Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/12048
Title: System xc- Mediated Glutamate Transport Inhibition in Cancer-Induced Bone Pain
Authors: Ungard, Robert G.
Advisor: Singh, Gurmit
Department: Medical Sciences (Division of Physiology/Pharmacology)
Keywords: cancer;bone;pain;glutamate;system xc-;sulfasalazine;Medical Pathology;Medical Pathology
Publication Date: 2012
Abstract: <p>Breast cancers are the most common source of metastases to bone of which cancer-induced bone pain is a frequent pathological feature. Cancer-induced bone pain is a unique pain state with a multiplicity of determinants that remains to be well understood and managed. Current standard treatments are limited by dose-dependent side effects that can depress the quality of life of patients. Glutamate is a neurotransmitter and bone cell-signalling molecule that has been found to be released <em>via</em> the system x<sub>C</sub><sup>-</sup>cystine/glutamate antiporter on cancer cells of types that frequently metastasize to bone, including breast cancers. This project examines the hypothesis that limiting glutamate release from cancer cells metastasized to bone will reduce bone tissue disruption and cancer-induced bone pain. A mouse model of cancer-induced bone pain was established with intrafemoral human breast cancer cells (MDA-MB-231), and behavioural measurements were taken for weight bearing and induced paw withdrawal thresholds. The system x<sub>C</sub><sup>-</sup> inhibitors sulfasalazine and (S)-4-carboxyphenylglycine both attenuated glutamate release from cancer cells in a dose-dependent manner <em>in vitro</em>. Treatment with sulfasalazine induced a moderate delay in the onset of behavioural indicators of pain in mouse models, and treatment with (S)-4-carboxyphenylglycine had no apparent results. This data suggests that the limitation of extracellular glutamate released from cancers in bone with sulfasalazine may provide some alleviation of the often severe and intractable pain associated with bone metastases.</p>
URI: http://hdl.handle.net/11375/12048
Identifier: opendissertations/6967
7948
2784388
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
30.92 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue