Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11951
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHaykin, Simonen_US
dc.contributor.authorKhozeimeh, Farhaden_US
dc.date.accessioned2014-06-18T16:57:40Z-
dc.date.available2014-06-18T16:57:40Z-
dc.date.created2012-03-28en_US
dc.date.issued2012-04en_US
dc.identifier.otheropendissertations/6879en_US
dc.identifier.other7919en_US
dc.identifier.other2706746en_US
dc.identifier.urihttp://hdl.handle.net/11375/11951-
dc.description.abstract<p>A cognitive radio network is a multi-user system, in which different radio units compete for limited resources in an opportunistic manner, interacting with each other for access to the available resources. The fact that both users and spectrum holes (i.e., under-utilized spectrum sub-bands) can come and go in a stochastic manner, makes a cognitive radio network a highly non- stationary, dynamic and challenging wireless environment. Finding robust decentralized resource-allocation algorithms, which are capable of achieving reasonably good solutions fast enough in order to guarantee an acceptable level of performance, is crucial in such an environment. In this thesis, a novel dynamic spectrum management (DSM) scheme for cognitive radio networks, termed the self-organizing dynamic spectrum management (SO-DSM), is described and its practical validity is demonstrated using computer simulations. In this scheme, CRs try to exploit the primary networks’ unused bands and establish link with neighbouring CRs using those bands. Inspired by human brain, the CRs extract and memorize primary network’s and other CRs’ activity patterns and create temporal channel assignments on sub-bands with no recent primary user activities using self-organizing maps (SOM) technique. The proposed scheme is decentralized and employs a simple learning rule with low complexity and minimal memory requirements. A software testbed was developed to simulate and study the proposed scheme. This testbed is capable of simulating CR network alongside of a cellular legacy network. In addition to SO-DSM, two other DSM schemes, namely centralized DSM and no-learning decentralized DSM, can be used for CR networks in this software testbed. The software testbed was deployed on parallel high capacity computing clusters from Sharcnet to perform large scale simulations of CR network. The simulation results show, comparing to centralized DSM and minority game DSM (MG-DSM), the SO-DSM decreases the probability of collision with primary users and also probability of CR link interruption significantly with a moderate decrease in CR network spectrum utilization.</p>en_US
dc.subjectcognitive radioen_US
dc.subjectdynamic spectrum managementen_US
dc.subjectwireless ad hoc networksen_US
dc.subjectself-organizing networken_US
dc.subjectwireless communicationsen_US
dc.subjectSystems and Communicationsen_US
dc.subjectSystems and Communicationsen_US
dc.titleSelf-organizing Dynamic Spectrum Management: Novel Scheme for Cognitive Radio Networks.en_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.72 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue