Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12381
Title: Exploring the Role of Nonribosomal Peptides in the Human Microbiome Through the Oral Commensal Streptococcus mutans, the Probiotic Lactobacillus plantarum, and Crohn’s Disease Associated Faecalibacterium prausnitzii
Authors: Lukenda, Nikola
Advisor: Magarvey, Nathan
Michael G. Surette, Paul H. M. Harrison
Department: Chemical Biology
Keywords: human microbiome;nonribosomal peptide;NRPS;polyketide;PKS;probiotic;genome mining;natrual product;Natural Products Chemistry and Pharmacognosy;Natural Products Chemistry and Pharmacognosy
Publication Date: Oct-2012
Abstract: <p>Nonribosomal peptides, polyketides, and fatty acids comprise a distinct subset of microbial secondary metabolites produced by similar biosynthetic methods and exhibit broad structural diversity with a high propensity for biological activity. Dedicated studies of these specific microbial small molecules have identified numerous potent actions towards human cells with many clinical translations. Interestingly, most therapeutically used nonribosomal peptides and polyketides were discovered from soil bacteria, meanwhile, bacteria that have co-evolved within a human context, the human microbiota, have barely been explored for secondary metabolites. The central goal of this thesis is to explore the secondary metabolome of human microbiota for nonribosomal peptides and polyketides, which are hypothesized to possess biological activities significant within the human host context. Candidate organisms were chosen for their established connections to human health and evidence suggestive of secondary metabolite production. Specifically, questions about gene to molecule prediction capability, metabolite production, structural diversity, and biological activity were explored from studies of the dental caries linked Streptococcus mutans UA159, from the probiotic Lactobacillus plantarum WCFS1, and the Crohn’s disease associated Faecalibacterium prausnitzii.</p>
URI: http://hdl.handle.net/11375/12381
Identifier: opendissertations/7274
8329
3258516
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.56 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue