Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12079
Title: Symbolic Generation of Parallel Solvers for Unconstrained Optimization
Authors: Pavlin, Jessica L.
Advisor: Anand, Christopher
Smith, Spencer W.
Department: Computer Science
Keywords: symbolic code generation;parallelization;MRI;optimization;Bioimaging and biomedical optics;Computer and Systems Architecture;Other Computer Engineering;Bioimaging and biomedical optics
Publication Date: Oct-2012
Abstract: <p>In this thesis we consider the need to generate efficient solvers for inverse imaging problems in a way that supports both quality and performance in software, as well as flexibility in the underlying mathematical models. Many problem domains involve large data sizes and rates, and changes in mathematical modelling are limited only by researcher ingenuity and driven by the value of the application. We use a problem in Magnetic Resonance Imaging to illustrate this situation, motivate the need for better software tools and test the tools we develop. The problem is the determination of velocity profiles, think blood-flow patterns, using Phase Contrast Angiography. Despite the name, this method is completely noninvasive, not requiring the injection of contrast agents, but it is too time-consuming with present imaging and computing technology.</p> <p>Our approach is to separate the specification, the mathematical model, from the implementation details required for performance, using a custom language. The Domain Specific Language (DSL) provided to scientists allows for a complete abstraction from the highly optimized generated code. The mathematical DSL is converted to an internal representation we refer to as the Coconut Expression Library. Our expression library uses the directed acyclic graphs as an underlying data structure, which lends itself nicely to our automatic simplifications, differentiation and subexpression elimination. We show how parallelization and other optimizations are encoded as rules which are applied automatically rather than schemes that need to be implemented by the programmer in the low-level implementation. Finally, we present results, both in terms of numerical results and computational performance.</p>
URI: http://hdl.handle.net/11375/12079
Identifier: opendissertations/6995
8033
2919206
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.35 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue