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Abstract

The thesis consists of three research projects concerning mathematical models
for analog computers, originally developed by John Tucker and Jeff Zucker.
The models are capable of representing systems that essentially “diverge,” ex-
hibiting no valid behaviour—much the way that digital computers are capable
of running programs that never halt. While there is no solution to the general
Halting Problem, there are certainly theorems that identify large collections of
instances that are guaranteed to halt. For example, if we use a simplified lan-
guage featuring only assignment, branching, algebraic operations, and loops
whose bounds must be fixed in advance (i.e. at “compile time”), we know that
all instances expressible in this language will halt.

In this spirit, one of the major objectives of all three thesis projects is identify
a large class of instances of analog computation (analog computer + input)
that are guaranteed to “converge.” In our semantic models, this convergence
is assured if a certain operator (representing the computer and its input) has
a unique fixed point. The first project is based on an original fixed point
construction, while the second and third projects are based on Tucker and
Zucker’s construction. The second project narrows the scope of the model to
a special case in order to concretely identify a class of operators with well-
behaved fixed points, and considers some applications. The third project goes
the opposite way: widening the scope of the model in order to generalize it.
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Chapter 1

Introduction

1.1 Analog Computation and Analog Networks

Analog computation concerns computation on continua rather than on discrete
spaces. Where digital computation uses an abstract, symbolic encoding of data
and explicitly written algorithms to operate upon them, analog computation
uses—as its name would suggest—an analogy or transduction of measured data
and a corresponding physical system which serves as a model of the original
system, i.e. the system about which we wish to reason or make predictions..
The input data can be any sort of measurement (e.g. voltage, pressure, tem-
perature, etc.) from the world outside the model, and it can be represented
by any measurable quantity that is within the model. The model is set up
to mimic the initial conditions of the original system, and then set in motion
and observed. The “language” of analog computation comes directly from the
laws of physics rather than from the minds of instruction set engineers and
programming language designers.

Admittedly, digital computation often involves analogies as well. An array of
bits in a digital computer might be used, for example, to directly represent
the status of a series of locks in a canal. Metaphors for data structures, algo-
rithms, and programming language constructs like binary “trees,” “simulated
annealing,” and “inheritance” permeate the literature on digital computation.
Hence, we might alternatively dichotomize computation into “algorithmic” and
“non-algorithmic” paradigms, but the term, “analog computation” is already
well-established and the notion of analogy is inherent in it (both in its rep-
resentation of data and in its actual mechanisms of computation), while it
appears only incidentally in digital computation, and often for only didactic
purposes.

Putting aside such devices as the Antikythera Mechanism [F*06], slide rules,
planimeters, and similar devices used to compute individual values (we might
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call them analog “calculators” rather than “computers”), likely the first recorded
account of analog computation was written in 1836 by Gaspard-Gustave Cori-
olis [Cor36|, in which he described using gears and cylinders to integrate first-
order differential equations. These ideas were further developed (or perhaps
reinvented) in 1876 to tackle differential equations of arbitrary order by Lord
Kelvin and his brother, James Thomson [Tho76]. While Kelvin and Thom-
son’s ideas were implemented to some extent in the “Argo” fire control system
used by the Royal Navy [Pol80], it was Vannevar Bush who designed and built
what is likely the most advanced mechanical analog computer and one of the
most famous and practical computers of its day: the differential analyzer.

Claude Shannon, working as a research assistant in Bush’s lab, defined a math-
ematical model of the differential analyzer and named it the “General Purpose
Analog Computer” (or “GPAC”) in [Sha4l]. The GPAC is an example of what
could more generally be called an analog network, which may be visualized as a
circuit: a directed graph in which the nodes are processing elements known as
“modules” and the edges (known as “channels”) act as wires or tubes to convey
data streams (which are functions of time).

The network is merely a conceptual model, however, and is not intended to
describe the actual appearance of the system. An electronic or hydraulic imple-
mentation of an analog network might physically resemble the directed graph
itself, while a mechanical implementation often wouldn’t. A module to per-
form scalar multiplication, for example, could be implemented as a step-up
transformer or a transistor amplifier in an electronic circuit (both of which
commonly appear in schematics), whereas the same module could be imple-
mented mechanically as the physical interface between the teeth of two cogs of
differing diameters (which does not so neatly suggest a node in a schematic).
Hence, a physical system that bears no apparent resemblance to a network at
all, may still qualify in our vernacular as an “analog network.”

One of the main purposes of defining such a model is to determine the set of
functions it is capable of generating, for if some physical device can reliably
generate a particular function, it follows that this function is “computable” in
the plainest and most intuitive sense of the word. Shannon proved! that the
GPAC is capable of generating all and only the differentially algebraic func-
tions. This is a very large class of functions, including polynomials of one real
variable along with sinusoids, exponential functions, and solutions of ordinary
differential equations consisting of these functions. It is not, however, without
some disappointing limitations—Shannon’s poster child being the well-known
gamma function, which is not differentially algebraic.

!There were some problems with his proof which Marian Pour-El addressed and at-
tempted to rectify in [PE74| using an alternative GPAC model. Unfortunately, there were
also problems in her own approach which were spotted and corrected by Daniel S. Gragca
and José Félix Costa in [GCO3] using a third GPAC model.
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Partially inspired by these limitations and partially by the assumption that
the brain is a type of analog computer which is known to perform spatial as
well as temporal integration, Lee Rubel defined the “Extended Analog Com-
puter” (or EAC) in [Rub93]. Rubel’s EAC is theoretically capable of solving
boundary value problems for partial differential equations, whereas the GPAC
is limited (according to Shannon’s definition) to initial value problems of ordi-
nary differential equations. Jonathan Mills ran with Rubel’s model, creating
fully-functional analog computers inspired by the EAC from foam sheets typ-
ically used as packaging material and even blocks of salted gelatin [MPHT06].
There have been other implementations of analog computation that repre-
sent an even more profound departure from the GPAC model. Slime mold
[YMTKO95| and bees |[LCR10| have been used to solve small instances of the
Travelling Salesperson Problem and generate near-optimal solutions to larger
instances.

While models of analog computation offer one approach for investigating the
computability of functions involving continua, there has been a parallel re-
search effort focused on extending classical computability theory (as defined
by Turing, Church, Kleene, etc.) into this realm: computable analysis. Pio-
neered primarily by Andrzej Grzegorczyk |Grz55, Grz57| and Daniel Lacombe
|Lachb|, computable analysis puts real (and complex) analysis, functional anal-
ysis, and numerical analysis under the microscope of classical computability
theory and asks the question central to most research on analog computation:
which functions are computable? We already have a clear answer to that ques-
tion in the domain of classical computability theory (i.e. for functions of the
form f : N — N), as all of the models of digital computation we’ve discov-
ered so far are in agreement. This is, of course, the foundation for the famous
Church-Turing Thesis.

Computability theory on continua has not yet reached the same degree of
consensus, but much progress is being made. Olivier Bournez et al. showed in
[BCGHO6| that the GPAC is equivalent to Ker-I Ko’s model of computability
[K091]| as long as the GPAC is permitted to approzimate functions (to arbitrary
precision) rather than produce them in real time. Viggo Stoltenberg-Hansen
and John Tucker used domain representability in [SHT99| to prove that five
different models of computation on topological algebras are equivalent (under
some modest conditions). Further equivalence results (and exceptions) can be
found in [Wei00]. The matter is still not entirely settled, so the question of
computability pertaining to functions with uncountable domains or codomains
remains open for now.

In [TZ07, TZ11], John Tucker and Jeff Zucker turn this question around and

ask instead, given a particular analog network, under what conditions does it
produce meaningful output, and under what conditions does this output vary
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continuously with the network’s parameters? They argue? that the significance
of the latter question is grounded in the imperative of experimental physics
known as "Hadamard’s Principle," first articulated by Hadamard [Had52] and
later refined by Courant and Hilbert [CH53]. Its fundamental tenet is that for
the solution to a problem in physics to be practically applicable, it must vary
continuously with the parameters of the system so that small discrepancies or
inaccuracies in the input produce only small variations in the output. The
stability of measurements in the presence of noise is an essential feature for a
physical system to qualify as an analog computer.

Like the GPAC, the data streams carried by the analog networks in [TZ07,
TZ11| are functions of time. There are, of course, various ways of modelling
time. The debate over whether spacetime is continuous, discrete, or even
both simultaneously (see |[Kem10|) is ongoing, but regardless of the outcome
of that debate, the majority of our physical laws and theories treat measurable
quantities (including time) as real numbers. This may suggest using the whole
real line as a model of time, but regardless of the duration a computer is
allowed to run while solving a problem it must at some point actually be built,
initialized, and started. For this reason, the authors chose to represent time
using the only the nonnegative real numbers (as we do here, up until Chapter 4,
at which point several possible representations of time become merely special
cases in a broader theory).

1.2 Chapter Summary

Chapter 1: Preliminary Concepts

The three research projects share a common foundation, rooted in [TZ11].
Briefly, we take T to be the nonnegative reals, which will represent time, and
A to be a metric space which represents a physically measurable quantity
(e.g. voltage, position, pressure, etc.) or a collection of physically measurable
quantities. Our fundamental “object space” is C[T, .A], which is the space of
total continuous functions from T into A, equipped with a metric topology.
We call this “stream space,” and the elements within it, “streams.”

The model of computation in the first two projects concerns operators on
C[T, A] which represent physical systems to be used as computers. The se-
mantics of the model are given by the existence of unique® fixed points for

2Note that I don’t fully agree with Hadamard’s Principle, as I explain in Appendix A.

3Technically, the fixed points need only be distinguishable to provide such semantics.
That is, the model would still work even with a whole set of fixed points, provided there exists
a selection function (e.g. least fixed point) with nice properties to provide the uniqueness.
This would represent a generalization of the theory suitable for future work.
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these operators. Two theorems from |TZ11| are presented here: the first pro-
vides a set of sufficient conditions for the existence of a unique fixed point,
while the second provides conditions to ensure this fixed point varies contin-
uously with the parameters and input streams. The first theorem is proved
constructively in |[TZ11|, and the construction is imperative for most of the
subsequent results. So I reproduce it in Chapter 1 for reference, albeit using
different notation and slightly different methods, but keeping the spirit of the
construction the same.

There are two operator properties of particular importance to the theorems:
causality and contraction. Loosely speaking, a “causal” operator does not de-
pend on the future and a “contracting” operator brings streams closer together
(but only locally; this is somewhat different from the usual sense of contraction,
as used in analysis). Causality is a basic requirement of the theory, without
which we couldn’t get off the ground at all, while contraction does most of the
heavy lifting. This is not contraction in the usual sense, but rather a domain-
restricted, conditional version of contraction. The properties are presented,
along with a third which is essential to [TZ11], but less important here: shift
invariance.

Up until Section 1.4, I stick very closely the original source material in order
to better set it apart from my own work. After that section, I introduce some
modest generalizations of the theory and some further preliminary results I
need to use later.

Chapter 2: Constructing Fixed Points of Stream Opera-
tors Using Vanishing Delays

This chapter covers the work I did on my original project, which I felt I had
to abandon because I had gone several months without making any progress.
Recall that the model of analog computation upon which this thesis is based
concerns fixed points of stream operators (aside from Chapter 4, in which I
depart from streams). Some have fixed points, some don’t.

If we compose any such operator with a delay, however (creating a delayed
version of the original operator), this new operator is guaranteed to have a
unique fixed point, and one that can even be constructed quite mechanically.
So the idea explored in this chapter is to see what happens when we compose
an operator with a delay, find the fixed point of the delayed operator (as a
function of the delay duration), and then let that delay approach zero.

Intuitively, we expect that the fixed point of the delayed operator will converge
to the fixed point of the original operator, if one exists, and that it will diverge
otherwise.

Chapter Highlights:
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1. The Delayed Operator Theorem on page 45: a delayed operator that
satisfies a certain causality condition always has a unique fixed point.

2. The Vanishing Delay Theorem on page 47: if that (parametrized) fixed
point converges to a stream as the delay approaches zero, the stream to
which it converges is a fixed point of the original, non-delayed operator.

3. Theorem TZJ1 for Vanishing Delays on page 48: if a continuous operator
satisfies Tucker and Zucker’s sufficiency conditions for having a unique
fixed point, then my technique of vanishing delays will converge to it
(loosely speaking, if their construction works, so will mine—at least in
the case of continuous operators).

Chapter 3: A Class of Contracting Stream Operators

In 2011, I co-authored a paper entitled “A Class of Contracting Stream Oper-
ators,” which has just been published by The Computer Journal |JZ12|. Since
that paper and the rest of this thesis share a common foundation of theory
and since the paper was written to be self-contained, I disassembled it some-
what and spread the contents between Chapter 1 and Chapter 3. There are
two, fairly distinct parts to this chapter. The operators discussed in [TZ11] are
identified only indirectly by the properties they possess. In the first part of this
chapter (the first two sections), I explicitly develop a class of operators whose
members satisfy those properties. In the second part (the third section), I show
how the case studies in [TZ07] and [TZ11] (mass-spring-damper systems) can
be reorganized according to Part 1 to cover a broader range of systems, as well
as including a new system (the simple pendulum), which yields only partially
to the analysis in Part 1.

The abstract from the paper reads as follows:

In [TZ07] and |TZ11], Tucker and Zucker present a model for
the semantics of analog networks operating on streams from topo-
logical algebras. Central to their model is a parametrized stream
operator representing the network along with a theory that con-
cerns the existence, uniqueness, continuity, and computability of a
fixed point of that stream operator. We narrow the scope of this
paper from general topological algebras to algebras of streams that
assume values only from a Banach space. This restriction facili-
tates the definition of a fairly broad class of stream operators to
which the theory described in the above two papers applies.

As a demonstration in their original work, the authors provide
two case studies: analog networks which model the behaviour of
simple mass-spring-damper systems. The case studies showcase the
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theory well, but they seem to require the imposition of somewhat
peculiar conditions on the parameters (the masses, the spring con-
stants, and the damping coefficients). The extra conditions—while
not catastrophic to the case studies—make them somewhat unsat-
isfying. We show here that while their original mass-spring-damper
models do not fall within our new class, they can be easily recon-
figured into equivalent models that do. This modification obviates
the extra conditions on the parameters.

Chapter Highlights:

1. If we take A to be a Banach space, it is natural to define two cor-
responding stream spaces: one for scalar-valued streams and one for
vector-valued streams. These work together as expected, using point-
wise versions of the algebraic operations on A. In fact, we can even
generalize the former to scalar-matrix-valued streams.

2. The Building Block Lemma on page 55: an investigation into the way
the two essential properties Lip and Caus are affected by integration
and the pointwise stream operations on A.

3. The Continuity Lemma on page 59: integration and the pointwise stream
operations preserve the continuity of stream operators.

4. The General Form Theorem on page 65: this theorem identifies the tit-
ular class of contracting stream operators by pushing the two lemmas
above as far as they can go without using any “foreign” operators.

5. The mass-spring-damper system from [TZ07, TZ11, TZ12] is reformu-
lated in a way that requires no special conditions to be imposed on the
parameters. Incidentally, my presentation of the mass-spring-damper
system in Section 3.3.1.2 is the only proof of which I am aware that the
ODE corresponding to the mass-spring-damper system has a solution
for any continuous forcing function. The versions I’ve seen presented in
textbooks always use a sinusoidal forcing function. This result may very
well be proven elsewhere, of course, but I have never seen it.

6. The simplest form of pendulum is examined using this theory, but it
requires the use of a function outside the class identified by the General
Form Theorem on page 65.

Chapter 4: Generalizing the Theory Beyond Time Streams

The previous chapters along with most of [TZ07, TZ11, TZ12| concern stream
operators, and as noted earlier, streams are functions of time. We model
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time (primarily) using R=", but the theory depends on very few of the special
properties of R. Tucker and Zucker do start out with a more general framework,
using an arbitrary o-compact space X instead of T = R=°, but they drop down
to the special case of streams (X = T) as soon as causality is involved—since
the concept of causality is inherently temporal.

[ was able to generalize their two main properties (causality and contraction)
to o-compact spaces, alter the construction somewhat to be compatible in
the more general framework, and prove variants of the two main theorems in
|TZ11]. While I don’t use shift invariance in my own theorems, I haven’t been
able to prove it is completely superfluous, so to help inspire future work, I
suggest a way to generalize the shift operator as well. I also present some
alternatives to the contraction property which may lead to other interesting
results.

In the final section, I give a somewhat cursory treatment of the preceding ma-
terial from the perspective of computability, and prove the final major theorem
of the thesis.

Chapter Highlights:

1. Definitions of Caus(X) and Lip(\, X) (Definitions 4.2.1 and 4.2.6) form
the basis of the generalization beyond time streams.

2. The definition of a retractable exhaustion (Definition 4.3.2 on page 87)
is used to generalize the actual fixed point construction.

3. The Generalized TZ1 Theorem on page 94 shows that an operator which
satisfies Caus(X) and Contr(X) has a unique fixed point. This is one
of the main thesis highlights. In addition to being a more general result
than Theorem TZ1 on page 19, its proof invokes Banach’s Fixed Point
Theorem rather than cannibalizing key steps in the proof of Banach’s
theorem. So I believe it is both more general and more elegant than the
theorem it supplants (it is just, admittedly, much less original, given that
it is supplanting something in the first place).

4. The Generalized TZJ2 Theorem on page 102 is a strict generalization of
Theorem TZJ2 on page 27. Loosely speaking, it shows that the fixed
point of an operator F': P x C[X, A] — C[X, A] varies continuously with
the parameters. This is perhaps the other main thesis highlight.

5. The Concrete Computability Theorem 4.7.11 on page 115 represents the
first significant step toward generalizing Tucker and Zucker’s follow-up
paper to [TZ11|: |TZ12|, in which the authors provide an analysis of the
computability of the operators in [TZ11| using two different approaches
to computability for stream operators (concrete and abstract). In this
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theorem, I provide a set of conditions which are sufficient to ensure that
the fixed point from the previous two theorems is concretely computable.

Chapter 5: Conclusion and Discussion

Given that I'm already covering the thesis highlights in this chapter summary,
I use Chapter 5 to assess a few of the problems I encountered and review some
of the ideas for further research.

Appendices

A. Hadamard’s Principle and Supplementary Lemmas

Hadamard’s Principle is a philosophical statement about the properties a
mathematical model should possess if it is meant to correspond to a physical
system. It was first expressed by Jacques Hadamard in [Had52|, and explicated
further by Richard Courant and David Hilbert in |[CH53|. Its most weighty
requirement is that the solution to such a problem should vary continuously
with the parameters of the problem (or the input to the system). This is one
of the reasons continuity is so heavily emphasized in [TZ11].

Hadamard’s Principle seemed quite reasonable when it was first introduced
to me, but something about it just didn’t sit right. Despite the fact that
Hadamard, Courant, and Hilbert were all far better mathematicians than I
could ever hope to be (although I suppose that doesn’t necessarily make them
better philosophers), and despite the fact that I have yet to encounter any
criticism of Hadamard’s Principle from anyone else, I'm going to risk appearing
impudent and voice my concerns with it in Appendix A, along with offering
a suggestion about what [ think might more aptly replace it. I relegate this
discussion to the appendices, since it is more of opinion piece than a research
topic.

B. Supplementary Propositions

Appendix B is small collection of assorted lemmas that are needed elsewhere,
but which cluttered the exposition when inserted near the points in which they
are invoked.
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1.3 Preliminaries From Tucker and Zucker’s
Work

This thesis builds upon the work in [TZ11, TZ07, TZ12|. In order to make this
document relatively self-contained, some of that foundational research must be
reviewed, along with a few definitions and results from elementary topology
and analysis. That is the purpose of this section.

1.3.1 The Space of Streams

Let (A,d4) be a complete, separable metric space. We use the symbol T to
represent time, taking* T = R™ U {0}. We adopt C[T, A]™ (for some m € Z)
as our fundamental stream space: the space of m-tuples of continuous functions
from T into A.

Definition 1.3.1 (Pseudometrics on C[T,.A|™). For m = 1 we define a family
of pseudometrics® {d,; : a,b € T and a < b} where Yu,v € C[T, A],

dap(u,v) = s<111<)b dg (u(t),v(t)) (1.3.1)

Observe that if our stream space were instead Cl[a, b], A], then d,; would be a
metric. It is a pseudometric only because it “ignores” any differences between
its arguments outside the interval [a,b]. Form € Z* and u = (uy, ug,, ..., Uy),
v = (v1,V9,...,0,) € C[T, A]"™ we define,

ap(1,v) = max dap (U, VE)

1<k

In practice, however, we will drop the superscript since no ambiguity is intro-
duced by overloading the symbol d, ;. Furthermore, it is so often the case that
we set a = 0 that typically we just write dy(u, v) to mean dg’,(u, v).

Remark 1.3.2. We will often form a product space of some metric space (X, dx)
and C[T, A]™. An equivalent family of pseudometrics (“equivalent” in the sense
that they collectively generate the same topology as the metric) on this product
space can be defined as,

A (2, 0), (y, v)) = max {dx (2, y), dr(u, v)}

Again, without loss of specificity, we will drop the superscript and use simply
dr.

4Tucker and Zucker also develop their theory to address the case in which T = N, but
here we’ll be using only the continuum of nonnegative reals.

5A pseudometric is like a metric except that it is permitted to be zero even for distinct
points. That is, if d : X2 — Y is a pseudometric, then d is also a metric iff Yo,y € X
d(wy) =0 = o =y].

10
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Remark 1.3.3. In |TZ11] it is shown that C[T, A]™ is homeomorphic to C[T, .A™],
so the theory could be presented equivalently using either C[T, A] or C[T, A]™
as the fundamental stream space. If we adopt the former, we can always take
A = B™ (where B is some other space) whenever m-tuples are required, and
if we adopt the latter, we can always take m = 1 when tuples are not wanted.
We choose C[T, A| for the sake of a cleaner exposition wherever possible, but
sometimes we do need tuples (in Chapter 3, especially), so we will alternate
between them according to convenience.

Definition 1.3.4 (Local Uniform Topology). The family of pseudometrics in
Definition 1.3.1 induces the local uniform topology on C[T, A]™. A basis for
this topology is given by open balls of the form,

Br.(u) ={v eC[T, A" : dr(u,v) <e}

foru € C[T, A", T € T, and ¢ > 0. See |TZ11] for a discussion of its
equivalence to the compact-open topology and the inverse limit topology in
this context. In fact, it is not even necessary to include every 7' € T. We can

generate the topology using only countably many, equally spaced® values of
T eT.

Definition 1.3.5 (Metric on C[T, A]). There is actually a class of metrics that

can be defined” on C[T, A] (and hence on C[T, A]™ as well) using the family of
pseudometrics, given any 7 > 0:

derr,a)(u, v) me{Q s dier (u, v }

These metrics are rather unwieldy, however. While they are important for
showing that C[T,.A] (with the local uniform topology) is indeed metrizable,
we prefer to use the pseudometrics when actually reasoning about the space.
Of course, metrics are more widely known than pseudometrics, so I owe the
reader some explanation of this last comment. Recall the following definitions
for continuity from elementary topology.

Definition 1.3.6 (Continuity on Topological Spaces). Let X, Y be topological
spaces, let f: X — Y, and let z € X. Then,

1. f is continuous at x if for every open neighbourhood U C Y of f(x),
there is an open neighbourhood V' C X of x such that f(V) C U.

SEven that is overly demanding, but we don’t require anything more general at the
moment. See Section 4.1.1 on page 82 for a more general treatment.
"Courtesy of Edwin Beggs.

11
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2. f is continuous if it is continuous at every point x € X. Equivalently, f
is continuous if for every open U C Y, f~1(U) is open in X.

Since we can define the same topology on C[T,.A] using either the metric,
derr, 4, or the family of pseudometrics {dp}, . (or, indeed, any subfamily
{dnr},cn> where 7 € R, as mentioned in Definition 1.3.4), we get the following
lemma (along with Lemma 4.6.5), which is rather convenient for proving the
continuity of stream functions.

The proof is routine, and therefore omitted.

Lemma 1.3.7. A function f : C[T, A]™ — C[T, A|™ is continuous iff Ve > 0
VT € T Vu e C[T, A" 36 > 0 37" € T Wv € C[T, A",

dp(u,v) <6 =dr(f(u), f(v)) <e

That is (loosely speaking), f is continuous if and only if the images of u and v
under f can be made arbitrarily close on any closed interval [0,T], as long as
u and v are taken to be sufficiently close on some other closed interval [0,T"].

Definition 1.3.8 (Stream Operations). We’ll often make use of the following
three, time-based stream operations: shift, hold, delay. Given T';t € T, each
operation is of the form

freJem Af — e[, Al
k=1 k=1

For a stream (or a portion of a stream), u, they are defined as follows (also
see Figure 1.3.1):

shiftr(u)(t) = u(t+1T)

holdr(u)(t) = {ut) ift<T

(
(

{u(()) ift<T
(

u(T) otherwise

delay,(u)(t) = t—T) otherwise

o

In some situations we’ll need to treat them as functions of two variables:
shift(T,u), hold(T,u), delay(T,u).

Remark 1.3.9. In [TZ11], the authors use an operation extr, which is defined
the same as holdr except that its domain is C[[0,T], A]. I'm using hold so I
can present a slightly different, but equivalent construction in Section 1.3.5 on
page 19.

12
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ShiftT(u) ‘(\J 777777 W

T
Figure 1.3.1: Time-based Stream Operations

1.3.2 The Analog Network Model

The streams represent data flowing through a network of channels and modules
over time (which is considered a single, global property of the network). Each
module has stream inputs, parameter inputs, and stream outputs, and thus,
can be represented by a function of the form,

f i AP x C[T, A — C[T, A"

We refer to the stream inputs and stream outputs as channels.

parameters
I
input —_-' ._L output
streams f : streams

Figure 1.3.2: A Module in an Analog Network

Remark 1.3.10. The use of AP as the parameter space is a feature of the original
model and in this section I am striving to hew as closely as possible to the
source material. In Section 1.4, this model will be generalized, allowing for the
use of an arbitrary parameter space.

If all our networks were exclusively feed-forward (as in the following example),
there would be no reason for any of this theory, and we could directly calculate
the network output as a function of its input streams and parameters. We
would simply compose all the module functions, working from the network
input, all the way to the network output channels. That is, we could represent
the network output as a straight-line program (see Chapter 4 of |BCS97|).

13
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Example 1.3.11. Suppose f; : AxC[T, A] — C[T, A], f>: C[T, A] — C[T, A],
and f3 : A% x C[T, A]* — C|[T, A], and they are connected as shown in Fig-
ure 1.3.3. Then Ve = (¢1, ¢a, ¢3) € A® Vx = (21, 29) € C[T, AJ?, the network’s
output is well-defined and given by the function f : A3 x C[T, A]*> — C[T, A]
defined as

fle,x) = fa(ea, c3, filer, 1), fo2))

T

. % 3

fa

Figure 1.3.3: A simple, feedforward network

With feedback, however, such an attempt would lead to infinite regress (see
Example 2.2.1). So, Tucker and Zucker adopt an alternative approach. Rather
than looking at f itself, and trying to express the whole network’s output as
a function of its input (and parameters), they create a system of equations,
one for every output channel. Each equation’s left-hand side consists of a
single stream variable representing the output of a module. If that channel
is connected to the input of another module, the stream variable will appear
within the expression on the right-hand side of another equation.

Example 1.3.11 would be written like this:

U = f1(01,I1)
uy = fa(x2) (1.3.2)
uz = fs(c, c3,u1,u2)

It is convenient to express this system as a single equation involving tuples.
For a given ¢, x, define F,, : C[T, A]> — C[T, AJ?® as follows:

Uy f1(017x1)
Fex Us = fo(as)
us f3(02>03,U1>U2)

The semantics of the network are then given by the fixed point for F.x (or a
solution for Equation 1.3.2), if a unique one exists. Since the parameters and

14



Ph.D. Thesis - N. James; McMaster University - Computing and Software

the input streams are meant to be adjustable, we often consider the function
F: A" xC[T, AP — (C[T, A]™ — C[T, A]™)

where F'(c,X,-) = Fcx. This is the real heart of the model, and along with it
we define a fized-point function:

®:U - C[T, A" (1.3.3)

where U C A" x C[T, A]? and Y(c,x) € U F.x(®(c,x)) = ®(c, x).
While this is consistent with the concept of fixed points, I always refer to such
operators F' in their uncurried form:

F 1 A7 x C[T, A" x C[T, AJ™ — C[T, A" (1.3.4)

Using this form, F' can’t really be said to have a “fixed point,” per se, but
it is isomorphic to an operator that can, hence the concept of fixed points is
equally relevant, regardless of the form. So, in what might be considered an
abuse of the vernacular, I will still refer to “fixed points” and the “fixed-point
function,” even when reasoning about an uncurried F'.

This sort of operator F' together with its fixed point function ® is a slightly
simplified version of the model of analog computation introduced by [TZ11,
TZ07|. There are, of course, some properties to be imposed on F', which will be
covered next. There is also one extra component to be added to the domains
of the two functions which will be done when we turn to the property of shift
invariance in Section 1.3.3.2 on page 17. After that, some of this structure will
be undone when [ present my own contributions to theory, but despite this
undoing, it is important to see the intent behind the original model (which
becomes somewhat less apparent as the model is generalized).

1.3.3 Properties of Stream Operators

As stated in the previous section, our objective is to find fixed points for a
stream operator F'. One of the distinguishing features of the theory is that
these fixed points can be constructed, analyzed, or shown to exist in pieces
rather than all at once. The following definition is helpful in this respect.

Definition 1.3.12 (T-approximate Fixed Points). Let f : C[T, A]™ — C[T, A]™,
T €T, and u € C[T, A]™. Then we say u is a T-approzimate fized point of f
if dr(u, F(u)) =0.

There are two properties we must impose on a stream operator in order to
facilitate this piecewise construction of the fixed point: causality and contrac-
tion.

15
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A
A

T
Figure 1.3.4: A T-approximate fixed point of a stream function, F’

1.3.3.1 Causality and Contraction

Definition 1.3.13 (Caus and WCaus). Let I : C[T, A — C[T, A™. If
VT € T Vu,v € C[T, A",

u o=V lor = F)(T)=F(v)(T)

then we say that F' satisfies Caus or F' € Caus. It is named as such since
the property represents a form of causality. At each point in time, the value
of F(u) can be determined without any knowledge of future or present values
of u.

If instead,
u lor=v o7 = F(u)(T)=F()(T)

then we say that F' satisfies WCaus (“weak causality”).

Remark 1.3.14. Causality conditions appear throughout control theory and
signal processing (see [Son90| for example), and in several other contexts as
well. Conditions almost identical to the two versions we define above (differing
only in the domains and codomains of the operators involved), WCaus and
Caus, are identified in [Tra99| and |[Rab03| as “retrospective” and “strongly
retrospective,” respectively.

Fact 1.3.15. Since streams are continuous, it follows that
F € Caus iff F € WCaus and Yu,v € C[T, A]™ F(u)(0) = F(v)(0)

Example 1.3.16. The pointwise addition of a constant to a real-valued stream

is an example of an operator that satisfies WCaus but not Caus. Define
F:C[T,R] — C[T,R] as
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Let T € T and u,v € C[T,R]. If u [o;j= v [[o,r), then u(T") = v(T"). Hence,
Fu)(T) = uwT)+1 =vT)+1 = F(v)(T). Thus, F satisfies WCaus.
But consider the streams u(tf) = 1 and v(f) = 0. At no point ¢t € T is
F(u)(t) = F(v)(t) (the former is the constant stream 2, while the latter is the
constant stream 1), but the interval [0, T") is simply the empty set when 7" = 0.

Thus, u [0,0)= v [10,0) holds trivially, and yet F(u)(0) =2 # 1 = F(v)(0).

Remark 1.3.17. In light of Fact 1.3.15, the reader might wonder why we would
bother with Caus when we have WCaus. The latter is, indeed, sufficient for
some purposes, but the former is essential for the most important theorems
in which we prove that a unique fixed point stream of an operator, F', exists
(and construct it). This fixed point stream is constructed one portion at a
time, each successive portion created from the previous one. For this to work,
the initial portion must already be in place and this is what Cawus provides.
If ' € Caus, then every stream in the range of F' is the same at time ¢t = 0.
Thus, the image of any stream in the range of F' is a 0O-approximate fixed
point. From this, we can build a T-approximate fixed point (where 7 is some
positive real number), and from that, a 27-approximate fixed point, and so
on. If F' satisfies only WCaus, a starting place—Ilet alone a whole fixed point
stream—may not even exist! Consider the operator in Example 1.3.16, by
inspection, it is clear that it has no T-approximate fixed points for any value
of T', yet it satisfies WCaus.

Definition 1.3.18 (Contr(\,7)). Let F' : C[T, A]"™ — C[T, A]™, and \, T €
RT. If A < 1and VT € T Vu,v € C[T, A™

dr(u,v) =0 = dp(F(u), F(v)) < Mdrir(u,v)

then we say that F' satisfies Contr(\,7) or ' € Contr(\, 1), named for the
similarity this property shares with the notion of contraction® on a metric
space. We refer to A\ as the modulus of contraction of F' (some authors use
contraction ratio), and to 7T as the contraction increment of F.

1.3.3.2 Shift Invariance

Somewhat central to [TZ11, TZ12| is the concept of shift invariance; major
theorems in each of the two papers relies on it.

Remark 1.3.19 (Not the usual sort of shift invariance). In signal processing
and control theory a shift invariant operator I’ is one that simply commutes
with the shift operator: shift; o ' = F o shift; (see [Son90| for example).
This won’t work for an F' € Caus, however, because for any such F there

8If (X,dx) and (Y, dy) are metric spaces, and f : X — Y, then f is contracting if I\ > 0
such that A < 1 and Va,y € X dy (f(x), f(y)) < Mdx(x,y).

17
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is a constant b € A such that Yu € C[T, A]™ F(u)(0) = b. Thus, if F
were shift invariant in the usual sense, then Yu € C[T, A]™ Vt € T F(u)(t) =
shift,(F'(u))(0) = F(shift,(u))(0) = b. In other words, the range of F' would
be the singleton set consisting of the stream with the constant value b.

Shifting the output results in a glimpse of the future, while shifting the input
effectively erases some of the past upon which that future output depends.
So Tucker and Zucker’s formulation of shift invariance avoids this problem
by introducing a tuple of initial values which encodes the entire history of the
input before 7" in a single snapshot, thus preserving all the essential information
about the past input.

The space of parameters A7 from 1.3.4 on page 15 is factorized as A9 = A" x A*,
where ¢ € A" is a tuple of system parameters (essentially these are freely
configurable module settings), and a € A® is a tuple of initial values, which
comprises the aforementioned snapshot. The number s is chosen to be less
than or equal to m and represents the number of components of u which must
be “initialized” to reconstruct the past portions of u which are lost in the shift.
The symbol u® is used in this limited context to represent a tuple consisting
of the first s components of u (i.e. a projection of u onto C[T, AJ®).

Definition 1.3.20 (Invar). Let
F: A" x A° xC[T, AP x C[T, A" — C[T, A™

Suppose that VI" € T, V(c, a,x,u) € A" x A* x C[T, A]? x C[T, A]™, whenever

F(c,a,x,u)[r=ulr
the following two conditions also hold:

u’(0) = a
F(c,u’(T), shift;(x), shift;(u)) = shift(F(c,a,x,u))

Then we say F satisfies Invar (or I’ € Invar).

Definition 1.3.21 (Closure of a domain under shifts). Let
F: A" x A° xC[T, A” x C[T, A" — C[T, A™

and suppose that the fixed point function ® for F' is defined on a set U C
A" x A*xC[T, AP (i.e. Y(c,a,x) € U 3lu € C[T, A]" such that F(c,a,x,u) =
u = ®(c,a,x)). Then U is closed under shifts with respect to ® if vI' € T
Y(c,a,x) € U

(c, ®(c,a,x)*(T), shift;(x)) e U

18
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1.3.4 The Main Theorems From [TZ11]

Theorem 1.3.22 (Theorem TZ1). If F': C[T, A|™ — C[T, A" satisfies Caus
and Contr(\, 1) for some 7 > 0 and 0 < X\ < 1, then F has a unique fized
point.

Proof. See Theorem 1 from [TZ11]. O
Theorem 1.3.23 (Theorem TZ2). Let
F: A" x A° x C[T, A” x C[T, A" — C[T, A™

and use the notation F.,, to represent the function F(c,a,x,-): C[T, A" —
C[T, A]™. LetU C A"x A*xC[T, AJP be an open set. Let XA = {Acaz : (c,a,2) € U}
be a family of contraction moduli and T = {Teaz : (c,a,x) € U} be a family of
increments. Suppose the following conditions hold:

1. Frpoyr € Contr(N. ., Tean) for all (c,a,x) € U
F e Caus
F € Invar

F is continuous on U

A and T are locally bounded on U (i.e. every point of U has a neighbour-
hood within which X has an upper bound strictly less than 1, and T has
a positive lower bound)

6. U is closed under shifts with respect to ® (where ® is the fized point
function defined in (1.5.3) on page 15)

Then ® is continuous on U.

Proof. See Theorem 2 from |TZ11]. O

1.3.5 The Mathematical Construction of the Fixed Point

As Theorem TZ1 on this page assures us, if ' : C[T, A] — C[T, A] satisfies
Caus and Contr(\, 1) (for some A\, 7 > 0 with A < 1)?) then it has a unique
fixed point. The proof is constructive and while it is not necessary to include
the whole thing in this thesis, we often need to refer to the construction it uses.
The construction below is nearly identical to the one used in that proof, but

9Using the vernacular from Definition 1.4.2 on page 22, F satisfies Caus and Contr.
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since we’re not reproducing the whole proof, we can simplify the exposition
a bit. I'm also using rather different notation here, which (I think) greatly
improves the clarity of some of my subsequent proofs. In my notation, given
F € CausnContr(\,7), we define a function ¥ : NxN — C[T, A] inductively

as follows:

Construction 1.3.24.

1. Let ¥(0,0) be the constant stream, W(0,0)(¢t) = ¢ Vt € T, where ¢ € A
is the initial value constant associated with F' € Caus. That is, Yu €

C[T, A] F(u)(0) = c.

2. For n,k € N, ¥U(n,k + 1) = hold,,. (F (V(n,k))), where 7 is a number
such that F' € Contr(A, 7).
3. Given n € N define'® U(n + 1,0) = limy_,o ¥(n, k)

See Figure 1.3.5 for an overview. The central feature of the construction is
that for any n,k € N, U(n,k) is an nr-approximate fixed point. That is,
Vt € [0,n7] W(n,k)(t) = F(¥(n,k))(t).

c= V(0

U(0,1) = hold, (F (¥(0,0))) W¥(0,2) = hold, (F(¥(0,1))) = (1

U (1,1) = holds, (F (¥(1,0))) ¥(1,2) = holdy, (F (¥(1,1))) -+ — P(2

U (2,1) = holds, (F (¥(2,0))) ¥(2,2) = holds, (F (¥(2,1))) --- — (3
I

Figure 1.3.5: Construction of the fixed point v = F(v)

Remark 1.3.25. Ordinarily it would be more natural to use a double sequence,
but I've opted for a function on N? to make it easier to talk about stages of
the construction when F' is augmented with parameters. When F' is of the
form F': P x C[T, A] — C[T, A| instead of merely F': C[T, A] — C[T, A], we
can easily (in terms of notational consistency) define

U:PxNxN-=C[T, A

Hence, for any r € P, ®(r) = lim, ., V(r,n,0). The operator F' and its
interval of contraction 7 are obviously central aspects of the construction, but
unlike the parameter, they are always implicitly specified by the context.

10Theorem TZ1 proves that this limit exists using—as the reader might well guess from
the invocation of contraction—mechanisms shared by the proof of Banach’s Fixed Point
Theorem on page 92.
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Remark 1.3.26. At this point, the reader could hardly be blamed for wondering
just how such a construction can possibly be related to computability. After
all, we must perform infinitely many applications of F' before we can even
begin to approximate its fixed point at values of ¢ € [7,27), and then infinitely
many again before we can go beyond 27. The important thing to realize is
that the purpose of this construction is to serve as a framework in which the
fixed point can be analyzed (and shown to exist); it is clearly not suited to
serve as a viable approximation algorithm.

This concludes the bulk of the prerequisite material from other sources. The
remainder of this chapter will be used to cover a few of my own contributions
to these rudiments which apply to at least two of the research projects (and
hence belong in the neutral territory of the introductory thesis chapter rather
than in any of the three project—specific chapters).

1.4 Observations and Addenda to the Core
Preliminaries

There are a few more definitions and results to cover that apply to the whole
thesis, but they are (for the most part) my own and not part of Tucker and
Zucker’s research. Because of that and because I feel they encumber the ex-
position somewhat if they are included in the section above, I've put them in
their own section here.

1.4.1 Replace sup with max in Definition 1.3.1

This is admittedly somewhat pedantic, but if we wish to refer to d,; from
Definition 1.3.1 on page 10 as a pseudometric, and we define it as the supremum
of a set of reals, it is incumbent on us to show that the set is always bounded.
By the definition of a pseudometric, its codomain is the set of nonnegative real
numbers (or just R in some texts), while the codomain of sup is the two-point
compactification of the real numbers (RU{—o00, c0}). Not only is it possible to
show that the set is bounded, however, but it is also possible to show that it is
closed. Hence, its supremum is not only finite, but actually contained within
the set itself. Thus, it makes more sense to simply use max instead of sup.
While it is fairly straightforward to show that this is possible, it is surprisingly
nontrivial. First, we need a lemma.

Lemma 1.4.1 (Metrics are continuous). Let (X, d) be a metric space'*. Then

11n fact, this lemma holds even if d is only a pseudometric, but stating it this way would
only lead to unnecessary confusion here since we need this lemma only for d 4, which is a
metric.
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d is continuous with respect to the topology it induces on X?2.

Proof. Since the product is finite, we can work with the box topology on X2,
which consists of basic open sets

Be(z,y) = {(2,y) € X* : max{d(z,2),d(y,y)} < ¢}

Let (z,y) € X? and let U C R=Y be an open set that contains d(z,y). Then
there is an open interval I C R=Y (open with respect to the subspace topology
on R=%) such that d(x,y) C I C U. Let r > 0 be the length of that interval.
Let V = B,(z,y). Then d(z,y) € d(B.(z,y)) (since d(z,x) = d(y,y) =
0 < 7). Since Y(2',y) € B.(z,y) d(z,2") < r and d(y,y’) < r, it follows
that d(B,(z,y)) € I. By Definition 1.3.6 on page 11, it follows that d is
continuous. O

Returning to the issue hand (replacing sup with max), since u and v are
continuous on T and since d 4 is continuous on A? (by Lemma 1.4.1), it follows
that d4 (u(t),v(t)) is continuous on [a,b|, which is compact with respect to
the subspace topology on T C R. The continuous image of a compact set is
compact, and a compact subset of R is closed and bounded. Thus, it contains
its supremum, which is finite.

1.4.2 Generalize Contr(\, 1)

Remark 1.4.2. There are times at which we need to refer to an operator /' that
satisfies Contr (A, ) for some 7,A > 0 and A\ < 1, but we don’t care about
the values of A and 7. In such cases, it seems especially cumbersome to be
obligated to specify that A\, 7 > 0 and A < 1 since all three inequalities must
hold just to satisfy Definition 1.3.18 on page 17. In these situations, it makes
sense to write simply, “F' € Contr” or “F satisfies Contr.”

While writing [JZ12], I found it necessary to be able to identify operators that
would satisfy Comntr (A, 7), but for values of A that may be greater than or
equal to one. Although such operators don’t offer contraction per se, they
are uniquely positioned to be composed with other operators to produce such
contraction, so it is quite useful to be able to refer to this property. This is
the subject of the Building Block Lemma (Lemma 3.2.1 on page 55).

Definition 1.4.3 (Lip). Let F' : C[T, A" — C[T, A]™. If 37, € Rt U {0}
such that VT € T Yu,v € C[T, A",

dr(u,v) =0 = dri, (F(u),F(v)) < Mrir(u,v)

then we say that F' satisfies Lip(\,7) or F' € Lip(\, 7). The name is due to
the similarity this property shares with the well-known Lipschitz continuity
property from analysis (although traditionally « is in place of our ).
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Remark 1.4.4. It may seem as though F' € Lip(\,7) = F' € WCaus. After
all, if we take any 7" > 7 and a pair of streams u,v € C[T, A" such that
dr(u,v) = 0, then certainly dr_.(u,v) = 0. Hence, d4 (F(u)(T), F(v)(T)) <
dp (F(u), F'(v)) = dir—ry4r (F(u), F(v)) < M@g-7)1-(0, V) = Adp(u,v) = 0.
And therefore, F'(u)(T) = F(v)(T). Hence, any F' € Lip(\, 7) could be said
to satisfy WCaus on [r,00) C T.

There is, however, no way to establish the causality (weak or otherwise) of
such an F on [0, 7), as the following example demonstrates.

Example 1.4.5 (Lip = WCaus). Take A = R with the usual metric, let
7 € RT, and choose m = 1. Define F' : C[T,R] — C[T, R] as follows:

%U(T) ifo<t<r
sut) ift>r7

Fu)(t) =

Then F' € Lip(Y/2,7) (and it’s even continuous), but it does not satisfy
WCaus. To see this, consider u(t) = t and v(t) = —t. Taking 7" = 0,
we see that Vit < T u(T) =v(T) =0, but F(u)(0) =7/2 # —7/2 = F(v)(0).
Note that such an example would not be possible if we were to take T = R
(Lip(\,7) would give us WCaus “for free” on such a stream space), but
adapting the rest of the theory to work on C[R,.A] would not be trivial and
nor would it necessarily be an improvement overall (see Section 3.1 on page 50
for an explanation).

Lemma 1.4.6. If F € Lip(\,7) and F € WCaus then V7' < 7, YN > ),
F e Lip(N, 7).

Proof. Let uj,us € C[T, A", T' € T and suppose dr(uy,uy) = 0. For ' > A,
it is obvious that F' € Lip(\, 7):

dT+r(F(111), F(uz)) < )\dT+r(111, 112) < )\/dT-i-T(ul? 112)
The 7' assertion is less trivial. For i = 1,2, define u} € C[T, A]™ as follows:

{ui(t) ift <T+7

() w(T+7) itt>T+7

Then for 0 < 7" < 7,
dr 7 (F(u), Fuz))

drir (F (u}), F(u})) since F' € WCaus and dry(u;,u;) =0
drir (F(u]), F(u})) sincet <r = di(v,w) < d.(v,w)
Ndpy, (uj,uy) since F € Lip(\,7)

= Ndpy (uj,uy) since w;are constant beyond T + 7/

IAINA

Ndpy (ug,uz)  since dpy(uf,w;) =0

O

23



Ph.D. Thesis - N. James; McMaster University - Computing and Software

Remark 1.4.7. As in Remark 1.4.4 on the preceding page, the only reason we
must require F' to satisfy WCaus in the proof of Lemma 1.4.6 is to establish
the inequality for "< 7 — 7/. For if T' > 7 — 7/ then,

dr(u,uz) =0 = dp_rpr(ug,uz) =0
= d(T—T+T’)+T (Fuh Fu2) < )\/d(T—T—i-T’)-i-T(ulu 112)
= XdT+r/(u1, 112)
This argument doesn’t rely on WCaus at all, but it does require T'—7+7" > 0
(so it isn’t quite sufficient to show F' € Lip(\,7")).

Remark 1.4.8. Note that for any A > 0, WCaus is actually equivalent to
Lip(\,0). Putting this observation together with Lemma 1.4.6 yields the
following result:

F € Lip(A\,7) N WCaus < (V7' < 1) F € Lip(\,7')

Remark 1.4.9. In order to be more consistent with |[TZ11] and to get the most
general results possible, it would seem preferable to define Lip (A, 7) using the
apparently weaker condition,

dT(u, V) =0= dT7T+7-(F(u), F(V)) < )\dT’T_H-(u, V)

Call this condition Lip’ (), 7). One could not be faulted for thinking this def-
inition is strictly more inclusive than Lip(\, 7), and it matches the definition
of Contr(\, 1) in [TZ11] much more closely. In fact, it turns out that the two
definitions are equivalent (so we stand by Definition 1.4.3).

Proposition 1.4.10 (Equivalence of Lip definitions). Let F' : C[T, A|™ —
C[T,A™, A€ RT, 7 € T. Then F € Lip(\,7) if and only if F € Lip/(\, 7).

Proof. Let T € T and u,v € C[T, A]"™ such that dr(u,v) = 0.
(=) Suppose F' € Lip(\, 7). Then

drri-(F(u), F(v)) dr - (F(u), F(v))

)\dT+T(u7 V)

IA A

The first inequality holds because
dri7(F(u), F(v)) = max {dr(F(u), F(v)), dr-(F(a), F(v))}

and the second because F' € Lip(\, 7).
Now,

Mry-(0,v) = Amax{dr(u,v), drri-(u,v)}
= Amax{0,drri,(u,v)}

= AdT,T+r(U, V)
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Therefore, dT,T-i-T(F(u)a F(V)) S )\dT,T+T(u> V)'
(<) Suppose F' € Lip'(\, 7). We must show that dr.(F(u), F(v)) < Mdri,(u,v).
As before, note that Adr4,(u, v) = Adr 4. (u, v). Similarly, dr.,(F(u), F(v)) =
max {dr(F(u), F(v)),drr-(F(u), F(v))}. Hence, we need to establish the
following inequalities:
dr(F(u), F(v))
drri7(F(u), F(v))
The latter follows directly from the hypothesis, but the former requires a bit of
work. We'll use an inductive approach for this. For the base case, suppose 0 <
T < 7. Since dr(u,v) = 0, it follows that dy(u,v) = 0. Since F € Lip’'(\, 1),
d-(F(u), F(v)) = doo-(F(u), F(v))
< Adooir(u,v)
= Ad.(u,Vv)
Since T' < 7, dp(F(u), F(v)) < d.(F(u), F(v)).
Since T+ 7 > 7, Md.(u,v) < Adri,(ua,v).
Putting these last three results together we get,
dr(F(u), F(v)) < d-(F(u), F(v))
A (ua,v)
>\dT+T(u7 V)

AdT,T+r(U, V)

IA A IA

Now, for the inductive step, let n € Z' and assume that Vi < n7 Yu,v €
C|T, A,
di(u,v) =0 = diir(F(u), F(v)) < Adpyr(u,v)

Suppose nT < T < (n+ 1)7. We must show that
dr(u,v) =0 = dp (F(u), F(v)) < Mdrpir(a,v)
Since dr(u,v) =0 and 0 < T — 7 < T, it follows that,
dr—(u,v) =0
So, by the inductive hypothesis and the fact that T'— 7 < nr,

d(T—'r)-i-'r(F(u)v F(")) >‘d(T—T)+T(u7 V)

Adr(u, v)
=0

>\dT,T+T(117 V)

IN
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1.4.3 Doesn’t Continuity Follow from Caus and Contr?

Perhaps it’s just my own flawed intuition, but it seemed to me that if an
operator F' : C[T, A] — C[T, A] satisfied Caus and Contr, surely it must
be continuous. I was particularly motivated to consider this assertion after
having written Theorem TZJ1 for Vanishing Delays on page 48 (as it would
have allowed me to omit one of the antecedents). After trying to prove it
unsuccessfully for a while, a counterexample almost immediately occurred to
me when I abandoned the proof attempt and tried to think of one.

Example 1.4.11. Define F': C[T,R] — C[T, R] as follows:

Flu)(t) = {t t %f u(0) %s ?atio'nal

—t  if u(0) is irrational
Let u,v € C[T,R] and let 7 € T. Then F(u)(0) = F(v)(0) = 0, and if
dr(u,v) = 0 then u(0) = v(0). Hence F(u) = F(v). That means F(u)(T) =
F(v)(T) and therefore, F' € Caus. It also means that for any A\, 7 > 0,
drir(F(u), F(v)) =0 < Xy, (u,v). Hence, F' € Contr.

As for continuity, let ¢ = T, = 1, let 6,75 > 0, and let u € C[T,R]. Now
choose a number a € (0,0) such that if ©(0) € Q then u(0) +a ¢ Q, and if
u(0) ¢ Q then u(0) + a € Q. Let v(t) = u(t) + a. Then dr,(u,v) =a < 4, but
dr.(F(u), F(v)) = 2 > . Therefore, F' is not continuous (by Lemma 1.3.7 on
page 12).

1.4.4 Parameter-Relaying Tilde Functions

There are a few places in which I need to transmit a parameter value through a
function that does not otherwise include the parameter space in its codomain.
Up until my pre-defence revisions, I was unfamiliar with any notational con-
vention for doing so. In the absence of such a convention, I began adorning my
function names with a tilde when I needed to do this. It was only during these
late-hour revisions that my attention was directed to the concept of “arrows”
in functional programming (thanks to Prof. Jacques Carette!). Unfortunately,
at this point [ had tildes liberally sprinkled throughout my thesis, and more
importantly, the notation for arrows does not appear to be well-suited for the
use to which I would need to put them here. Consequently, I have left the
tildes untouched.

Notation 1.4.12 (Tilde functions). Let X and Y be sets and let f : X x
Y — Y. Then we define f : X xY — X xY as f(x,y) = (2, f(x,y)) for
(z,y) e X xY.
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Lemma 1.4.13. Let X and Y1,Y5,...,Y, be topological spaces. Let xy € X.
Forv=1,2,...,n, let f; : X — Y, be a function which is continuous at x.
Let f: X — [[iL,Y; be defined as f(x) = (fi(x), f2(x),..., fu(z)). Then f is

continuous at xg.

Proof. Let Y =[], Y; (with the product topology) and for each 4, let m; :
Y — Y, be the projection of Y on Y;. Let V C Y be an open neighbourhood
of f(xzg). Then, by definition of the product topology, there is a basic open
set B = By X By X -+ x B, CV, where each B; C m;(V) and f(zo) € B.
Since each f; is continuous at xg, there is an open neighbourhood U; C X of
xg such that f;(U;) C B;. Let U = (,_, U;. Then U is an open neighbourhood
of xy (since it’s only a finite union of open sets, each of which contains x),
and f(U)C BCV. O

Corollary 1.4.14. Let X and Y be topological spaces and suppose a function
f: X XY =Y is continuous at a point (xo,yo) € X X Y. Then f (as defined
in Notation 1.4.12) is also continuous at (xg, yo).

Proof. f can be rewritten as f(z,y) = (wx(z,y), f(z,y)) (where 7x : X XY —
X is the projection of X xY on X). Both component functions are continuous
at (zo,Yo), so the result follows from Lemma 1.4.13. O

1.4.5 My Version of Theorem TZ2

While working on my original research project (Chapter 2), I found myself in
need of something like Theorem TZ2 on page 19, but much to my chagrin,
the function to which I needed to apply this theorem was not shift invariant
and could not be made so by simply augmenting it with the extra initial value
parameters. After many failed attempts using other theorems and construc-
tions to get around this, I decided to dive into the proof to see whether I could
substitute some other property for Invar.

Much to my surprise, it initially appeared I didn’t need to substitute anything
for Invar! My proof went through by apparently just omitting it. Upon later
inspection, my supervisor and I together realized that indeed I had substituted
something to replace Invar: continuity on the entire domain rather than on

only the parameter space. This leads to the following modified version of
Theorem TZ2:

Theorem 1.4.15 (Theorem TZJ2). Let (P,dp) be a metric space and let
F:PxC[T,Al — C[T, A]. Let p € P and let V C P be a neighbourhood of
p. Let T, A € RT with A < 1. Using the notation F,.(u) = F(r,u), suppose that
for all v € V' F, satisfies Caus and Lip(\, 7), and that for all u € C[T, A], F
is continuous at (p,u). Then ® :V — C[T, A] (as described in (1.3.3) on 15),
whose existence is assured by Theorem TZ1 on page 19 is continuous at p.
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Proof. Deferred to Chapter 4, since this is now'? merely a special case of the
generalized version on page 102. O

Remark 1.4.16 (How do Theorems TZ2 and TZJ2 compare?). One obvious
advantage to my requirement that F' be continuous at (p,u) for every u €
C[T, A] (instead of being continuous on merely a subset of P, without regard
to its behaviour on P x C[T,.A]) over Tucker and Zucker’s requirement that
F' € Invar is that the latter places much heavier demands on the domain of
F'. In their version, P must be of the form A" x A4° xC[T, A]4, where r,s,q € N
and it must contain a subset U which has a nonempty interior and which is
closed under shifts with respect to ®. In my version, P is just an arbitrary
metric space (which could be of the form A" x A* x C[T, A]?, or of some other
form).

Another (possible) advantage is that my version is pointwise rather than set-
wise. They require F' to be continuous on U C P (which, as mentioned above,
has a nonempty interior and is closed under shifts with respect to ®), instead
of at a single point p € P. Of course, they do establish continuity on all of
U-—not at just a single point—so if one has no need for a pointwise version of
the theorem, mine would offer no particular advantage in this respect.

Finally, the most obvious question to ask is how the two conditions overlap.
That is, if we put aside the two advantages above (assume P is of the form
A" x A° x C[T, A]? and F is continuous on U), are there any stream operators
F:PxC[T,A™ — C[T, A]™ that would satisfy one version and not the other?
Are they, perhaps, the same under these conditions on the domain? After all, in
many cases® it would be little more than a matter of bookkeeping (possibility
rather elaborate and arduous bookkeeping, but bookkeeping nonetheless) to
start with an operator F' : P x C[T, A]™ — CI[T, A]™ where P is a metric
space that doesn’t conform to the structure demanded by Invar and create
an equivalent operator F’ : A" x A® x C[T, A]? x C[T, A|™ — C[T, A]™ which
is at least eligible to satisfy Invar.

Unfortunately, I don’t have the complete answer for this question, but do I
have half the answer: there are some stream operators (in which P is of the
correct form for Imwar) that satisfy the antecedents of my Theorem TZJ2,
but not the antecedents of Tucker and Zucker’s Theorem TZ2. Hence, their
theorem may be a special case of mine, but the converse is not a possibility
(even when the domain has the right form), as the following counterexample
shows.

12Qriginally I proved this theorem directly, and that was long before the Generalized
Theorem TZJ2 on page 102 even occurred to me. To prove the more general theorem
required only a few adjustments in the proof of this theorem.

13In particular, I'm thinking of cases in which P can be embedded in a space of the form
A" x A® x C[T, AJ4, for some r,s,q € N.
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Example 1.4.17 (A non-Invar stream operator). Take A = R™ and P =
A x A x C[T, A] with the metric,

dp ((01, al,il?l) ) (02> 02,552)) = Inax {|Cl - 02| ) |al - a2| ,dC[T,A}(ZEl, 932)}
Define I : P x C[T, A] — C[T, A] as follows, for (¢,a,z,u) € P x C[T, Al:

F(c,a,z,u) = delay x

o V(c,a,z) € P F(c,a,z,-) € Caus. This is obvious since the value of
F(c,a,x,u)(t) doesn’t depend on any values of u, let alone future or
present, values.

e F'is continuous (on P x C[T, A]). See Corollary 2.5.8 on page 45.

e F(c,a,z,-) € Contr()\|c|) for A = /2 (in fact, for any A < 1). See
Lemma 2.5.1 on page 41.

Thus, F' satisfies all the antecedents of Theorem TZJ2 on page 27, and it is
clear by inspection that its fixed point is u = delay .

Now, take z to be a monophonic recording of somebody shouting!?, “Echo!”,
starting at time ¢ = 0 and falling silent at ¢ = 1 (and obviously transposed
with direct current to ensure the recording stays in C[T, R*] and never ventures
below the T-axis into C[T,R]). Let ¢ = 1. Then for any a € A, u € C[T, A,
F(c,a,x,u) is a recording of the same shout, but starting at time ¢ = 1 and
ending at time t = 2. Therefore, shift. (F(c,a,z,u)) = x (more generally, for
any T' € T shift; o delay; is the identity on a stream space). But shift.(x),
on the other hand, is simply the zero stream, and no matter how much we
delay it, we can never get the “Echo!” part back.

So for any u € C[T, A],

F(c,a, shift (x), shift (u)) = delay, (shift (z)) = 0 # = = shift. (F(c,a,z,u))

(where 0 is the zero stream). Thus, F' does not satisfy Invar, and moreover,
we’ve done everything possible to make it satisfy Imnvar without changing its
behaviour.

10r to be less colourful, take = to be any nonzero stream with support [0, 1).
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Chapter 2

Research Project #1: Solving
Network Equations Using
Vanishing Delays

2.1 Overview

Tucker and Zucker’s theory centres around their construction of the fixed point
along with a set of complementary properties (Caus, Contr, Invar, as well
as several others without special names). All four of their main theorems
use that construction as theoretical scaffolding to draw conclusions about the
fixed point of a stream operator. I thought of an altogether different sort
of construction for the fixed point and attempted to emulate their work using
that. My construction involves introducing a delay in the stream transformer—
making an operator with a guaranteed fixed point that is much easier to find—
and then letting that delay approach zero, sort of like a homotopy in operator
space. The main challenge I set for myself was to find sufficient (and ideally
necessary) criteria to guarantee that the fixed point of the delayed transformer
converges to a fixed point of the original stream transformer. Overcoming
this challenge would give me an analogue of Theorem TZ1 (existence and
uniqueness of the fixed point) from |TZ11].

Unfortunately, I never did overcome that challenge—at least not to my satis-
faction. I was able to show that if the fixed point of the delayed transformer
converges (to a stream), then indeed it converges to a fixed point of the origi-
nal transformer. I was also able to show that my vanishing delay construction
does work under the same conditions (F' € Caus N Contr) that Tucker and
Zucker’s construction works. But what I really wanted to find was my own set
of properties—specifically tailored for my construction—that would serve the
same function as Caus and Contr (i.e. to test whether the construction will
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work at all for a given stream transformer). The closest I came was to devise
a set of properties which I think might work, and to sketch out the beginning
of a proof, but I got stuck (for several months) trying to finish that proof and
realized I was probably going to drown in it if [ didn’t abandon ship.

2.2 Imposing a Delay on the Network Model

There is a (potentially profound) simplification built into Tucker and Zucker’s
network model, along with most similar models: the omission of propagation
delay. Streams are carried from module to module over channels instanta-
neously, and this will obviously not be true in any physical implementation of
a network. The delay usually makes qualitatively little difference in a purely
feed-forward network with modules consisting of total functions. The output is
always well-defined and perhaps only slightly phase-shifted, but when feedback
is involved, the situation changes.

Example 2.2.1. Consider the following network in which f : C[T,R] —
C[T,R] is some linear (and total) function that satisfies WCaus (see Defi-
nition 1.3.13):

+
W) )
Figure 2.2.1: A Simple Feedback Network

The network output, if indeed it is well-defined, becomes an infinite regress if
we attempt to solve it directly:

y(t) = =(t)+ f(y)(®)
= a(t)+ f(x)(t) + ) ()
= x(t) + f(@)(t) + fA2) (1) + P(2)() + Fy)(0)

Expressed in the notation of our network models, the network behaviour would
be given by the (hopefully unique) solution of the following equation—if such

a solution exists:
HIREHE
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But what if the solution doesn’t exist? What does that mean about the system
for which it serves as a model? Aside, perhaps, from pathological examples
like black holes and misfortunate cats imprisoned opaquely with poisonous,
nuclear-triggered deathtraps in paradoxical gedankenexperiments, there are
no “undefined” values in nature (which is, in fact, the very raison d’étre of
the aforementioned felines). The system will exhibit some sort of behaviour,
whether or not the equation model has a solution, and this disparity indicates
a deficiency in the model.

Now, suppose we introduce a delay of v € R on every channel. We would

have (for £ > 7)
HMECERIMIGE

_ { xjff(y) } (t —7) (2.2.1)

and for ¢t < ~, there would be constants xg, 9 € R such that

{ g } (t) = [ zg } (2.2.2)

This system leads to only finite regress. We can solve it directly for any value of
t € T. If t < =, the solution is given directly by (2.2.2). If ny <t < (n+ 1)~y
for some n € ZT, then we can use the constant solution on [0,~] together with
(2.2.1) to find the solution on [y, 2v], which we can then use to find the solution
on [27v,3v], and so on, until we reach our target interval: [nvy,(n + 1)7y]. As
long as F' is total, the network behaviour is always well-defined with the delay
imposed (see the Delayed Operator Theorem on page 45).

Of course, to be even more physically accurate, we should equip each channel
with its own delay, 7., vy, > 0, and solve the system on the sequence of (possibly
irregular) intervals with the endpoints given by multiples of 7, and ~,, but that
level of generality is beyond the scope of our discussion.

2.3 The Problem with Imposing Delays and
the Concept of Vanishing Delays

Imposing a mandatory delay (even an arbitrary delay of v > 0) on every
channel would make our mathematical model somewhat more accurate if the
system being modelled directly resembles the network. For example, if we
build an electronic circuit that looks exactly like a network diagram, it will
indeed exhibit some latency as the signal travels from module to module. The
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latency would, of course, be different on each channel, but it still would be
nonzero, so a uniformly delayed model would be at least somewhat closer to
the real thing.

Analog computation involves building analogies of a real system, however, not
building scale models. Consider, for example, the model of a mass-spring-
damper system covered Chapter 3 (or in [TZ11]). We cover three different
models, and each of them uses a different number of channels. Even if we
imposed the same delay on each of them, the three systems would exhibit
different solutions. But they’re all supposed to be a model of the same system!
Moreover, the system for which they serve as models would exhibit no such
delays because information carried on separate channels of the models are, in
fact, different physical properties (position, velocity, and acceleration). The
idea of “propagation delay” between any two of those properties in the physical
system is simply nonsensical. It is only when that network represents an actual
circuit (and one that resembles the network exactly) that the delay makes any
sense. Thus, while an explicit “delay module” could certainly be a useful
addition to our modelling toolbox (along with adders, integrators, multipliers,
etc.), forcing a delay into the very calculus of models would be a mistake.

The fact remains that a network with a delay on every channel always has a
solution (and one that can be found directly) but a network without delays
may not. So what if we introduce the delay temporarily, find a solution to
the delayed system, and then see what happens to that solution as the delay
approaches zero? This is the question I explored in Project #1.

2.4 Case Study: Linear Homogeneous Systems

Before engaging in the development of a theory based on vanishing delays,
it seemed prudent to test the idea on a simple type of system with a known
solution—just to serve as a proof-of-concept. Linear homogeneous systems
fit the bill, and indeed, everything fell into place as I had hoped (as I'll now
demonstrate).

In this section, we’ll take A = R (although A = C would work just as well),
choose some m € N. Let A € R™ and ¢ € R™. Take F : C[T,R]" —
C[T,R]™ to be,

F(u)(t) = /0 Au(s)ds + ¢ (2.4.1)

It is well known from the theory of ordinary differential equations (see [BD01],
for example) that F' has a unique fixed point, uy € C[T,R]™, given by, uy(t) =
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eA’c, where

What we need to do is introduce a delay of v > 0 to F, find the fixed point
(if there is one') of this delayed F, and then check whether that fixed point
approaches e’c as v — 0%,

Given any v > 0, any u € C[T,R|™, and any t € T,

c ift <~
delay. F'(u)(t) = { fOt_PY Au(s)ds +¢ ift >~ (2.4.2)
Lemma 2.4.1. delay I’ (as defined by Equation (2.4.2)) has a unique fizved
point:

) Nk
w,(t) =) %Akc (2.4.3)

Proof. We must first verify that u, is actually a stream; in particular, it
must be continuous. It is obviously continuous on any interval of the form,
[ny, (n 4 1)) (where n € N) because it is defined as a sum of a fixed number
of continuous terms there (|t/] + 1 of them). Once ¢ crosses into the next
such interval, however, a new term is added. So we need to check only that
forn e N, u,(t) = uy((n+1)y) as t = (n+ 1)y~ (i.e. from the left). This is
readily apparent since that new term contains the factor, ¢ — (n + 1), which
is zero at the left endpoint of the next interval (when t = (n+1)7). With that
formality out of the way, we can demonstrate that u, is actually a fixed point
for delay. F.

Let t € T. If t <~ then,

0 _ k
delay. F(u,)(t) =c = Z %Akc = u,(?) (2.4.4)

k=0

So suppose t > v and let N = |t/v] — 1 (making (N + 1)y <t < (N +2)7).

! Admittedly, this seems somewhat coy in light of Sections 2.6 and 2.7. By inspection,
it is clear that F' satisfies Cawus and has a unique 0-approximate fixed point—namely, c.
Therefore, by The Delayed Operator Theorem on page 45, the delayed operator, delay. F,
has a unique fixed point u, (given by the construction in Proof 2 of that theorem) for every
v > 0. The work in this section, however, was a feasibility study which necessarily preceded
all that.
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Then,

t—y
delany(u,y)(t) = / Au,(s)ds+c
0

N—-1  (n41)y t—vy
= / Au,(s)ds+ / Au,(s)ds+c
n=0 " Ny
N—-1 (n+1)y Ls/~] (S —k )k
_ k
= A Z o A%c | ds
n=0 Y™ k=0
t—ny Ls/v) k
+/ A (s ]'W) Ak | ds+c¢
Ny k=0 k
N-1 n n
_ /( Ly (S - kfy)kAk-l-lC dS
n=0 v 1Y k=0 k'
t—y N - k
+ / Z 7(8 k) AFtleds + ¢
N k!
7 k=0
N—-1 n n
=22 T R e
= o
n=0 k=0 " "™
N t—y _ k
+ Z (s = k)" dsA* e + ¢
N k!
k=0 v
Bl et il Ve
n=0 k=0 (k+1)! ny
N t—
I inLc) it TN
— (k+1)! N+

N § ot Dy b (g )
i (k+1)!
N
(t =~ = k)" = (Ny = k)
+ Z Atle 4 ¢
— (k+1)!
N—-1 n
_ Z (n—k+ 1" —(n— k)" k1 gk+ g
B k4 1)! 7
n=0 k=0 ( ’
N
(t/y = (k+ 1) — (N = k) e
+ Z YA e+ ¢
— (k+1)!

35



Ph.D. Thesis - N. James; McMaster University - Computing and Software

N-1 /N-1 " ) AR
— _ 1) — _ +
(n—Fk+1) (n—k) ) c

N " k+1 . ,yk-i-lAk-i-l
N-1 ,}/k-i-lAk-i-l
= (n—k+ 1) —(n— k)| = (N = k)" ) e
prt ot (k+1)!
+

N k41 k41 pAk-+1

t vt A

Z (k41 R
2 ((7 ) ) G ote
The nested sum above (the one indexed by n) telescopes:

N-1
Z(n o ]f 4 1)k+1 o (n o k)k-i—l _ 1k+1 o Ok-l-l 4 2k+1 - 1k+1 4.
n=k
o (N =B — (N — 1 — k)
— (N . k)k+1 o Ok+1

Thus, the summand in the first summation is zero for every value of k£ from 0
to N — 1, which leaves only,

delay F(u,)(t) = Z ((E —(k+ 1)) ) %c +c

k=0 v
N+1 k k Ak
t YFA
:kz<<;—k‘)> ]{;' c+c
=1
N+1
t — kvy)*
:Z( k'f}/) AkC+C
k=1 '
N+1
— k!
[t/]
B k!
k=0
=u,(t)

u, can easily be shown to be unique by induction on N. In Equation (2.4.4),
it can be seen that the value of delay. F'(u,) on [0,7) is independent of u,—
so we know at least that portion of the fixed point is unique. The rest of
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the calculations show that given any N € N, the value of delay.F(u,) on
(N4 1)y, (N +2)7) depends on u,(t) only for ¢t < (N + 1)v. Therefore, u, is
the unique fixed point of delay. F. O

What must be shown next is that this solution approaches the stream, uy(t) =
e/'c (which is the fixed point of F') as v — 0. First, a quick lemma. Recall
that for a real number x, the power series for e” is given by

n
k ] ZL’k

What the following lemma shows is that we can “pollute” the terms of this
expansion (in a particular way that suits our purposes) and affect only the
rate of convergence, but not the end result.

Lemma 2.4.2. For all z € R2°

Proof. Let x > 0 and ¢ > 0. By definition,
nok
: % .
D =

k

Hence, there is an N > 0 such that Vn > N |e* — > (%] < ¢/2. Clearly

for any fixed k > 0,
k k
lim <1 — —) =1
n—o00 n

So, Vk > 0Ve > 03dM, >0Vn> M,

() (-0-2))

Let My =1 and for k=1,2,..., N, let M} be such that Vn > M,

) (-0-5))

<&

€
2N +2

<
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Let M = max({M;}_,U{N}). Then Vn > M,

nl’k kk ka kk
x Z (1= < |e® — Z (12
k kk k
sinceogx— 1—-— Sx—fork:N,N—l—l, N
k! n k!
N k N k N k k
- x x x k
Sy m ()
k=0 k=0 k=0
N ok N ok k
. x x k
<l (- (- 8))
k=0 k=0
9 €
SH(N+1 -
<y tWHlgr ==

0

Now we can finish the job by showing that u, — uy as v — 07. The fol-
lowing theorem shows that my technique of introducing vanishing delays is
capable of solving linear homogeneous systems (and with that, we bring the
case study to a close). This is reassuring, certainly, and a modest victory,
but it is not terribly exciting since there are much better ways to solve these
systems already.

Theorem 2.4.3 (Vanishing Delay Theorem for Linear Homogeneous Sys-
tems). If A is an m x m matriz (real or complez) then ¥Vt € T

P
lim Z (t k‘v}/) Ak — eAt

~y—0t+ =0 k!

Proof. 1t is convenient to use a matrix norm to show this. The particular one
chosen is unimportant so long as it is submultiplicative (|| Ay Aa|| < || Aq||||A2]])-
The operator norm, which is defined as follows for any matrix B, is such a
norm:

B
1B = max 12X
<0 |||
The symbol || - || is overloaded here, representing the vector norm on the right-

hand side and the operator norm on the left. In addition to being submulti-
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plicative, the operator norm satisfies all the usual norm axioms?
Let t € T, and € > 0. We must find a I' > 0 such that Vy < I,

[t/~] k
At } : (t - ]‘77) k
k=0

Since the operator norm is subadditive,

[t/~] k
At (t—k”Y) k
-3 e
=0

[t/7]

— k (t - ]W)k k
- TR 2 A
k=0 k=0
[e%e) [t/7]
t* Ak
= > —A’“+Z(t’f t—kv))k'
k=[t/y]+1 ’
[e%e) [t/7]
tk Ak
<| X g GRS =l 4
k=[t/v]+1 k= i

Since Y 7 % t* EAF = e it follows that, IN; > 0 Vn > N,

o0

th
> A

k=n

(2.4.6)

Let Ny be as such, and let I'y < t/N;. Then Vv € (0,I'1), the first term of
(2.4.5) is less than €/2. We now turn to the second term.

2For matrices B, Bi, Bs, and scalars a,

i. B=0 & |B|=0
ii. ||aB| = |a|||B|
iii. ||B1+ Ba| < ||Bi + || B
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[t/~] [t/~]

Ak A*
et Eleent] e
k=0 k=0

1t/7) N
=Y (=) S| 144 2a8)
k=0 ’
/7)1 gk
A
<5 k‘“ ‘tk - /m)k) (2.4.9)
k=0 ’

Inequality (2.4.7) follows since the matrix norm is subadditive. Equation
(2.4.8) follows since ||aB|| = || ||B]| (for all scalars a and all matrices B).
Inequality (2.4.9) follows since the matrix norm is submultiplicative. For con-
venience, let () represent the summation on line (2.4.9).

If t < v, then Q(y) = 0 which would allow us to ignore the whole term,
but we’re looking for an upper bound for v that ensures Q(v) < ¢/2 when 7 is
sufficiently small. So we must assume v < ¢ (in fact, we should assume v < t).
Let () = [t/v]. Then (considering the kv near the end of line (2.4.9)),

and hence Vvy <,

Q(Y)

IN

() k k
_ WAl (1 (__*_
= (1 (1 q(v)) )

From Lemma 2.4.2 on page 37 and the fact that e” can also be written as
Sre, 2, it follows that 3N, > 0 Vn > N,

“L(JAIDF S (J|A]E)E E\F " (|| Allg)E "
Z(Ilklll) —Z(||k|!|) <1_5) _ Z(Ilklll) (“(“g))

k=0 k=0

<

So choose I'y = t/Ny. Then Vy < T's q(y) > Ns, and hence Q() < /2, as
desired.
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Therefore, if we select I' = min{I';, s} it follows that,

[t/~]
0<y<T = |leM=>)"
k=0

t— kv

o AF|| < ¢

2.5 Properties of the Delay Operator

Having established that the vanishing delay technique works in some situations,
we can proceed to studying it theoretically. We begin with some elementary
properties of delay, which will be essential for the investigation.

2.5.1 delay, is nonexpansive and preserves Lip
Lemma 2.5.1. Yu,v € C[T, A] Vv, T €T

dri~(delay.u, delay.,v) = dr(u,v)
Proof. Obvious (see Figure 2.5.1). Here is a proper proof, though:

dr(u,v) = max da(u(t), v(t))

= mmax da(u(t —y+7),v(t —7+1))

= ax da(u(t—7),v(t 7))

= max dy ((delayvu) (1), (delayyv) (t))

y<t<T+y

=  max dy((delay.u)(t), (delay v) (1))

0<t<T+~

= drqy ((delayyu) , (delayyv))

The second last equation holds since delay.,u and delay. v are constant on
[0,]. O

Lemma 2.5.2. For any v > 0, delay,, is nonexpansive (i.e. it is Lipschitz—
in the traditional sense—uwith a Lipschitz constant of o = 1). That is, Yu,v €
C[T, A] Yy > 0 dejr,.4(delay v, delay. v) < depr,a(u, v).

Proof. Let v > 0. For any T < 7,

dr(delay.u, delay.v) = da(u(0),v(0))

IA
S

=
S
<
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A
A
u
v
|
\
T T
A
delay.u
delay. v
| .
T
v T+~

Figure 2.5.1: An Illustration of why dr,(delay. u, delay.v) = dr(u,v)

By Lemma 2.5.1, for any T" > 7,

dr(delay. u, delay.v) = dr_(u,v)
< dT(u7U>

The result then follows from the definition of dejr 4 (each term is individually
nonexpansive, so the summation is as well). O

Corollary 2.5.3. Let F : C[T, A] — C[T,A], let \,7 € RT, and suppose
F € Lip(\, 7). Then delay, F € Lip(A, 7+ 7).

Proof. Trivial, using Lemma 2.5.1:

driryy(delay. F(u), delay. F(v)) = dry.(F(u), F(v))

2.5.2 delay preserves Caus, WCaus

Lemma 2.5.4. Let I : C[T, A] — C[T, A] and v > 0, then F' € WCaus =
delay, F' € WCaus and F' € Caus = delay, I' € Caus.
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Proof. We’ll skip ahead here and use the Building Block Lemma (Lemma 3.2.1
on page bb) together with Lemma 2.5.2 on page 41. By the latter, for all
T,ve T, u,veC[T,A,

dr(delay. u, delay.v) < dr(u,v)

So if dr(u,v) = 0, so does dr(delay.u, delay.v). Thus, delay., satisfies
WCaus. The result follows from Part 3 of the Building Block Lemma. O

Remark 2.5.5. In fact, we might say that delay. F'is “supercausal” when F' is
causal since the value of delay. ['(u) at any point in time cannot even depend
upon values of u that are too recent, let alone upon present or future values
of u. For T" < 7,

u(0) = v(0) = delay., F(u)(T) = delay. F(v)(T)
and for T' > ~,
dr—(u,v) = 0 = delay. F(u)(T) = delay. F(v)(T)

2.5.3 delay is continuous

The following lemma deals with uniform continuity rather than (nonuniform)
continuity and while the latter generalizes to topological spaces—and thus can
be easily defined using pseudometrics—the most general setting for the former
is uniform spaces, which is a topic that requires a fair bit of development. As
a result, I’ll use the metric defined in Definition 1.3.5 on page 11.

Lemma 2.5.6 (delay is uniformly continuous on cross-sections). For any
given u € C[T, Al], the stream delay operator is uniformly continuous on T X

{u}. That is, Yu € C[T, A Ve > 030 >0 V1,72 €T
71— 2| <0 = depr.a(delay,, u, delay, u) < e

Proof. Let u € C[T, A] and € > 0. Let N be the smallest integer such that
27N < ¢/2. Define i : R — A™

o Ju(0) ift<0
u(t)—{u(t) if £ >0

Then Vv,t € T delay.u(t) = u(t — ). Since U is continuous on R, it is
uniformly continuous on any closed interval. Moreover, this coupled with the
fact that @ is constant on (—oo, 0], ensures that it is also uniformly continuous
on any half-open interval of the form, (—oo, z]. In particular, 36 > 0 Vt,,t; €
(_OO’ N] c

[t —ta] <0 = dau(ty),u(tz)) < N
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Let 71,72 € T such that |y; — 42| < 0. Then,

J— 1 —k
der,)(delay., u, delay ., u) = ; thin <2 ’tlgl[o,k}

hE

min <2_k, max dy (u(t — 1), u(t — 72)))
te[0,k]

k=1

max da (u(t — ), u(t —2)) + Z 27*

] =

P te[0,k] k—Nt1
< N max da (a(t —v), 4t — 7)) +27V
t€[0,N]
e €
< N—+ =
oN 2

(1 since (t — 1), (t — 72) € (—o0, N]
and [(t —m) = (t = 72)| <0)
=

0

In 1821, Cauchy infamously stated that a function continuous in each of its
variables separately is continuous |[Cau2l|. While this is strictly false, we can
prove something similar.

Lemma 2.5.7. If X,Y, Z are metric spaces, f : X XY — Z is continuous in
each of its variables separately, and f is equicontinuous® in one of them (i.e.
taking f as an X -indezed family of functions from 'Y into Z, or as a Y -indexed
family of functions from X into Z), then f itself is continuous (with respect
to the product topology on X x Y ).

Proof. Suppose, without loss of generality, that the family, {f(-,y)}yev is
equicontinuous. That is, suppose there exists a function oy : X x Rt — R*
such that Vxg,x € X Ve >0 Vy e Y,

dx(l’o,flf) < 5X(x078> = dz(f(flf(],y), f(x,y)) <é

Since f is continuous in Y separately, there is a function dy : X X Y x RT such
that Ve > 0 Vg € X Vyp,y €Y,

dy (Y0, y) < Oy (w0, Y0,€) = dz(f(x0,90), f(70,y)) <¢

We choose the most convenient metric for our purposes that induces the prod-
uct topology on X X Y, namely the “maximum” metric:

dXXY((x> y)> (I,a y,)) = nax {dx(l', I,)a dY(y> y/)}

3A family of functions is equicontinuous if they all share the same modulus of continuity.
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Let (xo,v0), (z,y) € X x Y and let € > 0. Suppose

dxxy ((zo, %), (7,9)) < min {5)( (a:o, %) , 0y (,’L‘O7 Yo, %)}

Then it follows that,

dZ(f(l’o,yo),f(l’,y» < dZ(f

—~

0, Y0), (20, ) + dz ([ (xo, ), f(2,))

_ < N €
2 2
Therefore, f is continuous at (xg, yo)- O

Corollary 2.5.8. The stream delay operator delay : T x C[T, A] — C[T, A] is
continuous.

Proof. By Lemma 2.5.2 on page 41, delay is equicontinuous in its second vari-
able separately (in fact, more than that, it’s globally Lipschitz with Lipschitz
constant o = 1 for all values of ). That is, the family {delayﬁ{}wET is equicon-
tinuous. By Lemma 2.5.6 on page 43, delay is continuous (uniformly so) in
its first variable. That is, all the functions in the family {delay(-,u)},ccir 4
are uniformly continuous. Thus, delay is continuous in each of its variables
separately, and is equicontinuous in one of them. By Lemma 2.5.7 on the
preceding page, delay is continuous. O

Corollary 2.5.9. If F' : C[T, A] — C[T, A] is continuous then delay o F
T x C[T, A] — C[T, A] (which is given by delay o F(v,u) = delay, F(u)) is
also continuous.

Proof. F is continuous by Corollary 1.4.14 on page 27, delay is continuous by
Corollary 2.5.8, and a composition of continuous functions is continuous.

O

2.6 Delayed Operators Always Have Unique
Fixed Points

Theorem 2.6.1 (Delayed Operator Theorem). Let F' : C[T, A] — C|T, A
satisfy Caus with F(u)(0) = c € A for all w € C[T, A]. Then Vv > 0 3lu, €
C[T, A] which satisfies the system,

u, = delay, F'(u,) (2.6.1)
u,(0) =c (2.6.2)
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Proof. [Short Version| Let u,v € C[T,A] T € T, and v € RT. Suppose
dr(u,v) = 0. Then, by Lemma 2.5.1 on page 41

dry (delay. F(u), delay, F(v)) = dr(F(u), F(v))
And since F' € Caus,

dr(F(u), F(v)) = dr(u,v)
=0

Therefore, delay. ' satisfies Lip(0,v) (and thus Contr). By Lemma 2.5.4
on page 42, delay. F satisfies Caus. Hence, by Theorem TZ1 on page 19,
delay. F has a unique fixed point. O

Remark 2.6.2. 1t is interesting to note that the continuity of F' is not required
to establish the existence of a fixed point. In fact, if F' is continuous, a direct
proof of the Delayed Operator Theorem (that does not invoke Theorem TZ1)
becomes fairly trivial.

2.7 The Delay Vanishes’

2.7.1 Why the Vanishing Delay Construction Produces
the Fixed Point of F

The Delayed Operator Theorem on the preceding page tells us that every
stream operator that satisfies Caus has an associated family of streams,
{u,},er+, each of which satisfy Equations 2.6.1 on the previous page and
(2.6.2). It is convenient, then, to define a corresponding structure:

Definition 2.7.1. Let F' : C[T, A]™ — C[T, A|™ satisfy Caus, and suppose
F(u)(0) = c (for all u € C[T, A]™). Define 4l : Rt — C[T, A" as, U(v) = u,
(as defined in the Delayed Operator Theorem). Then the pair, (F, ), is a delay
system. This provides a context for the symbol, u, (and similar variations),
which will often be used in place of () without explicitly acknowledging it.

Remark 2.7.2. Given a delay system (F),4l), we're hoping to find a fixed point
for F' by finding the limit of £(v) as v — 0. So our big question is “when does
that limit exist?” But before we get to that question, how do we know this
limit will even work? That is, even if lim,_,o+ $(7) exists (in C[T, AJ), how do
we know it’s a fixed point of F'7 This is addressed by our next theorem, and
here we do use continuity (although I have a hunch it’s not necessary).

4No copyright infringement here since the syllables of “lady” have been reversed.
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Theorem 2.7.3 (The Vanishing Delay Theorem). Suppose F' : C[T, A|™ —
C[T, A]™ is continuous and satisfies Caus. Let {vi},cn € RT be a sequence
such that v, — 0 as k — 0o, and suppose that limyg_,o (7)) = u € C[T, A]™.
Then u = F(u).

Proof.

u= lim u, (by hypothesis)

k—o0

— Jim (delay o F)(,,. %)
—00
= (delay o F)(ljlm (wy,, 7)) (since delay o F is continuous)
—00

= (delay o F)(u,0)
= F(u) (since delay(-,0) is the identity on C[T, . A]™)

The operative step is the third one, in which delay o F is moved outside the
limit. Some explanation is warranted here. Since F is continuous, so is F (by
Corollary 1.4.14 on page 27). Thus, since delay is continuous (by Lemma 2.5.6
on page 43), delayoF is too. According to a well-known theorem?® in Topology,
if f: X — Y is continuous, X is metrizable, and {z,},.y € X is convergent,

then lim, o f(x,) = f(lim, o0 ). In our case, X =Y = C[T, A", which is
metrizable, and Vn € N z, = (u,,, 7). O

2.7.2 When Does the Limit Exist?

This is the first major question about the vanishing delay construction, and
the biggest obstacle I faced during this project (indeed, it was big enough that
[ never quite overcame it). While my efforts failed to provide a satisfactory
answer, they did lead indirectly to the Generalized Theorem TZJ2 on page 102,
which I consider to be among the most significant results of this thesis.

Since my vanishing delay construction is meant to be an alternative to the
construction presented in [TZ11], an obvious question is whether it is at least
as widely applicable. That is, if Tucker and Zucker’s Theorem TZ1 guarantees
the existence of a unique fixed point for an operator F' : C[T, A] — C[T, A],
will the vanishing delay construction necessarily converge to it?

[ wasn’t able to answer even this question completely, but I came close (falling
short by having to assume continuity in addition to the antecedents of The-
orem TZ1). Furthermore, it was in the process of answering this question
that I developed Theorem TZJ2 on page 27—which led to the Generalized
Theorem TZJ2 on page 102.

See Theorem 10.3 of [Mun75], for example.
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Theorem 2.7.4 (Theorem TZJ1 for Vanishing Delays). Let (F,4l) be a con-
tinuous delay system (where F' : C[T, A] — C[T,A]). Suppose F satisfies
Caus and Contr. Then the unique fized point of F (quaranteed to exist by
Theorem TZ1) is given by uw = lim._,o+ £U(7).

Proof. The idea is to use Theorem TZJ2 on page 27, taking our parameter
to be v in the operator delay o F', and then 4 essentially becomes the ® in
Theorem TZJ2. Let P = R=%. Define G : P x C[T, A] — C[T, A] as follows:

G(v,u) = delay. F(u) = delay o F(vy,u)

By Lemma 2.5.4 on page 42, GG satisfies Caus. By Corollary 2.5.9 on page 45,
G is everywhere continuous, and in particular it is continuous at (0,u) Yu €
C|T, A]. Finally, by Corollary 2.5.3 on page 42, G satisfies Contr.

Thus G satisfies all the conditions of the operator in Theorem TZJ2 for p = 0,
and hence the ® function for G is continuous at 0. The relevance of this
observation is the fact that the ® function for G is simply i, continuously
extend from R* to R=%. Therefore, lim, o+ £(7) exists and by the Vanishing
Delay Theorem on the previous page, this limit is the fixed point of F. O

2.7.3 Addendum: What happens if delay, commutes
with F?

Many of the results would be rendered fantastically simpler if only delay.,
would be so kind as to commute with F'. In the last proof, we constructed a
function, u,, such that for any ¢ € T, as long as we take a sufficiently large
n € N, u,(t) = (delay F)"(v1)(t). If we could interchange delay., and F, we
would have,

w,(t) = (delay  F")(v1)(t) = (delay,,, F™")(v1)(t)

As it happens, this is not only a surprisingly unrealistic expectation, but it
also causes big trouble.

Proposition 2.7.5. Let F,v,u, be as in the Delayed Operator Theorem on
page 45, and suppose that®

u, = delay Fu, = Fdelay.u,

Then u, is constant (u, = c, where c is the 0-afp of F, to be specific).

% Alternatively, we could assume that Yu € C[T, A" u = delay. Fu= Fdelay.u, but
we needn’t go so far for this proposition.
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Proof. Let t € T and let n € Z* such that ny > ¢. Then,

u,(t) = (delay F)"(u,)(t) (since u, is a fixed point of delay. F’)
= delay’ " (u,)(t) (since delay. commutes with F'by assumption)
= delay, F"(u,)(t) (since delay., delay., = delay., . .,)
= F"(u,)(0) (since t < nv)
=c (since c is a 0-afp of F')

]

Remark 2.7.6. Proposition 2.7.5 shows that imposing such a condition on F'
drastically undermines the potential power of the theory, and yet it seems like
a such a natural and benign property that may well apply to several common
stream operators. It is, however, a much more restrictive condition than it
might appear.

Example 2.7.7. Take F(u fo au(s)ds + ¢ (for some a,c € R), and let u
be the constant function, c. Then

- e ift <~y
delay F(u)(t) = delay.c (at—l—l)—{ ca-(t—v)+c ift>n

Conversely,
Fodelay. (u)(t) = F(u)(t) = c:(at+1) # delay. F'(u)(t) (unless y-t-a-c=0)

Hence, even the members of this simple, general class of operators don’t com-
mute with delay.,.
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Chapter 3

Research Project #2: Exploring
the Special Case in Which A is
a Banach Space

In this chapter, I will present the main portions of the paper [JZ12] which
has been published in The Computer Journal. Both the paper and this thesis
were written to be relatively self-contained, so if I were to paste the paper
here, wholesale, much of the preliminary content in Chapter 1 would need-
lessly come with it. So in addition to omitting the redundant sections, I've
made some minor edits to smooth the exposition from paper to thesis chapter.
Furthermore, there are a few proofs that were omitted from the paper for the
sake of brevity, and in place of those proofs, I refer the reader to this thesis.
Hence, those have been included here.

3.1 Introduction

In [TZ11], Tucker and Zucker show that an operator which satisfies Caus and
Contr has a unique fixed point, but which operators satisfy those proper-
ties? The authors offer two mass-spring-damper systems as examples, which
is certainly very helpful, but it still leaves us with little intuition about which
operators would have those properties and which ones wouldn’t. Without im-
posing some restrictions on A, there likely isn’t much to be done about this.
There just isn’t enough to work with if we want to be more specific. If we re-
strict our attention to the case in which A = R, however, then we have a rich
algebraic structure upon which to build operators that satisfy the properties.
That’s going a little further than necessary, though. It turns out that there is
quite a lot we can say about the properties if we go only as far as making A
a Banach space.
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There are two main parts to this chapter. In the first part I conduct a thor-
ough inventory of the pointwise stream operations induced by the algebraic
operations of the Banach space, and examine the way each of them affects
the stream properties covered in Chapter 1. While the pointwise operations
yield a wide assortment of operators that satisfy the Lipschitz condition, the
real engine behind the results is integration. An operator which satisfies the
Lipschitz condition is all well and good, but in order to work with the two
fixed point theorems, the operator must be contracting, and that is what inte-
gration provides. The integral (with respect to time) of a Lipschitz operator
satisfies Contr. All of these results are consolidated into a pair of lemmas
(the Building Block and Continuity lemmas) and a single main theorem (the
General Form Theorem on page 65).

In the second part, I move on to discuss two applications from mechanical
physics. The first is the mass-spring-damper system described in [TZ07, TZ11|,
which the general form is more than powerful enough to handle on its own. The
second—which is only a simple pendulum—neatly highlights the limitations
of that form, as it is apparently not general enough to apply to that system.
If we introduce a predefined operator (the sin function, in this case), however,
we can still apply the two main lemmas separately to do the work the theorem
cannot.

3.1.1 Algebra of Streams over a Banach Space

The operators with which we are concerned in this chapter operate on streams
from C[T, B]™, where B is a Banach space over a field of scalars S. The
norm on B will be denoted using double bars, || - ||, and it induces a metric
ds(z,y) = ||z — y||. The same m-tuple convention used for the stream metric
will be used for the norms on both B and S: ||(uy, ..., un)|| = maxi<g<m ||uk|
and |(ay, ..., ax)| = maxy<x<m, |ax|. Furthermore, corresponding to each pseu-
dometric dr (for T € T) is a seminorm (or a “pseudonorm,” using the vernac-
ular in [Roy63]) ||ul|z = dr(u,0).

C[T, B]™ inherits several properties directly from B—almost enough to make it
a Banach space itself. The addition operation on B naturally induces (point-
wise) addition on C[T, B]™ (the continuity of the sum of two streams is assured
by the subadditivity of the norm on B). Scalars from S operate on C[T, B|™
as they do on B (e.g. a(u+v) = au+ av, (ab)u = a(bu), etc.). It is shown in
[TZ11] that if B is separable and complete (which it is, being a Banach space),
then so too is C[T, B]™. Similarly (although not addressed in [TZ11]), the local
convexity of B assures the local convexity of C[T, B]™.

This collection of properties ensures that C[T, B]™ is at least a Fréchet space!

LA Fréchet space is like a Banach space, except it lacks a norm. In its place, however, a
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over S, but since the origin of C[T, B]™ does not necessarily contain an open
bounded neighbourhood?, it follows from Theorem 1.39 in [Rud91| that C[T, B]™
is not normable. Hence it is not, itself, a Banach space.

For our purposes, however, a more useful observation is that C[T,S|™ could
almost serve as the set of scalars for the Fréchet space C[T, B]™. Addition and
multiplication on § induce corresponding pointwise operations under which
C[T,S]™ is closed, and which commute, associate, and distribute according to
the field axioms. Pointwise multiplication of a stream from C[T,S|™ with a
stream from C[T, B]™ produces a stream from C[T, B]™. Being rife with zero
divisors, however, C[T, S]™ is not a field (it is only a commutative ring), and
thus it cannot serve as a proper field of scalars in a topological vector space.

Despite this shortcoming, pairing C[T,S]™ with C[T,B]"™ produces a useful
algebra of pointwise operations—one which lays the foundation for matrix
multiplication of streams in C[T, B]™ by matrices in C[T, S|™*™. In fact, mem-
bership in a commutative ring is all that is required of the entries of a matrix
in order to define a determinant (see |HK71|). That fact, in and of itself, is
not immediately relevant to our research here, but it does suggest promising
avenues of exploration in future research.

Most of the observations noted above follow readily, but we will take care to
prove that pointwise multiplication between C[T, B and C[T, S| works as we
have claimed because that statement, in particular, is not completely trivial.

Lemma 3.1.1. Ifa € C[T,S]™ and u € C[T, B]™, then au € C[T, B|™, where
au is the pointwise multiplication of a and u:

(au) (t) = (a1 (t)ur(t), ..., am(t)un,(t))

Proof. What must be shown is that au is continuous. Let {5 € T and € > 0.
Let,

o= (¢<|a<to>| +Ju(to)])? + 4 - lalto)| - Hu(to)H)

Since a and u are continuous, 3d,, 0y > 0 such that Vt € T,

[t —to] < da = |a(t) —al(ty)] <& and
[t —to] < 0w = |lut) —ulty)| <&

Fréchet space has a countable collection of seminorms that induce its topology. See [Rud91]
for details.

2In this context a subset X C C[T,B]™ is bounded if for every neighbourhood B of
0 € C[T, B]™ there is an R > 0 such that for all »r € S with |r| > R, X C rB. This means
that unless B is the trivial space B = {0} (or perhaps a rather esoteric and pathological
space) we have that for every T € T and € > 0, By .(0) = {u € C[T,B]™ : dr(u,0) < e} is
unbounded. This is because for any r € S there is (for all the common Banach spaces, at
least) a stream u € C[T, B]™ such that [|u(T +1)|| > |r|, and hence Br(0) € r Br41,:(0).
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Let 6 = min {dg4, 0y }. Then for ¢ such that [t — to| < d,

[(an) (1) — (au) (L) = | (a(t) - alto)) (u(t) —u(to))
+(a(t) — a(to)) ulte) + a(to) (u(t) — u(to)) |

I(a(t) — alto)) (u(t) — ulto))]|
+[(a(t) = a(to)) ulto)|| + llalto) (u(t) —u(to))|
= la(t) —a(to)| [lu(t) —u(t)]

+la(t) — a(to)] [[a(to)[| + la(to)] || (u(t) — u(to))]l
< (&) + ¢ (Julto)ll + la(to)])
= ¢ (after simplification)

IA

Corollary 3.1.2. If A € C[T,S|™ ™ and u € C[T, B]™, then Au € C[T, B|™

While the algebraic operations on C[T, B]™ facilitate the construction of many
interesting stream operators, they would be of rather limited utility to the
theory without integration (or something like it).

Lemma 3.1.3. The Riemann integral’ is well-defined on C[T,B|™ and Yu €
C[T,B]™ Va,b e T,
b
< [ Iu) s

Proof. See Theorems 2.1 and 5.1 in [Fea99| for the definition and the inequality,
respectively. O

s)ds

Remark 3.1.4. lterated integrals are of particular importance to our theory, but
standard integral notation becomes a little cumbersome for representing them.
So we’ll be using the following notational conventions. Given u € C[T, B]™
a,t € T (with a <t), and n € N,

/ Yuw = )

(n+1) t [ )
/ u(t) = / / u(s) | ds
Equivalently,
(n) t prs1 ps2 Sn—1
/ u(t) = / / / . / u(s,)ds,ds,—1 ... ds;

3More accurately, the generalized Riemann integral, as defined by Feauveau [Fea99]. For
an exposition of generalized integrals, see [Bar01].
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Lemma 3.1.5. Let u € C[T,B]", n € Z*, and a,b € T with a <b. Then,

/am) "

Proof. The base case, for n = 1, follows from Lemma 3.1.3, along with the
fact that for a real function, f : R — R (like the ||u(s)|| from the right-hand

side of the inequality in Lemma 3.1.3), f; f(s)ds < (b—a) max,<s<p | ()]

Now if we suppose that the inequality holds for all u € C[T,B|™, a,b € T
(a < b), and for some n > 0 then

/a ) / b / " () ds
LbJCmu@>

b
(s —a)" . . .
/ o lex |lu(t)|| ds (by the inductive hypothesis)

< max ||u(t ||/
a<t<b

b_an+1
- %g;%ygggnm>u

G o u(®)]

<
n! a<t<b

IN

ds (by Lemma 3.1.3)

IA

O

3.2 Operators Which Satisfy the Fixed Point
Theorems

Having established in Section 3.1.1 some of the basic operations we can use to
create stream operators, we can now proceed to examine the way the properties
discussed in Section 1.3.3 are affected by these operations. In the Building
Block and Continuity Lemmas (Lemmas 3.2.1 on the following page and 3.2.2
on page 59 below), we will simply audit the effects of the algebraic operations
so that when building operators from them or deconstructing operators in
terms of them, we can directly calculate their properties. In the General Form
Theorem on page 65, all these results are consolidated into the most general
class of operators definable using these algebraic operations exclusively. The
Building Block Lemma and the Continuity Lemma can also be used a la carte,
however, with predefined operators that cannot be expressed using only the
algebraic operations from Section 3.1.1 (see Section 3.3.2 on page 74 for an
example).
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Lemma 3.2.1 (The Building Block Lemma). Given stream operators F,G :
C|T,B|™ — C[T,B|"™, scalar stream a = (ay,as,...,a,) € C[T,S|™, and ma-
triz stream A € C[T,S]™ ™, the properties of Caus, WCaus, and Lip(\,T)
are preserved by the basic stream operations as follows:

1. Primitive Operators

(a) Given w € C[T, B|™, the constant operator Fy,(v) = w satisfies
Caus and Lip(0,7) for any 7 > 0.

(b) The identity on C[T,B]™ satisfies WCaus and Lip(1,7) for all
7> 0.

2. Addition of Operators

(a) F,G € WCaus = (F'+G) € WCaus
(b) F,G € Caus = (F + G) € Caus
(¢c) F € Lip(Ap,7r), G € Lip(Ag,7¢) = (F' + G) € Lip (Ar + A\g, min {7p, 7¢})

3. Composition of Operators

(a) F,G € WCaus = (FoG) € WCaus

(b) F € Caus and G € WCaus = (FoG),(GoF) e Caus

(¢c) If F € Lip(Ap,7r), G € Lip(\g,7¢), and F,G € WCaus then
(F o G) € L’I,p ()\FAg,mil’l {TF,Tg})

4. Pointwise Multiplication by a Scalar Stream

(a) F € WCaus = alF' € WCaus

(b) F € Caus = al’ € Caus

(c) Let « > 0. If F' € Lip(\,7) and Vt € T 1%i}fn|ai(t)| < « then
aF € Lip(a\, 1)

5. Pointwise Multiplication by a Scalar Matrix

(a) F € WCaus =AF € WCaus

(b) F € Caus = AF € Caus

(¢) F€ WCaus and A(0) =0 = AF € Caus
)

(d) Let « > 0. If FF € Lip(\,7) and Vt € T ||A(t)|| < a then AF €
Lip(aX, 1)
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6. Integration
Define Fy : C[T,B]"™ — C[T, B|™ as follows:

Fyo = [us)as = ( [uras [usts)ds, . [unfsas)

where u = (uq, ug, . .., uy,) € C[T, B]™. Then,

(a) Fy € Caus
(b) Ff € Lip()\, ) VA € R*

Proof. O
(1a) Yu,v e C[T,B]™ [Fw(u) = Fw(v)], so both results follow trivially.

(1b) VT € T Yu,v € C[T, B]™ |(ul o = vijor = id(u)(T) = id(v)(T)) and
drir (0,v) < 1-drr (id (), id (v) |

(2a) dr(u,v) = 0 = (F+G))(T) = Fu)(T) + Gu)(T) = F(v)(T) +
GV)(T) = (F+G)(v)

(2b) By Remark 1.3.15, all that remains to be shown (given Part (2a)) is
that Yu,v € C[T,B™ |(F + G) (u)(0) = (F + G) (v)(0)|- This follows
directly from the fact that Vu,v € C[T, B]™ [F(u)(O) = F(v)(0) and
G(w)(0) = G(v)(0)].

(2¢) Let 7 = min{rp,7¢}. By Lemma 1.4.6, F' € Lip (Ar,7) and G €
Lip (A\g, 7). The result follows readily by taking u,v € C[T, 5]™ and

expanding
drir (F'+G) (), (F +G) (v))
into
max ||[F(u)(t) + Gu)(t) — F(v)(t) — Gv) (@)

0<t<T+1

Then finally rearranging the terms and using the subadditivity of || - || to
obtain the result.

(3a) F,G € WCaus = VT € TVu,v € C[T, B™ |dr(u,v) = 0= dr (G(u), G(v)) =
0= F(G)(T) = FGW)(T)].

(3b) Given any Vu,v € C[T, B]™, it may be the case that G(u)(0) # G(v)(0),
but under F the image of all streams (including those two) at time ¢ = 0
is the same. Thus F o G € Caus. As for G o I, we do know that
F(u)(0) = F(v)(0), and since G € WCaus, that equality “up to 0”7 is
preserved: G (F'(u)) (0) = G (F(v)) (0).
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(3c) By Lemma 1.4.6, F € Lip(Ap,7) and G € Lip(\g,T), where 7 =
min {7p, 7¢}. So, given T' € T and u, v € C[T, B]™ such that dr(u,v) =
0, it follows from (3a) that dy (F(G(u)), F(G(v))) = 0 also. Hence,
dri- (F(G()), F(G(v))) < Mdri- (G(u), G(v)) < Apdadri-(a,v).

(4a) dr(u,v) = 0= F(u)(T) = F(v)(T) = aF()(T) = aF(v)(T)
(4b) F(u)(0) = F(v)(0) =aF(u)(0) = aF(v)(0)

(4c) Consider F' as an m-tuple of functions: for w € C[T,B]" F(w) =
(Fy(w),..., F,(w)). Then,

dror(aF(u),aF(v)) = o [Jan () Fr(w) (t) — ar(t) Fr(v)(#) |l
= OLIZSZT\%( 1 Fe(u)(t) = Fi(v)(®)]]
< OLIZ;T‘C"“(t)‘o<I?<a“TX+T||F’“( )(t) = F(v)(0)]]
< oj;;if(F(u),F(lil;;m
< aldrir(u,v)

(5a, 5b) Same as (4a, 4b).

(5¢c) A(0) =0 € C[T,S|™ ™ = (AF)(u)(0) = (AF)(v)(0) = 0 € C[T, B]™.
The rest is given by (5a).

(5d) Similar to (4c¢), but using the matrix norm || A(¢)|| in place of |ax(t)].

(6a) Let u,v € C[T, B]"™ such that V¢ < T"u(t) = v(¢). Then, using the norm

on B,
/OTu(s) ds — /OTV(S) ds

/ " (uls) — v(s)) ds

|F(u)(T) = Fr(v)(T)|| = ‘

< / l(u(s) - v(s))] ds
= 0

The linearity of the integral in the second line comes from Theorem 3.1 in
[Fea99], and the inequality arises from 3.1.3. Since ||| is a norm (rather
than a mere seminorm), it follows that Fy(u)(T) = F(v)(T).
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(6b) Let u,v € C[T, B]"™ such that dr(u,v) = 0. Let A > 0. Then,

drix (Fr(u), Fi(v)) =

max
0<t<T+X

/Ot u(s)ds — /Otv(s) ds

0<t<T+A /0 (u(s) —v(s)) ds
STy /0 lu(s) =v(s)l ds  (3.2:2)

0<t<T+X

/0 lu(s) — v(s)|| ds (3.2.3)

(3.2.1)

T4+
/T lu(s) — v(s)|| ds (3.2.4)

3, max u(s) —v(s)| (3.2.5)
3 s [u(s) —v(s)] (3.2.6)
)\dT+)\(u> V)

Step Justifications (unnumbered steps require no further elucidation):

(3.2.1) By Theorem 3.1 in [Fea99].

(3.2.2) By Lemma 3.1.3. Note that this converts the Banach-valued integral
to an ordinary integral over R.

(3.2.3) Since the integrand is nonnegative, the maximum will be at ¢t =

T+ A\

(3.2.4) dr(u,v) =0 = [ [u(s)

(3.2.5) By Lemma 3.1.5.
(3.2.6) Since

max [lu(s) = v(s)|

0<s<T+A

—v(s)|| ds =0.

= e { g u(s) = v(s)].

T<s<TH+A

s uls) V(o) }
— max{O, max Hu(s)—v(s)”}

T<s<T+A

= pmmax flu(s) —v(s)]
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Lemma 3.2.2 (The Continuity Lemma). Let (P, dp) be a metric space (which
will serve as a parameter space) and let p € P. Let F\G : P x C[T,B|™ —
C[T,B]™ and suppose that for all u € C[T,B|™ F and G are continuous at
(p,u). Let A : P — C[T,S|™™ be continuous at p. Then the functions
H : P xC[T,B]™ — C|T,B]™ defined below for (r,u) € P x C[T,B|", t € T,
are all continuous at every point in {p} x C[T,B|™ C P x C[T,B]":

1. Addition: H(r,u)(t) = (F'+ G) (r,u)(t) = F(r,u)(t) + G(r,u)(t)
2. Composition: H(r,u)(t) = F(r,G(r,u))(t)
3. Matrix Multiplication: H(r,u)(t) = (AF) (r,u)(t) = A(r)(t) F(r,u)(t)

4. Integration: H(r,u)(t) = ft

o F(r,u)(s)ds

Proof.

(1) Follows from the subadditivity of the seminorms on C[T,B]": |ullr =
dT(u, 0)

(2) Let u € C[T,B|™. Let ¢ > 0. Since F' is continuous on {p} x C[T, B]™,
there is a 6y > 0 such that Vv € C[T, B|"™ Vr € P,

dPxC[T,A}m ((p> G(p> u)) ) (Ta V)) < 5F = dC (F (p> G(p> u)) ,F(’l“, V)) <é¢

Since G is continuous on {p} x C[T, B|™, there is a dc > 0 such that
V(r,w) e P xC[T,B]™,

dPXC[’]I‘,.A}m ((pv U), (Tv W)) < 5G = dc (G(pv U), G(Tv W)) < 5F

(3) Let u € C[T,B]™. Let ¢ > 0, T € T. For the sake of tidiness, we’ll
overload the symbol || - ||z using it as a seminorm on both C[T, B]™ and
C[T,S]™ ™. In the latter case, ||A(p)||lr = maxo<i<r ||A(p)(t)]|, where
| - || is the matrix norm on B™ ™. Let

= (V AWy + 1 (p.w)1)* + 42 — [ Al ~ | F(p. u>HT)

Then 39p, 04 > 0 3T, T4 € T such that ¥(r,v) € P x C[T, B]™,

dr,. ((p,u), (r.v)) <dép = dr(F(p,u), F(r.v)) <é&
dr, ((p,u), (r.v)) <da = dr(Alp,u),A(r.v)) <e
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Let T" = max {74, Tr} and take (r,v) € PxC[T, B]"™ such that dr ((p, u), (r.v))
< min{dg,04}. Then,

dr (A(p)F(p,w), A(r)E(r,v)) = [[A()F(p,w) = A(r) E(r,v)|l1

< [Al) = AWl [[F(p,w) = F(rv)lly
+[A(p) =A@l [1F(p, )l
HIAD 7 [1F(p,w) = F(rv)lly

< €

(4) Choose ¢ > 0, T' € T, and u € C[T,B]™. Since F is continuous on
{p} x C[T, B|™, there is an open neighbourhood of (p,u) in P x C[T, B|"
such that 7" - dr (F(p,u), F'(r,v)) < € holds for all points, (r,v), in the
neighbourhood. Reusing several steps from the proof of the Building
Block Lemma (6b), it is easy to show that dr (F(p,u), F(r,v)) < T -

dr ((p, ), (r,v)).
O

Remark 3.2.3. The Building Block Lemma and the Continuity Lemma natu-
rally complement Theorems TZ1 and TZJ2 ( on page 19 and page 27), respec-
tively. The former suggests ways to construct operators that satisfy Theorem
TZ1 and the latter merely assures us that there will be no unpleasant surprises
when we hope for them to satisfy Theorem TZJ2. The key observation here
is that most operators we might build from these theorems—starting with the
identity operator as our foundation—will satisfy only WCaus and Lip(\, T)
for some A > 1. There are only two operations in the list that can be applied
to modify such an operator into one which will satisfy Caus and Lip(\, 7) for
a <l

e integration, and

e multiplication by a matrix stream A(t) that begins at 0 (at ¢ = 0) and
whose norm remains bounded by some A\ < 1.

Remark 3.2.4. This suggests the following class of operators, at least as a
starting point.

Corollary 3.2.5. Let (P,dp) be a metric space (of parameter values), let
p € P, and let V. C P be a neighbourhood of p. Let y : P — C[T,B|"™ be
continuous at p. Let A, B : P — C[T,S]™ ™ be functions such that

e A and B are continuous at p

o VreV B(r)(0) =0 e B™™
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o IMy, MpeRTVteTVreV,
[A(r) (D) < My and [|B(r)()]| < Mp <1

Define F' : P x C[T, B]™ — C[T, B|™, as follows for u € C[T,B|™, r € P:
F(r,u)(t) = y(r)(t) + B(r)(H)u(t) + /0 A(r)(s)u(s) ds

Then for every r € V, the function F(r,-) : C[T,B]™ — C[T,B|™ has a fized
point v € C[T, B|™, and its fized point function ® : V. — C[T,B]™ (as described
in (1.3.3) on page 15) is continuous at p.

Remark 3.2.6. Since C[T,B|™ and C[T,S|™*™ are closed under their various
algebraic operations and since integration is linear, a single y, B, and A are
clearly sufficient here (e.g. the sum of two constant streams y, (r)(t) +yo(r)(t)
could obviously be expressed using a single constant stream y(r)(¢) and like-
wise for the other terms). Nested integrals, however, cannot be simplified into
a single integral. So Corollary 3.2.5 can be generalized further in the following
way.

Corollary 3.2.7. Let (P,dp), p, V, y, and B be as defined in Corollary 3.2.5.
Let n € Z* and let Ay, As, ..., A, all be as A is defined (all continuous at p
and all having bounded norms throughout V- and T ). Then the same results can
be obtained by defining F' as follows (using the notation introduced in Remark

3.1.4):
)
F(r,u)(t) = y(r)(@) +B(r)(u(t) + /0 (Ax(r)u) (t)

Remark 3.2.8. Corollary 3.2.7 is the most general result that can be obtained
directly (and exclusively) from the Building Block Lemma and the Continuity
Lemma, but with a bit of extra work, we can go further to tackle infinite series
of nested integrals instead of merely finite sums of them.

Lemma 3.2.9. Let' M € RY and let Ay, Ay, As, ... € C[T,S|™™ be a se-
quence of matriz streams such that Vt € T Vk € Z* ||Ax(t)|| < M. Then the
following operator is well-defined on C[T, B]™:

(k)
P = > [ (w0 (327)
k=10

4n fact, the lemma holds if M is any function of the form M : T — R*, but we can’t
make use of this generality here and it becomes merely inconvenient for our purposes.
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Proof. For u € C[T,B]™, n € Z*, and t € T, define the partial sum F), as
follows:

n (k)
Fw = Y / (Agu) (1)

Then by Lemma 3.1.5, for any 7' € T, and any N > 0 and n > N,
dr (Fy(u), Fy(u)) = |[Fa(u) = Fx(a)lly

n

5 /O<k> )

k=N+1 T
n |
|
0 T
(k)
= Orgtaé)% /0 (Agu) (t)
k=N+1

Ml Y max —

0<t<T k!
k=N+1

IN

k=N+1

n

IN

n

Tk
= Mluly > 55

k=N+1

Given u and 7', this distance can be made arbitrarily small by making /N suffi-

ciently large (and keeping n > N). Thus, for every u € C[T, B]™, {F,,(u)},_, is

a locally uniform Cauchy sequence and since C[T, B]™ is complete, lim,,_,, F},(u)
exists (and hence defines F'(u)). O

Lemma 3.2.10. For all A > 0 the operator F : C[T,B]"™ — C[T, B]™ defined
in (3.2.7) on the preceding page satisfies Caus and Lip(\, ) with T = MLH

(where M is the upper bound for || Ag(t)|| indicated in Lemma 3.2.9).

Proof. By the Building Block Lemma, Parts (1b), (2b), (3b), and (6a), F,, €
Caus for every n € Z*. Locally uniform convergence implies pointwise con-
vergence, so if for some 7" € T, u,v € C[T, B|" Vn € Z* F,,(u)(T') = F,(v)(T),
then the same is true of the limits of each side of the equation as well. This is
true whether T = 0 or T > 0. Thus, it follows that the limit F' also satisfies
Caus.

Let T € T and u,v € C[T,B]™ such that dr(u,v) = 0. Let A\ > 0 and

T = 375 Then by the Building Block Lemma (1b), (3¢), (5d), and (6b),

Vn € Z* the operator u — fo(") (A,u) satisfies Lip (7" M, 7). Thus, using (2c¢),

F, € Lip (MZTk,T)

k=1
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Hence, Yu,v € C[T, B|"™ VT € T, if dr(u,v) = 0 then

drir (Fn(u), Fy(v)) < MZ deT-i—T(ua v)
k=1

Now, dri, (F(u), F(v)) = dry, (lim, 00 F,,(u),lim, . F,(Vv)), and since dr .
is continuous,

drir ( Tim F, (), Tim Fn(v)> = lim drys (Fy(u), Fuy(v))

n—o0 n—oo

< M Z deT‘I—T(u? V)
k=1
Mt
= 1= 7_alTJrT(u, V)
= )\dT+T(u> V)

O

Remark 3.2.11. Lemmas 3.2.9 and 3.2.10 offer conditions sufficient to guaran-
tee a fixed point for integral series operator (3.2.7) using Theorem TZ1. We
now wish to augment the domain of this operator with a parameter space and
determine a (ideally modest) set of conditions to be imposed on the matrix
streams {A,}]" to ensure such an operator is continuous at a given point in
its parameter space (the main requirement demanded by Theorem TZJ2).

Lemma 3.2.12 (The Equicontinuity Lemma). Let (X,Tx) be a topological
space (where Tx is the topology on X ) and (Y,dy) be a metric space. Let
{fu},, be a sequence of functions f, : X — Y that converges pointwise to a
function f: X =Y. If {f.} ~, is equicontinuous at a point x € X, then f is
continuous at x.

Proof. If { f,,},~, is equicontinuous at z, then 30, : R" — Tx such that Ve > 0
x € 0,(e) and Vn € ZT Vy € X y € 6,(e) = dy (fu(2), fu(y)) < e. Since f,
converges pointwise to f, AN : X x RT™ — N such that Vy € X Ve > 0
Vk > N(y,e) d(fe(y), f(y)) < e. Let ¢ > 0. Let y € 6(¢/3). Choose any
n > max {N(x,e/3), N(y,e/3)}. Then,

dy (f(x), f(y)) (), fulx )) +dy (fu(2), fu(y) + dy (fa(y), £ ()
+

dy (f
_I_

A
wlo g

c
3

OJIW)
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Lemma 3.2.13. Let (P, dp) be a metric space and let {A,} 7| be a sequence of
functions A, : P — C[T,S|™ ™. For each n € Z* define H, : P x C[T, B]™ —
C[T,B]™ as H,(r,v)(t) = (An(r)(t)) (v(t)) (pointwise matriz multiplication).
If {A,})2, are equicontinuous at a point p € P and 3M : T — R such that
VI'e TVneZ" [|A,lly < M(T), then {H,} —, are equicontinuous at (p,u)
for every u € C[T, B|"™.

Proof. Let 04 : Rt x T — R* be the modulus of continuity for {A4,} 7, at p.
That is, Ve > 0 VT € T Vn € Z*Vr € P,

dp(r,p) <0a(e,T) = [[An(p) = An(r)ll; <

We can then derive a modulus of continuity for {H,} ~, using only 04, M(T),
and a stream u € C[T, B|™ (and, in particular, not using n) by following the
proof of the Continuity Lemma part (3), taking F' to be the projection function
F: P xC[T,B]™ — C|T, B]™, defined for (r,v) € P xC[T, B]"™ as F(r,v) =v.
Specifically, given € > 0, u € C[T,B]™, and T' € T, we take

oot (\/(M(T) +|Juflp)? +4e — M(T) — ||u||T)

2

(cf. proof of the Continuity Lemma (3.2.2), part (3)). Then define §(¢, T, u) =
min {e’, d4(¢",T)}. O

Lemma 3.2.14. Let (P,dp) be a metric space and let {f,} ~, be a sequence
of functions f, : P — C[T, B]"™ which is equicontinuous at every point in some
set @ C P. Define F,, : P — C[T,B|"™ as follows for r € P, n € Z*, and
teT:

n (k)
R = X [ o)

Then {F,} ~, is equicontinuous on Q.

Proof. Since {f,} - is equicontinuous on @), there is a modulus of continuity
function ¢ : RT x T x @ — RT such that Ve > 0Vn € Z* VT € T Vg € Q

Vp € P dp(p,q) < 0;(e,T,q) = dr(fu(p), fu(q)) < e. Define d(e,T,p) =
§;(e7Te,T,p). Then for any T € T, n € Z*, and ¢ € Q such that dp(p,q) <

64



Ph.D. Thesis - N. James; McMaster University - Computing and Software

6(6’ T? p)7

n (k) (k)
a(EBWF@) = |3 [ 6e)-X [ )

n (k)
S D 3Y RNPOEYAC)

< 2
k=1
n

(k)
lA(h@—h@)

T

(k)
(A(h@—h@ﬂﬂ

= max
0<t<T

n k

S max & max | (fulp) — ful@) ()]l (3:2:8)

0<t<T k! 0<s<t

IN

n

= > s b (). (o)

IN
Q.
N
=
)
=
=
(=)
S~—
S~—

The inequality in (3.2.8) is from Lemma 3.1.5 on page 54. O

Theorem 3.2.15 (The General Form Theorem). Let (P, d,) be a metric space
(of parameters). Let V C P be a neighbourhood of a point p € P. Lety : P —
C[T, B"™ be continuous at p. Let B, Ay, As,...: P — C[T,S]™™ be functions
such that

e B is continuous at p, and {An}ff:l are equicontinuous at p,
o VreV B(r)(0) =0 € C[T,S]"™™, and

o My, Mp e RV Vr e VVt € TVn € Z ||Au(r)()|| < M4 and || B(r)]] <
Mp <1

65



Ph.D. Thesis - N. James; McMaster University - Computing and Software

Define F : P x C[T,B|™ — C[T, B|™ as follows for r € P, u € C[T,B]™, and
teT:

Flru)t) = y(r)(®) + B() +Z/ (Ap(r)u) (1) (3.2.9)

For each r € P define F, : C[T,B|™ — C[T,B|"™ as F,.(u) = F(r,u).
Then for each r € P, F, has a unique fized point ®(r), and the fizved point
function ® : V. — C[T, B]"™ for F is continuous at p.

Proof. First we’ll show that Vr € P F, satisfies Caus and Contr. Theorem
TZ1 on page 19 informs us that these conditions are sufficient to guarantee
that F). has a unique fixed point for all » € P. Finally we show that for every
u € C[T, B]™, F is continuous at (p,u), and thus, Theorem TZJ2 on page 27
provides the conclusion.

[F, € Caus| Lemma 3.2.9 establishes the fact that F,.(u) converges to a stream
for all (r,u) € P x C[T,B|"™. Using the Building Block Lemma, Parts (1a),
(1b), (3b), (5a), (5c¢), and (3.2.10), we find that each of the main three terms
satisfies Caus for any fixed r € P. Part (2b) assembles them to show that F,,
itself, satisfies Caus.

[F. € Contr| Let Ay, = =212 and 7 = M)‘Jr/\ From (1a) the first term of F,
satisfies Lep(0, 7). From (1b) and (5¢) the second term satisfies Lip(Mp, 7).
From Lemma 3.2.10, the third term (the summation) satisfies Lip (As, 7).
Putting the three results together, we conclude from (2c) that for all r € P,
F, satisfies Lip(\, 7) with A =0+ Mp + Ay = % < 1.

|F" continuous at (p,u)|] By Lemma 3.2.13, the set of integrands is equicontin-
uous at every point in the set () = {p} x C[T, B]™. Thus, by Lemma 3.2.14,

the set of partial sums {Zk ) fo Ag(r)u) (t)} is equicontinuous at every
n=1

point in (). Since the series converges pointwise, the Equicontinuity Lemma
then asserts that its limit is continuous at every point of (). It is then trivial
to use the Continuity Lemma to show that F'is continuous at every point in
(@, and hence by Theorem TZJ2, ® is continuous at p. O

3.3 Applications

3.3.1 The Mass-Spring-Damper System Revisited
3.3.1.1 Case Study 1

The simple mass-spring-damper system (see Figure 3.3.1) was introduced in
|TZ07| as an analog network case study. The system is typically expressed as
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a second-order, homogeneous ODE with constant coefficients:
Mi(t)+ Da(t) + Kx(t) = f(¢)

where M is the mass, D is the damping coefficient, K is the spring constant,
f is the forcing function, and x is the displacement. The initial conditions are
given as

z(0) = xp € R (initial displacement)
#(0) = wvo € R (initial velocity)

M ‘

!

f

Figure 3.3.1: Mass-Spring-Damper System

It is typical to reduce the second-order equation to a first-order system using
the substitutions v(¢) = #(¢t) and a(t) = 0(t). Integrating this system with
respect to ¢t and solving for the initial conditions gives us a system of integral
equations equivalent to the original initial value problem:

oty = L0~ D00 = Kty

v(t) = /Ota(s) ds + vy

x(t) = /Otv(s) ds + x

This system is the mass-spring-damper system as it is represented in |TZ07|
and [TZ11] as their first case study. For each parameter choice p = (M, K, D, vy, xo, f),
it induces the operator F), : C[T,R]* — C[T,R]® defined for u(t) = (a,v,z)" (t)

as " L (f(t) = Du(t) — Kz(t))
Bl lo=] " fasdsr @31)
" fot v(s) ds + xg
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A fixed point of this operator represents both a solution the original initial
value problem (with the given parameters), and the semantics for the analog
network shown in Figure 3.3.2 (which is a slightly less formal version of the
one used by Tucker and Zucker):

D
M

=l
Sk

(weights)

z(®) Weighted Sum alt) [ +c [M+e

0 0

Figure 3.3.2: Analog Network for Simple Mass-Spring-Damper System

Tucker and Zucker prove that this operator [, satisfies the Contr condition if
M > max {K, 2D}, and hence their theory guarantees the existence of a fixed
point under that condition. It is unclear whether this is a necessary condition,
however, but while it may be weakened to some degree, it cannot be disposed
altogether, as the following example demonstrates.

Example 3.3.1. Let T > 0. Take the constants M = D = K =1, vg =
xo =0, and let uy = (ay, vy, 1), uy = (ag, ve, x2)T be stream tuples such that
Ty = 2y = a1 = ay (for all time), and vifp )= vaf[o,7) but 3t € (T, T + 7] such
that v1(t) # va(t). For convenience, write (aj, v}, z;)" = F,(u;) for i = 1,2.
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Then for any 7 > 0, A < 1, and any input stream f,

dry-(Fpuy, Fyus) = max{dry-(ay, a3), dryr(vy, 03), dryr (2, 23)}
> dT—i—T(a/lv a/2)
f—Dvy— Kzxy f— Dvy— Kuao
= drir < M ) M )
=drir ((f —v1 = 21), (f —v2 — 22))
= max [(f(t) —vi(t) —21(2)) = (f(£) — v2(t) — 22(1))]

0<t<T+T1

= _max |[(f(t) —vi(t) —a1(2)) — (f(t) — v2(t) — 22(1))|

T<t<T+r

= 22, I vl

= dry-(v1,v2)

= max{dr,(v1,v9), 0, 0}

= ma‘X{dT+T(U17U2)7 dT+T($1,fL’2), dT+T(CL1,a2)}
= dT+T(u17 112)

> Adri-(g,uz)

Thus, F, with p = (1,1,1,0,0, f) does not satisfy the Contr condition.

3.3.1.2 A More Robust Formulation

Example 3.3.1 shows that there are parameter values which cause Tucker and
Zucker’s model of the mass-spring-damper system to fail to satisty Contr,
and hence also to fail to satisfy their special condition, M > max{K,2D}.
In other words, the special condition is not simply an artifact of calculation
(or an “idle threat,” as it were); it does identify systems which do not satisfy
Contr. While somewhat disappointing, it is not completely unexpected that
such systems would exist. In particular, it is conceivable to think we might
see the Contr condition fail in regions of the parameter space in which the
system behaves erratically or in which the system is most sensitive to parameter
variation. Oddly enough, that does not appear to be the case.

Recall that there are three types of behaviour a mass-spring-damper system
can exhibit (see [BDO1]|, for example, or almost any elementary text on or-
dinary differential equations): overdamped, critically damped, and under-
damped. An overdamped system behaves as if submerged in molasses—if
the mass is displaced (and no other forcing function acts on it), it gradually
and monotonically returns to the equilibrium position. A critically damped
system monotonically returns to its equilibrium position as well, but as quickly
as possible (like an optimized overdamped system). An underdamped system
will oscillate with exponentially decreasing amplitude.
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The value of the damping ratio ( = D/v4M K determines which behaviour a
system will exhibit. If ( > 1 the system is overdamped, if {( < 1 the system
is underdamped, and if ¢ = 1 it is critically damped. Since the motion of an
underdamped system is the least constrained, we might expect that if Tucker
and Zucker’s condition (M > max{K, D}) is to fail, an underdamped system
is where it would happen; and likewise, if it ever holds, surely it would hold for
an overdamped system. In fact, for each type of behaviour there is a system
which satisfies the special condition and a system which doesn’t.

Example 3.3.2. Let D € R" and set M = 3D. Then

D

D
- V12DK V12K

The system is overdamped if K < DP/i2, critically damped if K = P/12, and
underdamped if K > D/12. As long as K < 3D (which leaves plenty of wiggle
room), we have M > max{/K,2D}. So there are systems of every type which
satisfy the condition.

Now let K € RT, and let M = K. Then

¢

Db D
VMK 2K
The system is overdamped if D > 2K, critically damped if D = 2K, and

underdamped if D < 2K. Regardless of the value of D, M < max{K,2D}.
So there are also systems of every type which do not satisfy the condition.

¢

Fortunately, by simply making the acceleration stream implicit, we can rear-
range the system into an equivalent one that satisfies the Contr condition for
any choice of M, K, D > 0 (so while the special condition was not merely an
artifact of calculation, it was only an idiosyncracy of that particular model of
the system).

Define the operator G : PxC[T,R]*> — C[T, R]? as follows for p = (M, K, D, vy, zo, f) €
(RT)? x R? x C[T,R] = P and (v, )" € C[T,R]? (cf. (3.3.1)):

oo - [0 ] s

For convenience, we’ll use the notation G,(u) = G(p,u) for u € C[T,R]? and

p € P.

The corresponding network is shown in Figure 3.3.3. We will now show that
G satisfies the conditions demanded of F' from the General Form Theorem.
Define
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I [

/) (Weiéflts) o .

z(t) /EWeighted Sum) + ¢ v(t) fg +c z(t)
0

v(t)

Figure 3.3.3: Revised Mass-Spring-Damper Network

Ar(p)(t)

(8 w157

Let all the other matrices from the General Form Theorem (B and Ay for
k=2,3,...) be zero. Rewrite Equation (3.3.2) as follows to put it in the form
of (3.2.9):

(o[ )0 = s+ [ (2] 2]) 0

It is relatively straightforward to show that y and A; are continuous on P—
and hence on any neighbourhood V' C P of p. So take V' to be the open ball
of radlus , centred at p = (M, K, D, v, zo, f). More precisely,

Zo

ds—l—vo]

v

2 2’ 2
M M
X | Vo — 2 U0+ X To — LUO—|——

2
«{gecmm: dc(f9)<j\24}

po (LY. (K_g,mM)x(D_%m%)

Let My = 1+ %. Then, as required by the General Form Theorem
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Vp = (M',K', D' v}, xp, f') € VVt €T,

_2,/ _ﬁl/ U1 2
[A(r)(®)]] = sup MMyl = e R? and |ul| <1
1 0 U2
D/+K/
= max 7 , 1
D+ ¥ +K+4
< max{ = 2’1}:MA
M-

There is no matrix stream B, so using the proof of the General Form Theorem,
a straightforward calculation reveals that G € Lip(A, 7) for

M
4D + 4K + 3M

1
)\25 and 7=

The remaining antecedents of the General Form Theorem follow trivially for
G. Hence, for every p = (M, K, D, vy, xo, f), G, has a unique fixed point ®(p),
and the corresponding fixed-point function

o : (R")’ x R? x C[T,R] — C[T, RJ?

for GG is also continuous.

The characterization of G' as a “formulation” of F' is justified by the fact that
any fixed point of G, uniquely specifies a fixed point for F}, and vice versa. In
particular,

1
v M (f — Dv — K:lf)
[ - } is a fixed point for G, < v is a fixed point for F},
x

Hence, as intuition would suggest, Tucker and Zucker’s theory can indeed be
applied to mass-spring-damper systems with any positive values for K, D, and
M. Admittedly G is not strictly equivalent to F' (being two-dimensional), but
if an explicit acceleration stream is desired, it can introduced to the system
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like this:
0 Bok B
Ap)t) = |0 —fF -5
0 1 0
-—< t) MfO dS—UO—LE())
Y = 2 [ f(s)ds + v
Blvlo = [206 | 0| @dyoo

Alternatively, we could skip the order-reduction step and simply integrate the
original ODE twice with respect to ¢, solving for the constants of integration
using the initial conditions to yield

o) = i/t (/S(f(r)—Kx(r)) dr+D:)3(s)+vo) ds + o
_ M/ ( K/ r)dr + Da(s )) ds+%(/0t/osf(r)drds+tvo>+a:0

In this case we use 1 X 1 “matrices,” setting

A = o
As(p) = —%
Bp) = Ay=Ai=--=0

1 (2)
y(p)(t) = M( ; f(t)+tv0> + g

Finally, returning to the issue of molasses-submerged systems and similarly
whimsical contrivances (along with more practical ones), observe that the ma-
trices employed in this application have made no use of the dimension of time,
which is built into the model. Thus, K, D, and M can be made to vary
smoothly over time if, for example, one wishes to model such systems as a
mass-spring-damper in a medium of varying viscosity and/or temperature.

3.3.1.3 Case Study 2

The second case study in [TZ07| involves a coupled mass-spring-damper sys-
tem: two MSD systems with one connected to the mass of the other. The
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authors derive a similar system of integral equations (with two of everything
involved in Case Study 1) and determine that the system satisfies Contr as
long as My > max(2K1,2D;) and My > max(2K; + 2K3,2D,). Fortunately,
this can be modified in the same way as Case Study 1 to yield an equiva-
lent system that satisfies Contr for any parameter values. Just as in the
simpler version, the corresponding parametrized operator is continuous, and
hence, Theorem TZJ2 can be applied to it to obtain a continuous fixed-point
function @ : (R*)® x R* — C[T,R]* (where k can be chosen to be 2, 4, or 6,
depending on whether acceleration and velocity are to be explicitly represented
by streams).

3.3.2 Simple Pendulum

The simple, frictionless pendulum with a single, rigid arm, constrained to
move within a vertical plane is another staple of elementary mechanics. It is
represented using the following second-order ODE (see [Ach97]):

it) = —% sin (6(t)) (3.3.3)
where 6(t) is the angle formed by the bob and its equilibrium position at time
t, g is the gravitational constant, and ¢ is the length of the arm. Using the
order-reduction trick from the last example, let ¢ = #. Then (3.3.3) can be
represented by the following equivalent system:

o(t) = —/0 %sin(@(s)) ds + ¢o
o(t) — /0 6(s) ds + o

Our parameter space is P = R x R? (condense 9/¢ into a single, positive
parameter, leaving ¢o and 6, as real numbers). In this case, the General
Form Theorem is of no help at all since the sin function is nonlinear. We can,
however, still use the Building Block Lemma directly and treat the sin function
as a sort of magically-bestowed, primitive operator like the identity and the
constant functions from (1a) and (1b) of the Building Block Lemma. Define®
G : P xC|T,R> = C[T,R}? and y : P — C[T,R]? as follows:

o(p[2])0-[ 28] -

®Note that G could instead be defined using the simpler form G : P x R? — R2, but such
a definition—while certainly more elegant here—introduces awkwardness in the next step.

o
0o
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We can then define F': P x C[T,R]* — C[T,R]? like this:

(o3 0- [ (e ) s

While G is defined above as a stream operator, it actually uses only the current
value of the input stream (see Footnote 5). Hence, it clearly satisfies WCaus.
It takes a bit of work to develop the formal details, but differentiating G,
with respect to ¢ and 6 reveals that G, satisfies Lip(Ag, 7) for any 7 € R
and A\ = max{1,9/¢}. This is because the magnitude of the slope of the first
component of G (with respect to 6 rather than t) never exceeds 9/¢, and the
slope of the second (with respect to ¢) is always 1.

Thus, we can apply the Building Block Lemma to deduce that F), satisfies
Caus and Lip(1/2,7) for 7 = S min {1,%,}. It is clear by inspection that G is
continuous, and hence, by the Continuity Lemma, so is F'. Hence, by Theorem
TZJ2, so is the fixed point function for F'.

The continuity of the fixed point may be somewhat surprising in this case since,
for any 9/¢, there is a certain critical angular velocity (or position/velocity pair)
which will be precisely the right amount to turn the bob upright and leave it
there forever in its unstable equilibrium position. Even the slightest amount
less and the bob falls back down on the side from which it approached the
vertical. The slightest amount more, and it goes over the top, swinging back
down on the other side. This would seem to represent a discontinuity at that
point of critical velocity, but in fact, it doesn’t. Theorem TZJ2 assures us of
this, but it offers little in the way of insight.

What drives our perception of a discontinuity is the abrupt change in the
asymptotic behaviour of the system in response to arbitrarily small changes
in the initial conditions. Qualitatively speaking, there is a profound difference
between a pendulum that falls back down and one that remains upright. What
this observation fails to consider is the length of time the bob spends in a near-
upright position. As the initial velocity approaches that critical value which
leaves the pendulum upright forever, the bob spends more and more time
in that very slow-moving limbo state in which it would appear to have an
uncertain future.

Now consider this fact in light of the topology on C[T,R]. Increasingly large
values of T must be used to encounter any significant difference (with respect to
the pseudometrics dr) between the trajectory of the perpetually upright bob,
and those with sufficiently similar initial velocity. This phenomenon is plotted
in Figure 3.3.4. Each curve corresponds to the trajectory of the bob, starting
at 0(0) = 0 (hanging straight down initially), with a certain initial velocity.
The trajectory marked “=<” is the one corresponding to the perfect amount
of initial velocity to push the bob upright and leave it there forever. The
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Figure 3.3.4: Pendulum trajectories approaching perfect equilibrium

trajectories that slope downward are produced by less initial velocity (some
are truncated in the plot for the sake of clarity), and those which slope upward
are produced by an excessive initial velocity, which pushes the bob over the
top. The important thing to note is that—regardless of whether too little
or too much initial velocity is involved—the time at which the non-upright
trajectories distinguish themselves becomes later and later, the closer their
initial velocity is to the critical value. From this, we may conclude that while
instability likely always results in a (locally) smaller modulus of continuity, it
does not necessarily imply actual discontinuity—i.e. the modulus of continuity
will get very small around an unstable equilibrium point, but it may still
remain strictly positive.

3.4 Future Work

3.4.1 Develop Building Blocks to Handle Cases Like the
Pendulum

It is, of course, disappointing that for all the power of the General Form Theo-
rem, it is still insufficient to handle an application as basic as the most simple
pendulum from elementary mechanics. This is one price we pay for keeping
our Banach space B distinct from its set of scalars S. By letting B = S (which
holds for many common vector spaces anyway), we can introduce exponen-
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tiation, which in turn, allows for power series and hence trigonometric and
exponential operators. This is not, by any means, a straightforward addition
to the theory, however. Consider, for example, the prospect of including the
rather modest, pointwise squaring operator to C[T, R]:

Example 3.4.1. Let id® : C[T,R] — C[T,R] be defined as follows for u €

C|T,R]:
id*(u)(t) = (u(1))’

id? certainly satisfies WCaus, but what about Lip(\,7)? Let A\,7 € R* and
consider the following two streams:

ult) — )\ilt

v(t) = 0

Then do(u,v) = 0, but do, (id%(u), id*(v)) = (A + 1)* > XA+1) = Mo~ (u, v).
Thus, VA, 7 € RT id? ¢ Lip(\, 7).

The problem here is ultimately due to the fact that the derivative of f(x) = z?
is unbounded on R. No matter how leniently we choose A (and 7), we can
always find a steep enough stream to deny id?* its coveted membership in the
class of Lip(\,7) operators. One way we might be able to circumvent this
problem is by developing a nested exhaustion By C By C --- C B of the
codomain of the streams. After all, given any R,7 € R™ and any u,v €
C[T,[—R, R]] C C[T,R], we see that

dr-(id*(u),id*(v)) = 0<rtn<%>iT}u ) — V(1)
= dnax |u u(®) + ()] Ju(t) —v(t)]
< 2R max fult) - o(t)]

2Rdry - (u,v)

Therefore, id? can be said to satisfy the Lip(2R, 7) condition on C[T, [~ R, R]].

Returning to the example of the pendulum, recall the Maclaurin series for
sin(t):
1)kg2k+1

sin(t :Z; 2k + 1)!

Let s, be the derivative of the n'" partial sum:

n -1 kt2k
() =3¢ (21;)!

k=0
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Figure 3.4.1: Partial sums in the Maclaurin expansion for cos(t)

The preimage of any bounded interval centred at 0 (say, [—1, 1]) continues to
expand as we examine successively larger partial sums. Turning our attention
to Figure 3.4.1, we see that the preimage of [—1,1] under s; is [—2,2]. Under
sg, it’s roughly [—6.1,6.1], and by s;5, the preimage has expanded to approxi-
mately [—13.1,13.1]. As n — oo, this preimage of [—1, 1] under s,, approaches
R.

So while none of these partial sums satisfy the Lip condition on C[T,R], the
operator to which they converge does. This observation offers some hope that
with a bit of care, power series might be incorporated into the theory. The
main value of doing so is in their tremendous versatility. We could, of course,
simply throw specific analytic functions like sin into the theory individually,
but it would be far more powerful (and elegant) to catch them all in a single net.
Furthermore, it allows for greater generality. The sin function traditionally
assumes only real or complex values, but its power series expansion could be
used to define versions of it (along with several other functions) on more exotic
spaces.

3.4.2 Other Lines of Inquiry

e A network model (or rather a mathematical model that can be inter-
preted as a network model) along with a system of fixed-point semantics
is presented in |[TZ11]. The authors describe a set of conditions sufficient
to guarantee that the model operates properly. The abstractness of the
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model necessarily imposes a corresponding level of abstractness on these
conditions. This chapter is meant to be a companion work in which some
of that abstractness is sacrificed in an attempt to get closer to a more
concrete, GPAC-like result—a result in which a tangible class of func-
tions is identified that satisfies Tucker and Zucker’s conditions. |TZ11] is,
however, only the first of a two-part series, the second of which examines
their model from the framework of computable analysis (specifically, the
computable analysis covered in [TZ04]). Hence, a natural second step
will be to follow [JZ12] with a corresponding entry that applies com-
putable analysis to the Building Block and Continuity Lemmas, and to
the General Form Theorem.

e Even with the pendulum included, this theory, as it stands currently,
cannot be applied to most of the dynamical systems from elementary
physics (instances of the wave equation, heat diffusion, and even merely
the double pendulum). Its reliance on explicit formulas is perhaps the
biggest limiting factor. Most of the common systems of partial differen-
tial equations and differential-algebraic equations cannot be represented
explicitly the way the pendulum and the mass-spring-damper system
can be written: with isolated (stream) variables exclusively on the left-
hand side and potentially more complicated expressions on the right.
While it is certainly more powerful than a direct application of Banach’s
Contraction Mapping Principle, the dependence upon this form is quite
frustrating. It would enhance the theory tremendously if it could be
adapted somehow to be applicable to some of the implicit forms. Note
that, unlike the GPAC, there is no obvious reason the model presented
here could not be applied to functions of more than one variable. While
we insist on having at least one nonnegative real variable, others could
easily be included in the Banach space and the parameter space (e.g. our
“streams” could be continuous functions of the form u : T — L%(R)).

e As mentioned in the introductory remarks of Section 3.1.1 on page 51,
it is a somewhat intriguing coincidence that our theory involves the use
of square matrices whose elements are taken from what turns out be
a commutative ring with identity (C[T,S]), and that this just happens
to be the minimal algebraic structure necessary to define determinants
[HK71]. Whether any of the myriad uses for determinants is applicable
to the theory is unknown to us, but it would seem to warrant at least a
cursory investigation.
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Chapter 4

Research Project #3: Exploring
the More General Case in

Which T is Replaced by an
Arbitrary c-Compact Space

While most of [TZ11, TZ12| concerns “streams,” in C[T, A] (where T is a repre-
sentation of time, taken to be either N or R=% and A is a topological algebra),
the first paper begins more generally—looking at C[X, 4] where X is merely
an arbitrary o-compact! space with some extra conditions imposed on it.

On page 3380 of [TZ11], shortly after mentioning causality (see Definition 1.3.13
on page 16) for the first time, Tucker and Zucker write,

“It is not clear how to define (or even make sense of)
the concept of causality in the general case for X (tak-
ing, for example, X =Z? or X =R3).”

Hence, in Section 3 of their paper, where causality becomes essential to assume,
they restrict X to the special case in which it serves as a model of time,
renaming it to T and taking T = R=° (as well as often addressing the case in
which T = N).

Their footnote is incontrovertible. Causality is an inherently temporal phe-
nomenon, and we, as human beings, appear to be hardwired to perceive time
as a strictly one-dimensional entity. Nevertheless, there does seem to be a way
to generalize their properties Caus and WCaus for spaces like Z2 or R? while
preserving their operational role within the theory—even if the new definitions
could no longer be described as having anything to do with our intuitive notion

LA set is o-compact if it is a countable union of compact sets.
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of causality. Essentially they are purely abstract properties which do the same
job causality does.

Loosely speaking, what is special about T within their theory—the reason
they appear to have chosen it—is the fact that it is totally ordered and has
a first element (zero). But this is true of their compact exhaustion of X as
well. Granted, X itself doesn’t necessarily have those two properties, but it
turns out that this is not actually required. We can trade T for a compact
exhaustion similar to the way we might use a compact exhaustion as a model
of N. There’s one property (shift invariance) that seems somewhat tricky
to transpose in this way, but in fact, we can circumvent it completely via the
Generalized Theorem TZJ2 on page 102—which is quite a stroke of luck, given
that I hadn’t conceived of the project in this chapter back when I proved its
precursor (Theorem TZJ2 on page 27).

While struggling with what [ thought was a problem in their computability
results (but turned out to be an embarrassing misunderstanding on my part),
[ thought of a few variations of their main “workhorse” property Contr(\, 1)
that would produce similar results and would work with the more general
(smoothie-based) operators as well. I defer those for the Future Work section

4.1 Smoothie Space

C[X, A] represents the set of continuous functions from X into 4, equipped
with the compact-open topology. The elements of C[X| A] are appropriately
named “streams” when X is a model of time, but the metaphor falls apart when
it isn’t. For what is, apparently, an acute lack of imagination, I’ve adopted
the word smoothie to describe the elements of C[X,.A]. They’re continuous
functions, but they lack the total ordering we naturally associate with the
word “stream.” So I refer to C[X, A] as smoothie space.

Throughout this chapter, as in previous chapters, we assume A is a complete
metric space with metric d4. We assume X is a o-compact topological space
(i.e. it is a countable union of compact sets) with a compact exhaustion X.

Definition 4.1.1 (Compact Exhaustion). Let X = {X,}, .y be a family of
compact subsets of X. Then we say X is compact exhaustion if

X, C X, C---CX
Unco Xn =X

and for every compact set K C X there is an n € N such that K C X, (see
Remark 4.1.4 on page 84 if this last condition seems unusual).
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4.1.1 Pseudometrics

As before, we define the sequence of pseudometrics {d,}, . as follows:

dp(u,v) = xseu)? da(u(z),v(z))

There are some situations in which it is convenient to apply these pseudomet-
rics not to C[X, A], but to C[X,,.A] (for some n € N). So here we take the
domain of d,, to be C[X, A UJ,~, C[ Xk, A]*.

And again, since u, v, and d,, are continuous (the latter via Lemma 1.4.1 on

page 21) and X, is compact, it follows that Jy € X, such that d4(u(y),v(y)) =
d,(u,v), and hence we can write,

dn(u,v) = max du(u(z), v(z))

The same sort of metric we constructed for C[T, A] works here as well, although
we have no need for it (the pseudometrics are more convenient):

dC[X,.A} (u> 'U) = Z min {2—71’ dn(ua U)}
n=0

It is worthwhile, at this point, to review the use of pseudometrics in a metric
space.

Lemma 4.1.2. A sequence {uy}, . in C[X, Al is Cauchy iff IN : NxR* — N
such that VM € N Ve > 0,

n,m > N(M,e) = dy(tm,u,) < e

Proof. (=) Suppose {uy}, oy is Cauchy. Then 3N’ : R* — Nsuch that Ve > 0,
n,m > N'(e) = depxa(tm, un) < €

Define N : N x Rt — N as follows:
N(M,e) =max {N'(), N'27"1)}

Let M € N, ¢ > 0, and m,n > N(M,e). Being just a member of the summa-
tion of nonnegative terms,

min {2_M, dM(um, Un)} dC[X,A](uma un)

2—M—1

AN VAR VAN

2—M
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Thus,

dp(Up,u,) = min {Q_M, dM(um,un)}
< degx,A) (U Un)
< ¢ (since m,n > N'(g))

(<) Now suppose AN : N x R2% — N as described in the statement of the
lemma. Define N': RT — N as follows:

N’(E) =N <[1 - 1Og2(€)—| ) [1 - 160g2(5)1)

Let € > 0. Let m,n > N'(¢) and for convenience, let M = [1 —log,(e)].
Then,

M [e.e]
depe () <Y min {27 it un) }+ Y 27
1=0

i=M+1
2—(M+1)
< Mdy(Um, un) + ———
< M(U u ) -+ 1— 1/2
= MdM(umaun) + 2~ M
By definition of N and M,
€
Mdy(wm,un) < M-
21— logy(e)]
_ =
2
and
oM _  o—[l-logy(e)]
9—[loga(2/2)]
< 9losa(=/2)
_ =
2
Therefore, dex ) (tm, un) < €. O

4.1.2 Completeness of C[X, A]

Lemma 4.1.3. If A is complete and X is a o-compact space with a compact
ezhaustion, then C[X, Al is complete.
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Proof. See Lemma 2.3.11, Part (c¢) from |[TZ11]. O

Remark 4.1.4. The third property of a compact exhaustion (that every com-
pact set be contained within some member of the exhaustion) is somewhat
nonstandard. Some authors omit it, others omit it but insist that for each
n € N, X, is a subset, not just of X,,.1, but of the interior of X, ;. It—or at
least something like it—is necessary for Lemma 4.1.3 on the preceding page.
It also ensures that the topology generated by {d,},y is the compact-open
(and the local uniform and the inverse limit) topology, although that, in and
of itself, is not mandatory.

Example 4.1.5. It is possible that some other condition would suffice to en-
sure completeness relative to A (perhaps that every member of the exhaustion
be simply connected?), but it’s clear that without any third condition, we can-
not be certain C[X, 4] will be complete. For example, going back to our old
standby, X = R=? with its usual topology, let A = R and for each n € N define

n
n+1

Xn:{o, }U[l,n—i—l]
Then each X, is compact, X C X; C--- C X and UneN X, =X, but of course

there are several compact sets that aren’t contained in any X, (e.g. [0,1]). For
each n € N, define u,, € C[X, A] as follows:

1 ifO<:E<L
un(r) = q(n+1)(1—2x) if 2 <x<1
0 1f:1:21

Define N : N x R29 — N as follows:
N(M,e) = M

Let ¢ > 0 and let M € N. Let m,n > N(M,e). Then, forx<ML+1,
Um(x) = uy(z) =1, and for x > 1, uy,(z) = u,(z) = 0. Thus, u,, and u,, agree
on Xj; and hence,

Ay (U, uy) =0 < e

Therefore, by Lemma 4.1.2 on page 82, {u,}, .y is Cauchy. It is clear, however,
that {u,}, converges (pointwise) to the following function:

{1 ifo<a<l1
u(x) =

0 ifx>1

But u ¢ C[X, AJ.
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4.2 Caus, Lip, and Contr for C[X, A

Definition 4.2.1 (Caus(X)). Let X be a o-compact space with compact ex-
haustion X = { Xy}, oy Let F': C[X, A] = C[X, A]. Then F satisfies Caus(X)
if the following conditions? hold:

1. Yu,v € C[X, Al Vz € Xy F(u)(z) = F(v)(x)

2. Yu,v € C[X, Al Vn € N d,(u,v) =0 = d,(F(u), F(v)) = 0 (or, in other
words, u [x,=v [x, = F(u) [x,= F(v) [x,)

Remark 4.2.2. 1t is, perhaps, helpful at this point to recall Fact 1.3.15 on
page 16, which provides a definition of Caus equivalent to Definition 1.3.13
on page 16 and upon which the definition of Caus(X) is based. Fact 1.3.15
states that Caus can be expressed as two separate conditions: (i) the condition
that the image of every stream under F'is the same at time ¢t = 0, and (ii) that
F € WCaus. The first condition in the definition of Caus(X) is analogous
to Condition (i), where the “X,” of Condition (i) is simply the singleton set
{0}. The second condition in the definition of Caus(X) is clearly analogous
to Condition (ii) (WCaus).

Example 4.2.3. Even when X = R2Y Caus(X) is more general than the
property Cawus from Definition 1.3.13 (but anything that satisfies Caus does
satisfy Caus (X)), as the following example shows. Let T be the nonnegative
real numbers with the standard compact exhaustion X = {[0, K]}, _y. Define
F :C[T,R] — C[T,R] as follows for v € C[T, A], t € T :

Fu)(t) = u([t]) + (¢ = [t]) (u([t]) = u([t]))

Whenever t is not a natural number, the value of F'(u)(f) depends on the
value of u at the nezt natural number above ¢ (of course, it also depends on
the value at the previous natural number, but that’s perfectly consistent with
causality)—i.e. at a “future” point of u (see Figure 4.2.1).

The fact that this F' really isn’t “causal,” by any usual definition of the word
is a not a problem. The essential feature of causality within this theory is to
ensure we can get convergence of a fixed point in “bite-sized pieces,” and for
this, Caus(X) works just as well as Caus. In particular, it allows for the
following lemma.

Lemma 4.2.4. Let F: C[X, A| — C[X, A] satisfy Caus(X). Then F induces a
sequence of unique functions { F,, : C[X,,, A] — C|X,, A|} _y defined as follows:

Fo(ulx,) = F(u)lx,

2Frankly, I would greatly prefer to define Caus(X) using only the second condition,
making the first one a distinct property (like initially constant, or something similar), but I
feel it’s probably better to be consistent with [TZ11] here to avoid confusion.

neN

85



Ph.D. Thesis - N. James; McMaster University - Computing and Software

y

Figure 4.2.1: A stream operator that satisfies Caus(X) but not Caus

Proof. Follows directly from the second property of Caus(X). O

Remark 4.2.5. While Caus(X) serves the same role in the theory as Caus, it
seems to have little to do with causality (at least as we perceive it). So I've
been tempted to name it progressive (and use the notation Prog(X) instead
of Caus(X)) since an operator ' € Caus(X) operates “progressively” on the
compact exhaustion. The value of F'(u) on X,, depends on the value of u only
on X,. I've opted to stick with “backwards-compatibility” (i.e. Caus(X)) for
now to avoid a surfeit of new, made-up notation and vernacular.

Definition 4.2.6 (Lip(\, X) and Contr(X)). Let X be a o-compact space
with compact exhaustion X = {Kj}, . Let F': C[X, A] — C[X, A]. Let
A€ RT. IfVE € N Vu,v € C[X, A,

di(u,v) =0 = dps1(F(u), F(v)) < Mgy (u,v)

Then we say F' € Lip(\, X). If A < 1, then we may say simply, F' € Contr(X).
4.3 Generalizing the hold Operator for Smooth-
ies

Now that we have versions of Caus and Lip that work on C[X, A], we have
almost everything we need to generalize Theorem TZ1 on page 19. The only
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thing missing is the hold operator from Definition 1.3.8 on page 12 (or the
ext operator from [TZ11]). Recall that holdr(u) agrees with v on [0,77], and
is constant on [T, 00), with the value u(T"). It is essential for the construction
of the fixed point (see Construction 1.3.24 on page 20). How can we generalize
this idea for X7

Obviously we can change T" € T to k € N (giving us hold; : C[X, A] —
C[X, A] for every k € N instead of holdr : C[T, A] — C[T, A| for every T €
T), and then define holdy(u) so that it agrees with u on Xj;. But what
happens outside X;? If we made it constant outside Xj, there would be no
way to guarantee holdy(u) would be continuous—and how would we choose
the constant anyway? Clearly another approach is needed.

The reason holdr(u) is set to the constant u(7") outside the interval [0, 7]
is mainly to ensure that for any ¢ > 0 and any u,v € C[T,.A], we have
drii(holdr(u), holdr(v)) = dr(u,v). The existence of limy_,o, ¥(n, k) (from
Construction 1.3.24 on page 20) depends on this equation. So how can we em-
ulate that behaviour on a wild space like X instead of the nice, orderly space
T?

The key (or a key, at least) is to look at holdr(u), not as a piecewise function
(equal to u(t) for t < T, and equal to u(T") otherwise), but as a compo-
sition of functions: holdr(u) = (uo pr), where pr : T — T is defined as
pr(t) = min{t¢, T'}. Since it’s a composition of continuous functions, the result
is continuous, and it should be immediately apparent to any student of topol-
ogy what sort of function pr is. Recall the following definition (see [Mun75|,
for example):

Definition 4.3.1 (Retract). If X is a subspace of Y, then we say X is a
retract of Y if there exists a continuous function, p : ¥ — X such that Vo € X
p(x) = x. The function p is called a retraction of Y onto X.

We are now in a position to generalize the hold operator in a way that will
facilitate the construction.

Definition 4.3.2 (Retractable Exhaustion). Let X be a o-compact space
with compact exhaustion X = {X;}, .. Then X is retractable if Vk € N
X} is a retract of X. In other words, there exists a sequence of retractions
{pr : X' = Xy },en of X onto Xj.

Definition 4.3.3. Let X be a retractable compact exhaustion of a space, X,
with retractions {py : X — Xy}, . For k € N, define hold; : C[X, A] —
C[X, A] as follows:

hold(u) = uo py

Remark 4.3.4. In fact, we have constructed hold here only to demonstrate
the application of the retractions and their relation to the original construc-
tion. It turns out (as I learned the hard way) that the proofs are a little
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nicer if we stick with using the retractions (p;) directly and drop the hold
notation altogether. This has the added benefit of eliminating the rather un-
intuitive notation, “hold,.” It makes sense in the context of C[T,.A] as we
allow holdr (u(t)) to vary up until ¢ = 7', and then “hold” it, fixed at that
value forever after. The function we have defined above, however, isn’t “hold-
ing” anything. It would be more accurate to say it’s propagating or smearing
values of u taken from X} throughout X, but we don’t actually have to say
anything if we just use py.

Still, while we’ll generally avoid the hold notation, we need to establish its
continuity.

Lemma 4.3.5. Vu,v € C[X, A] Vn,k € N di(u o p,,v o p,) = dj(u,v) where
j =min{n, k}.

Proof. If k < n, then

d(wo pn,vopy) = max{da(u(pn(x)), v(pn(x)))}

zeXy

= max{da(u(x),v(x))}

reXy

= di(u,v)
Otherwise,

di(wo pn,vopy) = max{da(u(pn(x)), v(pn(z))}

zeXy

= max{da(u(y),v(y))}

yEXn

= dp(u,v)
]

Lemma 4.3.6. Let n € N and define hold, : C[X, A] — C[X, A] as in Defini-
tion 4.3.3. Then hold,, is (uniformly) continuous.

Proof. Let ¢ > 0, k € N. Let 6 = ¢ and j = min{n, k}. Let u,v € C[X, A]
(or in C[X;, A] for some ¢ > max{n, k}) such that d;(u,v) < 6. Then by
Lemma 4.3.5

di(hold,u, hold,v) = di(uop,,vop,)
di(u,v)

di(u,v)

5

ANVAY
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Both equations in the following lemma can be proven trivially (given that
pn(X) = X,,), but when they appear in the middle of a proof with complicated
expressions in the place of u and v, the steps don’t seem quite so obvious. So
the lemma is stated here without proof.

Lemma 4.3.7. If u,v € C[X, A] and n € N, then

sup d.a ((uo pp) (), (vo pn) (2)) = dn(uo pn,vopn)

reX
= d,(u,v)

Lemma 4.3.8. If u € C[X, A] and n € N, then hold,(u) is bounded (that is,
the range of hold,,(u) is a bounded subset of A).

Proof. Let xy € X,,. Define f : X — R as f(x) = da(u(z),u(zg)). Since u
and dy4 are continuous (the former by definition of C[X, .A], and the latter by
Lemma 1.4.1 on page 21), f is continuous on X. Thus, f is continuous on
X, which is compact. Therefore, f(X,) is compact and since f(X,) C R,
it follows that f(X,) is bounded (and closed). Hence, IM > 0 such that
Vee X, f(x) < M. O

4.3.1 Do We Have the “Right” Retractable Exhaustion?

Remark 4.3.9 (Alternative Definition of Retractable Exhaustion). In some sit-
uations, it would be convenient to have a different sequence of retractions:
{0k Xps1 = Xi}pen- It is, of course, easy to define pj as simply, p[x,,, for
any k € N if we already have the sequence from Definition 4.3.2 on page 87.
It seems as though we should be able to go the other way too, however—that
is, to start with the sequence {p} : Xpy1 — Xi},on, and from it, define the
sequence {py, : X — X}, . It is clear how this would be done:

pr(x) = (p;@ O Py1 0700 p;(a:)—l) (x) ifq(x) >k
z if g(z) <k

where ¢(z) =min{i € N : z € X;} for any 2 € X.

While this py is clearly well-defined, unfortunately I'm not sure whether it is
necessarily continuous. Superficially it appears as though it is not defined the
same way at every point (it is defined above as a piecewise function with a
countably infinite number of pieces), but recall that retractions behave as the
identity on their ranges. If z € X; then Vj > i p/(z) = x. Hence, retractions
of higher index can be composed indefinitely without moving the image of
x. Hence, it would appear that p; is actually defined consistently across its
domain as a composition of continuous functions. The problem is that it’s
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not necessarily a finite composition over an open set. One thing I do know
is that if it ¢s continuous, the proof will depend on that third condition of a
compact exhaustion (that every compact set be contained within a member of
the exhaustion), as the following counterexample® illustrates.

Example 4.3.10. Let X = [0, 1] with the usual subspace topology of R. For
k€N, let
1
X, ={0}U |——, 1
= {0} [k +1 }

Clearly {X}},cn would be a compact exhaustion of X if only it satisfied the
extra requirement that every compact set be contained within a member of the
exhaustion (and [0, /2] isn’t, for example). A definition for pj, : Xy — Xj is
immediately apparent:

1 .
/ _)gg ifze [ki2’ kil}
pr(x) = ;
T otherwise

According to the proposed definition of p, : X — X} as a composition, pp =
P} © Piiq © - -+, we obtain (after putting them all together),

o) = {I%i—l ifx e (‘O,k%rl}
x otherwise
This py, is discontinuous, however (for any & € N), and thus it is not a re-
traction. Thus, if the construction of {pi},oy from {p}}, . described in Re-
mark 4.3.9 is guaranteed to produce continuous functions, this guarantee de-
pends upon the extra condition in our definition of a compact exhaustion. The
whole question, however, is admittedly somewhat moot when we can simply
use Definition 4.3.2 on page 87 and have everything we need.

4.4 Existence of a Unique Fixed Point for Op-
erators Which Satisfy Caus(X) and Contr(X)

We now have all the tools necessary to generalize Theorem TZ1 and show that
an operator F': C[X, A] — C[X, A] that satisfies Caus(X) and Contr(X) has
a unique fixed point, regardless of whether X is a model of time or not. There
is a quick and easy way to do this proof that simply invokes Banach’s Fixed
Point Theorem—allowing it to do all the heavy lifting—and a longer, more

3Thanks to Prof. Jacques Carette for providing the compact exhaustion which inspired
the counterexample!
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involved proof that directly reproduces many of the steps in the proof of that
theorem. Each has a slightly different fixed point construction associated with
it. I present the second one only because it uses a construction that is more
consistent with the one used by Theorem TZJ2 on page 27—Ilest the reader
think I am pulling some sleight-of-hand.

In each case, the explication is a little clearer if the construction is shown
first (after some notation is defined), and the proof that it works is presented
afterwards. We start with the simpler one. To be consistent with Construc-
tion 1.3.24 on page 20, we would define ¥ : N?* — C[X, A], but in the sim-
pler proof we use the form ¥ : N* — J, _C[X,, A]. Then, since this no

longer produces elements of C[X, A|, we define our main convergent sequence,
{¥n}nen € CIX, Al from .

Definition 4.4.1. Let F' : C[X, A] — C[X,A], n € N, and u € C[X, A]. If
dy(u, F(u)) =0 (i.e. ulx,= F(u)lx,) then u is said to be an X, -approzimate
fized point of F.

Lemma 4.4.2 (F,: Truncations of F). Let F' : C[X, A] — C[X,A] satisfy
Caus(X). Then F induces a sequence of unique functions

{F, : C[X,, Al = C[X,,, Al}, en

defined as follows:
Fo(w) = F(wo pn)lx,

Moreover, the value of F,,(w) does not depend on the definition of p,, (it depends
only on p, being a retraction from X to X, ).

Proof. Since F', w, and p,, are continuous, so is F'(w o p,). The restriction of
this function to X, is obviously continuous (or see Theorem 7.2, page 107 of
[Mun75| if it doesn’t seem obvious). So given any n € N and w € C[X,,, A|,
F(w o p,)lx,€ C[Xn, A]l. Now suppose p/, : X — X, is another retraction.
Since both p, and p/, behave as the identity on X,,, Vw € C[X, A|

So dp(wop,, wop.) = 0. Thus, since F' € Caus(X), d,(F(wop,), F(wop)) =
0. Hence, F}, does not depend on the retraction used. O

Construction 4.4.3. (Construction for Simpler Proof that F' has a Unique
Fixed Point)

Let F': C[X, Al — C[X, A] satisfy Caus(X) and Contr(X). Then it has a
unique fixed point, which can be constructed as follows (see the Generalized
Theorem TZ1 on page 94 for proof):
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1. Let ug € C[X, A] and set 1y = F(ug) © po.
Since F' € Caus(X), 1y is an Xy-approximate fixed point of F.

2. Let n € N and suppose v, is an X,-approximate fixed point of F'. Define
U(n,0) = ¥, Ix,,,, making ¥(n,0) an X,-approximate fixed point of
Foiq.

3. For all k € Z" define ¥(n, k) = F¥, (¥(n,0)).
We will show this sequence converges to a unique element of C[X,,, 1, Al.

4. Given an n € N for which the sequence {¥(n,k)},  exists and con-
verges, define 1,1 =(limg_,o ¥(n,k)) © ppy1.

5. Define v = lim,,_, o ¥,
This will be the unique fixed point of F'.

Remark 4.4.4. There are really only three things to prove: that the fixed
point is unique, and that the two limits (in Steps 3 and 5) exist. We’ll cover
uniqueness first (in Lemma 4.4.5). To prove the other statements, we’ll need
to go over a few lemmas and Banach’s celebrated Fixed Point Theorem first.

Lemma 4.4.5 (If F has a fixed point, it’s unique). Suppose F' : C[X, A] —
C[X, A] satisfies Caus(X) and Contr(X), and has a fized point, v € C[X, A].

Then v is unique.

Proof. Suppose u and v are fixed points of F'. By definition of Caus(X) (Part
1, in particular), it follows that u and v agree on X since they’re both in
the range of F. Hence, do(u,v) = 0. Since F' € Contr(X), there is a A < 1
such that F' € Lip(\, X). Let n € N and suppose d,(u,v) = 0. Then, since
F € Lip(\, X),

dnir(u,v) = dpyr(F(u), F(v))
< )"dn+1(u>v)

But 0 < A < 1, so the only way this is possible is for d,.1(u,v) to be zero.
Hence, Vk € N dy(u,v) = 0, and therefore u = v. O

Theorem 4.4.6 (Banach Fixed Point Theorem). Let X be a complete met-
ric space and f : X — X. Suppose that IN € R such that A < 1 and
Ve,y € X d(f(x), f(y)) < Ad(z,y). Then f has a unique fized point given by
lim,, o f"(x), where x is any element of X.

Proof. See any introductory text on real analysis (e.g. Theorem 9.23 in [Rud76]).
Also known as the “contraction mapping principle.” O

Lemma 4.4.7. Let F' : C[X, A] — C[X, A] satisfy Caus(X). Letn € N. Then,
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1. Ifu € C[X, A] is an X,,-approzimate fized point of F then ulx, is a fived
point of F,.

2. If u € C[X,,, Al is a fized point of F,, then uo p, is an X, -approzimate
fixed point of F.

Proof. (1) Ifu € C[X, A] is an X,,-approximate fixed point of F', then d,,(u, F'(u)) =
dn(ulx,, F(u)lx,) = 0. Since d, is a metric on C[X,, A], this implies that
ulx,= F(u)lx,. Since F' € Caus(X), F(u)lx,= F(ulx,).

(2) If u € C[X,, A] is a fixed point of F,, then v = F,,(u). By definition (in
Lemma 4.4.2, F,,(u) = F(uo p,)|x,. Since p, behaves as the identity on X,

U =uo p,lx,. S0,

do(wo pn, F(uop,)) = dy(uopylx,, Fluop,)lx,)
= dy(u, Fy(u))
=0

O

Remark 4.4.8. In [TZ11|, Lemma 2.1.2 states that if K is compact and A is
complete, then C[K, A] is complete. This is used to prove that the result holds
even if K is not compact, but is o-compact (and A is complete). Later in
the paper, however, it is also used in the proof of Theorem TZ1 to establish
the convergence of a particular Cauchy sequence (loosely speaking, it’s the
sequence I've called ¥(n,0), U(n,1), ...). Using the following lemma in place
of Lemma 2.1.2 is what allows us to invoke Banach’s Fixed Point Theorem
directly, instead of producing a similar proof from the ground up:

Lemma 4.4.9. Let X be a compact (or o-compact) metric space, and let K
be a compact subset of X. Let'Y be a complete metric space. Let f: K —Y
be continuous. Let C¢[X,Y] = {g € C[X,Y]:glx= f}. That is, let C;[X,Y]
be the set of continuous functions from X into Y which agree with f on K.
Then C¢[X,Y] (endowed with the subspace topology) is complete.

Proof. Let {gi},cy be a Cauchy sequence in Cy[X,Y]. Since Cy[X,Y] C
C[X,Y] (which is complete, by Lemma B.0.3 on page 133), there exists a
unique g € C[X,Y] such that gx — g as k — oo. If g converges to g, then it
certainly converges pointwise to ¢, and since Vk € N g, [x= f, it follows that
glk= [ also. O

Lemma 4.4.10 (Convergence in Step 3). Suppose F' € Caus(X)N Contr(X).
Let n € N and suppose w € C[X, 41, A] is an X, -approzimate fized point of
F,i1. Then F,i1 has a unique fixed point, which is given by the limit of the

sequence { F¥_ (w) }keN.
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Proof. First note that Caus(X) is used implicitly in the statement of the
lemma to establish the existence of F, 1 (via Lemma 4.4.2). Let

CulXst, Al = {0 € C[Xny1, Al : duv,w) = 0}

By Lemma 4.4.9, C[X,11,A] is complete. Since w is an X,-approximate
fixed point of F), 1, it follows that C\,[X, 11, A] is closed under F,, ;. Thus,
restricting the domain of F,, 1 to Cy[ X, 41, 4] yields a function of the form

Fn-ﬁ-l . Cw[Xn+1,A] — Cw[Xn+1,A]

Now from the definition of d,,; and from the fact that F' € Caus(X), for all
u,v € Cy[Xni1, Al

A ~

dn-i—l(Fn—i-l(u)a Fn-i-l(v)) = dn-l-l(F(u © pn+1)> F(U ° pn-i-l))
Since F' € Contr(X), 3\ < 1 such that Yu,v € C[X, A],
dp(u,0) =0 = dp1(F(u), F(v)) < Ayt (u,v)

But for all u,v € Cy[Xpns1,A] dp(u,v) = 0. Since p,.1 behaves as the identity
on X, (and on X, 4, for that matter, but that’s not relevant at the moment),
it follows that d,(u o pyy1,v 0 ppy1) = 0. Thus, Yu,v € Cy[Xni1, A,

~

dn+1(Fn+1(u)> Fropi(v) = dopi(F(uo ppya), F(vopai))
S )\dn—i-l(u O Pn+1,V 0 pn—l—l)
= )\dn+1(u> 'U)

Therefore, F,yq is a contraction (in the usual Banach sense’) on a complete
metric space, C,[ X, 11, A4]. By Banach’s Fixed Point Theorem, it has a unique

fixed point v = limy oo F¥, (u) = limyyo F% . (u) (Where u € Cyp[ X111, Al is
an arbitrary initial point). O

Theorem 4.4.11 (Generalized Theorem TZ1). Construction 4.4.3 on page 91
works as advertized. That is, if F': C[X, A] — C[X, A] satisfies Caus(X) and
Contr(X), then it has a unique fized point given by the limit in Step 5 of
Construction 4.4.3.

Proof. As suggested by the construction, we show by induction on n, that
there is a sequence g, 1,... € C[X,A] such that for any n € N, ¢, is an
X,-approximate fixed point of F. F € Caus(X) yields our basis step: an

“Definition: If (X,d) is a metric space and f : X — X, then f is a contraction if it
satisfies the antecedent of Banach’s Fixed Point Theorem. That is, A < 1 (A € R*") such
that v,y € X d(f(2), f(y)) < Ad(z,y).
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Xo-approximate fixed point, 1y. For the inductive step, let n € N and assume
Y, € C[X, Al is an X,-approximate fixed point of F. Then ¥(n,0) = ¥,[x,,,
is an X,,-approximate fixed point of F,, ;. By Lemma 4.4.10 on page 93, F},1
has a unique fixed point given by the limit of sequence ¥(n,0), ¥(n,1), ...
described in Step 3 of the construction. Extending the domain of this fixed
point of F,; from X, to X by composing it with p,.1 (as suggested by
Lemma 4.4.7 on page 92) yields an X, ;-approximate fixed point of F'; which
we call 1, 1. This concludes the induction used to show the existence of

{¥n}ner

What remains to be shown is that {1}, is convergent and that it converges
to a fixed point of F. Define N : R™ x N — N as follows:

N(e,M) =M

Let e > 0and M € N. Then Vn,m > M, both v,, and ,,, are X ;-approximate
fixed points of F' (as our induction in the beginning of the proof showed).
Hence,

dM(¢m7¢n) =0<e

Thus, by Lemma 4.1.2 on page 82, {1, },y is Cauchy. Since C[X, A] is com-
plete (by Lemma 4.1.3 on page 83), {¢},cy is convergent. Now, given any
z € X, there is a k € N such that x € X;. For any j > k, 9, is an Xj;-
approximate fixed point of I'. Therefore, v is also an X,-approximate fixed
point of F' (where ¢ = lim,,_,o. 1,). Thus, ¢¥(z) = F(¢)(z). Since this holds
for every point x € X, it follows that 1 is a fixed point of F'. O

4.4.1 An Alternative Construction

[ developed Construction 4.4.3 on page 91 long after I proved Theorem TZJ2 on
page 27 for stream operators, and I obviously want to generalize that theorem
to work with smoothie operators. I'm confident that I could write a continuity
proof based on Construction 4.4.3 if I had more time, but it would take me
too long to adapt it now. What I can do instead is present my original proof
which uses a construction that is a strict generalization of Construction 1.3.24.
From there, it is easy to generalize Theorem T7ZJ2.

While our sequence of retractions does the job of the hold function from Def-
inition 1.3.8 on page 12 well enough, it doesn’t work quite the same way that
original hold function does. In particular, for any 7',t € T, holdr. ;0 holdr =
holdr, but this is not a feature shared by the retracts of every retractable ex-
haustion. That is, it is not necessarily the case that forn,j € N, p,opn; = py
(although that is the case for the standard retractable exhaustion of T). This
property of the original hold is necessary for showing that Construction 1.3.24
works (it is used when comparing ¥(n,0) with ¥(n,1)).
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Recall that we had defined ¥(0,0) = holdy(F(u)) (where u is any stream),
but for all £ € N, we had ¥(0,k + 1) = hold.F(¥(0,k)). Likewise, we had
defined ¥(n,0) as the limit of functions which are constant outside [0, n7], but
U(n,k+1) = hold, 1 F(¥(n,k)) (which is constant only outside [0, (n+1)7]).
To make the construction (or at least the proof for it) work for an arbitrary
sequence of retractions, we’ll have to apply p,.1 explicitly to every W(n,0).

Construction 4.4.12.

1. Let ug € C[X, A] and set W(0,0) = F(ug) o p;.
Since F' € Caus(X), every smoothie in the range of F' agrees with W (0, 0)
on Xy (thus, ¥(0,0) is an Xp-approximate fixed point of F').

2. Let n € N and suppose ¥(n,0) is an X,-approximate fixed point of F.
For all k € ZT define ¥(n, k) = F¥(¥(n,0)) o ppi1-
We will show this sequence converges to an X, j-approximate fixed point
of F'.

3. Given n € N, define U(n +1,0) = (limg—0o ¥(n, k)) 0 ppia.
This will be the first X, 1-approximate fixed point of F' encountered in
the construction.

4. Define v = lim,,_,o, ¥(n,0)
As before, this will be the fixed point of F'.

As before, if F' is of the form F' : P x C[X, A] — C[X,A] (where P is some
parameter space), then we define ¥ : P x N?> — C[X, A] as above for each
p € P, along with ® : P — C[X| A] to be the function such that Vp € P,

®(p) = lim ¥(p,n,0) = F(p, P(p)) (4.4.1)

n—oo

Lemma 4.4.13. Let n, ki, ks € N and suppose V(n, k1) and V(n, ks) are de-
fined as above. Then

sup {d (V(n, k1)(x), W(n, k2)(2))} = dni1(V(n, k1), ¥(n, ky))

zeX

Proof. It ¥(n, k1) and W(n, ky) are defined as above, then there are smoothies
uy and ug such that W(n, k;) = u;0p,41 (fori = 1,2). Since p,41 is idempotent,
U(n,k;) = ¥(n,k;) o p,y1. Hence, the ordered pairs being compared are the
following:

{(W(n, k1) (@), U(n, ko) (x)) = = € X}
= {(W(n, k1) (pni1(2)), W(n, ko) (pnia(2))) : w € X}
= {(W(n, k) (y), ¥(n, k2)(y)) = y € Xnsa}
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Lemma 4.4.14. If F € Caus(X) and u € C[X, A], then ¥Yn € N F(u) o p, =
F(u © pn) © Pn

Proof. Let n € N. Since p, behaves as the identity on X,,, d,(u,u o p,) =
0. Thus, since F' € Caus(X) d,(F(u),F(uop,) = 0. So Vz € X,,
F(u)(z) = F(uop,)(z). Since the range of p, is X,, Vo € X (F(u) o p,) (z) =

(F'(uo pn) o py) (2). [
Theorem 4.4.15 (Generalized TZ1 for the Alternate Construction). Let X
be a o-compact space with a retractable exhaustion, X = { Xy, pr}pen and

let (A,d4) be a metric space. Let {di},oy be the sequence of pseudomet-
rics corresponding to X and da (i.e. di(u,v) = maxuex, {da(u(z),v(zx))}.
Let F : CIX, Al — C[X, A] satisfy Caus(X) and Lip(\,X) for some positive
A < 1. Then F has a unique fized point.

Proof. The proof is, of course, modelled after Theorem TZ1, but at least su-
perficially it appears very different. Uniqueness has already been covered in
a construction-independent way by Lemma 4.4.5 on page 92, so we need only
show the fixed point exists.

We must show that the limits in Construction 4.4.3 on page 91 exist and that
v = F(v). First we'll show that, assuming W(n, 0) exists, limy_,, ¥(n, k) exists
(in C[X, A]). We do this by demonstrating that the sequence {¥(n, k)},  is
uniformly Cauchy (see Definition B.0.4 on page 133). In other words, for any
n,j € N, sup,ex {da(V(n, k), ¥(n,k+ 7))} can be made arbitrarily small by
making k sufficiently large.

Let n € N and assume® ¥(n,0) € C[X, A]. For all k > 0, let ¥(n, k) be defined
as indicated above.

Define the quantity

Dy = max{l,d,1 (¥ (n,0),¥(n,1))}

Define N : R™ — R™ as follows:

6 = o (202)

Let ¢ > 0 and let k,j € N with £ > N(¢). Then, by Lemma 4.4.13 on the
previous page,

sup da (V(n, k)(2), U(n, k + j)(x)) = dnsa (P(n, k), U(n, k + 7))

zeX

>At this point in the proof, we have established the existence of only ¥(0,k) (for all
k € N), so for n > 0, it is necessary to assume ¥(n,0) exists. It’s almost a Catch 22
induction.
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Using the triangle inequality,

dpi1(Y(n, k), U(n, k+ 7))

Since k > N(e) and \ < 1,

Dy

IN

<

k+j—1

Z A1 (U(n, ), U(n,i+1))

ktj—1

Z dps1 (FZ o W(n,0) 0 pny1, F'o U(n,1)o Pn+1)
i=k
k+j—1

> dpia (FP o ¥(n,0), F'o U(n, 1))
i=k
j—1
Dl Z >\i+k
=0

1— M\
DN ——
AT

)\k
1—A

Dy

it follows that

)\k
1_

ANV E)
< D
P I
Aes (<5:)
1—A
(a(l—A))
Dy
D N - 7
LN\

= D

= £

Therefore, {U(n, k) : k € N} is uniformly Cauchy and hence by Corollary B.0.6
on page 134, limy_ .., ¥(n, k) converges to some ¢, € C[X, A]. Since Vi,j € N
d, (¥(n,1),¥(n,j)) =0, the limit 1, agrees with every member of the sequence
on X, as well. That is, Vk € N d,, (¢, ¥(n,k)) = 0. Since F' € Lip(\, X),

Vk e N

dn (Yn, W(n, k) = 0 = dpys (F (¢n) , F(¥(0, k))) < Adngy ($n, U(n, k)

Thus, since W(n, k) — 1, as n — 0o, we can use the same modulus of conver-
gence to show that F(U(n,k)) o pi1 — F () © ppyi-
By Lemma 4.4.14 on the previous page,

F(U(n, k) © pnia

= F (Fk (lll(n’ 0)) © pn-i—l) O Pn+1
= FM1(¥(n,0) 0 poi
= U(n,k+1)
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Therefore,

F(wn) ©ppy1 = lim F(\I](nv k)) © Prn+1

k—00

= lim ¥(n,k)

k—o0

= Un

Hence, dpi1(¥n, F(1,)) = 0. In other words, ¥n € N, 1, is an X, -
approximate fixed point of F'. The remainder of the proof is identical to
the proof of the Generalized Theorem TZ1 on page 94 O

4.5 The shift Operator for Smoothies

Given that I was unable to show (see Remark 1.4.16 on page 28 and Exam-
ple 1.4.17 on page 29) that my Theorem TZJ2 is a strict generalization of
Tucker and Zucker’s Theorem TZ2 (from [TZ11]), there may still be a place
for shift invariance in this theory. This is one of the most challenging concepts
to generalize to arbitrary o-compact spaces, but I see one way it might be done
that I believe would still allow it to perform its intended role in (a generalized
version of) the proof of Theorem TZ2.

Definition 4.5.1 (Shiftable). Let X be a o-compact space with compact ex-
haustion X = {X;},.y. Then X is shiftable if there is a continuous function
¢ : X — X such that Vk € N,

((Xk+1 \ Xk) = Xk+2 \ Xk+1

In other words, if for all £ > 1 we define (. as the restriction of ¢ to X \ Xp_1,
then (@ Xi \ Xk—1 — Xga1 \ Xy is surjective.

Definition 4.5.2 (shift). Let X be a o-compact space with a shiftable com-
pact exhaustion X = { Xy}, . Define shift : C[X, A] — C[X, A] as

shift(u) =uo(

Remark 4.5.3. There may be a more general way to define shift on C[X, A],
and the condition that ¢ be continuous could possibly be relaxed, but its
continuity does ensure the range of shift is C[X, A] since the composition of
continuous functions is again continuous.

Example 4.5.4. We can see that this definition of shift is a generalization
of the previous one from Definition 1.3.8 on page 12. Let X =T, fix T' € R,
and choose X = {[0, KT}, . Take ¢ : T — T as the function ((t) =t +T.
Then it’s clear that the two definitions of sheft, agree.
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4.6 Continuity Theorem for Smoothie Opera-
tors
Lemma 4.6.1. Let X andY be topological spaces and suppose X 1s metrizable.

Let f : X — Y. Then f is continuous if and only if for every convergent
sequence x, — x, the sequence f(x,) converges to f(z).

Proof. See Theorem 10.3, page 128 of [Mun75] O

Lemma 4.6.2. Let {u},cy € C[X, Al and suppose Ju € C[X, A] In € N such
that limy_,oo (ug, © pn) = u. Then uo p, = u.

Proof. Recall that hold,, : C[X, A] — C[X, A] is defined as hold,,(v) = v o p,.
Since p,, is idempotent,
v = lim (uy o pp)
k—00
= lim (ug o pyopn)
k—o0

= lim (hold, (uy o p,))

k—o0

Since hold,, is continuous (see Lemma 4.3.6 on page 88) and C[X, A] is metriz-
able, Lemma 4.6.1 asserts that hold,, commutes with lim;_,,. Thus,

lim (hold, (uy, 0 p,)) = hold, (hm (ug 0 pn))
k—o0 k—o0
= hold,(u)
g u o pTL
0

Lemma 4.6.3. Let U : P x N* = C[X, A] and ® : P — C[X, A] be given as
in Construction 4.4.12 on page 96 (the parametrized versions), and let n € N,
p,p' € P. Then d,(®(p), ®(p')) = dpi1(V(p,n,0), ¥(p/, n,0)).

Proof. The n = 0 is almost identical to the n > 0 case, but it’s simpler. So
we’ll skip directly to the latter case. Let p,p’ € P and suppose n > 0. Then,
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d.(P(p),®(p)) = d,(¥(p,n,0),¥(p,n,0)) (4.6.1)
= d, ( Jim W(p,n—1, k‘)) O Pt <;}5§o V(p',n—1, k‘)) o pn+1>
— d, <lim U(p,n —1,k), lim W(p/,n — 1, k:)) (4.6.2)

k—o0 k—o0
_ : k B
= d, ( Jim FH(¥(p,n —1,0)) Opn) :
: k /

(l}ggoF (T(p,n—1,0))0 m))
_ : k _
= dy, ((;}LIEOF (¥(p,n—1,0)) Opn) © Pn;

<klim FEW(p, n—1,0)) o pn> o pn> (4.6.3)

= dusr ((Jfim FE(¥(p,n—1,0)) 0 p,) 0 pu,

<lim FEU(p n—1,0)) 0 pn) 0 pn> (4.6.4)

— ((I}LngoFk(\y(p,n ~1,0))0 pn> ,

(]}Lrgo FEOU(pn —1,0)) 0 pn)> (4.6.5)

= dn-i-l(\lj(pa n, 0)7 \I](p,a n, O))
Step Justifications:

(4.6.1) It was shown in the proof of Theorem 4.4.15 on page 97 that for all
j > n (and for any r € P), ¥(r,j,0) is an X,-approximate fixed point
of F(r,-). Since ¥(r, j,0) — ®(r), ®(r)x,= ¥(r,n,0)|x,.

(4.6.2) By definition of d,, and p,, Yu,v € C[X, A| Vj > n d,(uopj,vop;) =
dy(u,v).

(4.6.3) By Lemma 4.6.2 on the previous page, composing each of the argu-
ments of d,,

(4.6.4) Similar justification to line (4.6.2), but this time we're using the fact
that Vu,v € C[X, A| Vj > n d;(uo p,,vop,) =d,(uop,,vop,).

(4.6.5) Again, using Lemma 4.6.2 on the preceding page.

The other lines follow by definition of W. O

The proofs of the following two lemmas are routine, and thus, have been omit-
ted.
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Lemma 4.6.4. Let X and Y be topological spaces, each with two topologies:
Tx and T, for X, and Ty and Ty, for Y. Suppose Tx is coarser than Ty
(i.e. Tx C T ), and that Ty is coarser than Ty, Let f: X — Y and x € X.
Then we have the following local continuity properties for f, relative to the
topologies on its domain and co-domain:

1. If f is continuous at x when X is equipped with Tx then it is also con-
tinuous at x when X is equipped with T

2. If f is continuous at x when Y is equipped with Ty then it is also con-
tinuous at x when Y is equipped with Ty .

Lemma 4.6.5. Let X be a topological space, let x € X, and let f : X —
C[X, A]. If f is continuous at x with respect to every pseudometric in {d,}
then f 1s continuous at x.

neN?

Theorem 4.6.6 (Generalized Theorem TZJ2). Let (P, dp) be a metric space
and let F': P x C[X,A] — C[X,A]. Let p € P and let V. C P be a neigh-
bourhood of p. Let A € RT with A < 1. Using the notation F,(u) = F(r,u),
suppose Vr € V F, satisfies Caus(X) and Lip(\, X), and that Yu € C[X, A]
F' is continuous at (p,u). Then ® : V — C[X|A] (as described in (4.4.1)
on page 96, whose existence is assured by the Generalized Theorem TZ1 on
page 94) is continuous at p.

Proof. We begin by showing that ® is continuous with respect to the topology
induced by the dy pseudometric. We then proceed by induction, showing that
for any k € N, if ¢ is continuous with respect to the topology induced by d,
then it is continuous with respect to the topology induced by d, ;. Pairing
this with Lemma 4.6.5 completes the proof.

Basis Step
Since F, satisfies Caus(X) for any r € V| it follows that Yu,v € C[X, A],

F(Ta F(Ta u))[Xo: F(T> u) on: F(T> 'U) [Xo
In other words, Vr € V, Vu € C[X| A],
(r)xo= F(r,u)lx, (4.6.6)
By Lemma 4.6.4, since Yu € C[X, A] F' is continuous at (p,u) with respect
to the local uniform topology on C[X, A], it is also continuous at (p,u) with
respect to the topology induced by the dy pseudometric (which is coarser than

the local uniform topology). Thus, there exists a function, § : RT x C[X, A] —
R* such that Ve > 0 Vp' € V Vu € C[X, A],
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dp(p,p') < d(e,u) = do(F(p,u),F(p,u)) <e

In fact, since the choice of w is irrelevant when we're using the dy pseudometric,
J is constant on its second parameter. So choose an arbitrary u € C[X, A] and
define §p : R™ — R™ as simply do(e) = (e, u).

By Equation (4.6.6),

Thus, Ve > 0 Vp' € V,
dp(p,p') < do(e) = do(®(p),®(p')) <¢

Therefore, ® is continuous at p with respect to the dy pseudometric.
Inductive Step

For the inductive hypothesis, assume that for some n € N, there is a function
Op : RT — R* such that Ve >0 Vp €V,

dp(p,p') <on(e) = dn(®(p), 2(p)) <e (4.6.7)

We must show that there is a function d,,; : R™ — R such that Ve > 0
Vp eV,

dP(p,p/) < 5n+1(5) = dn—l—l(q)(p)v (I)(p/)) <€

To do this, we will analyze ®(p) using Construction 4.4.12 on page 96 (because
it’s closer to the construction I used to prove the original, special case of this
theorem). The trick is to observe that a d,,;1-modulus of continuity for ¥ (-, n+
1,0) at p will serve as the desired 6,41 modulus for @, since ®(r)[x,,,= ¥(r,n+
1,0)Ix,,, for all 7 € V. We can get that modulus of continuity by beating
the construction utterly senseless with a countably infinite application of the
triangle inequality. Essentially, we’re building a ladder of moduli of continuity
between the two sequences: ¥(p,n,0), ¥(p,n,1),¥(p,n,2),... and V(p',n,0),
U(p',n,1),¥(p,n,2), ... We build only a finite portion of the ladder—up to
the N rung—where N is a carefully chosen number which depends upon
A, upon the fixed distance, d,.; (V(p,n,0), ¥(p,n,1)), and upon the ¢ > 0
desired. Finally, using a pair of geometric series together with that N** rung,
we can construct the final rung (between W(p,n + 1,0) and ¥(p',n + 1,0)),
using the triangle inequality with ¥(p,n, N) and W(p',n, N) as intermediate
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points. See Figure 4.6.1 on page 108 for an overview (the “ladder” is bent only
to avoid the suggestion that F' is some dull, orderly isometry that just moves
everything in one direction and never does anything interesting).

To begin, we need the bottom rectangle of the ladder. We can simply record
the distance (with respect to the d,.; pseudometric) between ¥(p,n,0) and
U(p, n, 1)—although to avoid a potential problem with inequalities, we’ll record
a strictly positive number (1 works as well any) if that distance happens to
be zero; all we really need is a positive upper bound for it, and any one will
do. The modulus of continuity 9, given in the inductive hypothesis provides
the lowest rung (between W(p,n,0) and ¥(p/,n,0)). A single application of
F' gives us the next rung. Finally, all three can be put together with the
triangle inequality to secure an upper bound on the distance between W(p', n,0)
and ¥ (p',n, 1), thus completing the bottom rectangle (or more accurately, the
quadrilateral).

In accordance with our first task, let,
D, = max{l,d,+1 (¥(p,n,0),¥(p,n,1))} (4.6.8)
Next, observe that for any r € V,
W(r,n, 0)lx,= ®(r)lx,
By Lemma 4.6.3, Vp' € V,
da(®(p), (1) = dnsa(¥(p,n,0), ¥ (p', n,0))

Thus, we can rewrite (4.6.7) as follows: Ve > 0 Vp' € V,

dp(p,p') < 6,(e) = dpi1(V(p,n,0),¥(p',n,0)) <e (4.6.9)

Before we proceed, there is a bit notation that will greatly assist with the
exposition. We define a family of functions, {Hj : P x C[X, A] — C[X, A]}, .y
as follows:

Hy(r,u) = wu (i.e. Hyis the projection function )
Hi(r,u) = F(r,u)opp
Hy(r,u) = Hjo (flf_l) for k> 1
The purpose of defining Hy, is that Vk,m e NVr € V|
U(r,n,k+m) = Hy(r, ¥(r,n,m))
Fis continuous at (p,u) Yu € C[X, A] by hypothesis and hold,,.; (for lack of a

better name) is continuous everywhere by Lemma 4.3.6. Therefore, H;—being
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a composition of these functions—is continuous at (p,u) Vu € C[X, A]. From
Corollary 1.4.14, for any k > 0, Hj, is also continuous at (p,u) Yu € C[X, AJ.

Thus, there exists® a function 657 : R* — R* such that V(p/,u) € V x C[X, A
Ve > 0,

dn-l—l (Hl(pa \I/(p, n, 0))’ Hl(p,> u)) = dn-i-l (\I/(p, n, 1)a Hl(p,a u))
< € (4.6.10)

whenever,

max {dp(p, ), dpi1 (¥(p,n,0),u)} < 6L (e) (4.6.11)

We now have the first and second rungs (,, and 553), respectively), along with
the strut that joins them on the p side. All we need now is the strut that joins
them on the p’ side: a radius around p which will ensure a fixed upper bound
(of, say, 2D,) on the distance between V(p',n,0) and V(p',n, 1), which we’ll
call D,y. More precisely, we need a number, R € RTsuch that,

dP(p>p,) <R = Dp’ = dn+1(\p(p/ana0)> \I](p,>n> 1)) < 2Dp

This is easy to obtain by going around the back, using 5,(11), 0, and the triangle
inequality. Choose,

R = min {5n (%) oW <%) Lot (5n (%)) } (4.6.12)

Then, given any p’ € V such that d,(p,p’) < R, we get the following two
inequalities:
dn+1 (\Il(pv T, 0)7 \Il(p/u n, O)) < (4613)

dpir (T(p,n, 1), (0,0, 1)) < (4.6.14)

NENIS

Equation 4.6.13 comes directly from 4.6.9 and 4.6.12. Equation 4.6.14 is some-
what more tricky. Recall from line 4.6.11 that we need both dp(p,p’) and

dp+1 (Y(p,n,0),¥(p',n,0)) to be less than 5,2”(%) in order to ensure that
i1 (Hy (p, U(p,n,0)), Hy (p, W(p', 1, 0))) (which is simply dy 41 (¥(p, n, 1), ¥(p', n, 1)))

6This step would obviously not be possible if F' were continuous only w.r.t. P—as Tucker
and Zucker require in their theorem. We need it to be continuous on a portion of its entire
domain; continuity on only a projection of the domain is insufficient. This is what we
sacrifice in order to liberate F' from the necessity of being shift invariant.
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is less than %. The second term in the definition of R ensures that dp(p,p’) <
54! (%), and the third term ensures that d,,.1 (V(p,n,0), ¥(p/,n,0)) < i) <%> )
Therefore, Vp' € V| if dp(p,p’) < R then,

Dp’ = dny1 (\I](pla n, O)a \I/(p/, n, 1))
S dn-l—l (\Il(p/a n, 0)7 lll(p’ n, O)) + dn-l—l (\Il(p> n, O)a \Il(p’ n, 1))
+ dn+1 (\Il(pa n, 1)7 \Il(p/7 n, 1))

D, D
<2+D,+-2
2 Tt 2
— 2D,

Since D, and A are fixed and A < 1, there exists a function N : R™ — Z* such
that, given any € > 0,

AN E)
The reason for the expression above will become clear soon enough (if the
reader hasn’t guessed it already). We will now begin to apply the real star
of the show: the contraction property! Since F, € Lip(\, X) for all r € V, it

follows that Yu,v € C[X, A],
dp(u,v) =0 = dpiq (Hp(r,u), Hy(r,v)) < Nedp, o (u,v)
Thus, since lim;_,o, U(p,n,j) = ¥(p,n + 1,0), it follows that Ve > 0,
dny1 (V(p,n, N(€)), ¥(p,n +1,0))

< dn-i-l (\I/(p,n,]),\lf(p,n,]—i—l))
=N ()
- Z dn-l—l (H] (p> \Ij(pa n, O)) ; Hj (p> \Ij(pa n, 1)))
j=N(e)
< Z dn—i—l (Hj-i-N(a) (pa \Il(p’ n, 0)) ) Hj-i—N(a) (p> \I](pa n, 1)))
=0
S )\j+N(€)dn+l (\If(p,n,()),\lf(p,n, 1))
=0
< MO, (U(p,n,0), T(p,n,1))> N
=0
ANV(E)
< D
—1-A7
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Similarly, Vp' € V, if dp(p,p’) < R (thus ensuring D, < 2D,), then Ve > 0,
>\N(a) )\N(a)
A1 (U(p', 1, N(€)), U(p',n+ 1,0)) < T3P <7—32D»  (46.16)

Since every Hy is continuous at (p,u) Vu € C[X, A], there is a 67 : RT x ZT —
R* such that, Ve > 0 V(p/,u) € V x C[X, A| Vk € Z,

dni1 (He(p, ¥(p,n,0)), Ho(p',u)) = dpi1 (Y(p,n, k), He(p',u))(4.6.17)
< €

whenever,

max{dp(p,p), dus1(¥(p,n,0),u)} < 57 (e, k) (4.6.18)

We now use 67 to obtain the function 67 : Rt — RT, which will allow us to
make the N* rung (loosely speaking, since N is a function of €), partway up
the ladder, arbitrarily short.

0y (e) = min {3,/ (e, N(e)), 6, (8, (e, N(€))) }
Now, Vp' € V Ve > 0, if dp(p,p’) < 6} (e) then,
dpi1(V(p,m,0),U(p',n,0)) < (e, N(e))

(thanks to the second term in 0 (¢)), and therefore,

maX{dp(p,p/), dn-i—l(‘;[](pv n, 0)7 ‘;[](plv n, 0))} < 57{{(67 N(&f))
So by (4.6.18) and (4.6.17), it follows that whenever dp(p,p’) < d%(e), we get,

dn-i-l (\I](pa n, N(E))a HN(E) (p,> \I](p,> n, 0))) (4619)
= dn—l—l (\Il(pv n, N(&f)), \I](plv n, N(€)>>
<e€

Finally, define 6,41 : RT — R™* as follows:
. . (€
5n+1(6) = min {R7 5n <§> }

Let ¢ > 0 and let M = N(¢/3). Then Vp’' € V such that dp(p',p) < ,41(2),
we obtain the following three inequalities:
M
£

A
dn—l—l(\I](pvn—i_170)7\Il(p7n7M)) < ?}\DP<§

1

g
dn-i—l(‘;[](pv n, M)v\ll(p/vnv M)) < g
, , M €
d(n—i—l)T(\I](p ) Ty M)7 \I](p s+ 170)) < m2Dp < g
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U(p,n+1,0)
*

=4
3

, U(p',n, N)

p,nN

L]
=
.B\
S
—
~—

U(p,n,1)

\I’(p,n,()) . J . \Il(p’,n,O)

Figure 4.6.1: Inequalities used in the Generalized Theorem TZJ2

The first and third come from (4.6.15) and the second comes from (4.6.19).
Merging the left-hand sides using two applications of the triangle inequality
yields the final result: if p" € V and dp(p,p’) < d,11(g) then,

dusr (W (p,n +1,0), (p,n +1,0)) < e
O

We can now present the proof of Theorem TZJ2 on page 27, which follows as
a corollary to Generalized Theorem TZJ2.

Theorem 1.4.15 (Theorem TZJ2) Let (P,dp) be a metric space and let F :
P x C[T,A] — C[T,A]. Let p € P and let V C P be a neighbourhood of p.
Let 7, A € RY with A\ < 1. Using the notation F.(u) = F(r,u), suppose that
for all r € V' F, satisfies Caus and Lip(\,7), and that for all u € C[T, A|
F is continuous at (p,u). Then ® : V — C[T, A] (as described in (1.3.3) on
page 15, whose existence is assured by Theorem TZ1 on page 19) is continuous
at p.

Proof. To prove that this is merely a special case of the Generalized Theo-
rem TZJ2, we must find a compact exhaustion X for T, and show that F

satisfies Caus(X) and Lip(\, X).
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Let X = T (= R2") and for all n € N, let X,, = [0,n7]. Let X = {X,,}, -
Obviously, Xo € X; C --- € X and |J,,cy X»n = X. The third property follows
from the Heine-Borel Theorem”: every compact subset of X is bounded, and
every bounded set is contained within a member of the exhaustion (i.e. if K is
bounded, then 3n € N such that K C X,,). Thus X satisfies Definition 4.1.1
on page 81.

Let r € V, n € N, and let u,v € C[T, A] such that d,,,(u,v) = 0. Then Vt < nr
di(u,v) = 0. Since F, € Caus, it follows that V¢ < nr F.(u)(t) = F.(v)(t).
Therefore, d,.(F,(u), F,.(v)) = 0, and hence F, € Caus(X). Furthermore,
since F,. € Lip(A,7) it follows that dg,41)-(Fr(u), Fr(v)) < Adpgr)-(u, v).
Thus, F, € Lip(\, X). By the Generalized Theorem TZJ2 on page 102, ®
is continuous at p. ]

4.7 Concrete Computability of ¢

The theory we have developed is part of a general framework for studying
analog computation. The prevailing notion in analog computation research
is that the Church-Turing Thesis extends to all manner of computation (see
|IBCGHO6, TZ04, Wei00|, for example). Part of the job of testing this variant
of the Church-Turing thesis is to verify that anything “computable” within our
framework is computable in others as well. In our models of analog computa-
tion, a function is (implicitly defined as being) “computable” if it is the fixed
point of a smoothie operator.

Given that X and A are fairly abstract spaces, how can we relate the objects in
this model to classical computability theory? One way is to determine whether
an operator and its fixed point can be codified somehow, using only natural
numbers and computable functions on natural numbers. This is essentially a
form of meta-computation. The idea behind concrete computability is some-
what similar to the central idea in many areas of mathematics (category theory,
in particular). It is possible to develop an abstract mathematical structure and
discover that there are morphisms which “translate” this structure to another
one which appears to be completely unrelated, developed from within an en-
tirely different context, as though it is a distorted mirror image of the original
structure. Our original structure is C[X,.A] (or a multisorted algebra which
includes C[X, A]) along with a parameter space P, and the “mirror image” is
classical computability theory on N.

This analysis has already been done for C[T, A] (where T = R=° or N) in
[TZ12]. Tucker and Zucker identify a set of conditions, sufficient to ensure

"For K C R™, K is compact if and only if K is closed and bounded. See [Rud76|, or any
elementary text on real analysis for details.
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that the fixed point function ® of F'is concretely computable, and it appears
that their arguments can be extended naturally to the more general case in
which T is replaced by a o-compact space X with a retractable exhaustion.
To show this in full detail, however, I would need to border on plagiarism
since little of the theory from |TZ12| needs to be changed. So instead, I will
present a summary of the core ideas and put particular emphasis on the few
details that need to be changed to accommodate smoothies. One of the main
aspects of their theory I will be glossing over is the allowance of partial stream
operators. I do not address that here simply because of a lack of time. There
is nothing T-specific about it, however. Similarly, they insist on the effective
local uniform continuity® of their streams and I impose no such requirement
here. It is not strictly necessary for establishing the concrete computability of
®, but it is a useful condition to have when defining interesting operators. I
omit this treatment for both the lack of time and for the sake of brevity and
simplicity.

Before we continue, we must encumber our spaces with a few additional prop-
erties. Up until now, P has been an arbitrary metric space, A has been an
arbitrary complete metric space, and X has been a retractable o-compact topo-
logical space. There was no need to assume anything more about them in this
chapter. For the following material, however, we require each of these spaces to
be complete, separable metric spaces. Recall that a space is complete if every
Cauchy sequence converges, and a space is separable if it contains a countable
dense® subset. The reason for this will be made clear as we go along, but it is
helpful to know this in advance.

4.7.1 The Codes: a-computability

To model computation on C[X, A] using computation on N, we must encode
the spaces and operators in our theory using natural numbers. The problem,
of course, is that (in all but trivial cases) there simply aren’t enough natural
numbers to go around. If C[X, A}, X, A, and/or P are uncountable (as we
typically imagine them to be), then most of the elements in these spaces and the
functions on them won’t be lucky enough to get their own code numbers and
hence cannot be represented exactly using our N-based model of computation
for smoothies. Hence, we must settle for encoding only countable subsets

8Loosely speaking, the streams in C[T,.A] are effectively locally uniformly continuous
(with respect to an exhaustion) if there is a single computable parametrized modulus of
local continuity that works for all streams and all members of the exhaustion. That is, there
is a computable function that accepts a (code for a) stream, a member of the exhaustion,
and an € > 0 (used in its traditional sense with respect to continuity), and it returns a
corresponding § sufficient for the specified stream, restricted to the specified member of the
exhaustion.

9A subset X is “dense” in a topological space Y if the closure of X is Y.
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Zs C S, where S =X, A, P,C[X, A], and we do this using surjective functions
of the form ag : N — Zjg.

There are all sorts of countable subsets we could choose for this purpose, but
since we're trying to encode as much of these spaces as we can, we need subsets
that are dense. That way, even if an element is not in Zg, we can approximate
it arbitrarily closely using elements that are in Zg. Thus, we need X, A, P,
and C[X, A] to be separable (i.e. have a countable dense subset).

In fact, it can be shown (see [TZ12|) that if both X and A are separable,
then C[X, A] is too. So this one comes “for free,” but it should be noted that
in [TZ12| the authors require a special form of separability which must be
assumed of C[T,A] even if both T and A are separable. This assumption,
however, can be made for C[X, A] as just easily as it can be for C[T, A], if
necessary for a particular purpose (in [TZ12], the authors need it to ensure
that there are particularly nice Cauchy sequences in C[T,.A] that facilitate
some useful operations like integration to be proven computable).

We develop these ag functions to analyze the computability of functions among
the four spaces above rather than the spaces themselves. Some of the functions
of interest have domains and /or codomains which are products of these spaces.
In particular, we obviously need to look at functions of the form F : P X
CIX, Al —» C[X, A] and & : P — C[X,A]. The details are somewhat involved,
so I will indulge in a bit of hand-waving and simply state that we can assume
there is a single, universal encoding function o : N — Z, where Z is the union
of all finite products of Zx, Z4, Zp, and Z¢x 4. This is possible since a
countable union of countable sets is countable.

With a-computable elements in hand (those in Z), we proceed to define a-
computable sequences. The following definition is adapted from [PERS9].

Definition 4.7.1 (a-computable sequence). A sequence {z,} C Z is a-
computable if there is a recursive function e : N — N such that for all n € N,

o = a(e(n))

Using the limited encoding we have developed so far, we can already introduce
a primitive notion of operator computability:

Definition 4.7.2 («a-computable function). Let Sy and Sy be finite products
of X, A, P, and C[X, A], and suppose f : S, — Ss. Then f is a-computable if
there is a computable!® function (called a tracking function) ¢ : N — N such
that Vk € ™ (S; N 2)

fla(k)) = a(e(k))

0«Computable” in the usual sense, i.e. recursive.
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The problem with this form of computability is that Z is a relatively “sparse”
subset (in most common choices, it will exclude infinitely many limit points
which could be easily encoded), and this permits only a relatively limited
encoding. We can do better than a.

4.7.2 The Computable Closure of Z and a-computability

Let S be a finite product of X, A, P, and C[X, A]. Since each of these spaces
is complete and separable, so is S (although I have omitted the proof). Fur-
thermore, it can be shown that a product of countable dense subsets is dense
in the corresponding product of spaces (proof also omitted). Therefore, SN Z
is a countable dense subset of S. For convenience, let Zg = SN Z. Since S is
complete and Zg C S5, every Cauchy sequence in Zg converges to an element
of S. Since Zg is dense in S, every element in S has such a Cauchy sequence.
So we can refer to any element of S using a Cauchy sequence in Zg (i.e. there
exists a surjection from the set of Cauchy sequences in Zg onto 5).

Now, since we have an encoding o : N — Z of Z, Cauchy sequences (and
any other sequences, for that matter) in Zg C Z can be represented by total
functions of the form e : N — N. For any sequence {u,}, .y C Zs there is
a function e : N — N such that for all n € N, u,, = a(e(n)). Here is where
classical computability theory enters the picture. Some of these functions on
N will be (classically) computable and some of them won’t be. It is plainly
the former class with which we are concerned, and it is these functions, to-
gether with «, that determine the computable closure of Zg (which we write as
Ca(Zs)). Once we have C,(Zg) for every S, we can define a new (and better)
encoding @ : N — C,(Z), and then define a-computability exactly as we did
for a-computability in Definition 4.7.2 above. There is also one further sub-
tlety to be addressed: it is not enough for the functions e : N — N representing
Cauchy sequences to be computable; the modulus of convergence of the Cauchy
sequence each e represents must also be computable (see Remark 4.7.4).

Definition 4.7.3 (a-effective Cauchy Sequence). Let {u,},.y € Z be a
Cauchy sequence. Then {u,}, .y is an a-effective Cauchy sequence if the fol-
lowing two conditions hold:

1. The sequence itself is a-computable. That is, there is a total computable
function e : N — N such that for all n € N

un = afe(n))

2. The convergence of the sequence is effective (it has a computable modulus
of convergence). That is, there is a total computable function M : N — N
such that for all j, k,n € N,

g k> M(n) = d(uju) <27"
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Remark 4.7.4. The first condition is obvious. Each of the elements in the
sequence must be computable (w.r.t. «), and so too must be the sequence
itself. Otherwise it could hardly be regarded as an a-effective sequence of any
kind. The second condition is less obvious. As long as we can compute the
sequence, and we know that it converges, why must we be able to compute in
advance how far out in the sequence we must go to get within a certain radius
of the limit? It may seem to be a superfluous condition, but without it, we
cannot legitimately claim that the limit is computable.

[t’s not a matter of being able to compute in advance how far along we must
go in the sequence; it’s a matter of being able to determine—at any point—
whether we're even remotely close to the limit. If we claim that an element
is computable, we mean that we have a mechanism for generating a point
arbitrarily close to it. A Cauchy sequence will eventually contain such points,
but it is under no obligation to begin marching steadily toward its limit right
from the start. The first million points of the sequence may appear to be
steadily converging within a tiny portion of the space, and then suddenly, in
the next point, it might spontaneously veer quite far away and appear to begin
converging in a region very distant from the previous one. This may happen
any number of times before it begins to converge in earnest. Without being
able to compute its modulus of convergence, how can we be at all justified in
claiming the sequence is effective? We have a way of generating our sequence
and we know that it will eventually generate a satisfactory point (one close
enough), but unless its modulus is computable, we have no way of selecting
such a point. Hence, we may as well be generating a completely random
sequence of points.

That is the reason for insisting on a computable modulus of convergence.

Lemma 4.7.5 (“Fast” Cauchy Sequences). Without loss of generality, we can
assume that the modulus of convergence of an a-effective Cauchy sequence (in
some metric space with metric d) is simply the identity function.

That is, suppose {Tn}, oy @5 an a-effective Cauchy sequence with associated
recursive functions e, M : N — N such that VYn € N x,, = e(n) and Vj,k, ¢ € N,
gk > M(0) = d(zj, 1) < 27° Then there exists another a-effective Cauchy
sequence {x,,}, oy such that Vj, k.0 €N, j,k > € = d(2),z)) < 2= (i.e. M,
if it were to be defined, would be merely the identity).

Proof. First, without loss of generality, we can assume that M is monotonic
(increasing). This is a fairly standard assumption for moduli of convergence
and continuity in any context, and it is easy to show that computability is not
threatened by it.

Any finite composition of recursive functions is recursive, so simply define
¢/ : N — N as follows:
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and, of course, set 2/, = €/(n) for all n. Then €’ is recursive and Vj, k, ¢ € N, if
J, k > ¢, it follows that M (j), M (k) > M(¢). Thus,

d(@}, ) = d(e'(4), €' (k))
d(e(M(j)),e(M(k)))
< 27

0

Notation 4.7.6. Let C,(Z) be the set of all limits of a-effective Cauchy se-
quences in Z (and likewise for C,(Zs), given any product S of spaces).

Definition 4.7.7 (Q; and @). By definition, for every element of C,(Z), there
is an a-effective Cauchy sequence with two associated computable functions (e
and M). Every computable function can be uniquely represented as a Godel
number in N, and every pair of natural numbers can be encoded as a single
natural number (using, for example, a second Goédel numbering). Therefore,
there is a set Oz C N with a surjective function @ : 25z — C,(Z) that encodes
Co(2).

Definition 4.7.8 (a-computable function). As in Definition 4.7.2, let Sy and
Sy be finite products of X, A, P, and C[X, A|, and suppose f :S; — Sy. Then
f is @-computable if there is a computable (tracking) function ¢ : N — N such
that Vk € @~ (Co(Zs,))

f @ (k) =a(e (k)

Remark 4.7.9. It is natural, at this point, to wonder whether we need to be
concerned with a-effective Cauchy sequences (and consequently, @-computable
operators). Fortunately, the answer is no. C,(Z2) is “@-computably closed.”

Lemma 4.7.10. Let S be any finite product of our four spaces (as in Def-
inition 4.7.2), and let {sp},cn € Ca(Zs) be an a-effective Cauchy sequence
(i.e. the sequence satisfies Definition 4.7.3 when « is replaced by @) which
converges to an element s € S . Then there is an a-effective Cauchy sequence
which also converges to s.

Proof. If {sn},cy is an @-computable sequence, then there is a recursive func-
tion e : N — N such that for each n € N, s,, = @(e(n)). Now, any such e(n) is
actually the Godel number for a pair of other recursive functions: e, and M,,.
e, is the function which defines the a-effective Cauchy sequence {s,;}, .y and
M, is its modulus of convergence (however, as we observed in Lemma 4.7.5,
we can assume without loss of generality that each M, is simply the identity
and thus ignore it). Decoding a Gédel number for a recursive function and
evaluating it at a given point is, itself, recursive (e.g. consider the Universal

114



Ph.D. Thesis - N. James; McMaster University - Computing and Software

Turing Machine). Therefore, there is a recursive function € : N x N — N such
that Vn,k € N, €(n, k) = s, and Vn, j, k, £ € N,

j, k > ! = ds(Snj, Snk) < 2_6

Thus, {snk}, ey 1S an a-computable double sequence, each row of which con-
verges at a brisk minimum rate (at least as fast as 27" — 0 as n — o).

While Lemma 4.7.5 speaks only of a-effective Cauchy sequences, it is equally
applicable to @-computable Cauchy sequences with a-effective moduli of con-
vergence. Thus, we can assume that Vj, k, ¢ € N,

g k> ( = ds(Sj,Sk) <27t

Since {Snk}, pey 15 @-computable, so is the sequence {7, = sppn}, . For this
sequence, we can use the (obviously recursive) modulus of convergence M (¢) =
¢+ 2, as we now demonstrate. For any n € N,

ds(’/’n,sn) = ds(’/’n, lim Snk)
k—o0
= klim ds(ry, Snk) (since dg is continuous by Lemma1.4.1)
—00

< 2

Therefore, given any ¢ € N, for all j, &k > ( + 2,

ds(rj,ri) < ds(rj,s;) +ds(s;, si) + ds(sg, )
< 2724972 L o7t
— 3 . 2_£_2
< 27t

4.7.3 The a-computability of &

The objective in this line of inquiry is to establish a set of conditions on an
operator F' : P x C[X, A] — C[X,A], along with the spaces comprising its
domain and codomain sufficient to ensure that if F' has a fixed point function
® defined on P, then this ® is concretely computable.

Theorem 4.7.11 (Concrete Computability Theorem). Suppose the antecedents
of the Generalized TZ1 Theorem for the Alternate Construction on page 97 are
satisfied by some operator F : P x C[X, Al — C[X,A] at every point p € P.
That 1s,
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(a) (P,dp) is a metric space.
(b) Vp € C, (Zp) A, is a real number with 0 < A, < 1.

(¢) Xis a o-compact space with a retractable compact exhaustion X = {X,,}
and retractions {p, }

neN

neN-

(d) Vp € P, F(p,-) : CX, A] = C[X, A| satisfies Caus(X) and Lip(),, X)
for all u € C[X, A].

And further, suppose

(e) P, X, and A are complete separable metric spaces.
(f) For each n € N, Co(Zcix ) is closed under hold,.

(g) hold : N x C[X, A] — C[X, A] is a-computable'* (this implicitly requires
(e), of course).

(h) F is @-computable.

(i) The parametrized pseudometric d : NxC[X, A]? — R=° (where d(n,u,v) =
dy(u,v)) is a-computable.

(j) There is an a-computable function A : P — RY such that Vp € P
Alp) = Ap

Then the fized-point function ® : P — C[X, A] for F is @-computable.

Proof. 1t is easiest to use Construction 4.4.12 to prove this since it involves
fewer spaces (it never uses any of the C[X,,, A] spaces) and no induced operators
(truncations of F'), both of which would require extra care to be taken at each
step.

To show that ® is @-computable, we must first show that W is a-computable. In
Construction 4.4.12, we chose an arbitrary initial point ug and set ¥(p,0,0) =
F(p,up) o p1 = holdy (F(p,up)) for all p € P. If we wish for ¥(-,0,0) :
P — C[X, A] to be @-computable, however, 1y must obviously be chosen from
Co(Z). Since F : P x C[X, A] — C[X,A] and hold; are a-computable (by
hypothesis) and the projection function 7 : N*> — N (which maps (i,j) — i
for all (i,7) € N?) is recursive, it follows that both F(-,ug) : P — C[X, A]
and ¥(-,0,0) are a-computable (since a composition of finitely many recursive

UT am uncertain whether the @-computability of hold : N x C[X, A] — C[X,A] would
necessarily follow from the @-computability of p : N x X — X (if we were to insist on
it instead), but the former computability is the one required for this theorem, so I have
included it in the antecedent directly.
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functions is recursive). From the former it follows that, for any k € N, F*(-, ug)
is @-computable, and thus so is ¥(-,0,k + 1) = hold, (Fk(, U(-,0, k)))

We must be cautious with the notation and the vernacular here since there
is a difference between showing that every point in the range of a function
is a-computable, and showing that the function itself is @-computable. We
have shown both above (for ¥(-,0,-) : P x N — C[X, A]), although the latter
only loosely. To see it more clearly, note that if pr : N — N is an a-tracking
function for F(-,up), then the @-tracking function ¢g for G(p, k) = F¥(p,uo)
is actually primitive recursive (not just recursive):

¢c(7,0) = ¢r(j)

Alternatively, we could invoke the Church-Turing Thesis and express the track-
ing function for ¥(p, 0, k) using a programming language together with ¢ and
the tracking function for hold;.

All of the above is clearly applicable to ¥(p, n, k) for any values of n, k > 0—
provided that ¥(p,n, k) is @-computable for £ = 0. We’ve shown above that
U(p, n, k) is @-computable for & = 0 when n = 0, but getting ¥(p,n,0) for
n > 0 is more challenging. Recall that for n > 0, we have defined

U(p,n+1,0) = hold,, ( Tim W(p,n, k))

From the argument above, {W(p,n,k)}, .y is certainly an @-computable se-
quence, but we must show that it is also an a-effective Cauchy sequence to en-

sure its limit is @-computable. That is, we must show there is an @-computable
M : P x N x N — N such that Vp € P, Vki,ky,n,l € N,

kl, k2 Z M(p7n7€> = dC[X,A](\II(panu kl)? \I](pv n, k2)) < 2_£

Almost exactly this was done already in the development of N(¢) in the proof
of the Generalized TZ1 Theorem for the Alternate Construction on page 97,
but our requirements here are a little more stringent. In particular, we must
ensure that

e M has the form P x N x N — N, instead of Rt — R* (as N has in that
proof).

e M is an @-computable function (which is obviously a requirement N
didn’t have to satisfy).

e M is developed with respect to the metric dex, 4 rather than the pseu-
dometric d, 1. This is, however, required merely by the exposition. For
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the sake of simplicity, I've neglected to develop a “local” version of the &
theory in this chapter (that would allow for a pseudometric modulus of
convergence), but Tucker and Zucker develop this for streams in [TZ12]
and their work appears to carry over to smoothies naturally (although I
would need more time to confirm that there are no snags along the way).

It is possible to show (although I won’t do it here), that the following definition
for M : P x N x N — N is a-computable:

Mipn.0) = Jtogagy (it (1= A2 ) |41

where Vn € N,
D(n) =max{l,d(n+ 1,%¥(p,n,0),¥(p,n, 1))}

We know M is a-computable because d and A are @-computable by hypothesis
(for precisely this purpose, in fact), and the rest is composed of elementary
real functions which can be shown to be @-computable.

We now prove that M is a modulus of convergence for {¥(p,n,k)}, . Let
¢;n € N, and assume without loss of generality that ¢ > n. Let ki, ko >
M(p,n,t), and assume (again without loss of generality) that k; < ky. Then,

dC[X,A](\I](pv n, kl)v \Il(p7 n, kQ))

_ Z min (27, dy(U(p, n, k1), U(p, n, k2)))

o0

= Y min (27,di(¥(p,n k1), U (p, 1, k) (4.7.1)

i=n+1
oo

< Y min (27, dugt (T (p, n, kr), Ulp, m, ka))) (4.7.2)

i=n+1

(4.7.1) follows from the fact that W(p,n, k) and ¥(p,n, ky) agree on X,, and
(4.7.2) follows from Lemma 4.4.13.

The remaining steps are familiar from several earlier proofs in the thesis. Con-
tinuing from (4.7.2),
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Z min (2_i> dn—i—l(\Ij(pa n, kl)a \Il(p’ n, k2))>
i=n+1
041
S Z dn-i-l(\lj(pana kl)? pan k2 Z 2_2
i=n+1 i=0+2
= (f —n+ 1) dn-i—l(\lj(pa n, kl)? \Ij(pa n, k?)) + 2_é_1
ko—1
<(C=n+1) Y dupr(U(p,n,d), U(p,n,i+1)) + 277
i=k1
ko—1
<({=n+1)Dmn) Y N +27"
i=k1
ko—k1

1_
k —f—

1
< _ 1 k1 2—(—1
<({l-n+1)D ())\pl_)\ +
<27t p ot

=9t

Therefore, ¥ is @-computable.
What remains to be shown is that there is also an @-computable modulus of
convergence

M :PxN-—=N
for lim,, o ¥(p,n,0). Mercifully, this is much more straightforward: {¥(p,n,0)}
is already (almost) a “fast” Cauchy sequence! Its modulus of convergence is
given by M'(p,¢) = ¢+1, which we will now show as the final step.

neN

As we have established previously, given any n € N, Vm > n, ¥(p,m,0) is an
X,,-approximate fixed point of F'. Thus, if / € N and m,n > ¢ + 1,

dC[X,A](\II(panaO%q](pam>0)) = Zmln 2” Z (p>n 0) \If(p,m,())))
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O

Remark 4.7.12. There is a somewhat major weakness in the Concrete Com-
putability Theorem that prevents it from being a generalization of Theorem
1 from |TZ12| (which was my original goal): it relies on a single retractable
exhaustion, X. In Tucker and Zucker’s paper, there is a family of contrac-
tion moduli A.,, and a family of increments 7., , such that F' locally satisfies
Contr(A.ax, Tear). In the theorem above, we do have a parametrized family
of contraction moduli A,, but essentially we have only the one “increment”
(exhaustion). I do believe it would be relatively easy to expand the theo-
rem, allowing for a family of compact exhaustions {X,} ., such that for each
p € P, F satisfies Caus(X,) and Contr()\,, X,), but I haven’t taken the time
to attempt the theorem this way. Hence, [ will relegate that project for future
work, along with the following additional ideas.

4.8 Future Work

4.8.1 Study the Abstract Computability of ¢

In [TZ12], the computability of the model presented in [TZ11]| is analyzed from
two different perspectives: concrete computability and abstract computability.
I believe I have done the bulk of the work in generalizing concrete computabil-
ity to C[X, A] (although, clearly much remains to be done before that work
can be considered complete), and it seems to hold up very well. It would
be interesting to see whether the same is true of abstract computability. In
abstract computability, a more algebraic approach is taken (verses the ana-
lytic approach of concrete computability) and the stream/smoothie operators
are approximated using a simple imperative language that is independent of
the data representation and is augmented by the operations defined on the
data types being used. The language used by Tucker and Zucker is called
WhileCC*, and it includes “while” loops, a nondeterministic countable choice
function (the “CC” part of the name), and arrays of arbitrary length (the “*”
part of the name).

4.8.2 Generalize A from metric spaces to uniform Haus-
dorff spaces

There is a way to generalize Banach’s Fixed Point Theorem so that it doesn’t
require a metric. [ thought of a way to do this, myself, but E. Tarafdar
appears to have beat me by a few decades [Tar74]| (although, admittedly, with
a much more thoroughly-developed idea than I had). Rather than working
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within a metric space, we work within a wuniform space—which is a type of
topological space strictly more general than a metric space. In a uniform
space, we don’t (necessarily) have anything like a metric; instead we have a
family of “entourages.” An entourage of a uniform space X is a collection
of subsets of X? that satisfy certain properties devised to impart a notion of
proximity without necessitating actual “distance.”

If (X,d) is a metric space, the uniformity induced by the metric consists of
one entourage for every r € R™. The entourage associated with r is the set of
all pairs of points no further than r of each other. That is,

E, = {(x,y) € X?: d(z,y) ST}

With a system of entourages, it is possible to define contractions and nonex-
pansions in a few different ways, each of which permits a variation of Banach’s
Fixed Point Theorem. Some approaches are outlined in |Tar74|, and I believe
they might be applicable here. Generalizing the concrete computability of &
to uniform spaces would require the use of Cauchy filters in place of Cauchy
sequences, so this could be a major undertaking, but it seems quite feasible.

4.8.3 An Alternative to Contr

Another generalization of Banach’s Fixed Point Theorem occurred to me as
well: the theorem would still hold for an operator f that isn’t contracting,
as long as there is some n € N such that f" is contracting. Again, this was
too obvious not to have been studied already. The obvious name for a such
a property would be “eventually contracting,” and quick search reveals the
following definition from [HKO3]:

Definition 4.8.1. Let X be a metric space, C' € RT, A € (0,1), and f: X —
X. Then f is eventually contracting if Vn € NVz,y € X,

d(f*(x), ["(y)) < CA"f(z,y)

This is my definition (which I suspect is roughly equivalent):

Definition 4.8.2. F': C[X, A] — C[X, A] is progressively contracting (or F €
PContr(\ n, X)) if there is a function 7 : N — N and a constant A (with
0 < A < 1) such that VN € N Vu,v € C[T, A],

dy (F"(N)U,F”(N)v) < My (u,v)

Furthermore, we say F'is effectively progressively contracting if n is recursive.

Example 4.8.3. F: C[T,R] — C[T, R] where F(u)(t) = [; u(s)ds+ f(t) (and
f € C[T,R]) is effectively progressively contractmg
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Proof. First we demonstrate that Vu,v € C[T,R] VN, k € N,

Since F is simply the identity on C[T,R] and ]X—IO = 1, the statement holds for
k= 0.

Now let k& € N and suppose that VN € N Vu,v € C[T,R] dy (F*(u), F¥(v)) <
N (u,v). Then, YN € N Yu,v € C[T, R),

dy (F*(u), F*7(v) = max </OtFk( s)ds+ f(t )
_</0’*Fk( 5)ds+ f(t )‘
= | [ (@00 - P9 as
: or?t%’fv/ot\F’“( )(s) — F¥(v)(s)]| ds
= /ON\F'“( )(s) — F(v)(s)| ds
= /ONggggs\F’f (w)(r) — F*(v)(r)| ds

= /ONdS(Fk(u),Fk(v))ds
< /ONZ—I;dS(u,v)ds

N Sk
< dN(U,v)/ Eds
0

Nk+1
= mdN (u, v)

Define n(N) = max {3N, 1}. Then VN € NT, with £ = n(N) (for convenience),
we observe that

N* E\F 1 E\F 1 E\F 1 1 E\F 1
- = (X)) = 2y = ) D= = 2 2y =
Kl (3) k!<(e) k!<\/z<e) M Van ”k<e) Kl

Stirling’s Formula provides the following inequality for any k£ € N,

k
27k <E) < k!
e
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Therefore, letting A = \/%, we compute,

NF EN" 1
— 2 -] = 1
k!<)\< wk(e) k:!><)\<

Hence, Yu,v € C[T,R] VN € N,

Nn(N)

n(N) n(N)

~dy(u,v) < Ady(u,v)

3

For N =0, dy(F"u, F"™y) = do(Fu, Fv) = 0 < Mdo(u, ).
Thus, F'is progressively contracting, and since 7 is clearly recursive, this con-
traction is effective. O

Remark 4.8.4. I'm sure this argument can be adapted to work for any F' :
C[T,R]™ — C[T,R]|™ of the form,

Flu)(t) = /0 Au(s) ds + £(¢)

where A € R™™ and f € C[T,R]™. I just wanted to check that the simpler
version works first.

Hence, this version of the theory—while possibly not quite as broad as the
versions which use Contr(\, 7) and Contr (), X)—should still work with the
two mass-spring-damper case studies in [TZ11] and it offers a diagonal con-
struction which will obviously converge to the same stream as the “w?” process

from that paper and the other constructions in this thesis do.

Theorem 4.8.5 (Progressive Contraction Theorem). If F': C[X, A] — C[X, A]
15 progressively contracting, then it has a unique fixed point.

Proof. Let vy € C[X, A] and define the sequence, {vk = F* (vo)}keN, which we
will show is locally uniformly Cauchy. To do so, we must show that VN € N
Ve > 0 dM € N such that Vn,m > M,

dN(Um, ’Un) <€
Without loss of generality, assume n(N) > 2 and let!?,

r=max dy (Um,v,)
0<m,n<n(N)

12Tt may appear at first glance (if you see where this is going) that r should be defined
as MaxXg<m,n<n(N)—1 AN (vg,vj) since Up(N) = F(N) 0. The inclusion of vy itself seems
superfluous, but this inclusion is actually deliberate and essential.
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Since F'is progressively contracting, Vm,n € {0,1,...,n(N) — 1} Yk > 0,
dy (Fk'"(N) (V) , FENN) (vn)) < Nedy (U, vn) < N

Let M € N be a number such that,

e(1—=2A)

r

M <
For example, we could take,

M - ’VIOgA

Let m,n € N. Then Imy,n; € N Img,ny € {0,1,...,7(N) — 1} such that
m =myq -n(N) +mg, n =ny -n(N) + ny. Without loss of generality, assume
my < ny and let ¢ = ny — my. Then,

dN (Uma 'Un) = dN (le.n(N) ('Umz) >Fn1.n(N) ('Unz)>
= dxn (Fmr??(N) (Um2> ’lev??(N) (Fq'ﬁ(N) (Ung)))
< AMdy (Umz’ FanN) (Un2)>

r

0=

~1
< M (dN (Vg Un(vy) + : Ay (Vig(x), V1))
+dn (Vgn(v), Uq'n(N)Jr_nz))
< A <7“ + qi dy (F77 (wg) , F7N) (vy))
+dy (Z;lq'"(m (v0) , F*"™) (v,,)))
< N4 S Ndy (vo, up(wy) + Ady (vo, vn2)>
-
< AT+ Nr 4 Xfr)
=
< Ay A%)
=0
_ e+l
<A™ 1 i )\r
< Mg i \
< ¢

By Corollary B.0.6 on page 134, Jv € C[X, A] such that v,, > vasn — oco. O
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Chapter 5

Conclusion and Discussion

The highlights and successes of my Ph.D. research were covered adequately in
the Chapter Summary (Section 1.2), so in this section, I will take the oppor-
tunity to examine some of the shortcomings of the work and look ahead to see
how it might be improved.

The three research projects covered in the thesis extend the work in [TZ11] in
different directions. In the first research project, I thought of a different way
to construct a fixed point and tried to replicate the approach in |[TZ11| using
the new construction in place of Tucker and Zucker’s. I consider this to be
the most original work in the thesis (to the best of my knowledge), but also
the least successful of the three projects. The underlying idea seems obvious
(to me), so its apparent absence from the literature arouses my suspicion. My
guess is that a few people have toyed with it in the past and dismissed it
as impractical. In most nontrivial cases, the limit of the delayed fixed-point
function probably becomes too unwieldy to be of any use. I do, however, think
it’s likely that there is a much better fixed point theorem for it (than Theorem
TZJ1 for Vanishing Delays on page 48). I believe this would be the most useful
next step for the project if anyone were to pursue it in the future: finding a
set of conditions (ideally which do not include Contr) on a stream operator,
sufficient to ensure the operator has a unique fixed point.

The second project began as a reformulation of the mass-spring-damper case
study (as seen in Section 3.3.1.2), motivated by the unusual condition on the
parameters M, K, and D required by |TZ07, TZ11|. After the reforumulation,
it seemed natural to ask what other sorts of operators would satisfy Contr,
and the choice of a Banach space offered an ideal venue to begin answering
that question. While the answer [ was able to provide was somewhat disap-
pointing (very few dynamical systems can be expressed in the required form),
I do believe it was at least somewhat illuminating and it attained a level of
generality beyond what I had initially aspired to reach. It is obviously much
too restrictive, however, essentially allowing for only one kind of module in
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an analog network (the kind shown in the General Form Theorem). Even the
feedforward network from Example 1.3.11 on page 14 is excluded by the Gen-
eral Form Theorem. There should be a way to relax that theorem somewhat
to allow a greater diversity of modules.

The third project was, in my opinion, the most successful, but the research
was done in a relatively short period of time. As a result, it’s a bit messy
having two equivalent constructions. I have little doubt that there is a way
to prove the Generalized Theorem TZJ2 on page 102 and the Concrete Com-
putability Theorem on page 115 using Construction 4.4.3 on page 91, rather
than Construction 4.4.12 on page 96. If so, the latter construction would be
rendered entirely superfluous (as it should be). I simply didn’t have time to
attempt these proofs. That, as well as fully generalizing the computability the-
ory from |TZ12|, I feel is the (relatively) easy part. The hard part is finding a
suitable case study like the mass-spring-damper system to which the smoothie
theory can be applied, but to which the stream theory cannot. I spent a rather
significant amount of time trying to find one. I looked at Nash Equilibrium
and physical models involving partial differential equations—paying particular
attention to the rather simple model of heat diffusion along a fixed-length rod
whose ends are held constant at 0°C. The sequence of retractions I developed
for that system were fairly elaborate (at least for what was meant to be a sim-
ple case study), but ultimately I failed to represent the physical model with a
contracting operator®.

'T have Prof. Jacques Carette to thank for rescuing me from the potentially endless
pursuit down that blind alley. I may have still been trying (with red-rimmed eyes and
grinding teeth) to make it work today if not for him).
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Appendix A

Thoughts on Hadamard’s
Principle

A.1 Continuity isn’t doing quite what we want

Continuity pervades every nook and cranny of both |TZ11| and this thesis.
Much of this is due to the mathematical convenience afforded by continuity:
continuous functions have very nice properties which make them easy to work
with. If one is presented with both a continuous model of a phenomenon and
a discontinuous one—the former is nearly always preferable. Furthermore,
since the field of computable analysis typically defines computable functions
as being continuous, it’s much easier to compare analog computation with
digital computation if the analog models are continuous as well.

In |[TZ11|, however, the authors offer a different reason for the importance
they place on continuity: Hadamard’s Principle. On page 3380 of [TZ11] they
introduce this principle:
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The significance of Theorems 1 and 2 s that conti-
nuity tmplies the stability of the fixed point solution
® to the specification given by F with respect to the
system parameters, initial values and input streams.
This means that small changes in tuples of system pa-
rameters ¢ € A", initial values a € A® and input
streams x € C[T, AP will result in small changes in
the behaviour of the systems as defined by ®(c,a,x) €
C[T, A]™. Here “small” is measured by any topology
chosen for the task in hand. The significance of con-
tinuity is expressed in Hadamard’s principle which, in
the present context, can be (re-)formulated in the form:
for a model of a physical system to be acceptable, the
behaviour of the model must depend continuously on
the data. This principle formalises the fact that if the
system’s behaviour depends significantly on small per-
turbations in its data, then it cannot behave in a stable
fashion and its physical observation cannot be reliable.
This is because, for example, repeating an experiment
or computation will involve small variations of physi-
cal data, and for the system to be observable the corre-
sponding variation in behaviour must also be small.

On page 3402, they continue,

An important aspect of Hadamard’s principle is that it
can be viewed as making classical experimental physics
possible. Suppose, for example, that one wants to ver-
ify any of the well-known relations of classical physics
— Hooke’s Law or Charles’s Law, for example—by tak-
ing measurements and drawing a graph of the relation-
ship between the “independent” and “dependent vari-
ables”—force vs displacement of a spring in the first
example, and temperature vs volume of a gas (at con-
stant pressure) in the second. ... The experimental
results, and consequent graph, only make sense on the
assumption that the function that one is attempting to
plot is continuous, so that small discrepancies or in-
accuracies in the inputs produce only small variations
in the outputs. Moreover, this is needed to guarantee
repeatability of experiments.

[ agree with the spirit and the motivation behind Hadamard’s Principle, but
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not with its prescription of continuity. Certainly small variations in the in-
put data must yield small changes in the behaviour of the system, but this
is significantly different from insisting that arbitrarily small changes in the
behaviour of the system always be attainable via sufficiently small variations
in the input.

In the context of experimental science, “small” will depend on our measuring
instruments and the object under study. A light-year is “small” when measur-
ing the diameter of a galaxy, while even a nanometre is not when measuring an
atom. Suppose our instruments are capable of taking measurements to within
e > 0 of the “true value” of the quantity (if, indeed, such a value even exists).

Now suppose we have a mathematical model f : X — Y of some physical
system. That is, if we take a measurement = € X from the system, the value
f(x) can be calculated and yields a prediction about the system’s behaviour
which can be compared with a measurement. And remember: we have a
margin of error of € in both the input and the output measurements. Consider
the following examples of models we might have.

Example A.1.1.

f:R—=R
ifx <0
if0<zr<e
ifrx>e¢

fz) =

= oalg O

This system is continuous but it is experimentally indistinguishable from the
(discontinuous) step function. The discontinuity in the step function would be
unmeasurable if it were present in the physical system, and if it weren’t present,
that too would be an unmeasurable aspect of its behaviour. If we were to
verify the accuracy of this model experimentally, it would be indistinguishable
from the step function. Both functions would be either confirmed or falsified
together by any conceivable experiment. They are effectively both members
of the same experimental equivalence class.

Yet according to Hadamard’s Principle, the step function would be an “unac-
ceptable” model of a physical system (or as Courant and Hilbert would say,
the problem which produced it was “ill-posed”). I can appreciate that we might
have reasons to prefer one model over the other, depending on the situation,
but to reject the step function reflexively as part of philosophical moratorium
on all discontinuity for its own sake seems absurd to me.

Now consider a more extreme example:

Example A.1.2.
fR—=>R
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fla) = sin(z) + 5 if o is rational
sin(x) if x is irrational

This system is nowhere continuous, but that seems to have almost no adverse
effects on its predictive capabilities. The only impact these discontinuities have
on the viability of the model is that they slightly enlarge the margin of error.
For example, a measurement of 5¢/4 at x = 0 (which would be attainable
with our hypothetical measuring instrument and read as being different from
a measurement of 0) would be consistent with this model, but not consistent
with the model sin(z).

Obviously we’'d prefer to work with sin(z) over f(z) because it’s much simpler
and far more well-behaved. All else being equal, there would certainly be
no reason to favour the discontinuous model. It goes out of its way to be
unwieldy and it does so for no apparent reason, offering nothing but slightly
fuzzier predictions. That is hardly grounds for dismissing such a model as
having no experimental value, however.

Example A.1.3.
f:R—[-1,1]

o -n (22

3

This system is everywhere continuous and even infinitely differentiable (on
(0,1)), but it assumes every possible value in its range within the input margin
of error. Thus, it has absolutely no predictive capabilities whatsoever. It
couldn’t be more continuous, yet even unmeasurably small changes in the
input result in arbitrarily large changes in the output.

Even worse, perhaps, consider the (in)famous example of the “Topologist’s Sine
Curve” (but restricted to RT):
(1
x) =sin | —
o) =sin (1)

No matter how precise your measuring instruments are, if you need a measure-
ment near 0, you're out of luck.

Remark A.1.4. Examples A.1.1 on the preceding page and A.1.2 on the pre-
vious page show that continuity is not necessary to ensure that a model is
experimentally viable, and Example A.1.3 shows that nor is continuity suffi-
cient. Thus, it appears it has no role to play as a criterion of experimental
applicability.

Richard Courant and David Hilbert write (in [CH53|)
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The [requirement of continuity] is necessary if the
mathematical formulation is to describe observable nat-
ural phenomena. Data in nature cannot possibly be
conceived as rigidly fived; the mere process of mea-
suring them involves small errors. For example, pre-
scribed values for space or time coordinates are always
given within certain margins of precision. Therefore,
a mathematical problem cannot be considered as real-
wstically corresponding to physical phenomena unless a
variation of the given data in a sufficiently small range
leads to an arbitrarily small change in the solution.

This paragraph appears to me to contradict itself. If the mere process of
measuring data necessarily involves small errors, then why must the solution
to a mathematical problem corresponding to physical phenomena be required
to exhibit arbitrarily small changes? It is impossible (and we can only assume
it will always be impossible) to measure arbitrarily small changes, so this is
much too extreme a limitation to impose on mathematical models of physical
phenomena.

In a later section entitled “Remarks about ‘Improperly Posed’ Problems,”
Courant and Hilbert write,

Nonlinear phenomena, quantum theory, and the advent
of powerful numerical methods have shown that “prop-
erly posed” problems are by far not the only ones which
appropriately reflect real phenomena.

With this, I agree, and I struggle to see how it is consistent with their earlier
statement.

A.2 If not continuity, then what?

I believe the aim of Hadamard’s Principle is to ensure that in any scientific
model, an unmeasurable difference between two input values should not re-
sult in a measurable! difference between their images. We might codify this
mathematically as follows?:

! Just to dispel any possible confusion, I use the term “measurable” here in the ordinary
sense rather than the mathematical sense. There are no o-algebras or measures involved.

2This definition has surely been proposed before, but by whom and what it has been
named, I have no idea.
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Definition A.2.1. Let (X, dx), (Y, dy) be metric spaces, let £x,ey > 0, and
let f: X — Y. Then fis (ex,ey)-stable if Vx,y € X

dx(v,y) <ex = dy(f(2),f(y)) <ey

The values ey and ey might represent the precision of our measuring instru-
ments. That is, ey is so small that if dx(z,y) < ex, we lack the technology to
determine it (and likewise for €y). This is obviously much messier and far less
satisfying than continuity since the precision of our measuring instruments is
always improving, but I feel this pair of precisions is absolutely essential to
the mandate we are attempting to draft. I don’t believe continuity is fulfilling
the role that Hadamard intended for it, so its elegance is moot.

One way we might liberate this admittedly awkward condition from the pre-
cision of actual measuring devices is to assume theoretical limits such as the
Planck length on the quantities involved rather than technological ones. An-
other possibility (which I think is insufficient, but at least a step in the right
direction) would be to replace continuity with bounded variation.

Remark A.2.2. Even using this alternative criterion, I feel the principle is too
strict, as it suggests we completely dismiss any model or solution that does
not conform to it—that we would be utterly wasting our time with any such
models as they have no scientific value. On this point I defer to Karl Popper’s
philosophy of science and maintain that a scientific statement need only be
falsifiable to have scientific value. As long as it makes some prediction about
a system that can be proven incorrect in the face of the right observation, it
should not be rejected as being experimentally worthless. It may obviously
be replaced by a superior model that makes stronger predictions or has nicer
properties, but that’s rather different from rejecting a model altogether.

In the case of Example A.1.3 on page 130, that model makes no falsifiable
predictions. There is no measurement of the system that would be inconsistent
with the model. Therefore, I agree that it should be rejected from the realm
of experimental science. The case of the Topologist’s Sine Curve is rather
different since it does make falsifiable predictions when we move sufficiently
far away from zero. It may still be consistent with several different possible
measurements, but as long as there is at least one measurement that the model
rules out as being impossible, it is an experimentally viable model.

At the opposite extreme, when a model rules out all but one measurement as
being impossible (i.e. it makes predictions with the same or greater precision
than our measuring devices or our assumptions of theoretical limits), that is an
tdeal model in the sense of experimental viability. I believe there is a spectrum
of models in between the two extremes, and models that make stronger (more
easily falsifiable) predictions should typically be favoured over those which
make weaker predictions, but the latter should not be dismissed altogether the
way Hadamard’s Principle suggests.
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Appendix B

Supplementary Propositions

Lemma B.0.3. If K is a compact metric space and A is a complete metric
space, then C|K, A] (with the compact-open topology) is complete.

Proof. See |[TZ11, MunT75|. O

Definition B.0.4 (Uniformly Cauchy Sequence). Let X be a set and Y be a
metric space (with the metric dy). Let F ={f, : X = Y} _ be a sequence of
functions. We say F is uniformly Cauchy if there exists a function N : Rt — N
such that Ve > 0 Vm,n € N,

m,n 2 N(e) = sup{dy (fu(x), fm(2))} < £

[ know the following lemma must be in some textbook, somewhere, and I'd
rather just refer to it, but I couldn’t find a solid reference that stated it at this
level of generality (without the domain or codomain being R™). At this point,
I'm thinking I'll waste less time by just re-inventing the wheel here.

Lemma B.0.5. Let X be a set and Y be a complete metric space (with the
metric dy ). Let {f, : X =Y}, g be a sequence of uniformly Cauchy func-
tions. Then there exists a unique function f : X — Y such that f, converges
uniformly to f.

Proof. 1t’s clear from Definition B.0.4 that for any x € X, the sequence
{fn(2)},cn is a Cauchy sequence in Y, and since Y is complete, that sequence
must converge. Hence, the sequence { fn}neN converges pointwise to a unique
function f: X — Y. What is perhaps not entirely obvious (albeit, thoroughly
unsurprising) is that the convergence is uniform.

Let N : R — N be the (uniformly Cauchy) modulus function from Defi-

nition B.0.4 for the sequence {f,},cy and define Ny : R — N as Ny(e) =

N(e/2). We will show that N is modulus of convergence for {f,}, -
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Since f, — f (pointwise) as n — oo, there is another (pointwise convergence)
modulus function for f,. Call it N} : X x R* — N. Then Vz € X Ve > 0
Vn € N,

n> Ni(z,e) = dy (fu(r), f(z)) <e

Let ¢ > 0 and let n > Ny(e). Let 2 € X and let m > max {n, Nj(z,2/2)}.
Then,

dy (fa(2), f(2)) < dy (fa(@), fu(2)) + dy (f(2), f(2))
< %—l—g:é

Thus, f, — f uniformly as n — oo with (uniform) modulus of continuity
N O

Corollary B.0.6. Let X be a topological space, and Y be a complete metric
space. Let {f, : X = Y}, .y be a uniformly Cauchy sequence of continuous
functions. Then there exists a unique, continuous function f : X — Y such
that f, — f as n — oo.

Proof. By Lemma B.0.5, there exists a unique f : X — Y such that f, — f
uniformly as n — co. Since all the f,, functions are continuous, the Uniform

Limit Theorem (see [Mun75]|, for example) states that f will be continuous as
well. O
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