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Abstract

In this thesis we consider the need to generate efficient solvers for inverse imaging prob-
lems in a way that supports both quality and performance in software, as well as flexibility in the
underlying mathematical models. Many problem domains involve large data sizes and rates, and
changes in mathematical modelling are limited only by researcher ingenuity and driven by the value
of the application. We use a problem in Magnetic Resonance Imaging to illustrate this situation,
motivate the need for better software tools and test the tools we develop. The problem is the deter-
mination of velocity profiles, think blood-flow patterns, using Phase Contrast Angiography. Despite
the name, this method is completely noninvasive, not requiring the injection of contrast agents, but
it is too time-consuming with present imaging and computing technology.

Our approach is to separate the specification, the mathematical model, from the implemen-
tation details required for performance, using a custom language. The Domain Specific Language
(DSL) provided to scientists allows for a complete abstraction from the highly optimized generated
code. The mathematical DSL is converted to an internal representation we refer to as the Coconut
Expression Library. Our expression library uses the directed acyclic graphs as an underlying data
structure, which lends itself nicely to our automatic simplifications, differentiation and subexpres-
sion elimination. We show how parallelization and other optimizations are encoded as rules which
are applied automatically rather than schemes that need to be implemented by the programmer in
the low-level implementation. Finally, we present results, both in terms of numerical results and
computational performance.
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List of Abbreviations

The following is the notation that will be used in this thesis.

Math CEL DSL CEL Internal Description
:= Assignment∑

x0...xn−1 + Sum(x0,...,x{n-1}) The sum of any number of inputs of the same di-
mensions∏

x0...xn−1 Prod(x0,...,x{n-1}) The product of any number of inputs of the same
dimensions

scale(s, x) scale s :*: x The result of scaling x by the scalar s
x0 · x1 dot x0 . x1 The dot product of two vectors of equivalent length
x0 + ix1 +: ReIm(x0,x1) The complex number produced of the real vector

inputs (with same dimensions) x0 + ix1

<(x) xRe Re(x) The real part of the complex vector x
=(x) xIm Im(x) The imaginary part of the complex vector x
ft(x) ft FT(x) The fast fourier transform of the complex vector x
ft−1(x) iFt iFT(x) The inverse fast fourier transform of the complex

vector x
proj(ss, x) proj proj The projection of the elements to keep from the

vector x
inject(ss, x) inject The injection of the zeros into the missing elements

of x (those not in kept)
d diff Differentiation

Table 1: Functions in Coconut Expression Library.
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Chapter 1

Introduction

As physicists continuously come up with new and ingenuous models for Magnetic Resonance Imag-
ing (MRI), reducing the gap between theory and practice is too frequently stymied by computational
challenges. In this thesis we present a symbolic code generation toolbox that utilizes classic and
novel approaches to maximize efficiency in an effort to ease these challenges, while presenting an
abstracted layer for rapid development for physicists and mathematicians alike.

1.1 Motivation: Using Phase Contrast Angiography (PCA)
Researchers in MRI developed Phase Contrast Angiography (PCA) to quantify velocity, of blood
and other tissues, in the body, but its use in modern healthcare has been limited by its long acquisition
time. Utilizing this technique could provide physicians with a technique to safely diagnose and track
congenital heart disorders, brain aneurisms, and circulatory diseases. For this reason, researchers
are searching for more efficient PCA experiments, which will largely depend on more sophisticated
models and better processing to solve them.

While an in-depth understanding of the physics of MRI and the inner-workings of PCA are
outside the scope of this thesis, a high level overview of the origin of the signal-generation process,
and the resulting inverse problem will illustrate both the common structure of inverse problems
(especially inverse imaging problems) and the frequent variations that make the automatic generation
of efficient solvers particularly helpful in this field.

In this section we will briefly review the physics behind this process and the challenges of
using PCA in practice, and look at how a domain specific language closely matching the informal
language used in modelling can help us meet these and many similar challenges.

1.1.1 Physics and Mathematics of PCA
The process of acquiring the velocity encoded signal begins with the subject in a large magnet which
causes the net magnetization of its protons to align. The application of a radio frequency pulse tips
the protons over, at which point they begin to precess at a uniform rate. A first linear field variation,
known as a gradient, is applied causing the tipped protons to precess relative to the uniform rate at a
rate proportional to the field strength. Finally, a second (and exact opposite) field variation is applied
causing the protons to relatively precess in the opposite direction.

For protons at rest, such as in static tissue, the relative precession caused by the positive
and negative gradients cancel out. For protons that moved during the experiment (for example, the

1
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protons that make up the blood in an artery) the positions during the opposite gradients are different
so the precessions do not cancel each other out exactly. How far the proton moved during the
experiment is therefore revealed in the signal as a change in phase of rotation, which is captured in
the digitized signal as a difference in complex phase, proportional to the (dot) product of the applied
gradient and the tissue velocity. The signal is expressed by Equation (1.1), with the unknowns ρ0
and V , proton density and velocity respectively, and the known G, the gradient.

signal = ρ · ei·G·V (1.1)

In some cases, the signal equation can be solved directly, but more commonly, we need
to add a statistical model for the noise incorporated in the measurements and find the maximum
likelihood estimate. For independent, identical, normally distributed error, this leads to a least-
squares minimization problem. The resulting objective function, including the measurements, m,
is ∑

G∈G

∥∥∥m− ft(ρ · ei·G·V )
∥∥∥2, (1.2)

where the norm is the `2 vector norm summing the individual differences over the array of mea-
surements, and G is a set of gradient sensitizations, which are parameterized by vectors in R3. A
minimum of dimensions + 1 sensitizations are required, so for three-dimensional velocity profiles,
four sensitizations are required, but more could be used for robustness or signal-to-noise reasons.

Regularization

Due to the high level of noise, ill-conditioning of the signal equation, incomplete data, or a combi-
nation of these issues, it is beneficial to introduce additional a priori information to the equation.
This is added in the form of a penalty to the objective function coming from the maximum likeli-
hood estimate. In our example, we expect the result to have smooth transitions between pixels, and
we can introduce this information into the optimization problem by adding the squared distance,
called the `2 norm of the differences between neighbouring pixels, to penalize any large jump in
values between neighbouring pixels. This is a commonly used technique for making inverse prob-
lems easier to solve, especially in the presence of noise, and is known as regularization, introduced
by Tikhonov [TA77].

dydV .V  + dy
y dyy

y
.

V  + x
V

y

x

V

xdV
dx

.

z

dx

.dV
dz

.
z

dzV  + 

Vz

Figure 1.1: Conservation of Mass
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We incorporate this information by adding a term to the objective function,

min

∑
G∈G

∥∥∥m− ft(ρ · ei·G·V )
∥∥∥2 + λ∆(V )

2

 ,

with λ acting as a tuning parameter to regulate how heavily the non-smoothness will be penalized,
and ∆ encoding the a priori information in the form of a regularizer.

Among the most common regularizers, `2-norms and `2-difference norms are good for
getting rid of background noise and noise on top of smooth image segments. They lead to an easy-
to-solve quadratic objective functions, but can result in over smoothing, or blurring. On the other
hand, an `1-norm will penalize the total variation between tissues, rather than large transitions, and
hence preserve sharp edges. In Equation 1.3 we see the `2-difference defined for a 3D discretization.
The variable δ will be replaced by each of the velocity directions (vx, vy and vz) as well the real and
imaginary parts of ρ (ρr and ρi).∑nx−1

i=0

∑ny−1
j=0

∑nz−1
k=0

∥∥δ(i,j,k) − δ(i+1,j,k)

∥∥2+∑nx−1
i=0

∑ny−1
j=0

∑nz−1
k=0

∥∥δ(i,j,k) − δ(i,j+1,k)

∥∥2+∑nx−1
i=0

∑ny−1
j=0

∑nz−1
k=0

∥∥δ(i,j,k) − δ(i,j,k+1)

∥∥2 (1.3)

In addition to these common regularizers, there are problem-specific regularizers. For ex-
ample, in our problem we have experimented with regularizing using the physical property of con-
servation of mass. This property is illustrated in terms of velocity profiles and pixels in Figure 1.1. It
simply says that if blood is flowing into a pixel then it has to be flowing out of the pixel. This prop-
erty has been used as a regularizer in meteorological optimizaiton problems [HMH08, CMP02],
where it has reduced solving time. To our knowledge, however, this is the first time it has been
used in medical imaging. The equation for computing the conservation of mass regularizer for the
velocity vectors is produced in Equation 1.4.

∑nx−1
i=0

∑ny−1
j=0

∑nz−1
k=0

∥∥(vx(i+1,j,k) − vx(i,j,k)) + (vy(i,j+1,k) − vy(i,j,k)) + (vz(i,j,k+1) − vz(i,j,k))
∥∥2
(1.4)

1.1.2 Barriers to PCA in Practice

In practice, utilizing PCA as a means for diagnostics in hospitals using current methods is limited
by long processing and acquisition times. Having the patient immobilized within the MRI machine
for long periods is challenging for both the patient and for the budgetary concerns of the healthcare
system.

Collecting the full data for this experiment requires the patient to be in the machine for up-
wards of 40 minutes, and, even then, recent work yields computational times well above acceptable
levels. For example, an image with a resolution of 128 × 128 required 13 minutes for computa-
tion [IMB+10], and 3-dimensional images with resolutions of 128 × 128 × 128 required between
180 minutes and 780 minutes for computation [Mar10]. Some experiments collecting less data and
using better mathematical optimization techniques have demonstrated some promising results for
low resolution images. For example, the problem has been solved using 28% of the data at a res-
olution of 128 × 128 (meaning the patient spends about 12 minutes in the MRI machine) in five
minutes [HMB+10].

3
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While these results are promising, much more work needs to be done before PCA can
realistically be used as a diagnostic tool in our cash-strapped medical system.

1.1.3 Experimentation is Key
The most important things to gather from the previous sections is the following: with a better compu-
tational solution, PCA could become a practical, powerful, and non-invasive diagnostic tool. How-
ever, finding that solution will require a lot more experimentation. Currently, that leaves physicists
hacking together code that is not reusable, and difficult to test and debug.

Before the creation of CEL, our group experimented with problems using numerical phan-
toms of resolution 28× 28× 28. The model with and without noise is shown in Figure 1.2.

Figure 1.2: Numerical phantom without and with noise.

With experimentation we found failures caused by of over-smoothing or blurring with `2,
the conservation of mass regularizer attempting to align all of the velocity vectors, and aliasing
caused by gradients that were too small for the velocities in the in the phantom, resulting in conver-
gence to the wrong minimum of our non-convex objective. Examples of these failures can be seen in
Figure 1.3. However, with experimentation we were able to faithfully reproduce the phantom with
greatly minimized noise, as can be seen in Figure 1.4.

These regularizers also effected numerical error and the time it took to run the experiments.
Without these regularizers, we were able to solve for velocity in approximately 7 minutes, as seen
in Table 1.1.3. However, experimentation with the conservation of mass regularizer demonstrated
that we were able to cut that time almost in half. Meanwhile `2 elevated the time needed to solve the
problem, but reduced the error by 90%. While these results were interesting, the project was stalled
at that point due to the unusably long run times that came with the addition of just a few pixels once
the data no longer fit in cache.

Regularizer Time (s) `2 Error
None 419 2.20
`2 702 0.26
CoM 248 2.10

Table 1.1: Results from experimentation with regularizers pre-CEL

MRI physicists would benefit greatly from having a code generation toolbox that allows
them to enter equations and a-priori-information-driven regularizers, and produces efficient, parallel
code suitable for real-time experiments, without requiring them to concern themselves with the

4
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Figure 1.3: Failed experiments caused by over-use of `2 and Conservation of Mass regularizers, and
aliasing inherent to the use of non-convex objectives, like the velocity objective.

Figure 1.4: Results of preliminary experimentation with `2 and conservation of mass regularizers,
as well as convexity factors.
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computer science behind writing such code, let alone the software engineering factors necessary for
the high reliability we expect from medical imaging software. In short, these experimenters would
benefit greatly from a domain specific language suited to their field that generates code to do this
work for them.

1.2 Objective
In the previous section, we have seen a part of the numerical experimentation possible with a sim-
ple symbolic code generation library implemented using algebraic data types in Haskell. While it
was only capable of representing scalar expressions, through the use of a convention for encoding
indices in scalar variable names, it was possible to generate the regularizers above, although the
implementation was non-transparent, and fragile. It was, however, impossible to incorporate more
general linear transformations, like the Fourier transform (FT), which made it impossible to consider
inverse problems involving partial-data collection. By definition, partial-data experiments are those
in which the full set of data required by a Fast Fourier Transform (FFT) are not collected. In more
pedestrian full-data experiments, we can assume that the Fourier transform has already occurred
and model measurements in image space, which enabled the work above, but as we have suggested,
the main barrier to PCA in practice is data-collection time, and reducing collection time requires
the use of parallel data. Furthermore, most potential clinical applications will involve both novel
experiment design and modelling and regularization. In these cases, functional evaluation must be
performed in-vivo, and even willing volunteers can only lie still for so long while experimenters
wait for data processing and iterate on experiment designs. So, as a practical requirement, we re-
quire short turn-arounds for optimized multi-core software, and high levels of software quality, even
for experimental software.
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Goals of Coconut Expression Library (CEL)
The Goal of the Coconut Expression Library is to develop a tool capable of handling the full range
of mathematical models and regularizers, capture modelling errors as early and often as possible,
include symbolic differentiation, and computation minimization (through common subexpression
elimination (CSE) and algebraic simplifications), support correctness through automation and static
checking wherever possible, and generate efficient parallel implementations to support rapid proto-
typing and live experimentation.

We feel these needs can be best met by

1. a domain specific language close to current use by applied mathematicians and scientists in
in-formal model development; this must include

2. first-class vector variables,

3. derivation with respect to vector variables,

4. built-in linear operators with existing optimized implementations like the FFT,

5. user-defined zip-shift-map operations including the stencils used in the PDE community; and
be interfaced with

6. an interface for computer scientists to specify simplification and parallelization operations
algorithmically;

7. an efficient parallel run-time system to execute generated code;

8. an efficiently verifiable model of synchronization;

9. an efficient parallel unconstrained optimizer into which to plug generated function and gradi-
ent evaluators.

In this thesis we will explain how our DSL allowed us to reach goals 2 and 4 (see Chapter 2)
and our differentiation techniques for reaching goal 3 (see Chapter 4). Additionally, we will show
how rule based simplification and transformations for parallelism helped us to reach goal 6 (see
Chapters 5 and 7). Finally, our parallel runtime and verification systems will lead us to reaching
goals 7, 8 and 9 and are explained in Chapter 6.
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Chapter 2

Domain Specific Language (DSL)

In this chapter we will briefly discuss DSLs in general and, specifically, the Coconut Expression
Library and the advantages that it provides for users. The main novelty is the incorporation of 2. first-
class vector variables, as opposed to vectors of scalar expressions, which is required to support
4. built-in linear operators with existing optimized implementations like the FFT. Doing so makes
these higher-level abstractions available to later graph transformations performing simplification and
parallelization.

2.1 Background

Domain Specific Languages (DSLs) are programming languages that provide a clear and concise set
of features to express groups of tasks in a particular domain. They are used to abstract away the
complex details of an application, providing the user with a simple interface with which to program.

Although requiring both domain expertise and knowledge of the language itself, a DSL
provides an abstraction from the implementation details and facilitates faster development once
these two are achieved.

Coconut (COde COnstructing User Tool) is a compiler research project at McMaster Uni-
versity [KAC06, ACK+04, AK07b, AK07a], targeting medical imaging applications. Motivated
by the desire to generate verifiable and highly optimized architecture-specific machine code based
on mathematical specifications [KAC06, ACK+04], Coconut provides low-level optimizations to
account for higher-level model characteristics which are generally considered to be too risky from
a software engineering stand point. The user is provided with a highly abstracted DSL written in
Haskell.

2.2 Implementation

We provide a simple grammar to build expressions, which provides access to their data types, how-
ever, for safety, we want the users to use instances of classes which are designed around math-
ematical objects, such as real vector spaces and 1D, 2D, 3D and 4D discretizations (which are
vector spaces with more structure, allowing for some compile-time type checking). In Figure 2.1
we demonstrate the underlying data type for expressions, and in Figure 2.2 the class for real vector
spaces.
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data E x p r e s s i o n E d g e = Op Dims −− dims o f o u t p u t
OpId −− t h e o p e r a t i o n
[ Node ] −− dims and nodes o f i n p u t s

| Var Dims B y t e S t r i n g −− v a r i a b l e X
| DVar Dims B y t e S t r i n g −− d i f f e r e n t i a l v a r i a b l e dX
| RelElem { r e A r r a y : : I n t −− a r r a y number

, r eBoundary : : Boundary −− how t o t r e a t boundary
e lems

, r e I d x : : [ I n t ] −− o f f s e t s i n a r r a y i n d i c e s
} −− l e n g t h r e I d x == l e n g t h

outDims
| Cons t { unConstDims : : Dims , unConst : : Double }

d e r i v i n g ( Eq , Show , Ord )

Figure 2.1: Data structure for expressions

data OpId = FT Bool −− FT : True = forward , F a l s e = I n v e r s e
| PFT Bool Dir −− P a r t i a l FT w i t h Dir o f row , column or s l i c e
| T r a n s p o s e Swap
| Sum
| SubMask
| NegMask
| Neg
| Abs
| Signum
| Prod
| Div
| S q r t
| S in
| Cos
. . .

Figure 2.2: Data structures for operations

2.3 Graph Modifications

The coding for optimization of the internal data structures for increased parallelization and new
simplifications is itself a DSL. Throughout the code examples in the following chapters (especially in
Chapter 5), a consistent language will be made apparent that, when learned, will allow for developers
to easily experiment with new optimizations and initiatives as they see fit.
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c l a s s R e a l V e c t o r S p a c e v s | v −> s where
s c a l e : : s −> v −> v
d o t : : v −> v −> s
subMask : : v −> v −> v
negMask : : v −> v −> v
mapR : : ( s −> s ) −> v −> v
norm2 : : v −> s
norm : : ( F l o a t i n g s ) => v −> s
norm2 v = d o t v v
norm = s q r t . norm2
pr o jSS : : Subspace −> v −> v −− p r o j e c t on to a s u b s p a c e
i n j e c t S S : : Subspace −> v −> v −− i n j e c t ( a d j o i n t t o p r o j e c t )

Figure 2.3: Data structures for vector spaces

2.4 Use Cases

The core expression language in the Coconut Expression Language (CEL) is meant to provide math-
ematicians and physicists with a programming language that allows them to easily express their
models as new expressions.

All experimentation with Coconut DSLs sit on top of Haskell, and therefore require the user
to have at least a base understanding of the language. That said, the advantages of the high-level
abstraction from developing for multicore architectures outweigh the challenges.

Separation of model and optimizations

The DSL gives the user the ability to write their mathematical model without being concerned with
optimizations. This abstraction allows the user to focus on the equations, rather than concerning
themselves with code efficiencies.

Algebraic descriptions of expressions

With implementation details abstracted away, the user is able to build algebraic expressions that
look like algebraic expressions. For example, in Figure 2.4 a user utilizes the CEL DSL to build a
3D Fourier transform, ft(x + iy). The variable constructor var3d needs to know the dimensions
(16× 16× 16 in this case) and the names (“x” and “y” respectively) of each variable. The symbols
+: and ft are functions that build operations to build a complex number and the Fourier transform
respectively.

Mix-and-match (objectives and regularizers)

As stated in the introduction, experimentation requires the ability to see how different regularizers
effect the runtime and the quality of the output. The DSL for Coconut allows the user to write small
expressions that represent these different models and then add them or break them apart as needed.
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> let x = var3d (16,16,16) "x"
> let y = var3d (16,16,16) "y"
> ft (x +: y)
(FT((x(16,16,16)+:y(16,16,16))))

Figure 2.4: Building operations in the CEL DSL

m a s s C o n s e r v a t i o n : : ( ThreeD , ThreeD , ThreeD ) −> S c a l a r
m a s s C o n s e r v a t i o n ( ThreeD vx , ThreeD vy , ThreeD vz )

= S c a l a r $ E x p r e s s i o n d o t t e d e x p r s 2
where

( E x p r e s s i o n _ exprs0 , nodesXYZ@ [ nX , _ , _ ] ) = mergeL [ vx , vy , vz ]

−− v e l o c i t y v e c t o r s i n s i d e c o n v o l u t i o n f u n c t i o n
vX = r e l E l e m 0 ZeroMargin
vY = r e l E l e m 1 ZeroMargin
vZ = r e l E l e m 2 ZeroMargin

−− g e t d i m e n s i o n s
dims = getDimE e x p r s 0 nX

−− c r e a t e c o n v o l u t i o n f u n c t i o n
S c a l a r f = ( vX [ 1 , 0 , 0 ] − vX [−1 ,0 ,0 ] )

+ ( vY [ 0 , 1 , 0 ] − vY [0 ,−1 ,0 ] )
+ ( vZ [ 0 , 0 , 1 ] − vZ [0 ,0 ,−1] )

−− add t h e c o n v o l u t i o n f u n c t i o n t o t h e graph
( exprs1 , convN ) = addEdge e x p r s 0 $ Op dims ( SparseConvZip dims f ) nodesXYZ

−− add t h e c o n v o l u t i o n f u n c t i o n d o t t e d w i t h i t s e l f t o t h e graph
( exprs2 , d o t t e d ) = addEdge e x p r s 1 $ Op Dim0 Dot [ convN , convN ]

Figure 2.5: Code to build a regularizer for the conservation of mass

In Figure 2.5 we see a quick function to build the conservation of mass regularizer. This
regularizer can be added to the fit-to-data term and sequenced with any number of other regularizers.

Rapid development

All in all, this provides the user with very fast development and very re-usable code.
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Chapter 3

Common Subexpression Elimination
(CSE)

The basic idea behind Common Subexpression Elimination (CSE) is to seek out instances of identical
expressions (places that evaluate the same value multiple times) and replacing them with the already
computed value.

The following code has a repetitive calculation:

d = a * b + c
f = a * b + e

Can be changed to:

temp = a * b
d = temp + c
f = temp + e

Figure 3.1: A simple example of how to remove repetitive calculations through common subexpres-
sion elimination

In this section we will briefly review the origins of this technique and then discuss how it is
implemented to maximize efficiency in CEL. Although it does not directly contribute to any of the
enumerated goals, CSE is required to produce efficient code with acceptable compile times.

3.1 Background
In 1970, IBM’s John Cocke talk entitled Global Common Subexpression Elimination demonstrated
how to remove repetitive calculations in code, using a directed graph with flow analysis. [Coc70]
Cocke was looking at problems like the one expressed in Figure 3.1, where the compiler seeks out
the culprits of repetitive calculations and, when certain that it will produce the same result (with

13
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program flow understanding), makes the replacement using a temporary variable.
When dealing with large algebraic expressions, the problem is actually simpler. The classic

understanding of an expression tree is remodeled into a Directed Acyclic Graph (DAG). The head
node of the expression is an ancestor to all other nodes in the graph. Variables and constants are
either the entire graph (for example for the expressions x or 1) or children to the operations in the
expression. They cannot be parents (and therefore cannot have any edges coming out of them).
A subexpression of the expression consists of a node, all of its descendent nodes and the edges
that connect them. Figures 3.2 and 3.3 we see the tree and DAG, respectively, of the expression∥∥ft(x+ iy)

∥∥
2
. Even in this simple example we can see a dramatic reduction in the expression size

through the use of CSE.
Using DAGs as the underlying structure for physics expressions is popular methodology.

Maple has been using them for well over a decade [Hec00], as have some institutions doing projects
similar to CEL, including the University of Maryland’s Quark-PLASMA project [YKD11] and the
Barcelona Supercomputing Center’s SMPS [SPBL06].

3.2 Common Subexpression Elimination (CSE) for the Coconut
Expression Library (CEL)

In CEL, expressions are stored as DAGs with a hash function that stores each subexpression as an
integer value. When an expression is created by the user, internal functions recursively build the
DAG and populate the hash table. The recursion stops when a variable or constant is found, and a
hash function adds them to the table. The hashed values of those leaf nodes are utilized in the hash
for each of the nodes in the DAG building up from them (so x + y does not hash to the same node
as x + z or even y + x — more on that in Chapter 5). In Figure 3.4 we see the application of hash
functions to the subexpressions that make up the expression

∥∥(ft(x+ iy))
∥∥
2
.

If the hash function returns a value that is already in the table, it verifies that it is the hash
for the same subexpression. If it is the same then no new entry is made. Otherwise, a collision has
been found and, using open addressing methodologies, the expression is rehashed to a new node
number and retested.

Once the node number has been secured, the new node as well as directed edges to its
children (the inputs to that node) are added to the graph. As a result, every subexpression in the
DAG representation is unique, thereby achieving CSE as desired.

If two expressions are built separately, there is no guarantee that all of their common subex-
pressions will have hashed to the same result (this is a consequence of using open addressing). As
a result, if separately built expressions are being joined, all subexpressions of the second expression
must be rehashed and retested to ensure that all common subexpressions are caught.
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Figure 3.2: Tree of:
∥∥ft(x+ iy)

∥∥
2
, where (x + iy) : D → C is a discretization of a complex
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function.
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Expression Nodes

x

y

x+ iy

ft(x+ iy)

<(ft(x+ iy))

=(ft(x+ iy))

<(...) · (<(...)

=(...) · =(...)

∑
{dot(...), dot(...)}

Hashed Node

[6565]

[6566]

...

[69576787]

[69739155]

...

[266532399]

[266532622]

[266532626]

...

[266527300]

...

[468171459]

Hash Function

~(Var “x”)

~(Var “y”)

~(ReIm(6565, 6566))

~(ft(266527300))

~(<(266532399))

~(=(266532399))

~(dot(266532622, 266532622))
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Figure 3.4: Hashing DAG nodes to maximize common subexpression elimination.
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Chapter 4

Differentiation

With rapid development as one of our objectives, it is important that we provide the user with the
ability to easily differentiate expressions. Derivatives are used in several different ways in scientific
computing, including optimization, which we will discuss in Chapter 8.

In this chapter we will discuss various types of differentiation, our decisions for our choices,
and our implementation techniques. The main novelty in this section is the goal 3. derivation with
respect to vector variables.

4.1 Background
In this section we will review symbolic and numeric techniques for differentiation.

4.1.1 Symbolic Differentiation (SD)
In symbolic computation, Symbolic Differentiation (SD) calculates the derivative of a expression
with respect to a particular variable, and produces an expression as its output. Typically, it accom-
plishes this by applying standard differential calculus rules in a divide-and-conquer manner.

Since the result of SD is itself a symbolic expression, it is advantageous compared to other
methods because it allows for additional (non-obvious) simplifications to be made. On the other
hand, this same feature results in the evaluation of large expressions being slow relative to other al-
ternatives, especially when taking the partial derivative with respect to many inputs. But this depends
on what constitutes a variable in the expression data type, so if only scalar variables are available,
complexity will grow as a function of vector size, although it would be constant for an expression
language with vector variables. Another disadvantage is that SD is only applicable to expressions
with a theory of differentiation (e.g., polynomials) but not for general computer programs.

Symbolic differentiation is available in all symbolic computation applications. The most
wide-spread commercial examples are Maple and Mathematica. Maple has SD for scalars only. In
a limited manner, one can get around this for functions that can be converted into loops [ACCM05],
for example for a curve fitting problem, but it is incompatible with other vector operations, such as
a Fourier transform.
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4.1.2 Automatic Differentiation (AD)

Figure 4.1: How Automatic and Symbolic Differentiation are related

Automatic Differentiation (AD), also referred to as Algorithmic Differentiation, calculates
the derivative of a program in a programming language, producing a function as its output [GW08].
It does so by exploiting the fact that computer programs are, at their essence, just a series of arith-
metic operations (such as additions and divisions) for which standard differential calculus rules ap-
ply. AD, therefore, derives the derivatives by continually applying the chain rule to those arithmetic
operations. [MN93].

AD can, therefore, produce results for expressions that cannot be represented as a single
formula. Additionally, AD preserves the efficiencies in the code as well as the sparse structure of the
initial function, making it more attractive when working with massive expressions. Finally, AD (and
SD) are advantageous since they do not incur truncation errors, as does finite-differencing, since it
can achieve solutions in arithmetic precision [GW08, 2].

For a visual relation between AD and SD, refer to Figure 4.1 [Ber07].

4.2 Vector Differentiation in CEL
Since CEL is, at its core, an example of symbolic computation, it is not surprising the we have taken
a symbolic approach to implementing differentiation. But to handle more expressions with more
complicated operations, CEL differentiates implicitly rather than explicitly by applying the same
standard calculus rules as it travels recursively through the DAG.

To preserve common subexpressions, differentiation is implemented by adding subexpres-
sions to the hash table of subexpressions in the original function.

The result of implicit differentiation is the exterior derivative, for which there exists a
formal theory which we do not exploit beyond the obvious properties. Although Maple implements
the exterior derivative in the Forms package, that implementation was not designed for, and has not
(to our knowledge) been exploited in, symbolic code generation.

The advantage of symbolic differentiation in our context is that we can quickly differentiate
scalars, as well as vectors coming from 1D, 2D, 3D and 4D discretizations. Additionally, our sim-
plification system (explained in Chapter 5) will weed out the inefficiencies that plague SD, since it
identifies and preserves structures to gain efficiency in the code. This is even better than AD, which
preserves efficient structures in the original program, but makes only limited further simplifications.
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>> diff (mp ["X"]) (norm2 (ft (x +: y)))
((((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16])))))
+ ((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16]))))))
+ (((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))
+ ((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))))

Figure 4.2: CEL’s differentation of dx
∥∥ft(x+ iy)

∥∥
2

sum

sum

sum

dot

dot

<

<

=

=
ft

ft

+i

+i
dx

0

x

y

77ooo

''OOO

��
EE

��
EE

33ggg
++WWW

33ggg
++WWW

##GGGG

++WWWW

33gggg

;;wwww
//

// 33ggg
++WWWW

33gggg
++WWWW

Figure 4.3: DAG of the differentation of dx
∥∥ft(x+ iy)

∥∥
2

In Figure 4.2, we see an example of differentiation in CEL. It takes two 3D vectors (x and
y, each 16× 16× 16), and differentiates the `2-norm of their FT,

dx
∥∥ft(x+ iy)

∥∥
2
.

The disadvantage of implicit differentiation is that it requires additional expression manip-
ulation to isolate partial derivatives, which are required to solve the unconstrained minimization,
which, in turn, is required to solve the inverse problems which motivate this thesis.

4.3 Isolating Differential Variables
One important thing to notice in Figure 4.2 is that the differential variables, d(X[16][16][16])
in this case, are buried deep within the expression. This happens because, as previously explained,
we apply implicit differentiation recursively to our DAG, stopping at the leaves (variables and con-
stants) and building back up the expression.

To calculate the gradient, we need to isolate these variables by having them on the left of
the dot product, in the form: dx · (...). To accomplish this we have implemented a method that
utilizes stacks and adjoint operations to move around the variables and operations until we have
arrived at our desired form.

As a quick reminder, a stack is a Last In First Out (LIFO) data structure with two essential
operations: push (add an element to the top of a stack) and pop (remove the top item from the stack).

To isolate the differential variables we begin with two empty stacks and our symbolically
differentiated DAG. When we find that there is a differential variable along one branch and not along
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1. Push the part with the differential variable onto Stack 1 and the other part onto Stack 2

Stack 1 ↓
+i0
ft
<

Stack 2 ↓
<(ft(x + iy))

2. When we find a differential variable, pop off Stack 1 and push the adjoint onto Stack 2 as adjoint

Stack 1 ↑ Stack 2 ↓
<
ft−1

+i0
<(ft(x + iy))

Figure 4.4: Isolating differential variable dx in the expression <(ft(dx+ i0))) · <(ft(x+ iy)).
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Figure 4.5: Graph rebuilt to isolate differential variable

the other, we push all of the operations that lead to the differential variable onto the first stack and
the other branch of operations onto the second stack. Finally, we pop the operations from the first
stack and put their adjoints onto the second stack. We then pop everything off the second stack,
rebuilding the tree as we go, and we are left with a new expression that has the differential variable
isolated.

An example is seen in Figure 4.4 where we see dx isolated from the expression <(ft(dx+
i0))) · <(ft(x + iy)), resulting in the new expression dx · <(ft−1(<(ft(x + iy))) + i0). The new
DAG can be seen in Figure 4.5
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Chapter 5

Simplification

In this section we will explore the importance of and techniques for simplification as well as its
implementations and outline what would be required to prove that this framework is sound. While
the pattern replacement snippets clearly have the potential to be developed into a language, what we
claim for now is a substantial down-payment on 6. an interface for computer scientists to specify
simplification and parallelization operations algorithmically.

5.1 Background
While often considered to be the more pervasive process in algebraic manipulation, simplification is
also said to be the most controversial [Mos71]. While the first goal of simplification systems should
be that simplified expressions are equivalent to the initial expressions [Sto11], the controversy arises
due to the manner in which context redefines what it means for an expression to be simplified. For
example, (x− x)3 should be simplified to 0, but what should happen to (x− y)3?

For CEL, the objective of applying simplification is to achieve a reduction in running time
by eliminating unnecessary and redundant computations while maintaining equivalence to the initial
expression.

5.2 Simplification in CEL
The objective for the simplification system in CEL is to maximize computational efficiency. To
accomplish this we needed to:

1. Discard unnecessary computations

2. Replace computations for ones that are more efficient

3. Ensure that all common subexpressions are found

While a full list of the simplification rules can be found in Appendix A, let us focus on a
few which can help exemplify our solutions to the three types of simplifications listed above.

The first type of simplification is the elimination of unnecessary computations. Some of
the rules are obvious, such as x+ 0→ x, which will save us an add operation. Some of these rules
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save us thousands of floating point operations, such as removing unnecessary Fourier transforms, as
in ft(ft−1(x))→ x.

The second type of simplification is the replacement of operations with others that are more
computationally efficient, as in x+ x+ x+ x→ scale(4, x) .

The third type of simplification is the discovery of additional common subexpressions.
While all rules help to do this in some way, operations which are invariant under certain transforma-
tions (e.g., the order of operands to commutative binary operations) can be considered equivalent by
CSE and thus may induce further simplification. This is demonstrated in Figure 5.1, which shows
the importance of discovering that (x+ y) + (y + x) is the same as (x+ y) + (x+ y)

1. With no simplification, sum hashes to a different node number for x+ y and y + x

sum

sum

sum

x

y

??������

��??????

��

��&&

XX

2. At a normal form, y + x is converted to x+ y, and the CSE is exposed:

sum sum

x

y

EE
��

??������

��??????

3. Additional simplifications are now exposed as well.

scale

2

sum

x

y

CC�����
//

??������

��??????

Figure 5.1: Simplifying into a normal form to expose CSEs.

To accomplish the actual simplification we have a series of simple rules that the graph falls
through in a manner similar to a common switch statement. Some sample rules, written in Haskell,
have been included in Figure 5.2, demonstrating how the fall through method is implemented and
the simplicity of the rules themselves.

The fall through function simplify must be continually called until the graph is simpli-
fied, which raises the obvious question: “when is it safe to claim that a graph is simplified?” We
found the answer to be: when the graph stops changing, since no more of the simplify rules apply.
For our switch analogy, this would be like falling into the default case. At first this might seem
obvious, but it points to an important feature of our rules, in that they must not cancel each other
out or the algorithm could run indefinitely. That is to say, our system must be confluent so that our
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−− c o l l a p s e 1 s c a l e a n y t h i n g
| Jus t ( s , x ) <− M. s c a l e e x p r s node
, Jus t ( 1 , _ ) <− M. c o n s t e x p r s ( snd $ s e x p r s )
= x e x p r s

−− c o l l a p s e Re ( x +: _ ) i n t o x
| Jus t ( x , _ ) <− (M. xRe ‘o ‘ M. reIm ) e x p r s node
= x e x p r s

−− c o l l a p s e s c a l i n g o f a s c a l i n g o f a v e c t o r
| Jus t ( s1 , x1 ) <− M. s c a l e e x p r s node
, Jus t ( s2 , x2 ) <− M. s c a l e e x p r s ( snd $ x1 e x p r s )
= ( ( s1 ∗ s2 ) ‘ s c a l e ‘ x2 ) e x p r s

−− c o l l a p s e i n v f t ( f t ( x ) ) i n t o x
| Jus t ( x ) <− (M. i n v F t ‘o ‘ M. f t ) e x p r s node
= x e x p r s

Figure 5.2: Three simplification code examples written in Haskell: scale(1, xi) → xi, <(xi +
ixj)→ xi, scale(c1, scale(c2 ∗ xi))→ scale(c1 ∗ c2, xi) , and ft−1(ft(xi))→ xi respectively.

expressions are guaranteed to to arrive at a normal form.
The simplicity of the individual rules (a full list of which can be found in Appendix A), is

powerful, since it makes them easy to reason about mathematically.

5.3 Well-definedness

There are some basic properties that need to be proven about our simplification methods to demon-
strate that they are sound. By mapping our simplification rules onto a Noetherian abstract rewriting
system (ARS) we conjecture that the properties of termination, confluence and canonical will hold.
The simplification rules are fully listed in the tables of Appendix A.

5.3.1 Confluence

In Chapter 3 we discussed why it is important for our simplification algorithm to arrive at a normal
form. In this section we will explore what this means and how we proved that our methodologies
have this property.

The normalisation or reduction process is implemented by repeatedly applying rewrite
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rules until none of them apply, meaning that the expression has arrived at a normal form. Confluence
holds if and only if there exists exactly one normal form for any term [Toy05].

The Diamond Property

Proving the confluents of the majority of our rules is easily done with the help of the diamond
property. In Figure 5.3 we demonstrate an example of two rules for which the diamond property
holds, (1) collapsing scales of scales: scale(s0, scale(s1, x0)) → scale(s0 ∗ s1, x0) and (2) a sum
with a single input can be rewritten as just that element: sum(x0)→ x0.

When we substitute the second into the first, since they have a common variable, x0, we
will first rename x0 to x1. The substitution thus results in scale(s0, scale(s1, sum(x1))). The two
rewrite rules result in two possible outcomes: (a) scale(s0∗s1, sum(x1)) or (b) scale(s0, scale(s1, x1)).
Either way, they join with the result in a single step: scale(s0 ∗ s1, x1). This can be visualized in
Figure 5.3.

scale(s0, scale(s1, sum(x1)))

scale(s0 ∗ s1, sum(x1)) scale(s0, scale(s1, x1))

scale(s0 ∗ s1, x1)

wwoooooo
''OOOOOO

''OOOOOO
wwoooooo

Figure 5.3: Visual demonstration of the diamond property for the rules scale(s0, scale(s1, x0)) →
scale(s0 ∗ s1, x0) and sum(x0)→ x0

For all pairs for which this diamond property holds, no additional work needs to be done
to demonstrate that these rules are confluent. However, for those that do not have this property,
additional properties must be demonstrated. We conjecture that this will hold, however the proofs
are outside the scope of this thesis.
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Chapter 6

Compilation, Runtime & Verification

Up to this point, we have been generating graphs that easily induce serializable code. We built two
systems to run that code on a single core: a recursive Haskell interpreter and a version that generates
sequential code to solve the DAG nodes in topological order. The details of these have been omitted
from this thesis and we will move directly into the more interesting parallel version.

In this chapter we will explore how we produce very fast, parallelized, verifiable code to
run on a multi-core system, meeting goals for 7. an efficient parallel run-time system to execute
generated code, and 8. an efficiently verifiable model of synchronization.

6.1 Background
To provide the reader with a better understanding of the base for our design decisions when build-
ing the runtime system, we will discuss in this section some important details about the tools and
computer architecture that were utilized.

6.1.1 Single Instruction, Multiple Data streams (SIMD)
First we will briefly discuss SIMD in relation to other architectural groups and then we will focus
on the strengths and weaknesses of SIMD instructions.

Flynn’s taxonomy: Michael J. Flynn proposed [M.J72] a classification of architecture into four
groups based on the number of current instructions (single or multiple) and data streams (also single
or multiple) available to them.

Single instruction Multiple instruction
Single data SISD MISD

Multiple data SIMD MIMD

Figure 6.1: Flynn’s taxonomy

Very briefly, Single Instruction, Single Data stream (SISD) (for example, a traditional
uniprocessor) operates sequentially on one operation at a time. Single Instruction, Multiple Data
streams (SIMD) (for example, a Graphical Processing Unit (GPU)) does a single instruction on
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multiple pieces of data (such as on multiple pieces of an array) in parallel. Multiple Instruction,
Single Data stream (MISD) does multiple operations in parallel on a single unit of data. Finally,
Multiple Instruction, Multiple Data streams (MIMD) has multiple processors executing different in-
struction on different data, such as in a distributed system. MIMD are the most popular in modern
day supercomputers. See Table 6.1 to compare the four types.

SIMD Instructions: Since the 1970s, SIMD instructions have been used to manipulate vector
data with a single instruction. Originally reserved for supercomputers, today SIMD processors are
quickly becoming a standard, even for desktop computers. Meanwhile, supercomputers have long
since moved on to MIMD. While many applications running on a modern desktop would not show
significant gains from SIMD instructions since they cannot be vectorized, vector operations such as
image processing (for activities like gaming) have seen significant gains from these instruction sets.
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Figure 6.2: Typical memory hierarchy with rough approximations for average access times and
capacity [Tan08]

Another interesting advantage of SIMD is the ability to do multiple operations while keep-
ing data in registers. In Figure 6.2 we see a review of the tiers of memory along with their ap-
proximated access times and sizes as approximated by Tanenbaum’s Modern Operating Systems
book [Tan08]. As the access times in Figure 6.2 demonstrate, if a couple of operations can be done
on data before it returns to cache, or worse, to memory, there are great reductions in the data access
times.

However, SIMD instructions’s disadvantages include being seen as hard to use and, more
significantly, being architecture specific, leading to error prone non-portable code. Some compilers
have overcome this by performing automatic SIMDization for the user.

6.1.2 Distributed Shared Memory
For modern CPUs with multiple cores, memory access is of important concern. Uniform Mem-
ory Access (UMA) and Non-Uniform Memory Access (NUMA), are two different styles of memory
access.

Uniform Memory Access (UMA) In UMA architectures, every core has the same access time for
data in memory. [ZSLW92] In symmetric multiprocessing (SMP), the most commonly used UMA
architecture, a major bottleneck was discovered on the shared bus which was the only memory
access point.

Non-Uniform Memory Access (NUMA) In NUMA architectures, each core has its own memory,
but can access the memory of the other cores via a series of interconnected buses. As a result, the
access time is relative to the distance of the core from the data that it requires, which can have an
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order of magnitude effect on the access time for that data [BTK06]. NUMA has been shown to be
far more scalable than UMA.

6.1.3 Westmere-EP
Previous work on Coconut [AK08] has targeted PowerPC+Altivec, Cell/B.E., and other architec-
tures, but this was the first time that we were designing for the family of Intel R© chips codenamed
Westmere-EP. Our experimentation with this architecture is with the two Xeon R© Processor X5690.

The processors each have 6 cores, each with hyper-threading, which share memory via
Non-Uniform Memory Access (NUMA). Each core has its own L1 and L2 cache, but each 6-core
node/chip shares an L3 cache.

Each processor has its own memory controller which, in data-intensive applications, will
be a bottleneck. This can be alleviated by, as much as possible, storing data in the bank of memory
attached to the processor on which the data will be processed.

6.2 AVOps in CEL
Coconut uses a model of parallelization centred on Atomic Verifiable Operations (AVOps), indivis-
ible components of computation and communication which are either pure computations (without
side effects) or solely data transfer operations, including synchronization via signalling. In previous
Coconut multi-core theory and practice concerning AVOps, signalling as a means for communica-
tion was the central research focus, with the assumption that there is native support for efficient
signalling (as there is on the Cell/B.E. architecture, for example), but the current architecture uses
caches and does not allow the user to control memory locality explicitly. As a result, we imple-
mented an alternative run-time system which does not support signals, but in which synchronization
is guaranteed by finite-sized ring buffers and the insertion of no-ops to guarantee the completion
of previously dispatched computations prior to the commencement of the preceding computations.
No-ops are needed for operations which in other parallelization frameworks would require a barrier.
In many cases where it is convenient for a programmer to use a barrier, the AVOp scheduler can use
pipelining instead.

The AVOps for CEL were expanded on from those in previous Coconut papers. In the
context of our project, they could now be any atomic operation, so long as they kept the initial rules
of being a single work-unit and of being a pure computation (with no side-effects). Included in this
are all operations from the initial functions described in the list of abbreviations at the beginning, as
well as those needed for the runtime (such as the previously mentioned no-op “operation”) in order
to make guarantees about the verification (which will be further expanded on in Section 6.4).

Behind the scenes, the actual work associated with each AVOp is a single C function. So
long as that operation is targeting a vector, it is written with SIMD to maximize efficiency. The
simplicity of an individual AVOp, written with a single function without side effects, makes it very
easy to unit test.

6.3 The Runtime System
The basic idea behind the runtime system is to have the main thread, known as the dispatcher,
dedicated entirely to offloading work to a set of worker threads. Each of the worker threads operates
independently and continuously to execute the AVOps that are being passed onto them. Each of
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the worker threads sits on one of the inter-connected Intel R© Xeon R© X5690 cores, unless hyper-
threading is turned on, in which case two workers share the core and work simultaneously but still
independently.

The runtime system is written in C using only core libraries like Pthreads [But97], as well
as Intel’s architecture specific libraries. NUMA specific facilities like numactl and libnuma [DB11],
were experimented with, but were discovered to give us insufficient control over the locality of
the worker threads as they targetted full nodes instead of individual cores. While Pthreads, on the
other hand, were designed for UMA architecture [AJR06], our experimentation with functions like
pthread_setaffinity_np [set10] and observations of the real-time running system using
top [War02] gave us confidence that we had achieved the necessary control for our model.

Each worker core is allocated a ring buffer, as is depicted in Figure 6.3. The ring buffer con-
tains AVOps of varying sizes, depending on the number of arguments (either immediate arguments
or pointers to inputs or output). The AVOps can be thought of as instructions on a virtual machine,
with pointers corresponding to registers. As the worker thread finishes operations, it marks the
corresponding AVOp as completed.
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Figure 6.3: AVOps distributed onto worker core ring buffers

At dispatch, the dispatcher thread receives a stream of AVOps to allocate. Each AVOp
has been marked with a designated core. Before providing each core with the next AVOp, the
dispatcher first checks that there is sufficient room on the corresponding worker thread’s ring buffer.
If there is insufficient room, the dispatcher waits.

The only communication between worker threads and other threads is when indicating
to the dispatcher thread that it has completed a task. Otherwise, each worker is working asyn-
chronously, either working on a task or waiting for new work. The bus, as a result, remains clear for
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the dispatcher to do its dispatching.

6.4 Verification

While the majority of operations available to AVOps are linear, and each worker works its own series
of operations on its own pieces of data, there are still, inevitably, synchronization points in the AVOp
streams. As the worker threads are asynchronous they cannot utilize standard locking mechanisms
(such as monitors, semaphores and locks) to guard memory and avoid corruption. We, therefore,
implement a verification system (in C) to check that a stream of AVOps is safe.

The three rules that we have outlined for safe reads and writes for any particular memory
location are as follows:

1. Any reads and writes on the same core are safe

2. Reads on different cores are safe

3. If any core is writing then no other core may be reading or writing

These rules are enforced by running the stream of AVOps to be verified with a particular
size preset for the ring buffer. The verifier builds the ring buffers of the specified size, say l, for the
specified number of cores, say m. For each of the n AVOps in the stream it checks that, if there are
inputs and outputs, they all obey the three rules specified above when compared to all AVOps (and
their input and output pointers) currently sitting on the ring buffers of the workers. If it is safe to add
that AVOp, it is added to the appropriate ring buffer (which overwrites the old AVOps and pointers
as it loops around the ring buffer). If the AVOp is not safe, the verifier stops and reports why it has
failed.
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Figure 6.4: Verifying a safe AVOp stream
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For example, in Figure 6.4 we see an AVOp stream for two worker cores with a ring buffer
of size 8. The final AVOp, a = c+d, has just been added to worker core 0. The verifier then verifies
that core 0 does not have any writes to a, c or d. Since there are no conflicts the stream passes.
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Figure 6.5: Verifying an unsafe AVOp stream

In Figure 6.5, we see the same setup of cores and ring buffers, but with a slightly different
AVOp stream. After placing the final AVOp onto core 1, z = c+ d, the verifier analyzes the buffers
and finds that there is a conflict with the variable z, since both cores are attempting to write to the
same variable. The verifier immediately exists with a failure.

While this might at first seem inefficient since, for a ring buffer of size l with m cores and
n AVOps in the stream, the verifier runs in O(lmn), it is important to note that l and m are small
constants, so the verifier’s execution time is linear in the order of the number of AVOps in the stream.
Additionally, the verifier only needs to run once for a stream of AVOps before it is verified to be
safe for a particular ring buffer size, allowing those AVOps on the asynchronous worker threads to
work on arbitrary data. We expect that for safety-critical applications AVOps streams would all be
generated and verified at time of software packaging, and therefore no verification would be required
in the field.

6.5 Results
An important question when analyzing our system is how well it scales as we add additional cores.

Looking at the real computation CPU time of the cores, we generated code for 60 million
additions, with a resolution size of 128 × 512. In the graph in Figure 6.6, we demonstrate how the
application scales as additional worker cores are added.

Another way of looking at scalability is via the additional overhead of distributing work to
cores as compared to the time spend actually doing work. We analyze this overhead by looking at
the normalized execution times.
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Figure 6.6: Scalability results

In Figure 6.7 we see that the overhead change from two to ten cores is less than five percent.

As additional multi-core nodes are added, increasing the distance from the dispatcher to
the new cores, we expect this to increase. However, intelligence in the positioning of the new nodes
and in the locality of the data will help control this.
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Figure 6.7: Normalized execution time results
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Chapter 7

Graph Transformations for
Parallelism

Some graph transformations can better prepare the graph for optimal performance on a parallel
architecture such as ours. They cannot be called simplifications. In fact, they sometimes increase
the size of the graph.

In this section we will explore graph transformations that expose the parallelism to the
right granularity, create new nodes with cache size considerations, and permute solving order to
avoid memory bottlenecks. The graph transformation methodology is the same rule-based system
as explained for simplification, and therefore will not be re-addressed here. This is another demon-
stration that we have provided 6. an interface for computer scientists to specify simplification and
parallelization operations algorithmically.

7.1 Memory Locality and Image-Space Decomposition
It is highly advantageous if, once a worker core acquires a work unit, it does all possible work on it
before moving onto another piece. Additionally, by accessing entire cache lines instead of scattered
bytes, less time is wasted pulling new data into memory. With this in mind, we order the operations
so that each worker core receives as large a stream of operations as possible before moving onto a
new data set.

As an example, suppose we had vectors x, y and z, and the expression (x + y) − z. The
size is such that we will need more than one iterations of our worker cores on each operation. For
worker core 0, we could offer the AVOps in Figure 7.1 (note that we will be re-using memory and
the solution will be found on top of the original x).

x0 := x0 + y0
xl := xl + yl
x0 := x0 − z0
xl := xl − zl

Figure 7.1: First ordering of operations for core 0 of the expression

However, this would result in the x0 leaving memory to make room for xl and then being re-fetched
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into memory. For memory locality, it is more practical to use the ordering in Figure 7.2. By per-
forming the additional operations while the variables are still in cache we are able to save memory
fetches resulting in an over all reduction in runtime.

x0 := x0 + y0
x0 := x0 − z0
xl := xl + yl
xl := xl − zl

Figure 7.2: A second ordering of operations for core 0, optimized for memory locality

Figure 7.3: Data decomposed into strips, with the worker cores each running operations on their
own strip.

It follows from these arguments that all operations should be performed on cache-lines of
data. In fact, map operations, such as sum and scale have the property that a subset of the worker
cores can separately and asynchronously work on arbitrary pieces of the data, but other operations,
particularly the Fourier transforms, need to access larger sets at once. Figure 7.3 demonstrates how
the data can be split up so that each worker core only needs to focus on their on strip, and map and
column-transform operations are both efficient. It is highly desirable that the strips are small enough
to fit into the L1 cache, because the latency of fetching from L1 is substantially lower than L2. This
is possible for most image sizes, but would not work for 2D and 3D Fourier transforms.

7.2 Operation Transformations

Some additional transformations can be done to alter operations that will help in improving perfor-
mance.

7.2.1 Breaking apart Fourier transforms (FTs) that are followed by Projec-
tions:

In our MRI problems we frequently have a 2D Fourier transform (FTs), followed by a projection
(the DAG for this can be found in Figure 7.4). This is because we oversample the data in different
directions to prevent out-of-field artifacts or noise from appearing in the final image. Because power-
of-two FTs are most efficient, this oversampling is usually a factor of two. This extra data is not
required for the computations after each FT, and the projection is used to throw out the top quarter
and bottom quarter of the data, leaving transformed data of half the size.
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Figure 7.4: DAG for 2D Projection ◦ ft

It follows that we are able to cut the time for the second FT direction by breaking apart the
FT and pulling the projection in between the two pieces (the DAG for this newly transformed series
of operations can be seen in Figure 7.5). We have, therefore, cut the number of operations in half
for the column portion of the FT.

orow-ft oproj ocol-ft o+:

oX

oY

// // //

??�����

��?????

Figure 7.5: Transformation of DAG for 2D Projection ◦ ft for optimization.

However, we can do more. If we group data to take maximum advantage of SIMD instruc-
tions, as we will explain in the next section, Fourier transforms in the column direction are easier
and faster than their row equivalents. Since a row FT is simply a transposed column FT, we can
transform the graph to perform column FTs instead by replacing row FTs with column FTs com-
posed with transposes before and after. The final transformed graph after all rules have been applied
is shown in Figure 7.7.
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7.3 Column Block Ordering

Figure 7.6: A vector with 32 rows and 4 columns in column block order

When working with linear operations, such as sum and scale, automatic SIMDization is
easy to do asynchronously, so long as we know that every piece of data will see the operation
eventually. However, the operation transpose using SIMD requires access to a full cube of the size
of SIMD to safely operate. Meanwhile, the highly optimized FT libraries would like the data in
column ordering. To avoid moving data around, we rearrange the vector data at the start and end of
our program into Column Block Ordering. In essence, the vectors are broken up into block sizes on
which a transpose can be done, and they travel in columns (instead of rows). See Figure 7.6 for a
sample ordering with SIMD capable of 4 simultaneous floating point operations.

otranspose ocol-ft otranspose oproj ocol-ft o+:

oX

oY

// // // // //

::tttttt

$$JJJJJJ

Figure 7.7: Transformation of DAG for 2D Projection ◦ ft optimized for preference of column FTs
over row FTs
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Chapter 8

Parallelizing L-BFGS

At the beginning of this thesis, we discussed how methods such as profiling velocity with PCA are
susceptible to noisy data, but also lent themselves naturally to optimization problems. As part of our
architecture specific system described in Chapter 6, we implemented and integrated a mathematical
optimizer based on the algorithm for the Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) and optimized and parallelized it. In this chapter, we will explore the challenges we faced,
and how we overcame them during that implementation, realizing 9. an efficient parallel uncon-
strained optimizer into which to plug generated function and gradient evaluators.

8.1 Background
To understand why parallelizing L-BFGS was challenging, we must first understand the algorithm
behind it. In this section we look at the origins and principles required for understanding the L-
BFGS algorithm, starting at Newton’s method for finding stationary points of functions and building
our way up to the challenges of parallelization methods for L-BFGS.

8.1.1 Newton’s Method

In mathematical optimization, Newton’s method is used to find stationary points of differentiable
functions. The stationary points are arrived at through an iterative method, which seeks out the roots
or extrema of functions.

Starting with an initial guess x0, it iterates by calculating

xi+1 = xi −
f ′(xi)

f ′′(xi)

where f ′(xi) 6= 0, i ≥ 0. The iteration stops when the changes fall below a pre-set tolerance,
resulting in a solution xi, for a final iteration i.

8.1.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS):

In 1970, Broyden, Fletcher, Goldfarb and Shanno each came up seperately with essentially the same
algorithm (expressed as Algorithm 1 and referred to as BFGS) for solving non-linear optimization
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problems. It is considered to be both one of the most famous and most efficient of the quasi-
Newtonian methods [Dai02]. It works on problems that have a solution where the gradient is zero
and have a quadratic Taylor expansion near the optimum.

Algorithm 1 The BFGS Algorithm
Require: x1 ∈ Rn; B1 ∈ Rn×n positive definite
Require: tolerance ∈ R . Acceptance test for gradient being zero
g1 ← ∇f(x1)
if g1 = 0 then return x1
end if

k ← 1
loop

dk ← B−1k gk
Carry out a line search along dk
αk > 0
xk+1 ← xk + αkdk
gk+1 ← ∇f(xk+1)
if gk+1 < tolerance then return xk+1

end if
sk ← αkdk
yk ← gk+1 − gk
Bk+1 ← Bk −

Bksks
T
kBk

sTkBksk
+
yky

T
k

sTk
yk

k ← k + 1
end loop

8.1.3 Limited Memory BFGS (L-BFGS):
Limited Memory BFGS (L-BFGS) is an algorithm introduced by Nocedal in 1980 [Noc80] for
approximating BFGS using less memory. It does so by only storing a few vectors that represent the
approximation of the Hessian matrix implicitly. Instead of using a low rank update, it represents the
low rank of the Hessian as a sum of outer products. The algorithm is defined in Algorithm 2.

8.2 Improvements
We are able to reduce the time and space complexity of this algorithm while performing a parallel
version with some optimizations.

8.2.1 Skipping Copies
At each iteration of L-BFGS, the new current value and gradient values are copied onto the previous
current value and gradient value so that the next iteration will be able to provide access to those
values for comparison once the newer values are calculated at that iteration. Since our AVOps use
offsets in memory we skip these copies at every iteration by simply using a C macro that swaps the
pointers back and forth (using a simple i mod 2) to establish which is the previous and which is the
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Algorithm 2 The L-BFGS Algorithm
Require: x1 ∈ Rn

Require: B1 ∈ Rn×n positive definite
Require: M ∈ R . History Size
Require: tolerance ∈ R . Acceptance test for gradient being zero
g1 ← ∇f(x1)
if g1 < tolerance then return x1
end if

k ← 1
loop

dk ← gk
if iteration ≤M then

increment← 0
bound← iteration

else
increment← iteration−M
bound←M

end if
for i← (bound− 1)..0 do

j ← i+ increment
αi ← ρjs

T
j qi+1

qi ← qi+1 − αiyj
end for
r0 ← H0 · q0
for i← 0..(bound− 1) do

j ← i+ incr
βj ← ρjy

T
j ri

ri+1 ← ri + sj(αi − βj)
end for
xk+1 ← xk + αkdk
gk+1 ← ∇f(xk+1)
if gk+1 < tolerance then return xk+1

end if
sk ← αkdk
yk ← gk+1 − gk
k ← k + 1

end loop

new offset to look at. This is a small optimization that saves us the overhead of moving all of the
data comprising the current guess and the gradient around at each iteration.
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8.2.2 Fusing Dot Products
To establish whether an optimum has been reached, the algorithm computes a series of subtractions
and dot products. These are significant since the definitions of the new sk and yk through the sub-
tractions feed into the dot products, and those dot products establish the next steps for the algorithm,
meaning that we arrive at a synchronization point for the algorithm. As a result, it is crucial to
maximize the efficiency at this point.

To increase performance of these operations, we take advantage of SIMD and do as much
work as possible while the data is in registers. Each worker is provided with a piece of their share of
the new and old gradient and function vectors. Working on four or eight floats at a time (depending
on the system architecture), the function pulls the values for these vectors into registers. It first does
the subtractions and then uses those values to do double precision sums for each of the four necessary
dot products. Each of the cores stores their results to separate locations. Finally, all but one of the
cores wait while the remaining core sums the totals so that they can be evaluated as if they had been
done in a completely serialized manor. The body of this function is provided in Appendix B.

8.3 Results
Due to time constraints the regularizers required for the PCA experiments have not yet been fully
implemented. We will therefore demonstrate results in this section for another MRI problem, known
as SENSE, in which partial data sets from multiple receiver coils are combined to produce an image.
Unlike the velocity problem, the signal model is linear, so the objective function is quadratic. This
is an easier problem to implement first, but will give a good indication of potential speed-ups for
real inverse problems.

Experiments were done using synthetic data from two coils created by taking a real single-
coil brain image from a low noise experiment and multiplying point wise by a second array of
complex numbers computed using the analytic solution for a dipole coil. Initial experiments are
performed with synthetic data in order to have known true image, and therefore an exact measure of
accuracy. The first performance test used 86% of the data at a resolution of 64 × 64. The first ten
iterations of L-BFGS can be seen in Figure 8.2, demonstrating a remarkable improvement in image
quality over those iterations.

Figure 8.1: First ten iterations of the real part of the SENSE problem.

The experiment was performed first in a serial manor and then with 10 cores. The times
were taken using the UNIX time command, returning the elapsed time between invocation and
termination (Real), the user’s CPU time (User) and system CPU time (System), and are expressed
in Table 8.1. There is a notable 8.6 times speadup over its serial equivalent for the real time.

A second set of experiments were performed with three coils and 54% of the normal data.
In this case, ten executions of the solver with fixed numbers of iterations (1, 50 and 100) were
run in sequential and parallel mode. The variability in execution time was significant, indicating
interference from other processes, but the minimum execution time was relatively stable. Using the
ratio of the difference between the time for 100 iterations and the time for 50 iterations, in the two
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Serial Time (s) 10 Cores Time (s)
Real 2.876 0.333
User 29.692 3.357
System 0.062 0.075

Table 8.1: Times in seconds for the SENSE problem using 86% of the data from two coils.

modes, estimates a acceleration of 5 times. We conjecture that the task schedule found for the 3-coil
problem is not as efficient as the task schedule for the 2-coil problem, and this is being investigated,
but a discussion of task scheduling is outside the scope of this thesis.

Figure 8.2: First ten iterations of the real part of the SENSE problem using 54% of the data from
three coils with approximately 50% noise added.
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Chapter 9

Conclusion

This thesis makes significant contributions to several goals of the Coconut project. As enumerated
in the introduction, to generate efficient parallel solvers from mathematical model specifications in-
volves many steps. In each chapter, we considered some of the steps required. The DSL provides
a very abstract layer on which scientists and physicists can work without any understanding of the
computer science and software engineering principles that went into it. At this stage, a variety of
models can be expressed, with several examples from MRI having been so encoded. Differentiation
is completely automatic, which means it is fast and, more importantly, error free. The treatment
of vector variables as first-class objects whose structure is preserved by differentiation is a signifi-
cant contribution to the literature on symbolic computation. Efficiency both in model manipulation
and the generated code relies on subexpression elimination which is built into the expression data
structure. Through additional simplification and transformation methodologies we are able to intro-
duce additional computational efficiency at many levels, and expose structures suitable for efficient
parallelization at the level of SIMD and multi-core parallelism. Finally, we modified the existing
Coconut multi-core run-time framework to run on shared-memory architectures where it had been
designed for distributed-memory architectures containing hardware support for signalling. The run-
time framework contains two parts which were developed from scratch: a run-time library and a
linear-time verification mechanism.

There is, however, much work to be done. There are some operations, specifically to do
with convolution/map/zip, that require additional implementation before we are able to fully solve a
broader class of MRI problems, including the PCA problem discussed in the introduction. As we add
more cores, we expect that our graph scheduling will need to include additional intelligence about
being node-aware by penalizing scheduling patterns that tax inter-core and inter-chip bandwidths.
Also, we suspect that supplemental research into DAG graph scheduling will inspire additional
intelligence being built into graph transformations leading to better runtimes. At that point we
look forward to being able to validate the PCA model discussed with new regularizers and much
experimentation, and proceed to clinical validation.
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Appendix A

Simplification Rewrite Rules

The following table of rules are applied in order to simplify expressions.
s is used in place of scalars, x is used in place of vectors, z is used in place of complex

vectors, ss is used in place of sub spaces and c is used in place of constants.

collapse scales scale(s0, scale(s1, x))→ scale(s0 ∗ s1, x)
collapse anything ‘scale’ 0 scale(s, 0)→ 0
collapse 1 ‘scale’ anything scale(1, x)→ x

Table A.1: Simplification rewrite rules for scale

sum with one summand collapses sum(x0)→ x0

if a sum contains any sums, collapse them
into one sum

sum(x0, ..., xn−1, sum(xn, ..., xm−1))→ sum(x0, ..., xm−1)

if a sum contains two or more constants, col-
lapse them into one constant

sum(c0, ...cm, x0, ..., xn)→ sum(c0 + c1 + ...+ cm, x0, ..., xn)

remove zeros from sum (note this doesn’t
change sorting of args)

sum(0, x0, ...xn)→ sum(x0, ..., xn)

combine identical terms in a sum sum(x0, ..., xi0 , xi1 , ..., xim , ..., xn) →
sum(x0, ..., scale(m,xi), ..., xn)

Table A.2: Simplification rewrite rules for sum

product with one factor collapses prod(x0)→ x0

remove product containing a zero prod(x0, ..., xn, 0)→ 0
if a product contains any products, collapse
them into one product

prod(x0, .., xn, prod(y0, ...ym))→ prod(x0, ..., xn, y0, ..., ym)

if a product contains a zero, collapse it prod(x0, ..., xn, 0)→ 0
if a product contains two or more constants,
collapse them into one constant

prod(c0, ..., cm, x0, ..., xn)→ prod(c0 ∗ ... ∗ cm, x0, ..., xn)

if a product contains a constant 1 eliminate it prod(1, x0, ..., xn)→ prod(x0, ..., xn)
distribute product inside sum prod(x0, sum(x1, x2))→ sum(prod(x0, x1), prod(x0, x2))

Table A.3: Simplification rules for product
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collapse <(x+ i_) into x <(x0 + ix1)→ x0

collapse =(_ + ix) into x =(x0 + ix1)→ x1

complex sum becomes combination of real
sums

sum((x0 + ix1), (x2 + ix3))→ sum(x0, x1) + i · sum(x2, x3)

move Re Im inside projections and injections
and sums

<(proj(ss, z))→ proj(ss,<(z))

=(proj(ss, z))→ proj(ss,=(z))
<(inject(ss, z))→ inject(ss,<(z))
=(inject(ss, z))→ inject(ss,=(z))
<(sum(z0, ..., zn−1))→ sum(<(z0), ...,<(zn−1))
=(sum(z0, ..., zn−1))→ sum(=(z0), ...,=(zn−1))

pull scale outside < and = <(scale(z))→ scale(s,<(z))
=(scale(z))→ scale(s,=(z))

Table A.4: Simplification rewrite rules for complex numbers

collapse FTs followed by their inverses ft(ft−1(z0))→ z0
collapse inverse FTs followed by FTs ft−1(ft(z0))→ z0
pull scale outside of the FT or its inverse. ft(scale(s, z0 → scale(s, ft(z0))

ft−1(scale(s, z0)→ scale(s, ft−1(z0))

Table A.5: Simplification rules for Fourier transforms

turn complex products into real products (x0+ ix1)∗(x2+ ix3)→ (x0 ∗x1−x1 ∗x2)+ i(x0 ∗x3−x1 ∗x2)
collapse dot with zero (0 · x)→ 0
pull sum out of left dot sum(x0, x1) · x3 → sum(x0 · x3, x1 · x3)
pull scale out of left dot scale(s, x) · y → s ∗ (x · y)
pull sum out of right dot x · (y + z)→ sum(x · y, x · z)
pull scale out of right dot x · scale(s, y)→ scale(s, (x · y))
reverse vectors in dot product if any differ-
entials are on the right

x · (fdy)→ (fdy) · x

differential only on left, now pop/push oper-
ators to the right but also simplify inside left,
since this would otherwise be skipped

(fdy) · x→ dy · adjfx

Table A.6: Simplification rules for dot products

move constant scaling of SCZ into SCZ
expression to enable SCZ fusion, and re-
duce computation downstream eliminate
SCZ with constant expressions

scz(f(r0i , r1i )→ ci)[x0, x1]→ c

eliminate SCZ that are the identity scz(f(r0i )→ r0i )[x0]→ x0

remove unused inputs from SCZs expres-
sions

scz(f(r0i , r2i ))[x0, x1, x2]→ scz(f(r0i , r1i ))[x0, x2]

merge SCZ together with direct children
SCZs,

scz(f1(r0i , r1i )[scz(f2(r0i , r1i ))[x, y], z]→

scz(f1(f2(r0i , r1i )), r2i )[x, y, z]
push sums into SCZ’s so they are exposed to
further simplifications

sum(x, scz(f(r0i , r1i ))[y, z])→ scz(r0i + f(r1i , r2i )[x, y, z]

simplify SCZ if some inputs are constants scz(f(r0i , r1i )[x, c]→ scz(f(r0i , c))[x]
simplify SCZ expression scz(expr)[inputs]→

let expr’ = simplify expr in scz(expr′)[inputs]

Table A.7: Simplification rewrite rules for sparse convolution zips

if no simplification was applied to this node,
then simplify args

fx, fin[sum, prod]→ f(simplify x)

Table A.8: Simplification rewrite rules for inputs
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Appendix B

Code Snippet: Fusing Dot Products
for L-BFGS

The body of the C function described in Section 8.2.2 which computes two subtractions and four dot
products in parallel using SIMD.

__m128 c , cn , g , gn ;
__m128 s , y ;
__m128d d_sum , g_sum , r_sum , a_sum ;
__m128 mu ;
__m128d mu1d , mu2d ;

d_sum = _mm_set1_pd ( 0 . 0 ) ;
g_sum = _mm_set1_pd ( 0 . 0 ) ;
r_sum = _mm_set1_pd ( 0 . 0 ) ;
a_sum = _mm_set1_pd ( 0 . 0 ) ;

whi le ( ( s i z e −= SIMD_SIZE ) >= 0) {
g = _mm_load_ps ( g r ad ) ;
gn = _mm_load_ps ( g r a d _ n e x t ) ;
c = _mm_load_ps ( c u r r e n t ) ;
cn = _mm_load_ps ( n e x t ) ;

/ / \ s igma = n e x t − c u r r e n t
s = _mm_sub_ps ( cn , c ) ;

/ / y [ k ] = n e x t _ g r a d − grad
y = _mm_sub_ps ( gn , g ) ;

/ / dx_norm = \ sigma [ l ] \ d o t \ s igma [ l ]
mu = _mm_mul_ps ( s , s ) ;
mu1d = _mm_cvtps_pd (mu) ;
mu2d = _mm_cvtps_pd ( _mm_shuff le_ps (mu , mu , _MM_SHUFFLE( 1 , 0 , 3 , 2 ) ) ) ;
d_sum = _mm_add_pd ( d_sum , mu1d ) ;
d_sum = _mm_add_pd ( d_sum , mu2d ) ;

/ / grad_norm = g r a d i e n t \ d o t g r a d i e n t
mu = _mm_mul_ps ( g , g ) ;
mu1d = _mm_cvtps_pd (mu) ;

mu2d = _mm_cvtps_pd ( _mm_shuff le_ps (mu , mu , _MM_SHUFFLE( 1 , 0 , 3 , 2 ) ) ) ;
g_sum = _mm_add_pd ( g_sum , mu1d ) ;
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g_sum = _mm_add_pd ( g_sum , mu2d ) ;

/ / \ r h o _ i = ( \ s i g m a _ i \ d o t y _ i )
mu = _mm_mul_ps ( s , y ) ;
mu1d = _mm_cvtps_pd (mu) ;
mu2d = _mm_cvtps_pd ( _mm_shuff le_ps (mu , mu , _MM_SHUFFLE( 1 , 0 , 3 , 2 ) ) ) ;
r_sum = _mm_add_pd ( r_sum , mu1d ) ;
r_sum = _mm_add_pd ( r_sum , mu2d ) ;

/ / \ a _ i = \ s i g m a _ i \ d o t q ( where q i s grad on t h i s round )
mu = _mm_mul_ps ( s , gn ) ;
mu1d = _mm_cvtps_pd (mu) ;
mu2d = _mm_cvtps_pd ( _mm_shuff le_ps (mu , mu , _MM_SHUFFLE( 1 , 0 , 3 , 2 ) ) ) ;
a_sum = _mm_add_pd ( a_sum , mu1d ) ;
a_sum = _mm_add_pd ( a_sum , mu2d ) ;

/ / s t o r e sigma and y
_mm_store_ps ( sigma , s ) ;
_mm_store_ps ( y , y ) ;

s igma += SIMD_SIZE ;
y += SIMD_SIZE ;
g rad += SIMD_SIZE ;
g r a d _ n e x t += SIMD_SIZE ;
c u r r e n t += SIMD_SIZE ;
n e x t += SIMD_SIZE ;

}

/ / s t o r e sum v a r s
_mm_store1_pd ( dx , _mm_add_pd ( d_sum ,

_mm_shuff le_pd ( d_sum , d_sum , _MM_SHUFFLE2( 0 , 1 ) ) ) ) ;
_mm_store1_pd ( gnorm , _mm_add_pd ( g_sum ,

_mm_shuff le_pd ( g_sum , g_sum , _MM_SHUFFLE2( 0 , 1 ) ) ) ) ;
_mm_store1_pd ( rho , _mm_add_pd ( r_sum ,

_mm_shuff le_pd ( r_sum , r_sum , _MM_SHUFFLE2( 0 , 1 ) ) ) ) ;
_mm_store1_pd ( a_ i , _mm_add_pd ( a_sum ,

_mm_shuff le_pd ( a_sum , a_sum , _MM_SHUFFLE2( 0 , 1 ) ) ) ) ;

Listing B.1: C code for computing the two subtracctions and four dot products with simdization and
without leaving registers
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