Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12064
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPelinovsky, Dmitryen_US
dc.contributor.authorPonomarev, Dmitryen_US
dc.date.accessioned2014-06-18T16:58:08Z-
dc.date.available2014-06-18T16:58:08Z-
dc.date.created2012-05-11en_US
dc.date.issued2012-10en_US
dc.identifier.otheropendissertations/6981en_US
dc.identifier.other8018en_US
dc.identifier.other2843310en_US
dc.identifier.urihttp://hdl.handle.net/11375/12064-
dc.description.abstract<p>A model with nonlinear Schrödinger (NLS) equation used for describing pulse propagations in photopolymers is considered. We focus on a case in which change of refractive index is proportional to the square of amplitude of the electric field and consider 2-dimensional spatial domain. After formal derivation of the NLS approximation from the wave-Maxwell equation, we establish well-posedness and perform rigorous justification analysis to show smallness of error terms for appropriately small time intervals. We conclude by numerical simulation to illustrate the results in one-dimensional case.</p>en_US
dc.subjectjustification analysisen_US
dc.subjectphotopolymersen_US
dc.subjectNLS equationen_US
dc.subjectwave-Maxwell systemen_US
dc.subjectOpticsen_US
dc.subjectPartial Differential Equationsen_US
dc.subjectPolymer Chemistryen_US
dc.subjectOpticsen_US
dc.titleJustification of a nonlinear Schrödinger model for polymersen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
621.7 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue