Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12063
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHambleton, Ianen_US
dc.contributor.authorYALCINKAYA, EYUPen_US
dc.date.accessioned2014-06-18T16:58:08Z-
dc.date.available2014-06-18T16:58:08Z-
dc.date.created2012-05-14en_US
dc.date.issued2012en_US
dc.identifier.otheropendissertations/6980en_US
dc.identifier.other8027en_US
dc.identifier.other2848337en_US
dc.identifier.urihttp://hdl.handle.net/11375/12063-
dc.description.abstract<p>Isotropy representations provide powerful tools for understanding the classification of equivariant principal bundles over the $2$-sphere. We consider a $\Gamma$-equivariant principal $G$-bundle over $S^2$ with structural group $G$ a compact connected Lie group, and $\Gamma \subset SO(3)$ a finite group acting linearly on $S^2.$ Let $X$ be a topological space and $\Gamma$ be a group acting on $X.$ An isotropy subgroup is defined by $\Gamma_x = \{\gamma \in \Gamma \lvert \gamma x=x\}.$ Assume $X$ is a $\Gamma$-space and $A$ is the orbit space of $X$. Let $\varphi: A\rightarrow X$ be a continuous map with $\pi \circ \varphi = 1_A$. An isotropy groupoid is defined by $\mathfrak{I} = \{(\gamma,a) \in \Gamma\times A \lvert \ \gamma \in \Gamma_{\varphi(a)}\}.$ An isotropy representation of $\mathfrak{I}$ is a continuous map $\iota : \mathfrak{I} \rightarrow G$ such that the restriction map $\mathfrak{I}_a \rightarrow G$ is a group homomorphism. $\Gamma$- equivariant principal $G$-bundles are studied in two steps; \begin{enumerate} [1)] \item the restriction of an equivariant bundle to the $\Gamma$ equivariant 1-skeleton $X \subset S^2$ where $\mathfrak{I}$ is isotropy representation of $X$ over singular set of the $\Gamma$-sets in $S^2$ \item the underlying $G$-bundle $\xi$ over $S^2$ determined by $c(\xi)\in \pi_2(BG).$ \end{enumerate}</p>en_US
dc.subjectEquivariant principal bundles over $2$ sphereen_US
dc.subjectGeometry and Topologyen_US
dc.subjectMathematicsen_US
dc.subjectGeometry and Topologyen_US
dc.titleEquivariant Principal Bundles over the 2-Sphereen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
443.32 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue