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Abstract

Isotropy representations provide powerful tools for understanding the classification of

equivariant principal bundles over the 2-sphere. We consider a Γ-equivariant principal

G-bundle over S2 with structural group G a compact connected Lie group, and Γ ⊂
SO(3) a finite group acting linearly on S2. Let X be a topological space and Γ be a

group acting on X. An isotropy subgroup is defined by Γx = {γ ∈ Γ|γx = x}. Assume

X is a Γ-space and A is the orbit space of X. Let ϕ : A→ X be a continuous map with

π ◦ ϕ = 1A. An isotropy groupoid is defined by I = {(γ, a) ∈ Γ× A| γ ∈ Γϕ(a)}. An

isotropy representation of I is a continuous map ι : I → G such that the restriction

map Ia → G is a group homomorphism. Γ- equivariant principal G-bundles are

studied in two steps;

1) the restriction of an equivariant bundle to the Γ equivariant 1-skeleton X ⊂ S2

where I is isotropy representation of X over singular set of the Γ-sets in S2

2) the underlying G-bundle ξ over S2 determined by c(ξ) ∈ π2(BG).
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Chapter 1

Introduction

Let Γ and G be a Lie groups. A principal (Γ, G)-bundle ξ over B is a locally-trivial

Γ-equivariant principal G-bundle p : E → B such that E and B are left Γ-spaces.

We denote the bundle ξ=(E,B, p,G,Γ). The projection map is Γ-equivariant and

γ(e · g) = (γe) · g where γ ∈ Γ and g ∈ G acting on e ∈ E by the principal action.

Equivariant principal bundles and their natural generalizations were studied by T.

E. Stewart [12] T. tom Dieck [13], R. Lashof [6], P. May [7], G. Segal [9]. These

authors study equivariant principal bundles by homotopy-theoretic methods. There

exists a classifying space B(Γ, G) for principal (Γ, G)-bundles [13], so the classification

of equivariant bundles in particular cases can be approached by studying the Γ-

equivariant homotopy type of B(Γ, G). If the structural group G of the bundle is

abelian, the main result of Lashof states that equivariant bundles over a Γ-space B

are classified by ordinary homotopy classes of maps [EΓ×Γ X,BG] [9].

Another approach is given by Hambleton and Hausmann [5] for classifying equiv-

ariant principal bundles. They used the local invariants arising from isotropy repre-

sentations at singular points of (B,Γ). For each Γ-fixed point b0 ∈ B there exists an

isotropy representation. It means that we obtain a homomorphism αb0 : Γb0 → G

defined by the formula

γ · e0 = e0 · αb0(γ)

where e0 ∈ p−1(b0). Denote the collection of isotropy representations of ξ by RepGΓ (I).

1
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The homomorphism α is independent of the choice of e0 up to conjugation in G.

In this thesis, Γ-equivariant principal G bundles over S2 will be classified. First of

all, let X ⊂ S2 be a Γ-equivariant 1-skeleton in a Γ-CW complex decomposition for

S2. The classification of Γ-equivariant principal G-bundle over X will be determined

by using the paper of Hambleton and Hausmann since X is a split-Γ space [5] , So

we will use a different method to classify Γ-equivariant principal G-bundles over S2

since S2 is not a split-Γ space. Since X ⊂ S2 is a Γ-equivariant CW - subcomplex,

then

X
i−→ S2 j−→ S2 ∪ CX k−→ Σ(X)

m−→ Σ(S2)
Σi−→ Σ(S2 ∪ CX)→ · · ·

is a cofibration sequence where CX= cone on X = (X×[0, 1])/(a, 0) ∼ pt and Σ(S2)=

the suspension of S2.

If we take Γ-equivariant homotopy classes of maps into the space Y = B(Γ, G),

then the following sequence

[Σ(S2), Y ]
m∗−→ [Σ(X), Y ]

k∗−→ [S2 ∪ CX, Y ]
j∗−→ [S2, Y ]

i∗−→ [X, Y ]

is a exact sequence of abelian groups since B(Γ, G) = Y = ΩZ is a loop space [3].

We will determine [S2, Y ] by m∗ = Σi∗ and i∗ where Σi∗ is the suspension map of i∗.

Secondly, we will use the classification of principal G-bundles over the 2-sphere by

using Steenrod‘s book [11, p,96]. Let S1 be a great 1-sphere on S2 and V1, V2 be the

closed hemispheres of S2 and bounded by 1-sphere parallel to S1. Then V1 ∪ V2 cover

S2 and V1 ∩ V2 is equatorial band containing S1. Let x0 be a reference point on S1 is

said to be in normal form if its coordinate neighborhoods are V1, V2 and g12(x0) = 1G

in structural group. Any bundle ξ over S2 is strictly equivalent to a bundle in normal

form. Hence there exist bundle maps

φ′i : Vi ×G→ ξi
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so we have the following maps:

gij : Vi ∩ Vj → G.

Then φ′1, φ′2 are coordinate functions of a bundle ξ′ strictly equivalent to ξ. If

g′12(x) = a, we alter ξ′ to strictly equivalent bundle by setting λ1(x) = e = 1G for

x ∈ V1 and λ2(x) = a for x ∈ V2. The resulting bundle is in normal form.

A bundle ξ is in normal form, the map T = g12|S1 which maps S1 into G is called

the characteristic map of ξ. Now, since T (x0) = e, and we regard T as a map

(S1, x0)→ (G, e).

Lemma 1.0.1. [11, p,97] Any map T : (S1, x0)→ (G, e) is the characteristic map of

some bundle over S2 in normal form.

Finally, we will introduce the Theorem from [11, p,99] .

Theorem 1.0.2. The equivalance classes of bundles over S2 with group G are in 1−1

correspondence with equivalance classes of elements of π1(G) under the operations of

π0(G). Such a correspondence is provided by ξ → χ(α) where α is a generator of

π2(S2) and χ : π2(S2)→ π1(G) is a characteristic homomorphism of ξ.

We conclude that we can determine bundles over S2 by a characteristic classes

c(ξ) ∈ [S2, BG] = π2(BG) = π1(G). Our main result is following theorem.

Theorem 1.0.3. Let G be a compact connected Lie group, Γ ⊂ SO(3) be a finite

subgroup acting linearly on S2. A Γ-equivariant principal G-bundle over (S2,Γ) is

classified by RepGΓ (I) and c(ξ) ∈ π2(BG).

Corollary 1.0.4. If RepGΓ (ξ1) ∼= RepGΓ (ξ2) then c(ξ1) ≡ c(ξ2) mod|Γ|.



Chapter 2

Introductory Material

2.1 Basic Definitions

In this chapter, we will give some basic definitions and theorems from tom Dieck’s

book [13] which are useful for later chapters to classify equivariant principal bundles

over S2. Firstly, we shall define a group action since it is the one of the main objects

of this research. In algebraic topology, groups generally act on topological spaces

(more specifically manifolds).

Definition (Lie Group). Let G be a topological group and a finite-dimensional smooth

manifold. Then G is called a Lie group, if the map µ: G × G → G, µ (x, y) = x−1y

is smooth.

Definition (Group Action). Let G be a topological group and X be a topological G-

space. We define a (left) group action to be a continuous map φ: G × X → X

such that

(i) φ(g,(φ(h,x)))= φ(gh,x) for g,h ∈ G , x ∈ X

(ii) φ(e,x) = x for x ∈ X for e ∈ G the identity element.

The left group action φ(g,x) is generally denoted by g·x. Under the same condi-

tions, a right group action can be defined. Now, we will consider the group action as

4
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a left group action. If there exists a topological group acting on a topological space,

we consider the isotropy subgroup (stabilizer group) of each point in X and the orbit

space of the space X under the group action. An action is called transitive if for

every x1, x2 ∈ X there exists a group element g such that gx1 = x2 and the action is

called free if for every x ∈ X the only identity element of G fixes x.

Definition (Isotropy Subgroup). Let X be a set and G be a group acting on X. For

each x ∈ X, the isotropy subgroup of x is denoted by Gx = {g ∈ G | g·x=x}. It is

obvious that the Gx is a subgroup of G.

Definition (Orbit Space). Let X be a set and G be a group action on X. Gx:= {gx

| for all g ∈ G} is the orbit of x. The set of orbits induce an equivalence relation.

The orbit space of X is denoted by G\X. Commonly, we will use X/G for the orbit

space if the action is defined before as a right action.

For every subgroup H of G acting on X, the fixed points set of H will be denoted

by XH .

F ix(X,H) = XH = {x ∈ X |h · x = x for all h ∈ H, }.

Definition (Equivariant Map). Let ρ : X → Y be a map between G-sets. The map

ρ is called equivariant if we have g · ρ(x) = ρ(g ·x) for every g ∈ G and every x ∈ X.

Two G-spaces are G-equivalent if there exists an equivariant homeomorphism

between them. As an example, there is an equivariant homeomorphism

α : G/Gx → G · x
gGx → g · x

is equivariant, and G/Gx and G · x are G-equivalent spaces. We say that an orbit

which is equivalent to G/H is of type G/H.

Definition. Let X and Y be sets and G act on X as a right space and act on Y as

a left space. We define the equivalence relation

(x, y) ∼ (x · g−1, g · y) ∀g ∈ G.
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The set of equivalence classes of this relation is X ×G Y.

Definition. Let P ⊂ X be an orbit of type G/H. A tube about P is an equivariant

homeomorphism into an open neighborhood of P

φ : G×H A→ X

where A is a space on which G acts.

For x ∈ S ⊂ M , a manifold, such that GxS = S, S is a slice at x if the map

G×GxS → M

(g, s) → g · s

is a tube about G · x.
Equivalently, We say that a slice at x is defined as a subspace S of X with the

following properties:

(i) S is closed in G · S

(ii) G · S is an open neighborhood of G · x

(iii) Gx · S = S

(iv) If (g · S) ∩ S is non-empty, then g is an element of Gx

The following theorem says that there exists a slice under certain conditions. It was

proven by Montgomery-Yang[1957] and Mostow[1957]

Theorem. [2, p,40] Let G be a compact Lie group and X a G-space which is com-

pletely regular. Then there is a slice at each point and a tube around each orbit.

Now, the Riemann-Hurwitz Formula is a useful formula especially in algebraic

geometry. In this context, we will give the related formula for group actions. One

can find a detailed proof in [13, p,30] for a general case.
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A simplicial G-complex is regular if given elements g1, g2, ... , gn of the G and

two simplices (v1, v2, ... , vn) and (g1 · v1, g2 · v2, ... , gn · vn), there is an element

g ∈ G such that gvi = givi for all i. Not all simplicial complexes are regular but we

can make a regular simplicial complex by using barycentric subdivision [15] . The

singular set of X consists of points x whose isotropy subgroup different than identity

and it will be denoted by Sing(X,G) = { x ∈ X | Gx 6= 1 }

Theorem (Riemann-Hurwitz Formula). Let Γ be a finite group. Let X be a compact

connected, oriented surface and Γ × X → X be an effective orientation preserving

group action with the orbit space X/Γ ∼= A. Then

χ(X) = |Γ|χ(A)−
∑
xεX

(|Γx| − 1)

Here, it is not necessary to prove this theorem since we will use an analogous

result for the graph.

Proposition 2.1.1. Let X be a compact connected regular graph, Γ be a finite group

and Γ × X → X be an group action with the orbit space X/Γ ∼= A. Then

χ(X) = |Γ|χ(A)−
∑
viεX

(|Γvi | − 1)

Proof. Let the orbit space A be a graph with v vertices and e edges and Γ be a group

with the order n and the singular set be Sing(X,Γ) = {v1, v2, ..., vk}. We relate the

space X with v′ vertices and e′ edges to the orbit space A. Since no edges are fixed

by the group Γ, we can say that the number of edges of the space X is ne. if the

group Γ acts freely on the X, then the number of vertices of X would be nv. On the

other hand, we know that there exist some singular points with fewer pre-images. We

should subtract them for the correct number of vertices of X. For vi we counted it

|Γvi | times. We should do this for all fixed points, then

v′ − e′ = n(v − e)−
∑
viεX

(|Γvi | − 1)
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χ(X) = |Γ|χ(A)−
∑
viεX

(|Γvi | − 1)

There are various maps between two topological spaces. We would like to classify

them under some restrictions. A continuous function is a special function which satify

the continuity definition. If we have any two continuous functions, we wonder how

one can compare them or relate them.

Definition. Let f, g : X → Y be two continuous map. f and g are homotopic if

and only if there exists a continuous map H : X × I → Y such that, for x ∈ X,

H(x, 0) = f(x)

H(x, 1) = g(x).

if two maps are are homotopic, it is denoted by

f ' g.

One can show that this is an equivalance relation on the set of all continuous maps

from X to Y . Therefore, equivalence classes are called homotopy classes of maps.

2.2 Fiber Bundles

Now, a fiber bundle will be introduced with Steenrod definitions [11, p,6]. Actually,

a manifold is locally homeomorphic to Rn. The fiber bundle idea is the same as a

manifold structure but the fiber bundle is locally homeomorphic to cross product of

open set and fiber. Let E denote a bundle space, B denote a base space, and F

denote a fiber. Let p : E → B be a projection map if arbitrary open set U is taken

from B then the inverse image of U under the projection map is homeomorphic to

U × F.
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Definition (Fiber Bundle). A fiber bundle ξ consists of a topological space E called

the bundle space, a topological space B called base space, a continuous map

p : E → B

of E onto B called projection and a space F called the fiber. The fiber over the point

x of B is defined by Fx=p−1(x) and Fx is homeomorphic to F. Therefore, for each x

∈ B, there is a neighborhood U of x and a homeomorphism

ϕ : U × F → p−1(U)

such that

pϕ(x′, y) = x′

where x′ ∈ B, y ∈ F .

The fiber bundle can be illustrated as below, where the fiber is denoted by F , the

bundle space is denoted by E, and the base space by B.

F → E

↓p
B

The first example is product bundle E, sometimes called trivial bundle, where the

bundle space is B × F , p(x, y) = x, x ∈ B, y ∈ F.
. The second example is Mobius line bundle µ defined to be a one-dimensional

real vector bundle over the circle given as follows. Let E = ([0, 1] × R)/∼ where

(0, t) ∼ (1,−t) and C be the middle circle C = {(s, 0) ∈ E}. Then µ is the line

bundle defined by the projection

p : E → C where (s, t)→ (s, 0)

If we glue together the line x = 0 and the line x = 1 with the relation ∼, we will get
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Mobius line bundle with the bundle space E. It can be seen the figure below the base

space C is the middle circle and the fiber of each point (s, t) ∈ E is homeomorphic

to the real line R.

Definition (Coordinate Bundle). [11, p,7] A coordinate bundle ξ consists of a topo-

logical space E called the bundle space, a topological space B called base space, a

continuous map

p : E → B

of E onto B called projection and a space F called the fiber, an effective topological

transformation group G of F called the group of the bundle, a family of {Uj} of open

sets covering B with an index set J , the Uj’s are called coordinate neighborhoods, and

for each j in J , a homomorphism

ϕj : Uj × F → p−1(Uj)

called the coordinate function.

The coordinate functions are required to satify the following conditions:

pϕj(x, y) = x for x ∈ Uj, y ∈ F

if the map ϕj,x : F → p−1(x) is defined by ϕj,x(y) = ϕj(x, y),

then, for each pair i, j in J, and each x ∈ Ui ∩ Uj, the homeomorphism

ϕ−1
j,xϕi,x : F → F
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coincides with the operation of an element of G and for each pair i, j ∈ J , the map

gji : Ui ∩ Uj → G

defined by gji(x) = ϕ−1
j,xϕi,x is continuous. One can check that the functions gji’s

satisfy the axioms of a group (closure, associativity, an identity element, an inverse

element, cocycle condition).

Definition (Vector Bundle). Let ξ be a fiber bundle with the fiber F . The fiber bundle

ξ is called a real vector bundle if the fiber is Rn and the transformation group G

is the general linear group GLn(R).

Here, if the group is GLn(C) and acting on E and F = C then the fiber bundle is

called a complex vector bundle.

Definition (Principal Fiber Bundle). Let ξ be a fiber bundle with the fiber F . The

fiber bundle ξ is called a principal fiber bundle if the fiber is homeomorphic to the

transformation group G and the transformation group G acts freely on F and F = G.

Definition. Let ξ =( p : E → B) and ξ′ =( p′ : E ′ → B′ ) be two principal G-bundles

and let u : E → E ′ and f : B → B′ be two maps such that p′u = fp.

E
u−→ E ′

↓p ↓p′

B
f−→ B′

A pair (u, f) is called a principal bundle map (or just a principal map) if u : E →
E ′ is G-equivariant in the sense that

u(eg) = u(e)g

for all e ∈ E and g ∈ G.

Definition (Associated Bundle). Let ξ=(p : E → B) be a fiber bundle over a topo-

logical space X with the structural group G and let G be a left action on F and let G
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be a right action on E. Then ξp (=E ×G F → B) is called an associated bundle of ξ

with fiber F.

Definition. Let ξ and ν be two fiber bundles with the same base space B and the same

fiber F . Then they are called equivalent if their associated bundles are equivalent.

One can generalize this definition for different structural groups i.e. ξ =( p : E

→ B) is a G-bundle, ξ′ =( p′ : E ′ → B′) is a G′-bundle, and φ : G → G′ is a group

homeomorphism. We shall require

u(eg) = u(e)φ(g)

for all e ∈ E and g ∈ G.

Theorem 2.2.1. Let (u, f) be a principal map between a pair of principal G-bundles

ξ =( p: E → B) and ξ′ =( p′: E ′ → B′ ). If B′ = B,

E → E ′

↓p ↓p′

B
f−→ B

then E and E ′ are equivalent to each other.

Let ξ be a fiber bundle with fiber F and let f : X → B be a smooth function.

E

↓p
X

f−→ B

Then there is a fiber bundle f ∗(ξ) = { (x, e) ∈ X ×E | p(e)=f(x)} over X with the

fiber F, in the sense that the following diagram commutes;

f ∗(E)
u−→ E

↓ ↓
X

f−→ B

.
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It can be seen that if f , g : X → B are two homotopic maps, then f ∗(E) and

g∗(E) are isomorphic bundles over the space X [11, p,20]. We denote by BunG(X) the

isomorphism classes of principal G-bundles over X. Any G- bundle ξ over X generates

a map

αξ : [X,B]
u−→ BunG(X)

f 7→ f ∗(ξ)

where [X,B] denotes the set of homotopy classes of maps from X into B.

Generally, this map is neither one-to-one nor onto. We will study on principal

G-bundles and we call universal bundle that makes this map as one-to-one and onto.

Theorem 2.2.2. [11] Let ξ =( p : E → B) be a principal G-bundle. There exists

a classifying space BG and principal bundle UG (= G → EG → BG). Then there

exists a function f : B → BG, unique up to homotopy, such that f ∗(EG) = E.

2.3 Equivariant Bundles

Now, we consider a principal G-bundle together with an automorphism group Γ of

bundle maps. Let Γ be a compact Lie group, G a topological group and

α : Γ→ Aut(G)

a homomorphism from Γ into the automorphism group of G. Let γ ∈ Γ, α(γ) ∈
Aut(G) can be denoted by αγ and the map

Γ×G → G

(γ, g) 7→ αγ(g)

has to be continuous.

Definition. A (Γ, α,G)-bundle consists of a locally trivial principal G-bundle p : E →
B composed with left Γ-actions on E and B such that the following holds:

(i) The projection map p is a Γ-equivariant map.
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(ii) For γ ∈ Γ, and e ∈ E, we have the relation γ(eg) = (γe) · αγ(g).

If the α is trivial homomorphism, then Γ acts as a group of a principal bundle

automorphisms and it is just written as a (Γ, G)-bundle or Γ-equivariant principal

G-bundle.

A (Γ, α,G)-bundle p : E → B is called locally trivial if B admits an open covering

U = {Uj|j ∈ J} by Γ-sets Uj such that each restriction p−1Uj → Uj admits a (Γ, α,G)-

bundle map into local objects.

Definition. If X is a G-space, an open cover {Uj}j∈J will be called an open G-cover

if for each Ui, there exists a Uj such that G.Ui = Uj . An open G-cover will be called

numerable if there is a subordinate partition of unity {Uλi}λi∈J such that each Uλi

is G-invariant.

If U is numerable, then (Γ, α,G)-bundle is called a numerable bundle.

Theorem 2.3.1. Existence of Universal Bundle

(i) p is a numerable (Γ, α,G)-bundle.

(ii) Each numerable (Γ, α,G)-bundle admits a bundle-map into projection map p.

Any two such bundle maps are homotopic to each other as (Γ, α,G)-bundle maps.

Theorem 2.3.2. Let p : E → B be a numerable (Γ, α,G)-bundle and ft : B′ → B

a Γ-homotopy. Then the induced bundles f ∗0 p and f ∗1 p are isomorphic as (Γ, α,G)-

bundles.

A (Γ, α,G)-bundle p for which the theorem 2.3.1 is true is called a universal

bundle. From the Theorem 2.3.2, we say that E(Γ, α,G) → B(Γ, α,G) and any

Γ-space X the homotopy set [X, B(Γ, α,G)]Γ is canonically isomorphic to the set

of isomorphism classes of numerable (Γ, α,G)-bundles over X which is denoted by

B(Γ, α,G)(X). The space B(Γ, α,G) is called the classifying space for (Γ, α,G)-

bundles. If α is trivial, we write B(Γ, G), if Γ is trivial, it will be written as BG.

Consider the bundle EG → BG as (Γ, G)-bundle with trivial Γ- action. It is

numerable and therefore has a classifying map j : BG → B(Γ, G). Let J = id×Γj :

EΓ×ΓBG→ EΓ×ΓB(Γ, G). Notice that EΓ×ΓBG = BΓ×BG.
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Proposition 2.3.3. The maps j and J are homotopy equivalences.

Proof. E(Γ, G) → B(Γ, G) is a universal principal G- bundle. Then we know that j

induces a universal bundle from another one, it must be a homotopy equivalence. We

can think J fiberwisely then J must be a homotopy equivalence.

Let h∗(−) be an element of cohomology groups H∗(−) which are defined on all

spaces. Elements of h∗(BG) are called universal characteristic classes for principal

G- bundles. Given x ∈ h∗(BG) and a classifying map f : B → BG for a principal

bundle p : E → B, then f ∗(x) ∈ h∗(B) is called a characteristic class for p of

type x. [10] Similarly, we can use a type of equivariant cohomology theory defined

for Γ-spaces. By the proposition 2.3.3, we can define simpler by using the homotopy

equivalence EΓ×ΓB(Γ, G) ∼= BF×BG, one can define universal characteristic classes

in h∗(BΓ×BG).

2.4 Equivariant CW-complexes

Cell complexes are constructed by iterated attaching of cells. To begin with, a push

out is an useful object. A diagram

A
f−→ Y

↓j ↓J
X

F−→ Z

of G spaces and G-maps is called push out if for each part of G-maps f ′ : Y → U,

j′ : X → U with f ′f = j′j, there exists a unique G-map u : Z → U with uJ = f ′,

uF = j′. If A ⊂ X then j is a subcomplex and a closed embedding. Suppose X

and Y are disjoint. We consider the following equivalence notation R on X ∪ Y :

(z1, z2) ∈ R⇔ z1 ∈ A, z2 ∈ f(A) and f(z1) = z2.
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The quotient space (X∪Y )/R = Z is denoted by Y ∪fX. And the canonical maps

turn out to be F : X → Y ∪fX and J : Y → Y ∪fX.

Proposition 2.4.1. J is a closed embedding. The morphism, (F, f) : (X,A) →
(Y ∪fX, Y ) is a relative homomorphism.

The closed inclusion j : A→ X is called a G-cofibration if it has the homotopy

extension property for all G-maps f : X → Y and for all G-homotopies ϕ : A×I →
Y with ϕ(a, 0) = f(a) for a ∈ A. In other words, given f and ϕ , there must exist

φ : X×I → Y such that φ|A×I = ϕ and φ(x, 0) = f(x). Let n ≥ 0 be an integer.

Let A be a G-space. Given a family (Hj|j ∈ J) of closed subgroup of Hj of G and

G-maps

ϕj : G/Hj × Sn−1 → A, j ∈ J.

We consider push outs of G-spaces

∐
j∈J G/Hj × Sn−1 → E ′⋂

↓∐
j∈J G/Hj ×Dn → X

We put ϕ|G/Hj×Sn−1 = ϕj and φ|G/Hj×Dn = φj. Now, X is obtained from A by

attaching the family of equivariant n-cells (G/Hj ×Dn|j ∈ J) of type (G/Hj|j ∈ J).

The map

(φj, ϕj) : (G/Hj ×Dn, G/Hj × Sn−1)→ (X,A)

is called the characteristic map of the corresponding n-cell, while ϕj is called the

attaching map.



Chapter 3

Literature Review

T. E. Stewart has a paper on lifting the group action which is defined on base space

B [12].

Definition 3.0.2. Let ξ = (E,F,B) be a fiber bundle. If α : H × B → B is a group

action of H on B he says that α can be lifted in ξ to a group action on E such that

the following diagram is commutative:

H × E α−→ E

↓(1,p) ↓p
H ×B α−→ B

.

α will be said to be a lifting of α in ξ.

Proposition 3.0.3. If α has bundle lifting in a principal bundle ξ over B then α has

a bundle lifting in every associated bundle.

Proposition 3.0.4. Let ξ be a bundle over B, and α, α′ actions of H on the spaces B

and B′ respectively. If f : B′ → B is an equivariant map, i.e. f(α(h, b′)) = α(h, f(b′))

and the action α has a bundle lifting in ξ, then α′ has a bundle lifting in the induced

bundle f ∗(ξ) over B′

We can mention many other papers written on this topic. But rigorously, R. K.

Lashof developed the theory of equivariant bundles. He defined equivariant bundles

17
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in [6]. Now, let p : E → X be a principal G-bundle. We call this bundle as a Γ-G

bundle if E and X are Γ-spaces and p is Γ-equivariant map. (that is if we can lift X

as a Γ-space to E via the map p) If two Γ-G bundles over X are G-equivalent via a

Γ-equivariant map, then they are called Γ-G equivalent [11] and [6].

Lashof adds some remarks in [6, p,257]. ξ =( p : E → B) is a Γ-G-bundle if

and only if the associated bundle of ξ ( ξA) is a Γ-G-bundle. Furthermore, Two

Γ-G-bundles with fiber F are Γ-G-bundle equivalent if and only if their associated

principal Γ-G-bundles are Γ-G equivalent.

Theorem 2.1 gurantees that there exists a slice around x ∈ X if X is a completely

regular space. For every x ∈ X, there is a Γx- invariant subspace Vx, called Γx-slice,

then we define a map ν such that

ν : Γ×Γx Vx → X, ν(g, v) = gv

Definition. A Γ-G bundle p : E → X with fiber F is called Γ-G locally trivial if there

is an open cover {ΓVα}α∈I of X, where Vα is an Hα slice, such that E|ΓVα is Γ-G

equivalent to a locally trivial bundle ερα(Vα) for some homomorphism ρα : Hα → G

under an identification Γ×Hα Vα → ΓVα.

In this definition, Lashof uses the open neighborhoods and coverings. In the same

paper [6] he gave Bierstone’s condition which is more related with group homomor-

phisms.

Definition (Bierstone’s Condition). [1] For each x ∈ X there is a Γx invariant

neighborhood Ux such that p−1(Ux) is Γx-G is equivalent to Ux×F with the Γx action

h(u, g) = (hu, ρx(h)y),

where u ∈ Ux, h ∈ Γx, y ∈ F and ρx : Γx → G is an homomorphism.

Lashof proved in [6] that these two definitions are equivalent under some restricted

conditions.
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Lemma 3.0.5. [6, p,259] A (Γ-G) locally trivial bundle satisfies the Bierstone’s con-

dition.

For the other direction of lemma we need other conditions for X. X is called a

completely regular space if given any closed set F and any point x in X −F then

for every y in F there is a continuous function f from X to a real line R such that

f(x) is 0 and f(y) is 1 in [15, p,50].

Lemma 3.0.6. If X is a completely regular space, then a (Γ-G) bundle over X which

satisfies Bierstone’s condition is Γ-G locally trivial.

We say that a (Γ-G) bundle satisfies Bierstone’s condition if and only if the asso-

ciated principal bundle does.

Lemma 3.0.7. Let a principal Γ-G bundle p : P → X reduce to a Π-G bundle, Π be

a closed subgroup of Γ such that Γ/Π has local cross-section in Γ, if and only if the

associated bundle P/Π with the fiber Γ/Π has an equivariant cross-section.

Definition. Let A,B be compact connected Lie group. If B is closed subgroup of A,

A/B is called A−B locally trivial if for each compact Lie group C ⊂ A, λ : A→ A/B

is an C −B locally trivial bundle.

Γ-G locally trivial bundle property can be extended to its associated bundle and

under some restriction we can reduce the Γ-G locally trivial property.

Lemma 3.0.8. Let ρ : G → H be a homomorphism. If q : Q → X is a Γ-G locally

trivial bundle, then associated Γ-H bundle P = Q×GH over X is locally Γ-H locally

trivial.

We conclude that the following is converse lemma:

Lemma 3.0.9. Let p : P → X be a principal Γ-G locally trivial bundle and suppose

p reduces to a Γ-K bundle q : Q → X, K a closed subgroup of G such that G/K is

G−K locally trivial. Then q is Γ-K locally trivial bundle.
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Proposition 3.0.10 (Wasserman-Segal). Any (Γ-Ln) bundle over a completely reg-

ular space X is Γ-Ln locally trivial where Ln is a general linear group.

Definition. If X is a G-space, an open cover {Uα}α∈I will be called an open G-cover

if for each Uα, there exists a Uβ such that G.Uα = Uβ . An open G-cover will be called

numerable if there is a subordinate partition of unity {Uλ}α∈I such that each λα is

G-invariant.

Now, it does not need to check partition of unity for all space, since in the same

paper [6], Lashof introduces a lemma to guarantee a numerable refinement.

Lemma 3.0.11. If X is paracompact G-space, then every open G-cover has a nu-

merable refinement.

Moreoever, If (Γ-G) bundle p : P → X will be called numarable if X has a

trivializing numerable G-cover {GVλ}α∈I .

Corollary 3.0.12. Every Γ-G locally trivial bundle over a paracompact space X is

numarable.

Now, H is a closed subgroup of the Lie group G. Lashof gave proposition to

compare Γ-H bundles and Γ-G bundles.

Proposition 3.0.13. Let H be a closed subgroup of the Lie group G. If G/H is

equivariantly contractible for a compact subgroup of G, then there is a bijection between

equivalence classes of numarable Γ-H bundles and Γ-G bundles.

Corollary 3.0.14. There is a bijective corresponce between equivalence classes of

numarable Γ-Ln and Γ-On bundles.

Theorem 3.0.15. A Γ-G bundle has the equivariant covering homotopy prop-

erty(ECHP) if a numerable Γ-G bundle E over X × I is equivalent to E0 × I

(E0 = E|(X × (0))).

In the [14], Wassermann proved that( ECHP) is satisfed in the vector bundle case.

And in the [1], Bierstone proved that it is satisfied in the differentiable G-bundle case.

Finally, important theorem is given from Lashof at [6].
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Theorem. A numerable Γ-G bundle E over X × I is (Γ-G) bundle equivalent to

(E|X)× I, where by E|X we mean E|(X × (0)).

Corollary 3.0.16. Let p : E → Y be a numerable Γ-Gand let f : X × I → Y be

an equivariant homotopy between the G-maps f0, f1 : X → Y. Then f ∗0 (E) and f ∗1 (E)

are Γ-G equivalent.

Corollary 3.0.17. A numerable Γ-G bundle satisfies the equivariant covering homo-

topy property.

We discussed the classifying space. Now, in [6] Lashof and in [13] tom Dieck use

the parallel definition induced from classifying spaces .

A universal Γ-G bundle is a numerable principal Γ-G bundle p : E → B such

that for any G-space X, the equivalence classes of numerable Γ-G over X are bijective

correspondence with [X,B]Γ, the equivariant maps X into B; the correspondence

being given by induced bundles. [13, p,59]

A strongly universal Γ-G bundle is a numerable principal Γ-G bundle p : E → B

which satisfies: let π : P → X be a numerable principal Γ-G and let X0 ⊂ X be a

closed invariant subspace with invariant halo W0. If φ0P |W0 → E is a Γ-G bundle

map, then there is a Γ-G bundle map φ : P → E such that φ agrees with φ0 on P |X0.

Theorem 3.0.18. A numerable principal Γ-G bundle π : P → X is strongly universal

if and only if for each H ⊂ Γ and homomorphism ρ : H → G, P is contractible to a

point under the action a→ haρ(h)−1, a ∈ P, h ∈ H.

There is a universal bundle for a given bundle space. Other method is given for

equivariant case by using Steenrood’s approach [11].

Lemma 3.0.19. If a strongly universal Γ-G bundle exists, then every universal Γ-G

bundle is strongly universal.

Finally, Lashof prove the final theorem in [6]. Before that we will give some

definitions and will define some sets which related by the theorem.
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Let H ⊂ Γ be a closed subgroup and ρ : H → G be a homomorphism. Suppose

that Gρ be the centralizer of ρ(H) in G. That is as set notation

Gρ = {g ∈ G | ρ(h)gρ−1(h) = g, h ∈ H}

Since Gρ is a closed subgroup of G, we let BGρ denote its universal base space. Let

RH be a collection of homomorphism of H in G containing exactly one representative

from each G-conjugacy class.

Theorem 3.0.20. [6] Let p : E → B be a universal Γ-G bundle and H ⊂ Γ a closed

subgroup. Then BH is the disjoint union of the BGρ where ρ ∈ RH . If K ⊂ H,

BH ⊂ BK corresponce to the maps BGρ → BGρ/K induced by Gρ ⊂ Gρ/K .

In [7], they generalize the equivariant principal Γ-G bundles and it is known that

a numerable principal Γ-G bundle satisfies the equivariant bundle covering homotopy

property.

Theorem 3.0.21. A numerable principal Γ-G bundle p : E → B is universal if and

only if EH is contractible for all closed subgroup H of Γ such that H ∩G = e.

Let B(Γ, G) be the base space of a universal principal Γ-G bundle it is uniquely

determined up to G- homotopy type.

Theorem 3.0.22. For H ⊂ Γ, A ⊂ Γ

B(Γ, G)H =
∐

B(WΓA,G ∩NΓA)

such that H ∩G = e where NΓA is the normalizer of A in Γ and WΓA = NΓA/A. In

particular, B(Γ, G)H is empty if there is no such A.

Now, we will mention the paper of Lashof , May and Segal [8]. For a space Γ-

space X of the homotopy type of a Γ-CW complex, define B(Γ, G)(X) to be the

set of equivalence classes of principal (Γ, G)-bundles over X. For the space Y of the

homotopy type of a CW -complex, define B(G)(Y ) to be the set of equivalence classes
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of principal G- bundles over Y. Let XΓ = EΓ ×Γ X, where EΓ is a contractible and

Γ-free Γ-CW complex. Define a natural transformation

Φ : B(Γ, G)(X)→ B(G)(XΓ)

by sending a (Γ, G)-bundle p : D → X to the G-bundle pΓ : DΓ → XΓ.

Theorem 3.0.23. If G is abelian, then Φ is an isomorphism.

Proof. A choice of base point in EΓ determines an injection i : X → XΓ and we write

a natural transformation

i∗ : B(G)(XΓ)→ B(G)(X).

π : EΓ × X → XΓ is a quotient map and ε : EΓ × X → X is the projection, then

i ◦ ε ' π and thus i∗ agrees with the composite

B(G)(XΓ)
π∗−→ B(G)(EΓ×X)

ε∗−1

−−→ B(G)(X).

The composition is

i∗Φ : B(Γ, G)(X)→ B(G)(X)

from (Γ, G)-bundles to G-bundles. Its image consists of those G-bundles over X

which admits a structure of (Γ, G)-bundles. In other words, an action of Γ on X lifts

appropriately to the total space.

Moreover, we show this result by different method. Let p : E → X be a Γ-

equivariant principal G-bundle with γ(e · g) = (γe) · g where γ ∈ Γ, e ∈ E and

g ∈ G. And the isotropy representation at x ∈ X is the homomorphism αx : Γx → G

defined by the formula γ · x̃ = x̃ · αx(γ) where x̃ ∈ p−1(x). We know that i∗Φ is

injective up to homotopy equivalance. Surjectivity can be shown by the following.

γ(x̃ · g) = (γx̃) · g = x̃ · αx(γ) · g since G is abelian we can write = x̃ · gαx(γ) then it

is surjective.

Now, for Γ-spaces X and X ′, let M(X,X ′) denote the function Γ-space of continu-

ous map X → X ′ with Γ acting by conjugation. Define B(Γ, G) = M(pt, B(Γ, G))
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maps from point to classifying space and recall that Γ-map f : D → E is said to be

a weak Γ-equivalence if its fixed point map fH : DH → EH is an ordinary weak

equivalence for each closed subgroup H of G. By the Γ-Whitehead theorem

f∗ : [X,D]Γ → [X,E]Γ

is then a bijection for any Γ-space X of the homotopy type of a Γ-CW complex.

Lemma 3.0.24. ξ∗ : M(EΓ, BG)→M(EΓ, B(Γ, G)) is a weak Γ-equivalence.

Theorem 3.0.25. [9] ε∗ : B(Γ, G)→M(EΓ, B(Γ, G)) is a weak-equivalence when G

is abelian.

Proposition 3.0.26. B : Hom(Γ, G) → [BΓ, BG] is an isomorphism when G is

abelian.

Now, we will classify Γ-equivariant principal G-bundles over 2-sphere. We ap-

proach the problem as in the paper of Hambleton and Hausmann [5] and tom Dieck

[13]. Hambleton and Hausmann studied on local invariants. This paper will be used

for the classification equivariant principal G-bundles over 1-skeletons which are subset

of 2-sphere. For the 2-sphere, we will classify by Chern classes. Therefore, we need

two invariants for the classification of equivariant principal G-bundles over 2-sphere.



Chapter 4

Classifying Equivariant Principal

G-Bundles

4.1 Split Equivariant Principal Bundles

We will introduce the definition of a split Γ-space since the theorem [5, Theorem

3.2] basically shows that if X is split Γ-space on S2, the equivalance classes of split

Γ-equivariant G-bundles over X are in bijection with RepG(I).

Definition (Split-Γ Space). Let A be a topological space and Γ be a topological group.

A triple (X,π, ϕ) is called a split Γ-space over A if;

(i) X is a Γ-space,

(ii) π : X → A is a continuous surjective map such that for each a ∈ A, the preimage

π1(a) is a single orbit, and

(iii) ϕ: A → X is a continuous section of π, i.e. π ◦ ϕ = 1A

In this definition, the maps π and ϕ may be omitted from the notation and we

change of a split Γ-space over A. In (ii), the map π induces π̄: Γ \ X → A which

is a homeomorphism since ϕ provides its continuous inverse. We defined split Γ-

space. Now, we will introduce the isotropy groupoid for given split-Γ space. Then we

25
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will define the isotropy representation of an isotropy groupoid. Finally, we will give

the theorem which was proven by Hambleton and Hausmann [5, p,134].

A (Γ, A)-groupoid is a subspace I ⊂ Γ × A such that, for each a ∈ A, the space

Ia = I ∩ (Γa × {a}) is the form Ĩ× {a}, where Ĩa is a closed subgroup of Γ.

An isotropy groupoid I is called weakly locally maximal if each point a ∈ A

admits a neighbourhood U such that Iu is a subgroup of Ia for all u ∈ U. A space

X is called locally compact if it is Hausdorff and every point of X admits a compact

neighbourhood. The following proposition says that given Γ, A and isotropy groupoid,

we have a split Γ-space.

Proposition 4.1.1. Let Γ be a compact topological group and A be a locally com-

pact space. Let I be a weakly locally maximal isotropy groupoid. Then the following

properties hold.

(i) There is a split Γ-space (YI,Π, φ) over A with isotropy groupoid I; the space YI

is locally compact.

(ii) Let (X, π, ϕ) and (X ′, π′, ϕ′) be two split Γ-spaces over A with isotropy groupoid

I. Suppose that X and X ′ are locally compact. Then there is a unique Γ-

equivariant homeomorphism F : X → X ′ such that ϕ′ = F ◦ ϕ.

Definition (Isotropy Groupoid). Let (X,π,ϕ) be a split Γ-space over the space A with

relative topology. The Isotropy groupoid of X is denoted by

I(X) := {(λ, a) ∈ Γ× A|λ ∈ Γϕ(a)}

Definition (Split Bundle). Let (X,π,ϕ) be a split Γ-space over A with isotropy

groupoid I and let η:(E → X) be a principal G-bundle over X. Then, the bundle η

is called a split bundle if ϕ∗η is trivial.

A topological space is called a contractible space if it is homotopic to a point.

For instance, a one-dimensional disk D1 is a contractible space but a 1-sphere is

not a contractible space. Moreover, it is known that every compact spaces is a
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paracompact space. All spaces which we use in this paper are compact spaces, then

they are paracompact. Two split Γ-equivariant principal G-bundles over (X,π,ϕ)

are isomorphic if they are isomorphic just as Γ-equivariant principal G-bundles over

X. The set of isomorphism classes of Γ-equivariant split G-principal bundles over

(X, π, ϕ) simply by SBunGΓ (X). It is still a subset of BunGΓ .

Any Γ-equivariant principal G-bundle is split bundle if the orbit space A is a

contractible, paracompact space, since the contractible spaces are homotopy equiva-

lent to a point. If the orbit space A is homotopic to a point, all pull-back bundles

over the space X are trivial, then all equivariant principal bundles are split. This

is very useful for classifying the equivariant principal bundles over X. For the finite

subgroups of SO(3) acting linearly on S2, we will get different orbit spaces. Except

for the orbit space of dihedral subgroup case, all orbit spaces of subgroups of SO(3)

are contractible and paracompact. Hence, the theorem proven by Hambleton and

Hausmann [5] will be used.

Definition (Isotropy Representation). Let I be a (Γ,A)-groupoid and G be a topo-

logical group. A continuous representation of I is a continuous map

ι : I→ G

such that the restriction of ι to each point a ∈ A is a group homomorphism from Ia

to G. It can be denoted by ιa: Ia → G.

A continuous representation of ι : I → G is called locally maximal if for each

point a ∈ A, there exists a neighborhood U such that Iu is subgroup of Ia for all u ∈
U together with a continuous map g: U → G such that αu (γ) = g(u) αa (γ) g(u)−1

for all u ∈ U and γ ∈ Iu. Moreover, a (Γ, A)-groupoid I such that Ia is a compact

Lie group for all a ∈ A is called proper. We denote by RepG(I) the set of conjugacy

classes of locally maximal continuous representations of I.

Let A be a CW-complex filtered by its skeleta A(n). We denote by Ω = Ω(A) the

set of cells of A, and by d(e) the dimension of a cell e ∈ Ω and Ωn = { e ∈ Ω | d(e)

= n }. For a ∈ A, we denote by e(a) ∈ min{d(e)|a ∈ e} Ω
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Definition. Let Γ be a topological group and A be a CW-complex. The isotropy

groupoid I(X) is called cellular if it is locally maximal and if Ĩa = Ĩb when e(a) =

e(b).

Let (X,π,ϕ) be a split Γ-space over the space A with isotropy groupoid I. Let η

: (E → X) be a split Γ-equivariant G-principal bundle over the space X.

ϕ∗(η) → E

↓ ϕ̃↗ ↓
A

ϕ−→ X

Since ϕ∗(η)=(A×G) is trivial, there exists a continuous lifting ϕ̃∗(η) : A → E of

ϕ. The equation

γϕ̃(a) = ϕ̃(a)αa(γ),

(valid for a ∈ A and γ ∈ Ia,) determines a continuous representation αη,ϕ̃ : I →
G. Hambleton and Hausmann [5] checked that αη does not depend on the choices ϕ̃

and depends only on the Γ-equivariant isomorphism class of η. Then, classification

theorem is the following.

Theorem (Classification Theorem of Hambleton and Hausmann). Let (X,π,ϕ) be a

split-Γ space over the orbit space A with the isotropy groupoid I. Assume that A is

locally compact, the group Γ is a compact Lie group and I is locally maximal. Then

for any compact Lie group G, the map

Φ : SBunGΓ → RepG(I)

is a bijection.

Now, S2 is the CW-complex,let X ⊂ S2 be Γ-equivariant 1-skeleton the theorem

can be used to classify equivariant principal G-bundles over X. For the subgroups

of the SO(3) (except the dihedral group), the orbit spaces are contractible and para-

compact. It follows that all equivariant bundles over X are the split bundles. For the
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dihedral group while we can use the same method we need to address the fact not all

equivariant principal G bundles are split. In the theorem, the group is a compact Lie

group. If the group G is abelian, then the non-split bundle space over the space X is

isomorphic to the bundle space over the orbit space A since the projection maps are

equivariant.

Proposition 4.1.2. [5, p,137] Let (X,π,ϕ) be a split-Γ space over the orbit space A

with the isotropy groupoid I, and Γ a compact Lie group. Suppose that I is locally

maximal and that A is a locally compact space. If the group G is a compact abelian

group, then one has an isomorphism of abelian groups

(Φ, ϕ∗) : BunGΓ (X)→ RepG(I)×BunG(A).

4.2 1-skeletons of S2

After definitions and theorems, we will introduce the crucial theorem. For different

subgroups of SO(3), there exists a Γ-equivariant 1-skeleton which is a split Γ-space.

Hence, if it is a split Γ-space, then equivariant principal G-bundles over the CW-

complex will be classified by paper of Hambleton and Hausmann [5].

Theorem 1. Let Γ ⊂ SO(3) be a finite subgroup acting linearly on S2. Then there

exists a Γ-equivariant 1-skeleton X ⊂ S2, which is a split Γ-space over A = X/Γ.

Proof. We will prove this theorem by induction and directly. We need the induction

method for the cyclic and the dihedral groups. For the other subgroups of the SO(3),

it will be proved by direct computation.

Finite Subgroups of SO(3)

(i) Cyclic Subgroups

(ii) Dihedral Subgroups

(iii) Tetrahedral Subgroup
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(iv) Octahedral Subgroup

(v) Icosahedral Subgroup

4.2.1 Cyclic Subgroups

Let Cn be a 1-skeleton over S2 such that it is composed of 2 vertices and n edges , Cn
be a cyclic group containing n elements and acting on Cn and En be the orbit space

of Cn under the group action of Cn. We will look the CW- complex Cn illustrated

below as a projection from the north pole to the xy-plane.

The CW-complex Cn is a split-Cn space It is proven by induction that En and Cn

satisfy the proposition of Riemann-Hurwitz Formula

χ(Cn) = nχ(En)−
∑
pεEn

(|Cnp| − 1)

and by definition of Euler Characteristic

χ(Cn) = 2− n χ(En) = 1

the claim is that

χ(Cn+1) = χ(Cn)− 1 χ(En+1) = χ(En)

After we add one edge to the Cn, the new CW-complex become the Cn+1. Fur-

thermore, we will subtract one from Euler characteristic since vertices are fixed in the
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north and south poles. On the other hand, the orbit space En does not change since

the orbit space En+1 is actually composed of one edge and two vertices.

if n = 2, Γ = C2, then χ( C2) = 0, χ(E2) = 1 and

χ(ζn) = 2− n

χ( Cn+1) = 1 − n since the CW-complex Cn+1 has 2 vertices and n + 1 edges.

Therefore, χ( Cn+1) = χ( Cn) − 1, Cn+1 and En+1 satisfies the proposition of

Riemann-Hurwitz Formula.

Then we can conclude that there is a continuous section from orbit space to Cn. It

can be said that the isotropy groupoid of the CW-complex Cn is I cellular since it is

defined by I0=I1=Cn and I01 =id and Ia is constant on the interior of each cell [5,

p.141].

4.2.2 Dihedral Subgroups

Let Dn be a 1-skeleton over S2 such that it is composed of 2n+ 2 vertices, 6n edges

since the CW-complex Dn is actually composed of n-gon (n vertices and n edges)

stated at equator of a sphere.

Let D2n be a dihedral group of order 2n acting on the CW-complex Dn and we

should add n + 2 vertices and 5n edges on the CW-complex Dn to provide regular

CW-complex where n is the number of vertices of polygon. Let Dn be the orbit

space of Dn under the group action of D2n .
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The CW-complex Dn is a split-D2n space, it is proven by induction since the orbit

space Dn and the CW-complex Dn satisfy the Riemann-Hurwitz Formula.

χ(Dn) = 2nχ(Dn)−
∑
xεDn

(|D2np| − 1)

χ(Dn) = (2n+ 2)− 6n = 2− 4n χ(Dn) = 0

the claim is that

χ(Dn+1) = χ(Dn)− 4 and χ(Dn+1) = χ(Dn)

After we add one vertex to the CW-complex Dn, we will subtract four from the

Euler characteristic of Dn to construct Dn+1. Indeed, one vertex is not sufficient

since it is necessary to construct a regular CW-complex. Therefore, it needs 2 extra

vertices different than the first vertex which is added first. Otherwise it would not

be a regular CW-complex. On the other hand, the orbit space does not change after

adding vertices and edges since the orbit space is actually composed of 3 edges and

3 vertices as well. If n = 2, then Γ = D4, the CW-complex D2 is 1-skeleton on

S2 such that it has square stating on equator of S2. Let the vertices of the square

be named 1,2,3,4.

Γ = D4 = {(), (1234), (1423), (1432), (14)(23), (12)(34), (13), (24)}

then

χ(D2) = 6 χ(D2) = 0

and

χ(Dn) = 2− 4n

χ(Dn+1) = −2− 4n since Dn+1 has 2n+ 4 vertices and 6n+ 6 edges. Therefore,

χ(Dn+1) = χ(Dn)− 4,

Dn+1 and Dn+1 satisfy the Riemann-Hurwitz Formula.
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Then we can find a continuous section from orbit space to base space. We can say

that the isotropy groupoid of Dn is I since it is defined by I0=I1=C2, I2=Cnand I01

= I12=I02=id.

4.2.3 Tetrahedral Subgroup

Let T be a tetrahedron and A4 be a tetrahedral group of order 12 acting on T and

let T be an orbit space of T under the group action of A4.

A4 = {(), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)}

Firstly, a tetrahedron has 4 vertices, and vertices of T are named by 1,2,3,4. We will

add extra vertices and edges to provide a regular CW-complex. It is necesary to put

6 vertices in the middle of edges and 4 vertices in the middle of the faces. Finally, T

has 14 vertices and 24 edges.

χ(T) = −10

The tetrahedron has 4 vertex-rotation of order 3 (i.e. (123), (142), (143), (243)) and

3 edge-rotation order of 2 (i.e.(12)(34), (13)(24), (14)(23)). Therefore, the orbit space

T is composed of 2 vertices and 1 edge. The tetrahedron is split-A4 : space we can
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prove this by the Riemann-Hurwitz Formula.

−10 = 12χ(T )− (4(2 + 2) + 3(1 + 1))

χ(T ) = 1

Then we can find a continuous section from orbitspace to T. We can say that the

isotropy groupoid of T is I cellular since it is defined by I0=C2 I1=C3 and I01 =id .

4.2.4 Octahedral Subgroup

Let C be a cube and O be an octahedral group of order 24 and acting on the cube C
and O be the orbit space of C under the group action of O. The octahedral group O

can be considered as a subgroup of S8.

Firstly, the cube C has 8 vertices and 12 edges. We must add extra vertices and

edges to satisfy the regularity of CW-complex. It is necessary to add 12 vertices in

the middle of edges and 6 vertices in the middle of faces. Finally, the cube C has 26

vertices and 48 edges.

χ(C) = −22

The cube C has 4 vertex-rotation of order 3, 6 edge-rotation of order 2, and 3 face-

rotation of order 4. Therefore, the orbit space O is composed of 3 vertices and 2

edges. The cube C is a split-O space since it satisfies the Riemann-Hurwitz Formula.

−22 = 24χ(O)− (3(3 + 3) + 4(2 + 2) + 6(1 + 1))
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χ(O) = 1

Then we can construct a continuous section from orbit space to C. We can say

that the isotropy groupoid of the cube C is I cellular since it is defined by I0=C2,

I1=C3, I2=C4, I01 =id and I12 =id .

4.2.5 Icosahedral Subgroup

Let I be a Icosahedron and H be an icosahedral group of order 60 acting on I and

let I be an orbit space of I under the group action of H. The icosahedral group H

can be considered as a subgroup of S12.

Firstly, the icosahedron I has 12 vertices and 30 edges. (20 faces which is useful

for adding extra vertices) We will add extra vertices and edges to provide regular

CW-complex. It is necessary to put 30 vertices in the middle of edges and 20 vertices

in the middle of faces. Finally, the dodecahedron I has 62 vertices and 120 edges.

χ(I) = −58

The icosahedron I has 6 vertex-rotation of order 5, 15 edge-rotation of order 2, and 10

face-rotation of order 3. Then, the orbit space I is composed of 3 vertices and 2 edges.

Therefore, the icosahedron I is a split-H space: we show this by the Riemann-Hurwitz
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Formula.

−22 = 60χ(I)− (6(4 + 4) + 15(2 + 2) + 10(1 + 1))

χ(I) = 1

Then we can construct a continuous section from orbit space to I. It is said that

the isotropy groupoid of the dodecahedron I is I cellular since it is defined by I0=C2,

I1=C3, I2=C5, I01 =id and I12 =id .

Now, we know that for each finite subgroup of SO(3) we have found a 1-skeleton

CW-complex on S2 such that it splits over A. In [5], Hambleton and Hausmann

proved that there is a bijection between split Γ-bundle space of X and isotropy rep-

resentation of the groupoid if the space X splits under some restrictions.

4.3 Classification of Principal G-bundles Over 1-

Skeletons of S2

Although we know the general theory about the classification of equivariant principal

bundles from [5] and [4]. The computation of RepG(I) is generally hard. On the other

hand, we can compute RepG(I) since the isotropy groupoid of X and the orbit spaces

of X under Γ ⊂ SO(3) are simpler than the other spaces. In the proof of theorem

1, we chose special 1-skeletons for the different subgroups of SO(3). After that, the

orbit spaces are different than each other. The common point of the cyclic group,

the tetrahedral group, the icosahedral group, the dodecahedral group is that their

orbit spaces are homeomorphic to [-1,1]. Hence, their orbit spaces are contractible

and paracompact. Every Γ-equivariant principal-G bundle is a split-Γ space where

the orbit space A is a contractible and paracompact space. For the other case, the

orbit space A is a triangle (in other words A is a graph) then there is a bijection
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between split bundle space of the CW-complex X and the isotropy representation of

groupoid I. In this case, there exist some non-split bundle over the space X. If the

group G is abelian, then there is an isomorphism between the bundle spaces of X

and RepG(I) × BunG(A). The orbit spaces of the different CW-complexes follow

from the figure. We can say that all the orbit spaces are paracompact since all the

orbit spaces are compact in our problem.

However, we shall separate two cases since one of the orbit space is not contractible.

(i) The orbit space A is contractible.

(ii) The orbit space A is not contractible.

4.3.1 Contractible Case

All of the equivariant bundles over the space X are split bundles, since the orbit

space of the space X (where the group is one of the cyclic group, the tetrahedral

group, the octahedral group, and icosahedal group) is contractible and paracompact.

Therefore, we will use the classification theorem which is proven by Hambleton and

Hausmann [5]. Since, the possible specific spaces (∗,π,ϕ ) is split over its orbit spaces.

All the possible orbit spaces are locally compact, all the possible isotropy groupoids

are locally maximal and the group Γ is a compact Lie group. Thus

Φ : SBunGΓ → RepG(I)

is a bijection for all case where the orbit space is contractible.
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4.3.2 Non-contractible Case

The bijection given is available for the dihedral case since the CW-complex Dn is

split over the orbit space Dn as well. But we cannot guarantee that all equivariant

principal G bundles are split over the space X. (i.e. there may exist some non-split

bundles over the space X). For the non-split bundles over the space X, we should

restrict our conditions. If we choose abelian G, then we can use the proposition of

the theorem. The space ( Dn,π,ϕ ) is a split-D2n space over Dn with the isotropy

groupoid I, and Dn is locally compact and I is locally maximal. Then for any abelian

Lie group G , one has an isomorphism of

(Φ, ϕ∗) : BunGΓ (X)→ RepG(I)×BunG(A).

Since the orbit space Dn is a triangle, the orbit space Dn is homeomorphic to

circle S1. We know the bundles over the circle S1, it induce map

(Φ, ϕ∗) : BunGΓ (X)
≈−→ RepG(I)×BunG(S1).

If the group G is a connected compact Lie group, it follows

[S1, BG] ∼= π1(BG) ∼= π0(G) ∼= 0

If the group G is not connected but still a compact Lie group, it follows

[X,S1] ∼= π1(BG) ∼= π0(G).

Now, we will define some new concepts to can calculate RepG(I) easier.

4.4 Calculation of RepG(I)

Let ι : I → G be an isotropy representation and let I be a (Γ,A)-groupoid. The

isotropy representation ι is called cellular if ιa = ιb when e(a) = e(b). For each e ∈
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Ω(A), this defines Hom(Ie, G) with face compatibility conditions ιe = ιf | Ie whenever

f ≤ e. The set of conjugacy classes of cellular representations of I into G is denoted

by RepGcell (I). For a cellular representation ι : I → G and a cell e of A, we can

associate its conjugacy class [ιe] ∈ Hom (I,G). It follows that there is a map β

β : RepGcell(I)→
∏

e∈Ω(A)

Hom(Ie, G).

If we pick an element be from this product, it must satisfy the face compatibility

condition. Now, we will define

Rep
G

cell(I) = {(be) ∈
∏

e∈Ω(A)

Hom(Ie, G)| be = bf |Ie for f ≤ e}

and we can replace β as a map β : RepGcell(I)→ Rep
G

cell(I). Then the following diagram

is commutative,

RepGcell(I) τ //

β ''

RepG(I)

υxx

Rep
G

cell(I)

when I is proper (Γ,A)-groupoid.

Theorem 4.4.1. Let X ⊂ S2 A = X/Γ Let Γ ⊂ SO(3) be a finite subgroup and G

be a topological group. Let I be a (Γ,A)-groupoid, where A is an orbit space. Then β

: RepGcell(I) → Rep
G

cell(I) is surjective.

Proof. We gave before the possible finite subgroups of SO(3) . The orbit spaces of

subgroups are either a tree or not a tree (for the dihedral case the orbit space is

triangle). One can find the detailed proof in [4] when the orbit space is a tree. Now,

we only prove the dihedral case. Let b ∈ RepGcell(I) and let v be a vertex of A. Choose

ιv in Hom(Iv, G) representing bv. For an edge e between v and v′ we define ιe ∈
Hom(Ie, G) by ιe = ιv | I(e). Since t b ∈ RepGcell(I), we can choose ι′v in Hom(I′v, G)

where ι′v | = ιe. Therefore, we can construct a cellular representation ι1 over the tree

A(v, 1) of the points of distance ≤ 1 from v. By this method, we can construct ι2 over
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A(v, 2). Now, when one defines to A(v, 3), we choose the points of distance < 3 from

v. Now, this defines ι ∈ RepGcell(I) with β(ι) = b.

Proposition 4.4.2. Let I is a (Γ,A)-groupoid, where Γ ⊂ SO(3) and the orbit space

A is a graph. Let G be a path-connected topological group. Then υ : RepG(I) →
Rep

G

cell(I) is surjective.

Proof. One can use the classification theorem and the paper of Hambleton and Haus-

mann [5, p,138].

Theorem 4.4.3. Let I be a proper (Γ,A)-groupoid with Γ ⊂ SO(3) a finite topological

group and let A be an orbit space. Let G be a compact connected Lie group. Then τ

: RepGcell(I) → RepG(I) is bijective.

Proof. Let τ(α) = τ(α′) with the two cellular representations. One can see α =

α′ by taking the conjugate of the one of them. For detailed proof one can look [4,

p.251] . τ is surjective. If we choose a ∈ RepG(I) then in our case, it will be cellular

representation since isotropy group is different than identity only vertices it is identity

in edges.

We use the theorem in the paper of Hambleton and Hausmann [4, p.252] [theorem

b]. Let κ1,κ2 : I → G be two isotropy representations such that κ1 = κ2 |Ie =: κ.

Then τ−1(κ1,κ2) is in bijection with the set of double cosets π0(Zκ1)\π0(Zκ)/π0(Zκ2).

4.5 Classification of equivariant bundles on the 1-

skeleton

Now, we know the relation between BunGΓ (X) and RepG(I) and we can calculate

RepG(I). Hence, we classify the equivariant principal G-bundles over X where X ⊂
S2 is the 1-skeleton of a regular Γ structure for S2. We shall consider Γ = Cn, D2n,

A4, O, H.
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Theorem 1. Let X = Cn be a Γ-equivariant 1-skeleton over S2 with 2 vertices

and n edges , Cn be a cyclic group of order n and acting on Cn and En be the orbit

space of Cn under the group action of Cn with isotropy groupoid I1. Then, there is a

bijection

BunGCn(Cn)→ RepG(I1)

and

RepG(I1) ∼= Rep
G

(I1) ∼= Hom(Cn, G)×Hom(Cn, G).

Proof. Cn is a split Cn-space, all equivariant bundles are split bundles.

Theorem 2. Let X = Dn be a 1-skeleton over S2 with 2n+ 2 vertices, 6n edges and

let D2n be a dihedral group of order 2n acting on the CW-complex Dn and let Dn be

an orbit space with isotropy groupoid I5. If G is abelian and connected, Then there is

a bijection

BunGD2n
(Dn)→ RepG(I2)

and

RepG(I2) ∼= Rep
G

(I2) ∼= Hom(C2, G)×Hom(C2, G)×Hom(Cn, G).

Proof. Dn is split D2n-space and

BunGΓ (X)→ RepG(I)×BunG(A)

since the group G is a connected compact Lie group, it follows

[S1, X] ∼= π1(BG) ∼= π0(G) ∼= 0.

Theorem 3. Let X = T be a tetrahedron and A4 be the tetrahedral group of order

12 acting on T and let T be an orbit space of T under the group action of A4 with

isotropy groupoid I3. Then, there is a bijection

BunGA4
(T)→ RepG(I3)
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and

RepG(I3) ∼= Rep
G

(I3) ∼= Hom(C2, G)×Hom(C3, G).

Proof. T is a split A4-space, all equivariant bundles are split bundle.

Theorem 4. Let X = C be a cube and O be the octahedral group of order 24 and

acting on the cube C and O be the orbit space of C under the group action of O with

isotropy groupoid I4. Then, there is a bijection

BunGO(C)→ RepG(I4)

and

RepG(I4) ∼= Rep
G

(I4) ∼= Hom(C2, G)×Hom(C3, G)×Hom(C4, G).

Proof. C is a split O-space, all equivariant bundles are split bundle.

Theorem 5. Let X = I be a icosahedron and H be an icosahedral group of order 60

acting on I and let I be an orbit space of I under the group action of H with isotropy

groupoid I5. Then, there is a bijection

BunGH(I)→ RepG(I5)

and

RepG(I5) ∼= Rep
G

(I5) ∼= Hom(C3, G)×Hom(C4, G)×Hom(C5, G).

Proof. I is a split H-space, all equivariant bundles are split bundle.

4.6 Classification of Γ-G bundles over S2

We classified Γ-G bundles over the Γ-equivariant 1-skeleton S2. If X ⊂ S2 be a Γ-

equivariant 1-skeleton, then Γ-equivariant principal G-bundles over X are classified

by the isotropy representation since X is split-Γ space. However, for S2, a different
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technique is used to determine Γ-equivariant principal G-bundles over S2 since S2 is

not a split-Γ space. Now, let X ⊂ S2 be Γ-equivariant 1-skeleton, then

(4.1) X
i−→ S2 j−→ S2 ∪ CX k−→ Σ(X)

m−→ Σ(S2)
l−→ Σ(S2 ∪ CX)→ · · ·

is the cofibration sequence of Γ-equivariant CW -complexes where CX= cone on X =

(X×[0, 1])/(a, 0) ∼ pt and Σ(S2)= suspension of S2 = (X×[−1, 1])/(a,−1) ∼ pt, (a, 1) ∼ pt

The Γ-fixed set of homotopy classes of maps into space B(Γ, G),then the following

sequence

(4.2) [Σ(S2), Y ]
m∗−→ [Σ(X), Y ]

k∗−→ [S2 ∪ CX, Y ]
j∗−→ [S2, Y ]

i∗−→ [X, Y ]

is the exact sequence of abelian groups provided that B(Γ, G) = Y = ΩZ is a loop

space which is defined by Costenable and Waner at [3]. Now, [S2, Y ] is determined

by j∗ and i∗. Here, S2 ∪ CX '
∨
S2 (induced from 2-cells) and

Σ(X) '
∨
S2 (induced from 1-cells) then the exact sequence at 4.2 will be the fol-

lowing

[
∨

S2, Y ]
k∗−→ [

∨
2−cells

S2, Y ]
j∗−→ [S2, Y ].

(4.3)

[
∨

S2, Y ]Γ 6=D2n '
⊕

1−χ(X)

π2(BG) and Γ acts on product = I⊗π1(G) as a Γ−module

[
∨

S2, Y ]
k∗−→ [

∨
2−cells

S2, Y ]
j∗−→ [S2, Y ]

counting Γ-orbits of 2-cells

(4.4)

[
∨

S2, Y ]Γ=D2n '
⊕

1−χ(X)

π2(BG) and Γ acts on product = (I⊕ZΓ)⊗π1(G) as a Γ−module

(4.5)

[
∨

2−cells

S2, Y ]Γ '
⊕
N

π2(BG) and Γ acts on product = ZΓ⊗ π1(G) as a Γ−module
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provided that the ideal I = Z{(γ − 1)|γ ∈ Γ} ⊂ ZΓ.

The number of copies of π2(BG) for 4.4 will be calculated by counting rotations

and order of groups.

For cyclic case, we have 1-skeleton containing 2 vertices and n edges. Then if one

edge collapse to a point, then other edges will become S1-circles, then we have (n−1)

S1-circles. These circles will become sphere if we get suspension of X.

The same idea for the dihedral group, since there is an orbit with 2n elements after

an edge collapse the point, there will be (2n− 1) S1-circles. The other 2n orbits have

2 elements, after one edge collapse a point, there will be (2n) S1-circles. Therefore

there are (4n− 1) circles for the dihedral case.

For the tetrahedral group, there are 4-vertex rotations with order 3, after one

edge collapse to a point for each rotation, there will be 8 circles. There are 3- edge

rotations order with 2. There will be 3-circles. Totally, we have 11 circles for the

tetrahedral group.

For octahedral group, there are 4-vertex rotations with order 3, after one edge

collapse to a point for each rotation, there will be 8 circles. There are 6- edge rotations

order with 2. There will be 6-circles.There are 3 face rotations order with 4. After

collapsing, there will be 9-circles. Totally, we have 23 circles for the octahedral

group. Therefore, we use same idea for the icosahedral group , we have 59 circles

for the icosahedral group. Briefly, we say that there are 1 − χ(X) where X ⊂ S2 is

Γ-equivariant 1-skeleton.

The number of copy of π2(BG) for 4.5 is denoted by N and depends on the num-

ber of orbits and the order of group Γ. The only case for the dihedral group, there

are two orbits and the other finite subgroup of SO(3) have a single orbit.



45

Group 1-χ(X) N
Cyclic group n− 1 n

Dihedral group 4n− 1 4n

Tetrahedral group 11 12

Dodecahedral group 23 24

Icosahedral group 59 60

Since k∗ is an injective map, the following map holds;

0→ I ⊗ π1(G)
k∗−→ ZΓ⊗ π1G

j∗−→ Z⊗ π1(G) if Γ 6= D2n

or

0→ (I ⊕ ZΓ)⊗ π1(G)
k∗−→ (ZΓ⊕ ZΓ)⊗ π1G

j∗−→ Z⊗ π1(G) if Γ = D2n.

Coker(k∗) ' Z⊗ π1(G) ' [S2, B(Γ, G)]Γ

[Σ(X), Y ]
k∗−→ [S2 ∪ CX, Y ]

j∗−→ [S2, Y ]
i∗−→ [X, Y ]

Now, let Z and Y be two Γ-space and f : Z → Y be continuous. Define fγ(z) =

γ−1f(γz) f → fγ gives an action of Γ on [Z, Y ]. Then f = fγ ↔ γf(z) = f(γz) ↔
f is a Γ-map. Therefore, we shall say the following [Z, Y ]Γ = Fix(Γ, [Z, Y ]) .

Fix(Γ, I) = {x ∈ I|γx = x} = 0 and we will determine Fix(Γ,ZΓ). Let t ∈ Γ be

a generator. For the cyclic group, Γ is acting on ZΓ = Z ⊕ Zt ⊕ · · · ⊕ Ztn−1 where

|Γ|= n. The fixed set of ZΓ will be determined by (a0 + a1t + · · · + an−1t
n−1)γ =

(a0 +a1t+ · · ·+an−1t
n−1) ∀γ ∈ Γ implies that fixed elements are Z(1 + t+ · · ·+ tn−1).

For other subgroups, we have more generators but the idea is the same. Then,
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Fix(Γ,ZΓ) = Z(1
∑

γ∈Γ γ). Therefore,

(4.6) [ΣX, Y ]Γ = Fix(Γ, I ⊗ π2Y ) = 0

and

(4.7) [S2 ∪ C(X), Y ]Γ = Fix(Γ,ZΓ⊗ π2Y ) = π2Y.

since in the sequence 4.2 , we have [S2, Y ] = π2Y

Theorem 4.6.1. Let G be a compact Lie group, Γ ⊂ SO(3) finite and ξ be a prin-

cipal G-bundle over S2. Γ-equivariant principal G-bundle over (S2,Γ) is classified by

RepGΓ (ξ) and c(ξ) ∈ π2(BG).

Proof. Let [ν] and [ξ] ∈ [S2, Y ]Γ. [S2, Y ]Γ
i∗−→ [X, Y ]Γ and [X, Y ]Γ ∼= RepGΓ (I) If

RepGΓ (ν) � RepGΓ (ξ) then one concludes that they are not equivalent to each other. if

RepGΓ (ν) ∼= RepGΓ (ξ) then

[ΣX, Y ]Γ → [S2 ∪ C(X), Y ]Γ → [S2, Y ]Γ

if we let Γ drop then we have [S2∪C(X), Y ] = π1(G) and [S2, Y ] = π1(G). Therefore

the map k∗ multiply each element of π1(G)by|Γ|.Now, by 4.6 and 4.7, we have

0→ π1(G)
|Γ|−→ [S2, Y ]

then they will be determined by first Chern class.

Corollary 4.6.2. If RepGΓ (ξ1) ∼= RepGΓ (ξ2) then c(ξ1) ≡ c(ξ2) mod|Γ|.

After this theorem, we can classify the equivariant principal bundles over 2-sphere.

Later studies will be focusing on how we can generalize this theorem for Sn by these

ideas.
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