remark 4.7.9. It is natural, at this point, to wonder whether we need to beonerned with α-e�etive Cauhy sequenes (and onsequently, α-omputableoperators). Fortunately, the answer is no. Cα(Z) is �α-omputably losed.�Lemma 4.7.10. Let S be any �nite produt of our four spaes (as in Def-inition 4.7.2), and let {sn}n∈N ⊆ Cα(ZS) be an α-e�etive Cauhy sequene(i.e. the sequene satis�es De�nition 4.7.3 when α is replaed by α) whihonverges to an element s ∈ S . Then there is an α-e�etive Cauhy sequenewhih also onverges to s.Proof. If {sn}n∈N is an α-omputable sequene, then there is a reursive fun-tion e : N→ N suh that for eah n ∈ N, sn = α(e(n)). Now, any suh e(n) isatually the Gödel number for a pair of other reursive funtions: en and Mn.
en is the funtion whih de�nes the α-e�etive Cauhy sequene {snk}k∈N and
Mn is its modulus of onvergene (however, as we observed in Lemma 4.7.5,we an assume without loss of generality that eah Mn is simply the identityand thus ignore it). Deoding a Gödel number for a reursive funtion andevaluating it at a given point is, itself, reursive (e.g. onsider the Universal114



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareTuring Mahine). Therefore, there is a reursive funtion e : N× N→ N suhthat ∀n, k ∈ N, e(n, k) = snk and ∀n, j, k, ℓ ∈ N,
j, k ≥ ℓ ⇒ dS(snj , snk) < 2−ℓThus, {snk}n,k∈N is an α-omputable double sequene, eah row of whih on-verges at a brisk minimum rate (at least as fast as 2−n → 0 as n→∞).While Lemma 4.7.5 speaks only of α-e�etive Cauhy sequenes, it is equallyappliable to α-omputable Cauhy sequenes with α-e�etive moduli of on-vergene. Thus, we an assume that ∀j, k, ℓ ∈ N,
j, k ≥ ℓ ⇒ dS(sj , sk) < 2−ℓSine {snk}n,k∈N is α-omputable, so is the sequene {rn = snn}n∈N. For thissequene, we an use the (obviously reursive) modulus of onvergeneM(ℓ) =

ℓ+ 2, as we now demonstrate. For any n ∈ N,
dS(rn, sn) = dS(rn, lim

k→∞
snk)

= lim
k→∞

dS(rn, snk) (sine dS is ontinuous by Lemma1.4.1)
≤ 2−nTherefore, given any ℓ ∈ N, for all j, k ≥ ℓ+ 2,
dS(rj , rk) ≤ dS(rj, sj) + dS(sj , sk) + dS(sk, rk)

< 2−ℓ−2 + 2−ℓ−2 + 2−ℓ−2

= 3 · 2−ℓ−2

< 2−ℓ

4.7.3 The α-omputability of ΦThe objetive in this line of inquiry is to establish a set of onditions on anoperator F : P × C[X,A] → C[X,A], along with the spaes omprising itsdomain and odomain su�ient to ensure that if F has a �xed point funtion
Φ de�ned on P , then this Φ is onretely omputable.Theorem 4.7.11 (Conrete Computability Theorem). Suppose the anteedentsof the Generalized TZ1 Theorem for the Alternate Constrution on page 97 aresatis�ed by some operator F : P × C[X,A] → C[X,A] at every point p ∈ P .That is, 115



Ph.D. Thesis - N. James; MMaster University - Computing and Software(a) (P, dP ) is a metri spae.(b) ∀p ∈ Cα (ZP ) λp is a real number with 0 < λp < 1.() X is a σ-ompat spae with a retratable ompat exhaustion X = {Xn}n∈Nand retrations {ρn}n∈N.(d) ∀p ∈ P , F (p, ·) : C[X,A] → C[X,A] satis�es Caus(X) and Lip(λp,X)for all u ∈ C[X,A].And further, suppose(e) P , X, and A are omplete separable metri spaes.(f) For eah n ∈ N, Cα(ZC[X,A]) is losed under holdn.(g) hold : N × C[X,A] → C[X,A] is α-omputable11 (this impliitly requires(e), of ourse).(h) F is α-omputable.(i) The parametrized pseudometri d : N×C[X,A]2 → R≥0 (where d(n, u, v) =
dn(u, v)) is α-omputable.(j) There is an α-omputable funtion Λ : P → R+ suh that ∀p ∈ P
Λ(p) = λpThen the �xed-point funtion Φ : P → C[X,A] for F is α-omputable.Proof. It is easiest to use Constrution 4.4.12 to prove this sine it involvesfewer spaes (it never uses any of the C[Xn,A] spaes) and no indued operators(trunations of F ), both of whih would require extra are to be taken at eahstep.To show that Φ is α-omputable, we must �rst show thatΨ is α-omputable. InConstrution 4.4.12, we hose an arbitrary initial point u0 and set Ψ(p, 0, 0) =

F (p, u0) ◦ ρ1 = hold 1 (F (p, u0)) for all p ∈ P . If we wish for Ψ(·, 0, 0) :
P → C[X,A] to be α-omputable, however, u0 must obviously be hosen from
Cα(Z). Sine F : P × C[X,A] → C[X,A] and hold 1 are α-omputable (byhypothesis) and the projetion funtion π1 : N2 → N (whih maps (i, j) → ifor all (i, j) ∈ N2) is reursive, it follows that both F (·, u0) : P → C[X,A]and Ψ(·, 0, 0) are α-omputable (sine a omposition of �nitely many reursive11I am unertain whether the α-omputability of hold : N × C[X,A] → C[X,A] wouldneessarily follow from the α-omputability of ρ : N × X → X (if we were to insist onit instead), but the former omputability is the one required for this theorem, so I haveinluded it in the anteedent diretly. 116



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarefuntions is reursive). From the former it follows that, for any k ∈ N, F k(·, u0)is α-omputable, and thus so is Ψ(·, 0, k + 1) = hold 1

(
F k(·,Ψ(·, 0, k))

).We must be autious with the notation and the vernaular here sine thereis a di�erene between showing that every point in the range of a funtionis α-omputable, and showing that the funtion itself is α-omputable. Wehave shown both above (for Ψ(·, 0, ·) : P × N → C[X,A]), although the latteronly loosely. To see it more learly, note that if ϕF : N → N is an α-trakingfuntion for F (·, u0), then the α-traking funtion ϕG for G(p, k) = F k(p, u0)is atually primitive reursive (not just reursive):
ϕG(j, 0) = ϕF (j)

ϕG(j, k + 1) = ϕF (ϕG(j, k))Alternatively, we ould invoke the Churh-Turing Thesis and express the trak-ing funtion for Ψ(p, 0, k) using a programming language together with ϕF andthe traking funtion for hold 1.All of the above is learly appliable to Ψ(p, n, k) for any values of n, k > 0�provided that Ψ(p, n, k) is α-omputable for k = 0. We've shown above that
Ψ(p, n, k) is α-omputable for k = 0 when n = 0, but getting Ψ(p, n, 0) for
n > 0 is more hallenging. Reall that for n > 0, we have de�ned

Ψ(p, n+ 1, 0) = holdn+2

(
lim
k→∞

Ψ(p, n, k)
)From the argument above, {Ψ(p, n, k)}k∈N is ertainly an α-omputable se-quene, but we must show that it is also an α-e�etive Cauhy sequene to en-sure its limit is α-omputable. That is, we must show there is an α-omputable

M : P × N× N→ N suh that ∀p ∈ P , ∀k1, k2, n, ℓ ∈ N,
k1, k2 ≥M(p, n, ℓ) ⇒ dC[X,A](Ψ(p, n, k1),Ψ(p, n, k2)) < 2−ℓAlmost exatly this was done already in the development of N(ε) in the proofof the Generalized TZ1 Theorem for the Alternate Constrution on page 97,but our requirements here are a little more stringent. In partiular, we mustensure that

• M has the form P ×N×N→ N, instead of R+ → R+ (as N has in thatproof).
• M is an α-omputable funtion (whih is obviously a requirement Ndidn't have to satisfy).
• M is developed with respet to the metri dC[X,A] rather than the pseu-dometri dn+1. This is, however, required merely by the exposition. For117



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarethe sake of simpliity, I've negleted to develop a �loal� version of the αtheory in this hapter (that would allow for a pseudometri modulus ofonvergene), but Tuker and Zuker develop this for streams in [TZ12℄and their work appears to arry over to smoothies naturally (although Iwould need more time to on�rm that there are no snags along the way).It is possible to show (although I won't do it here), that the following de�nitionfor M : P × N× N→ N is α-omputable:
M(p, n, ℓ) =

⌊
logΛ(p)

(
ℓ− n+ 1

D(n)
(1− Λ(p)) 2−ℓ−1

)⌋
+ 1where ∀n ∈ N,

D(n) = max {1, d(n+ 1,Ψ(p, n, 0),Ψ(p, n, 1))}We knowM is α-omputable beause d and Λ are α-omputable by hypothesis(for preisely this purpose, in fat), and the rest is omposed of elementaryreal funtions whih an be shown to be α-omputable.We now prove that M is a modulus of onvergene for {Ψ(p, n, k)}k∈N. Let
ℓ, n ∈ N, and assume without loss of generality that ℓ ≥ n. Let k1, k2 ≥
M(p, n, ℓ), and assume (again without loss of generality) that k1 ≤ k2. Then,

dC[X,A](Ψ(p, n, k1),Ψ(p, n, k2))

=

∞∑

i=0

min
(
2−i, di(Ψ(p, n, k1),Ψ(p, n, k2))

)

=
∞∑

i=n+1

min
(
2−i, di(Ψ(p, n, k1),Ψ(p, n, k2))

) (4.7.1)
≤

∞∑

i=n+1

min
(
2−i, dn+1(Ψ(p, n, k1),Ψ(p, n, k2))

) (4.7.2)(4.7.1) follows from the fat that Ψ(p, n, k1) and Ψ(p, n, k2) agree on Xn and(4.7.2) follows from Lemma 4.4.13.The remaining steps are familiar from several earlier proofs in the thesis. Con-tinuing from (4.7.2),
118
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∞∑

i=n+1

min
(
2−i, dn+1(Ψ(p, n, k1),Ψ(p, n, k2))

)

≤
ℓ+1∑

i=n+1

dn+1(Ψ(p, n, k1),Ψ(p, n, k2)) +

∞∑

i=ℓ+2

2−i

= (ℓ− n + 1) dn+1(Ψ(p, n, k1),Ψ(p, n, k2)) + 2−ℓ−1

≤ (ℓ− n+ 1)

k2−1∑

i=k1

dn+1(Ψ(p, n, i),Ψ(p, n, i+ 1)) + 2−ℓ−1

≤ (ℓ− n+ 1)D(n)
k2−1∑

i=k1

λip + 2−ℓ−1

= (ℓ− n + 1)D(n) λk1p
1− λk2−k1

p

1− λp
+ 2−ℓ−1

≤ (ℓ− n+ 1)D(n) λk1p
1

1− λp
+ 2−ℓ−1

< 2−ℓ−1 + 2−ℓ−1

= 2−ℓTherefore, Ψ is α-omputable.What remains to be shown is that there is also an α-omputable modulus ofonvergene
M ′ : P × N→ Nfor limn→∞Ψ(p, n, 0). Merifully, this ismuh more straightforward: {Ψ(p, n, 0)}n∈Nis already (almost) a �fast� Cauhy sequene! Its modulus of onvergene isgiven by M ′(p, ℓ) = ℓ+1, whih we will now show as the �nal step.As we have established previously, given any n ∈ N, ∀m ≥ n, Ψ(p,m, 0) is an

Xn-approximate �xed point of F . Thus, if ℓ ∈ N and m,n ≥ ℓ+ 1,
dC[X,A](Ψ(p, n, 0),Ψ(p,m, 0)) =

∞∑

i=0

min
(
2−i, di (Ψ(p, n, 0),Ψ(p,m, 0))

)

=
∞∑

i=ℓ+2

min
(
2−i, di (Ψ(p, n, 0),Ψ(p,m, 0))

)

≤
∞∑

i=ℓ+2

2−i

= 2−ℓ−1

< 2−ℓ119



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareRemark 4.7.12. There is a somewhat major weakness in the Conrete Com-putability Theorem that prevents it from being a generalization of Theorem1 from [TZ12℄ (whih was my original goal): it relies on a single retratableexhaustion, X. In Tuker and Zuker's paper, there is a family of ontra-tion moduli λc,a,x and a family of inrements τc,a,x suh that F loally satis�esContr (λc,a,x, τc,a,x). In the theorem above, we do have a parametrized familyof ontration moduli λp, but essentially we have only the one �inrement�(exhaustion). I do believe it would be relatively easy to expand the theo-rem, allowing for a family of ompat exhaustions {Xp}p∈P suh that for eah
p ∈ P , F satis�es Caus(Xp) and Contr (λp,Xp), but I haven't taken the timeto attempt the theorem this way. Hene, I will relegate that projet for futurework, along with the following additional ideas.4.8 Future Work4.8.1 Study the Abstrat Computability of ΦIn [TZ12℄, the omputability of the model presented in [TZ11℄ is analyzed fromtwo di�erent perspetives: onrete omputability and abstrat omputability.I believe I have done the bulk of the work in generalizing onrete omputabil-ity to C[X,A] (although, learly muh remains to be done before that workan be onsidered omplete), and it seems to hold up very well. It wouldbe interesting to see whether the same is true of abstrat omputability. Inabstrat omputability, a more algebrai approah is taken (verses the ana-lyti approah of onrete omputability) and the stream/smoothie operatorsare approximated using a simple imperative language that is independent ofthe data representation and is augmented by the operations de�ned on thedata types being used. The language used by Tuker and Zuker is alledWhileCC*, and it inludes �while� loops, a nondeterministi ountable hoiefuntion (the �CC� part of the name), and arrays of arbitrary length (the �*�part of the name).4.8.2 Generalize A from metri spaes to uniform Haus-dor� spaesThere is a way to generalize Banah's Fixed Point Theorem so that it doesn'trequire a metri. I thought of a way to do this, myself, but E. Tarafdarappears to have beat me by a few deades [Tar74℄ (although, admittedly, witha muh more thoroughly-developed idea than I had). Rather than working120



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarewithin a metri spae, we work within a uniform spae�whih is a type oftopologial spae stritly more general than a metri spae. In a uniformspae, we don't (neessarily) have anything like a metri; instead we have afamily of �entourages.� An entourage of a uniform spae X is a olletionof subsets of X2 that satisfy ertain properties devised to impart a notion ofproximity without neessitating atual �distane.�If (X, d) is a metri spae, the uniformity indued by the metri onsists ofone entourage for every r ∈ R+. The entourage assoiated with r is the set ofall pairs of points no further than r of eah other. That is,
Er =

{
(x, y) ∈ X2 : d(x, y) ≤ r

}With a system of entourages, it is possible to de�ne ontrations and nonex-pansions in a few di�erent ways, eah of whih permits a variation of Banah'sFixed Point Theorem. Some approahes are outlined in [Tar74℄, and I believethey might be appliable here. Generalizing the onrete omputability of Φto uniform spaes would require the use of Cauhy �lters in plae of Cauhysequenes, so this ould be a major undertaking, but it seems quite feasible.4.8.3 An Alternative to ContrAnother generalization of Banah's Fixed Point Theorem ourred to me aswell: the theorem would still hold for an operator f that isn't ontrating,as long as there is some n ∈ N suh that fn is ontrating. Again, this wastoo obvious not to have been studied already. The obvious name for a suha property would be �eventually ontrating,� and quik searh reveals thefollowing de�nition from [HK03℄:De�nition 4.8.1. Let X be a metri spae, C ∈ R+, λ ∈ (0, 1), and f : X →
X . Then f is eventually ontrating if ∀n ∈ N ∀x, y ∈ X ,

d (fn(x), fn(y)) ≤ Cλnf(x, y)This is my de�nition (whih I suspet is roughly equivalent):De�nition 4.8.2. F : C[X,A]→ C[X,A] is progressively ontrating (or F ∈
PContr(λ, η,X)) if there is a funtion η : N → N and a onstant λ (with
0 < λ < 1) suh that ∀N ∈ N ∀u, v ∈ C[T,A],

dN
(
F η(N)u, F η(N)v

)
≤ λdN(u, v)Furthermore, we say F is e�etively progressively ontrating if η is reursive.Example 4.8.3. F : C[T,R]→ C[T,R] where F (u)(t) = ´ t

0
u(s) ds+f(t) (and

f ∈ C[T,R]) is e�etively progressively ontrating.121
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dN(F

ku, F kv) ≤ Nk

k!
· dN(u, v)Sine F 0 is simply the identity on C[T,R] and N0

0!
= 1, the statement holds for

k = 0.Now let k ∈ N and suppose that ∀N ∈ N ∀u, v ∈ C[T,R] dN
(
F k(u), F k(v)

)
≤

Nk

k!
dN(u, v). Then, ∀N ∈ N ∀u, v ∈ C[T,R],

dN
(
F k+1(u), F k+1(v)

)
= max

0≤t≤N

∣∣∣∣
(
ˆ t

0

F k(u)(s) ds+ f(t)

)

−
(
ˆ t

0

F k(v)(s) ds+ f(t)

)∣∣∣∣

= max
0≤t≤N

∣∣∣∣
ˆ t

0

(
F k(u)(s)− F k(v)(s)

)
ds

∣∣∣∣

≤ max
0≤t≤N

ˆ t

0

∣∣F k(u)(s)− F k(v)(s)
∣∣ ds

=

ˆ N

0

∣∣F k(u)(s)− F k(v)(s)
∣∣ ds

≤
ˆ N

0

max
0≤r≤s

∣∣F k(u)(r)− F k(v)(r)
∣∣ ds

=

ˆ N

0

ds
(
F k(u), F k(v)

)
ds

≤
ˆ N

0

sk

k!
ds (u, v)ds

≤ dN(u, v)

ˆ N

0

sk

k!
ds

=
Nk+1

(k + 1)!
dN(u, v)De�ne η(N) = max {3N, 1}. Then ∀N ∈ N+, with k = η(N) (for onveniene),we observe that

Nk

k!
=

(
k

3

)k
1

k!
<

(
k

e

)k
1

k!
<
√
k

(
k

e

)k
1

k!
=

1√
2π

(
√
2πk

(
k

e

)k
1

k!

)Stirling's Formula provides the following inequality for any k ∈ N,
√
2πk

(
k

e

)k

< k!122
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2π
, we ompute,

Nk

k!
< λ

(
√
2πk

(
k

e

)k
1

k!

)
< λ < 1Hene, ∀u, v ∈ C[T,R] ∀N ∈ N+,

dN(F
η(N)u, F η(N)v) ≤ Nη(N)

η(N)!
· dN(u, v) ≤ λdN(u, v)For N = 0, dN(F η(N)u, F η(N)v) = d0(Fu, Fv) = 0 ≤ λd0(u, v).Thus, F is progressively ontrating, and sine η is learly reursive, this on-tration is e�etive.Remark 4.8.4. I'm sure this argument an be adapted to work for any F :

C[T,R]m → C[T,R]m of the form,
F (u)(t) =

ˆ t

0

Au(s) ds+ f(t)where A ∈ Rm×m and f ∈ C[T,R]m. I just wanted to hek that the simplerversion works �rst.Hene, this version of the theory�while possibly not quite as broad as theversions whih use Contr(λ, τ) and Contr (λ,X)�should still work with thetwo mass-spring-damper ase studies in [TZ11℄ and it o�ers a diagonal on-strution whih will obviously onverge to the same stream as the �ω2� proessfrom that paper and the other onstrutions in this thesis do.Theorem 4.8.5 (Progressive Contration Theorem). If F : C[X,A]→ C[X,A]is progressively ontrating, then it has a unique �xed point.Proof. Let v0 ∈ C[X,A] and de�ne the sequene, {vk = F k (v0)
}
k∈N, whih wewill show is loally uniformly Cauhy. To do so, we must show that ∀N ∈ N

∀ε > 0 ∃M ∈ N suh that ∀n,m ≥M ,
dN(vm, vn) < εWithout loss of generality, assume η(N) ≥ 2 and let12,

r = max
0≤m,n≤η(N)

dN (vm, vn)12It may appear at �rst glane (if you see where this is going) that r should be de�nedas max0≤m,n≤η(N)−1 dN (vk, vj) sine vη(N) = F η(N)v0. The inlusion of vη(N) itself seemssuper�uous, but this inlusion is atually deliberate and essential.123
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dN
(
F k·η(N) (vm) , F

k·η(N) (vn)
)
≤ λkdN (vm, vn) ≤ λkrLet M ∈ N be a number suh that,

λM <
ε(1− λ)

rFor example, we ould take,
M =

⌈
logλ

ε(1− λ)
r

⌉Let m,n ∈ N. Then ∃m1, n1 ∈ N ∃m2, n2 ∈ {0, 1, . . . , η(N)− 1} suh that
m = m1 · η(N) +m2, n = n1 · η(N) + n2. Without loss of generality, assume
m1 ≤ n1 and let q = n1 −m1. Then,

dN (vm, vn) = dN
(
Fm1·η(N) (vm2) , F

n1·η(N) (vn2)
)

= dN
(
Fm1·η(N) (vm2) , F

m1·η(N)
(
F q·η(N) (vn2)

))

≤ λm1dN
(
vm2 , F

q·η(N) (vn2)
)

≤ λm1

(
dN
(
vm2 , vη(N)

)
+

q−1∑

i=1

dN
(
vi·η(N), v(i+1)η(N)

)

+dN
(
vq·η(N), vq·η(N)+n2

))

≤ λm1

(
r +

q−1∑

i=1

dN
(
F i·η(N) (v0) , F

i·η(N)
(
vη(N)

))

+dN
(
F q·η(N) (v0) , F

q·η(N) (vn2)
))

≤ λm1

(
r +

q−1∑

i=1

λidN
(
v0, vη(N)

)
+ λqdN (v0, vn2)

)

≤ λm1

(
r +

q−1∑

i=1

λir + λqr

)

≤ λm1

(
q∑

i=0

λir

)

= λm1
1− λq+1

1− λ r

< λm1
1

1− λr

≤ λM
1

1− λr
≤ εBy Corollary B.0.6 on page 134, ∃v ∈ C[X,A] suh that vn → v as n→∞.124



Chapter 5Conlusion and DisussionThe highlights and suesses of my Ph.D. researh were overed adequately inthe Chapter Summary (Setion 1.2), so in this setion, I will take the oppor-tunity to examine some of the shortomings of the work and look ahead to seehow it might be improved.The three researh projets overed in the thesis extend the work in [TZ11℄ indi�erent diretions. In the �rst researh projet, I thought of a di�erent wayto onstrut a �xed point and tried to repliate the approah in [TZ11℄ usingthe new onstrution in plae of Tuker and Zuker's. I onsider this to bethe most original work in the thesis (to the best of my knowledge), but alsothe least suessful of the three projets. The underlying idea seems obvious(to me), so its apparent absene from the literature arouses my suspiion. Myguess is that a few people have toyed with it in the past and dismissed itas impratial. In most nontrivial ases, the limit of the delayed �xed-pointfuntion probably beomes too unwieldy to be of any use. I do, however, thinkit's likely that there is a muh better �xed point theorem for it (than TheoremTZJ1 for Vanishing Delays on page 48). I believe this would be the most usefulnext step for the projet if anyone were to pursue it in the future: �nding aset of onditions (ideally whih do not inlude Contr ) on a stream operator,su�ient to ensure the operator has a unique �xed point.The seond projet began as a reformulation of the mass-spring-damper asestudy (as seen in Setion 3.3.1.2), motivated by the unusual ondition on theparametersM , K, and D required by [TZ07, TZ11℄. After the reforumulation,it seemed natural to ask what other sorts of operators would satisfy Contr ,and the hoie of a Banah spae o�ered an ideal venue to begin answeringthat question. While the answer I was able to provide was somewhat disap-pointing (very few dynamial systems an be expressed in the required form),I do believe it was at least somewhat illuminating and it attained a level ofgenerality beyond what I had initially aspired to reah. It is obviously muhtoo restritive, however, essentially allowing for only one kind of module in125



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarean analog network (the kind shown in the General Form Theorem). Even thefeedforward network from Example 1.3.11 on page 14 is exluded by the Gen-eral Form Theorem. There should be a way to relax that theorem somewhatto allow a greater diversity of modules.The third projet was, in my opinion, the most suessful, but the researhwas done in a relatively short period of time. As a result, it's a bit messyhaving two equivalent onstrutions. I have little doubt that there is a wayto prove the Generalized Theorem TZJ2 on page 102 and the Conrete Com-putability Theorem on page 115 using Constrution 4.4.3 on page 91, ratherthan Constrution 4.4.12 on page 96. If so, the latter onstrution would berendered entirely super�uous (as it should be). I simply didn't have time toattempt these proofs. That, as well as fully generalizing the omputability the-ory from [TZ12℄, I feel is the (relatively) easy part. The hard part is �nding asuitable ase study like the mass-spring-damper system to whih the smoothietheory an be applied, but to whih the stream theory annot. I spent a rathersigni�ant amount of time trying to �nd one. I looked at Nash Equilibriumand physial models involving partial di�erential equations�paying partiularattention to the rather simple model of heat di�usion along a �xed-length rodwhose ends are held onstant at 0◦C. The sequene of retrations I developedfor that system were fairly elaborate (at least for what was meant to be a sim-ple ase study), but ultimately I failed to represent the physial model with aontrating operator1.

1I have Prof. Jaques Carette to thank for resuing me from the potentially endlesspursuit down that blind alley. I may have still been trying (with red-rimmed eyes andgrinding teeth) to make it work today if not for him).126



Appendix AThoughts on Hadamard'sPriniple
A.1 Continuity isn't doing quite what we wantContinuity pervades every nook and ranny of both [TZ11℄ and this thesis.Muh of this is due to the mathematial onveniene a�orded by ontinuity:ontinuous funtions have very nie properties whih make them easy to workwith. If one is presented with both a ontinuous model of a phenomenon anda disontinuous one�the former is nearly always preferable. Furthermore,sine the �eld of omputable analysis typially de�nes omputable funtionsas being ontinuous, it's muh easier to ompare analog omputation withdigital omputation if the analog models are ontinuous as well.In [TZ11℄, however, the authors o�er a di�erent reason for the importanethey plae on ontinuity: Hadamard's Priniple. On page 3380 of [TZ11℄ theyintrodue this priniple:
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThe signi�ane of Theorems 1 and 2 is that onti-nuity implies the stability of the �xed point solution
Φ to the spei�ation given by F with respet to thesystem parameters, initial values and input streams.This means that small hanges in tuples of system pa-rameters c ∈ Ar, initial values a ∈ As and inputstreams x ∈ C[T,A]p will result in small hanges inthe behaviour of the systems as de�ned by Φ(c, a, x) ∈
C[T,A]m. Here �small� is measured by any topologyhosen for the task in hand. The signi�ane of on-tinuity is expressed in Hadamard's priniple whih, inthe present ontext, an be (re-)formulated in the form:for a model of a physial system to be aeptable, thebehaviour of the model must depend ontinuously onthe data. This priniple formalises the fat that if thesystem's behaviour depends signi�antly on small per-turbations in its data, then it annot behave in a stablefashion and its physial observation annot be reliable.This is beause, for example, repeating an experimentor omputation will involve small variations of physi-al data, and for the system to be observable the orre-sponding variation in behaviour must also be small.On page 3402, they ontinue,An important aspet of Hadamard's priniple is that itan be viewed as making lassial experimental physispossible. Suppose, for example, that one wants to ver-ify any of the well-known relations of lassial physis� Hooke's Law or Charles's Law, for example�by tak-ing measurements and drawing a graph of the relation-ship between the �independent� and �dependent vari-ables��fore vs displaement of a spring in the �rstexample, and temperature vs volume of a gas (at on-stant pressure) in the seond. ... The experimentalresults, and onsequent graph, only make sense on theassumption that the funtion that one is attempting toplot is ontinuous, so that small disrepanies or in-auraies in the inputs produe only small variationsin the outputs. Moreover, this is needed to guaranteerepeatability of experiments.I agree with the spirit and the motivation behind Hadamard's Priniple, but128



Ph.D. Thesis - N. James; MMaster University - Computing and Softwarenot with its presription of ontinuity. Certainly small variations in the in-put data must yield small hanges in the behaviour of the system, but thisis signi�antly di�erent from insisting that arbitrarily small hanges in thebehaviour of the system always be attainable via su�iently small variationsin the input.In the ontext of experimental siene, �small� will depend on our measuringinstruments and the objet under study. A light-year is �small� when measur-ing the diameter of a galaxy, while even a nanometre is not when measuring anatom. Suppose our instruments are apable of taking measurements to within
ε > 0 of the �true value� of the quantity (if, indeed, suh a value even exists).Now suppose we have a mathematial model f : X → Y of some physialsystem. That is, if we take a measurement x ∈ X from the system, the value
f(x) an be alulated and yields a predition about the system's behaviourwhih an be ompared with a measurement. And remember: we have amargin of error of ε in both the input and the output measurements. Considerthe following examples of models we might have.Example A.1.1.

f : R→ R

f(x) =





0 if x ≤ 0
x
ε

if 0 < x ≤ ε

1 if x > εThis system is ontinuous but it is experimentally indistinguishable from the(disontinuous) step funtion. The disontinuity in the step funtion would beunmeasurable if it were present in the physial system, and if it weren't present,that too would be an unmeasurable aspet of its behaviour. If we were toverify the auray of this model experimentally, it would be indistinguishablefrom the step funtion. Both funtions would be either on�rmed or falsi�edtogether by any oneivable experiment. They are e�etively both membersof the same experimental equivalene lass.Yet aording to Hadamard's Priniple, the step funtion would be an �una-eptable� model of a physial system (or as Courant and Hilbert would say,the problem whih produed it was �ill-posed�). I an appreiate that we mighthave reasons to prefer one model over the other, depending on the situation,but to rejet the step funtion re�exively as part of philosophial moratoriumon all disontinuity for its own sake seems absurd to me.Now onsider a more extreme example:Example A.1.2.
f : R→ R129
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f(x) =

{
sin(x) + ε

2
if x is rational

sin(x) if x is irrationalThis system is nowhere ontinuous, but that seems to have almost no adversee�ets on its preditive apabilities. The only impat these disontinuities haveon the viability of the model is that they slightly enlarge the margin of error.For example, a measurement of 5ε/4 at x = 0 (whih would be attainablewith our hypothetial measuring instrument and read as being di�erent froma measurement of 0) would be onsistent with this model, but not onsistentwith the model sin(x).Obviously we'd prefer to work with sin(x) over f(x) beause it's muh simplerand far more well-behaved. All else being equal, there would ertainly beno reason to favour the disontinuous model. It goes out of its way to beunwieldy and it does so for no apparent reason, o�ering nothing but slightlyfuzzier preditions. That is hardly grounds for dismissing suh a model ashaving no experimental value, however.Example A.1.3.
f : R→ [−1, 1]

f(x) = sin

(
2πx

ε

)This system is everywhere ontinuous and even in�nitely di�erentiable (on
(0, 1)), but it assumes every possible value in its range within the input marginof error. Thus, it has absolutely no preditive apabilities whatsoever. Itouldn't be more ontinuous, yet even unmeasurably small hanges in theinput result in arbitrarily large hanges in the output.Even worse, perhaps, onsider the (in)famous example of the �Topologist's SineCurve� (but restrited to R+):

f(x) = sin

(
1

x

)No matter how preise your measuring instruments are, if you need a measure-ment near 0, you're out of luk.Remark A.1.4. Examples A.1.1 on the preeding page and A.1.2 on the pre-vious page show that ontinuity is not neessary to ensure that a model isexperimentally viable, and Example A.1.3 shows that nor is ontinuity su�-ient. Thus, it appears it has no role to play as a riterion of experimentalappliability.Rihard Courant and David Hilbert write (in [CH53℄)130



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareThe [requirement of ontinuity℄ is neessary if themathematial formulation is to desribe observable nat-ural phenomena. Data in nature annot possibly beoneived as rigidly �xed; the mere proess of mea-suring them involves small errors. For example, pre-sribed values for spae or time oordinates are alwaysgiven within ertain margins of preision. Therefore,a mathematial problem annot be onsidered as real-istially orresponding to physial phenomena unless avariation of the given data in a su�iently small rangeleads to an arbitrarily small hange in the solution.This paragraph appears to me to ontradit itself. If the mere proess ofmeasuring data neessarily involves small errors, then why must the solutionto a mathematial problem orresponding to physial phenomena be requiredto exhibit arbitrarily small hanges? It is impossible (and we an only assumeit will always be impossible) to measure arbitrarily small hanges, so this ismuh too extreme a limitation to impose on mathematial models of physialphenomena.In a later setion entitled �Remarks about `Improperly Posed' Problems,�Courant and Hilbert write,Nonlinear phenomena, quantum theory, and the adventof powerful numerial methods have shown that �prop-erly posed� problems are by far not the only ones whihappropriately re�et real phenomena.With this, I agree, and I struggle to see how it is onsistent with their earlierstatement.A.2 If not ontinuity, then what?I believe the aim of Hadamard's Priniple is to ensure that in any sienti�model, an unmeasurable di�erene between two input values should not re-sult in a measurable1 di�erene between their images. We might odify thismathematially as follows2:1Just to dispel any possible onfusion, I use the term �measurable� here in the ordinarysense rather than the mathematial sense. There are no σ-algebras or measures involved.2This de�nition has surely been proposed before, but by whom and what it has beennamed, I have no idea.
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Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareDe�nition A.2.1. Let (X, dX) , (Y, dY ) be metri spaes, let εX , εY > 0, andlet f : X → Y . Then f is (εX , εY )-stable if ∀x, y ∈ X
dX(x, y) < εX ⇒ dY (f(x), f(y)) < εYThe values εX and εY might represent the preision of our measuring instru-ments. That is, εX is so small that if dX(x, y) < εX , we lak the tehnology todetermine it (and likewise for εY ). This is obviously muh messier and far lesssatisfying than ontinuity sine the preision of our measuring instruments isalways improving, but I feel this pair of preisions is absolutely essential tothe mandate we are attempting to draft. I don't believe ontinuity is ful�llingthe role that Hadamard intended for it, so its elegane is moot.One way we might liberate this admittedly awkward ondition from the pre-ision of atual measuring devies is to assume theoretial limits suh as thePlank length on the quantities involved rather than tehnologial ones. An-other possibility (whih I think is insu�ient, but at least a step in the rightdiretion) would be to replae ontinuity with bounded variation.Remark A.2.2. Even using this alternative riterion, I feel the priniple is toostrit, as it suggests we ompletely dismiss any model or solution that doesnot onform to it�that we would be utterly wasting our time with any suhmodels as they have no sienti� value. On this point I defer to Karl Popper'sphilosophy of siene and maintain that a sienti� statement need only befalsi�able to have sienti� value. As long as it makes some predition abouta system that an be proven inorret in the fae of the right observation, itshould not be rejeted as being experimentally worthless. It may obviouslybe replaed by a superior model that makes stronger preditions or has nierproperties, but that's rather di�erent from rejeting a model altogether.In the ase of Example A.1.3 on page 130, that model makes no falsi�ablepreditions. There is no measurement of the system that would be inonsistentwith the model. Therefore, I agree that it should be rejeted from the realmof experimental siene. The ase of the Topologist's Sine Curve is ratherdi�erent sine it does make falsi�able preditions when we move su�ientlyfar away from zero. It may still be onsistent with several di�erent possiblemeasurements, but as long as there is at least one measurement that the modelrules out as being impossible, it is an experimentally viable model.At the opposite extreme, when a model rules out all but one measurement asbeing impossible (i.e. it makes preditions with the same or greater preisionthan our measuring devies or our assumptions of theoretial limits), that is anideal model in the sense of experimental viability. I believe there is a spetrumof models in between the two extremes, and models that make stronger (moreeasily falsi�able) preditions should typially be favoured over those whihmake weaker preditions, but the latter should not be dismissed altogether theway Hadamard's Priniple suggests. 132



Appendix BSupplementary PropositionsLemma B.0.3. If K is a ompat metri spae and A is a omplete metrispae, then C[K,A] (with the ompat-open topology) is omplete.Proof. See [TZ11, Mun75℄.De�nition B.0.4 (Uniformly Cauhy Sequene). Let X be a set and Y be ametri spae (with the metri dY ). Let F = {fn : X → Y }n∈N be a sequene offuntions. We say F is uniformly Cauhy if there exists a funtionN : R+ → Nsuh that ∀ε > 0 ∀m,n ∈ N,
m,n ≥ N(ε) ⇒ sup

x∈X
{dY (fn(x), fm(x))} < εI know the following lemma must be in some textbook, somewhere, and I'drather just refer to it, but I ouldn't �nd a solid referene that stated it at thislevel of generality (without the domain or odomain being Rn). At this point,I'm thinking I'll waste less time by just re-inventing the wheel here.Lemma B.0.5. Let X be a set and Y be a omplete metri spae (with themetri dY ). Let {fn : X → Y }n∈N be a sequene of uniformly Cauhy fun-tions. Then there exists a unique funtion f : X → Y suh that fn onvergesuniformly to f .Proof. It's lear from De�nition B.0.4 that for any x ∈ X , the sequene

{fn(x)}n∈N is a Cauhy sequene in Y , and sine Y is omplete, that sequenemust onverge. Hene, the sequene {fn}n∈N onverges pointwise to a uniquefuntion f : X → Y . What is perhaps not entirely obvious (albeit, thoroughlyunsurprising) is that the onvergene is uniform.Let N : R+ → N be the (uniformly Cauhy) modulus funtion from De�-nition B.0.4 for the sequene {fn}n∈N and de�ne Nf : R+ → N as Nf(ε) =
N(ε/2). We will show that Nf is modulus of onvergene for {fn}n∈N.133



Ph.D. Thesis - N. James; MMaster University - Computing and SoftwareSine fn → f (pointwise) as n→∞, there is another (pointwise onvergene)modulus funtion for fn. Call it N ′
f : X × R+ → N. Then ∀x ∈ X ∀ε > 0

∀n ∈ N,
n ≥ N ′

f (x, ε) ⇒ dY (fn(x), f(x)) < εLet ε > 0 and let n > Nf (ε). Let x ∈ X and let m ≥ max
{
n,N ′

f(x, ε/2)
}.Then,

dY (fn(x), f(x)) ≤ dY (fn(x), fm(x)) + dY (fm(x), f(x))

≤ ε

2
+
ε

2
= εThus, fn → f uniformly as n → ∞ with (uniform) modulus of ontinuity

Nf .Corollary B.0.6. Let X be a topologial spae, and Y be a omplete metrispae. Let {fn : X → Y }n∈N be a uniformly Cauhy sequene of ontinuousfuntions. Then there exists a unique, ontinuous funtion f : X → Y suhthat fn → f as n→∞.Proof. By Lemma B.0.5, there exists a unique f : X → Y suh that fn → funiformly as n → ∞. Sine all the fn funtions are ontinuous, the UniformLimit Theorem (see [Mun75℄, for example) states that f will be ontinuous aswell.

134



Bibliography[Ah97℄ David Aheson, From alulus to haos: An introdution to dy-namis, Oxford University Press, 1997.[Bar01℄ Robert Gardner Bartle, A modern theory of integration (graduatestudies in mathematis), vol. 22, Amerian Mathematial Soiety,2001.[BCGH06℄ O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry, Thegeneral purpose analog omputer and omputable analysis are twoequivalent paradigms of analog omputation, Theory and Applia-tions of Models of Computation: Third International Conferene,TAMC 2006, Beijing, China, May 15-20, 2006. Proeedings (S.B.& Li A. Cai, J.-Y.; Cooper, ed.), vol. 3959, Springer-Verlag, 2006,pp. 631�643.[BCS97℄ Peter Buergisser, Mihael Clausen, and Amin Shokrollahi, Alge-brai Complexity Theory, Grundlehren der mathematishen Wis-senshaften, Springer-Verlag, 1997.[BD01℄ WilliamE. Boye and Rihard C. DiPrima, Elementary di�erentialequations and boundary value problems, 7 ed., John Wiley & Sons,In., 2001.[Cau21℄ Augustin-Louis Cauhy, Cours d'analyse de l'Eole Royale Poly-tehnique, Aadémie des Sienes, 1821.[CH53℄ R. Courant and D. Hilbert, Methods of mathematial physis, vol.ii, Intersiene, 1953.[Cor36℄ Gaspard-Gustave Coriolis, Note sur un moyen de traer desourbes données par des équations di�érentielles, Journal de Math-ématiques Pures et appliquées 1 (1836), 5�9.[F+06℄ T. Freeth et al., Deoding the anient Greek astronomial alu-lator known as the Antikythera Mehanism, Nature 444 (2006),587�591. 135



Ph.D. Thesis - N. James; MMaster University - Computing and Software[Fea99℄ Jean-Christophe Feauveau, A generalized Riemann integral forBanah-valued funtions, Real Analysis Exhange 25 (1999), no. 2,919�930.[GC03℄ D.S. Graça and J.F. Costa, Analog omputers and reursive fun-tions over the reals, Journal of Complexity 19 (2003), 644�664.[Grz55℄ A. Grzegorzyk, Computable funtionals, Fundamenta Mathemat-iae 42 (1955), 168�202.[Grz57℄ , On the de�ntions of omputable real ontinuous funtions,Fundamenta Mathematiae 44 (1957), 61�71.[Had52℄ J. Hadamard, Letures on Cauhy's problem in linear partial dif-ferential equations, Dover, 1952.[HK71℄ Kenneth Ho�man and Ray Kunze, Linear algebra, 2 ed., PrentieHall, 1971.[HK03℄ Boris Hasselblatt and A. B. Katok, A �rst ourse in dynamis:With a panorama of reent developments, Cambridge UniversityPress, 2003.[JZ12℄ Nik D. James and Je� Zuker, A lass of ontrating stream op-erators, The Computer Journal (2012), Oxford University Press,DOI: 10.1093/omjnl/bxs054.[Kem10℄ Ahim Kempf, Spaetime ould be simultaneously ontinuous anddisrete, in the same way that information an be, New Journal ofPhysis 12 (2010).[Ko91℄ K.-I. Ko, Complexity theory of real funtions, Birkhäuser, 1991.[La55℄ D. Laombe, Extension de la notion de fontion reursive aux fon-tions d'une ou plusieurs variables reelles, i, ii, iii, C.R. Aad. Si.Paris 240, 241 (1955), 2478�2480, 13�14, 151�153.[LCR10℄ Mathieu Lihoreau, Lars Chittka, and Nigel E. Raine, Travel opti-mization by foraging bumblebees through readjustments of traplinesafter disovery of new feeding loations, The Amerian Naturalist176 (2010), no. 6, 744�757.[MPH+06℄ Jonathan W. Mills, Matt Parker, Brye Himebaugh, Craig Shue,Brian Kopeky, and Chris Weilemann, Empty spae omputes: Theevolution of an unonventional superomputer, ACM InternationalConferene on Computing Frontiers, 2006.136



Ph.D. Thesis - N. James; MMaster University - Computing and Software[Mun75℄ James R. Munkres, Topology: a �rst ourse, Prentie Hall, 1975.[PE74℄ M.B. Pour-El, Abstrat omputability and its relation to thegeneral-purpose analog omputer, Journal of the Amerian Math-ematial Soiety 199 (1974), 1�28.[PER89℄ M.B. Pour-El and J.I. Rihards, Computability in analysis andphysis, Springer-Verlag, 1989.[Pol80℄ Anthony Pollen, The great gunnery sandal: The mystery of jut-land, Wm Collins & Sons & Co, 1980.[Rab03℄ A. Rabinovih, Automata over ontinuous time, Theoretial Com-puter Siene 300 (2003), 331�363.[Roy63℄ H.L. Royden, Real analysis, Mamillan, 1963.[Rub93℄ Lee A. Rubel, The extended analog omputer, Advanes in AppliedMathematis 14 (1993), 39�50.[Rud76℄ W. Rudin, Priniples of mathematial analysis ,(3rd ed.),MGraw-Hill, 1976.[Rud91℄ Walter Rudin, Funtional analysis, 2 ed., MGraw-Hill, 1991.[Sha41℄ C Shannon, Mathematial theory of the di�erential analyser, Jour-nal of Mathematis and Physis 20 (1941), 337�354.[SHT99℄ V. Stoltenberg-Hansen and J. V. Tuker, Conrete models of om-putation for topologial algebras, Theoretial Computer Siene219 (1999), 347�378.[Son90℄ E.D. Sontag, Mathematial ontrol theory: Deterministi �nite di-mensional systems, Springer-Verlag, 1990.[Tar74℄ E. Tarafdar, An approah to �xed point theorems on uniformspaes, Transations of the Amerian Mathematial Soiety 191(1974), 209�225.[Tho76℄ James Thomson, An integrating mahine having a new kinematipriniple, Proeedings of the Royal Soiety, vol. 24, 1876, pp. 262�265.[Tra99℄ Boris Trakhtenbrot, Automata and their interation: De�ni-tional suggestions, Fundamentals of Computation Theory (GabrielCiobanu and Gheorghe Paun, eds.), Leture Notes in ComputerSiene, vol. 1684, Springer Berlin / Heidelberg, 1999, pp. 82�82.137



Ph.D. Thesis - N. James; MMaster University - Computing and Software[TZ04℄ J. V. Tuker and J. I. Zuker, Abstrat versus onrete omputationon metri partial algebras, ACM Transations on ComputationalLogi 5 (2004), 611�668.[TZ07℄ , Computability of analog networks, Theoretial ComputerSiene 371 (2007), 115�146.[TZ11℄ , Continuity of operators on ontinuous and disrete timestreams, Theoretial Computer Siene 412 (2011), no. 28, 3378�3403.[TZ12℄ , Computability of operators on ontinuous and disretetime streams, submitted to Computability (2012).[Wei00℄ K. Weihrauh, Computable analysis: An introdution, Springer-Verlag, 2000.[YMTK95℄ H. Yokoi, T. Mizuno, M. Takita, and Y. Kakazu, Eulidean TSPusing harateristis of slime mold, IEEE Conferene on Evolu-tionary Computation, vol. 2, 1995, pp. 689�694.

138


