Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12348
Title: Polymer Droplets Levelling on Thin Films of Identical Polymer
Authors: Cormier, Sara L.
Advisor: Dalnoki-Veress, Kari
Shi, An-Chang
Department: Physics and Astronomy
Keywords: Tanner's law;droplet spreading;polymer rheology;lubrication approximation;wetting and dewetting;Condensed Matter Physics;Fluid Dynamics;Condensed Matter Physics
Publication Date: Oct-2012
Abstract: <p>This thesis describes the experimental results of liquid polymer droplets levelling on thin films of identical polymer liquid. Through varying the thickness of the underlying polymer film relative to the size of the droplet height, we have observed a crossover in the dynamics between droplets spreading on very thin films to droplets levelling on films thicker than the droplet itself. In the thin film regime, the underlying film behaves as a pre-existing precursor film and the droplet spreads according to the well-known Tanner's law where the droplet height, d<sub>0</sub>, decreases in time as d<sub>0</sub> ~ t<sup>-1/5</sup>. In the opposite regime, when the film thickness is much greater than the initial droplet height, the droplet levels with a much stronger time dependence compared to Tanner's law spreading, d<sub>0</sub> ~ t<sup>-1/2</sup>. Not only have we observed the two extreme cases, we have also experimentally observed levelling behaviour of intermediate systems, where the droplet height and film height are on the same order. We have captured experimentally the crossover behaviour of droplets spreading on thin films to droplets levelling on thick films. In addition, we have developed a theoretical model that accurately captures the physics of this crossover using the lubrication approximation for thin film flows. The relevant background information will be presented as well as a detailed description of the sample preparation techniques required to fabricate spherical caps atop thin films of identical material.</p>
URI: http://hdl.handle.net/11375/12348
Identifier: opendissertations/7243
8290
3201040
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.6 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue