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Abstract

A cognitive radio network is a multi-user system, in which different radio

units compete for limited resources in an opportunistic manner, interacting

with each other for access to the available resources. The fact that both users

and spectrum holes (i.e., under-utilized spectrum sub-bands) can come and

go in a stochastic manner, makes a cognitive radio network a highly non-

stationary, dynamic and challenging wireless environment. Finding robust

decentralized resource-allocation algorithms, which are capable of achieving

reasonably good solutions fast enough in order to guarantee an acceptable

level of performance, is crucial in such an environment. In this thesis, a novel

dynamic spectrum management (DSM) scheme for cognitive radio networks,

termed the self-organizing dynamic spectrum management (SO-DSM), is de-

scribed and its practical validity is demonstrated using computer simulations.

In this scheme, CRs try to exploit the primary networks’ unused bands

and establish link with neighbouring CRs using those bands. Inspired by hu-

man brain, the CRs extract and memorize primary network’s and other CRs’

activity patterns and create temporal channel assignments on sub-bands with

no recent primary user activities using self-organizing maps (SOM) technique.

The proposed scheme is decentralized and employs a simple learning rule with

low complexity and minimal memory requirements. A software testbed was
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developed to simulate and study the proposed scheme. This testbed is capable

of simulating CR network alongside of a cellular legacy network. In addition to

SO-DSM, two other DSM schemes, namely centralized DSM and no-learning

decentralized DSM, can be used for CR networks in this software testbed.

The software testbed was deployed on parallel high capacity computing clus-

ters from Sharcnet to perform large scale simulations of CR network. The

simulation results show, comparing to centralized DSM and minority game

DSM (MG-DSM), the SO-DSM decreases the probability of collision with pri-

mary users and also probability of CR link interruption significantly with a

moderate decrease in CR network spectrum utilization.
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1

Introduction

1.1 Motivation

The world of wireless communication has changed dramatically in recent years.

Around a decade or two ago, wireless communications had fewer users and its

applications were mostly limited to low-bandwidth voice and text. The emer-

gence of cheap low-power processors and other electronic devices has allowed

the new generation of wireless devices to have very high multimedia and pro-

cessing capabilities. Nowadays, people can watch high definition (HD) videos

on their iphones and browse the internet and listen to online music from their

Blackberries. Furthermore, the internet has changed our life style; we now

do many things online such as buying tickets, finding directions or ordering a

pizza. The new generation of wireless devices such as smartphones, personal

digital assistants (PDA) and netbooks enables us to access internet everywhere

and use our time more efficiently.
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When we are using a wireless device, in fact we are establishing a link

through the electromagnetic radio spectrum, a valuable and limited resource.

The electromagnetic radio spectrum is a natural resource which is licensed and

carefully managed by governments to ensure secure and reliable wireless com-

munication. With wireless communications becoming increasingly pervasive

all over the world, people are more frequently using wireless devices and ser-

vices, and there is a growing demand for high-speed wireless communications.

A key question that arises then, is how do we cater to this continuing growth

of wireless devices and services, given that the radio spectrum is of limited

extent?

In the current approach to spectrum management, a wireless service provider

buys the license of one or some spectrum bands in a certain geographic area

(e.g. a country) and only its users, which we term legacy or primary users,

are allowed to operate in these bands in that geographic area. Thus, radio

units are designed to operate only on those specific bands and are sure that no

other radio will interfere with them. For example, the GSM-900 network uses

890-915 MHz 935-960 MHz bands, and the 108-138 MHz band is reserved for

air traffic control [4]. Spectrum management using this static policy is simple,

optimal, secure and easy to implement; however, it needs to be reviewed and

modified for two reasons:

1. The operable spectrum band is limited due to system design and imple-

mentation issues. The operational spectrum band for current commercial

wireless systems ranges from 0.4 GHz to 6 GHz and most of this band is
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already reserved in many countries. Therefore, in the near future there

may well be no room left for fast-developing new applications.

2. The efficiency of the current static spectrum management policies is

low, resulting in the under-utilization of this limited and highly valuable

resource [5]. Several recent studies conducted in North America [6–8]

and elsewhere [9–11] have shown that this precious resource is very much

underutilized by legacy users. For example, the measurements performed

in [6] have shown that from January 2004 to August 2005 on average only

5.2% of the radio spectrum was actually in use in the United States.

Although the operational band is getting slowly wider as new technologies have

increased the operational bandwidth of new devices, we need to increase the

spectrum utilization efficiency in order to serve the fast-growing demand for

broadband wireless communications. According to predictions made by the In-

ternational Telecommunications Union and the Organization for Economic Co-

operation and Development, if serious actions are not taken towards smart, ef-

ficient, and dynamic management of the electromagnetic spectrum, the world-

wide mobile communication network will collapse by the year 2050 [12].

Cognitive science provides the tools for building a new generation of de-

vices with dynamic applications. These cognitive machines will be able to

build up their rules of behaviour over time through learning from experiential

interactions with the environment. The fundamental elements of cognition in

these systems are:

• Perception-action cycle,
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• Memory (encompassing learning)

• Attention

• Intelligence

• Language

Although intelligence is considered to be a computational problem, accurate

study of biological systems in general and especially the structure of the brain

provides a reliable guide for building cognitive machines. Therefore, we may

say that computer science, biology and other related disciplines will play key

roles in the newly emerged field of cognitive dynamic systems (CDS) [13].

Cognitive radio (CR) [5,14] is a special class of cognitive dynamic systems

and offers a novel way of solving the spectrum utilization problem. Spectrum

utilization can be improved significantly by making it possible for a secondary

(cognitive radio) user (who is not being serviced) to access a spectrum hole un-

occupied by the primary (legacy) user. Cognitive radio solves the problem by,

continuously monitoring the environment, identifying those sub-bands of the

electromagnetic spectrum that are underutilized, and providing the means for

making those sub-bands available for employment by secondary users. Typ-

ically, the sub-bands allocated for wireless communications are the property

of legally licensed owners, which, in turn, make them available only to their

own customers: the primary users. From the perspective of cognitive radio,

underutilized sub-bands are referred to as spectrum holes. A spectrum hole is

a band or sub-band of frequencies assigned to a primary user, but at a par-
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ticular time and specific geographic location, it is not being utilized by that

user, partially or fully [5].

The entire operation of cognitive radio hinges on the availability of spec-

trum holes. The identification and exploitation of spectrum holes poses tech-

nical challenges rooted in computer software and hardware, signal processing,

communication theory, control, optimization, and game theory, just to name

a few disciplines. Moreover, the operation of cognitive radio is compounded

further by the fact that the spectrum holes come and go in a rather stochastic

manner.

The large number of heterogeneous elements in a cognitive radio network

that interact with each other indirectly for limited resources makes the cogni-

tive radio network a complex dynamic system [5,15] or a system of systems [16].

In such an environment, each element is a decision-maker. Different degrees

of coupling between different decision-makers of one tier or between decision-

makers from different tiers influence their chosen policies. Change of policies

affects the interaction between the decision makers and alters the degrees of

coupling between them. In other words, both upward and downward causa-

tions [17] play key roles in a cognitive radio network and lead to positive or

negative emergent behaviour, which is not explicitly programmed in different

elements. Since the global behaviour of the network cannot be reduced to the

local behaviour of different elements and mathematical analysis of such super

complex systems are impossible, clearly, large scale computer simulations need

to be performed to study their emergent behaviour.
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1.2 Cognitive Radio

Cognitive radio (CR) is fast emerging as a way of responding to under-utilization

of the radio spectrum. For a working definition of cognitive radio, we offer the

following [5, 15]:

The cognitive radio network is an intelligent multiuser wireless

communication system that embodies the following list of primary

tasks:

• to perceive the radio environment (i.e., outside world) by em-

powering each user’s receiver to sense the environment on a

continuous time basis;

• to learn from the environment and adapt the performance of

each transceiver to statistical variations in the incoming RF

stimuli;

• to facilitate communication between multiple users through

cooperation in a self-organized manner;

• to control the communication processes among competing

users through the proper allocation of available resources;

• to create the experience of intentions and self-awareness.

The primary objective of all these tasks, performed in real-time, is

two-fold:

• to provide highly reliable communication for all the users

wherever and whenever needed;
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• to facilitate efficient utilization of the radio spectrum in a

fair-minded way.

1.3 Perception-Action cycle of cognitive

radio

Cognitive radio units perform their tasks through a cognition cycle, called the

perception-action cycle, shown in Fig. 1.1. This cycle is depicted in Fig. 1.1

(b), representing a subset of Fig. 1.1 (a) with a minor difference: the func-

tional block labelled nonparametric spectrum estimation in the receiver has

been used in Fig. 1.1 (b) so as to add more specificity to the notion of radio

scene analysis. As shown in the Fig. 1.1 (a), this cycle has four fundamental

elements:

1. Radio scene analysis (RSA), which encompasses

• estimation of interference temperature of the radio environment

localized around a user’s receiver;

• detection of spectrum holes;

Radio-scene analysis is an essential functional block of cognitive radio.

In fact, the performance of the dynamic spectrum management and

transmit-power control is dependent on how reliable and accurate the

RSA is. The RSA continuously monitors the surrounding environment

of the CR unit, analyzes the received signals, and sends the results to the

transmitter for dynamic spectrum management and transmit-power con-
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Figure 1.1: (a) Directed-information flow in cognitive radio. DSM: dy-
namic spectrum manager; TPC: transmit-power controller; RSA: radio-scene
analyzer; RX: receiver; TX: transmitter; TX CR: transmitter unit in the
transceiver of cognitive radio; RX CR: receiver unit in the transceiver of cog-
nitive radio. (b) Perceptionaction cycle of cognitive radio unit.
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trol. The dynamic spectrum management and transmit-power control

subsystem decides on an appropriate action based on the information

it receives from the RSA subsystem. In this context, there has been

an extensive amount of research devoted to spectrum sensing in cog-

nitive radio [4, 18, 19]. There are several techniques proposed for the

RSA in the literature such as energy detection [20–22], feature detection

with emphasis on cyclostationarity [23–27], and the mutitaper spectrum

estimation [5, 28]. However, as it is discussed in [5, 15], the multita-

per method (MTM) has several desirable attributes which makes it the

method of choice for cognitive radio [29]:

• Accuracy with which the spectrum holes are detected, and which

is highly desirable recognizing the need for efficient spectrum uti-

lization.

• Substitution of resolution versus variance in place of bias versus

variance

• Intrinsic regularization due to model-independence

• Flexibility to accommodate other desirable features, namely space-

time processing for direction finding of interferers, and the provision

of cyclstationarity for detection of legacy users’ modulations.

• Robustness.

• Last but by no means least, fast computational processing capabil-

ity by using the FFTW algorithm, with provision made a prescribed

library of Slepian sequences.
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It is not the computational complexity of the MTM that is responsible

for lack of attention in the signal processing literature; rather, this issue

can be attributed to the complicated way in which the MTM was first

described in the 1982 paper by Thomson [28]. This matter has been

rectified by Farhang [30] through the way in which the MTM is derived

using filter-bank theory, well-known in the signal processing literature.

Furthermore, spectrum sensing is improved when cognitive radios co-

operate with each other and share their radio scene analysis informa-

tion [31–33]. In actual fact, cooperative sensing not only improves the

spectrum sensing in normal conditions of CR units, but also can signifi-

cantly mitigate fading and shadowing, two phenomena which can make

spectrum sensing a very challenging task.

2. Transmit-power control (TPC), the purpose of which is to determine the

transmit-power levels of CR units, given

• a set of spectrum holes;

• measurements of the variance of interference plus noise at the re-

ceiver input of every user.

so as to jointly maximize their data transmission rates and subject to

the constraint that the permissible interference power level limits in the

idle sub-bands (i.e. spectrum holes) are not violated. For the cogni-

tive function of transmit-power control in the transmitter, the issue of

prime interest is robustness versus optimality. Moreover, for choosing an
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algorithm several characteristics are of critical importance such as low

complexity, fast convergence, distributed nature, and convexity. Due to

different uncertainty sources in a cognitive radio network such as supply-

side risks and demand-side risks, adjusting the transmit power of a cog-

nitive radio requires solving an optimization problem under uncertainty.

Stochastic and robust optimization can be used to address the uncer-

tainty issue. In [34, 35], a receiver-centric design was described, based

on flexible local constraints on transmit power dictated by interference-

temperature limit. There is no need for information exchange between

different users in the proposed approach and it is well suited for an open

spectrum-sharing regime. In this algorithm, optimality in performance

is, in effect, traded in favour of robustness and a robust version of the

transmit-power controller was proposed, which improves the network ro-

bustness against malicious users [36–39] as well as changes in the number

of users, network topology, and available unused sub-bands.

3. Dynamic spectrum management (DSM), assigns the available unused

spectrum among the CR units according to the environmental con-

straints and is one of the main challenges in cognitive radio. There

are two approaches for solving this problem: centralized and decentral-

ized. Although, centralized approaches may achieve a global optimum

solution, they are not suitable for CR networks. The DSM problem

is equivalent to graph colouring problem and practically impossible to

solve in a centralized manner [40]. Furthermore, centralized approaches

are not scalable and require additional infrastructure. In decentralized
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approaches, on the other hand, CR units perform DSM based on what

they have learned from their environment and solve the problem locally.

These schemes may not achieve global optimization in the network but

are scalable and practical.

4. Feedback : Global feedback embodies the entire radio unit and the wire-

less channel and is a facilitator of intelligence, without which the CR

loses its cognitive capability. Information on unused sub-bands and the

forward channel’s condition, extracted by the spectrum sensor at the

receiver, is sent to the transmitter via the feedback channel. Having this

information enables the transmitter to adaptively adjust the transmitted

signal and update its transmit power over desired channels. Specifically,

the discovery of unused sub-bands prompts the need to establish the

feedback channel from the receiver to the transmitter of a cognitive ra-

dio.

The perception-action cycle, as shown in Fig. 1.1 (b), happens between two

CR units, the combination of which we term a link. Each cognitive radio unit

involves a transceiver which includes a transmitter and a receiver. At each

time instance, one CR unit, termed transmitter CR (TX CR), is transmitting

and the other CR unit, termed receiver CR (RX CR), is receiving through

the data channel. Through the cognition cycle, the transmitter CR takes

actions, which involve transmitting on a specific sub-band of the spectrum

that is decided by the DSM unit, and with the power level chosen by the

TPC subsystem. The receiver CR sends back the results of those actions to

the transmitter CR. The key element that completes this cycle is the feedback

12



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,

McMaster Univ., Hamilton, Canada, 2012.

channel connecting the two CR units. Through this channel, the receiver sends

two forms of information to the transmitter:

• information on the performance of the data channel for adaptive modu-

lation, dynamic spectrum management and transmit-power control;

• information on the radio scene on the receiver’s side.

Accordingly, the feedback channel plays a critical role in the cognition cycle

and can be established in three ways:

1. A dedicated universal channel for cognitive radio [41]: A spe-

cific spectrum band is licensed and reserved for cognitive radio feedback

channel. This solution has the advantage of simple system design and

reliability; however, it is expensive (due to spectrum licensing) and also

it is hard to find a worldwide common free channel for this purpose

due to different spectrum utilization policies in different countries. Fur-

thermore, the cognitive radio can be easily interrupted by jamming the

feedback channel. Finally, dedicating such a spectrum band to cogni-

tive radio contradicts one of the main goals of cognitive radio, which is

increasing the radio spectrum utilization, and such dedicated spectrum

band would be wasted whenever cognitive radio units are not in use.

2. Using available spectrum holes: Cognitive radios can use spectrum

holes both for data transmission and feedback channel. Using spectrum

holes is more flexible and efficient in terms of spectrum utilization than

using a dedicated channel. However, the cognitive radio network cannot

always be established because sometimes it is possible that there is no
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spectrum hole available in the environment. When there are no spectrum

holes available, there is no feedback channel and CR units lose commu-

nication and synchronization. Thus, the moment some spectrum holes

become available, CR units can not immediately start data transmission

and must wait until the necessary synchronization and negotiations are

finished. Furthermore, the radio spectrum is a highly dynamic environ-

ment and the spectrum holes may change in time. Therefore, every time

the feedback channel becomes unavailable, CR units lose synchronization

and need to stop data transmission until feedback channel is established

again.

3. Using unlicensed bands: Cognitive radio units can also establish their

feedback channel using unlicensed bands. In this case, the feedback

channel is always available and CR units never lose synchronization. The

CR network can always be established even when there is no spectrum

hole available in the environment. However, using the unlicensed band,

the CR units may need to combat a high level of noise and interference

due to the other radios working in these bands.

Using the unlicensed bands for establishing the feedback channel is the best

choice for the following reasons:

• The CR network is always established and CR units never lose synchro-

nization. Furthermore, even when there is no spectrum hole available

in the environment, CR units may use the unlicensed bands to transmit

data. Thus, CR units can always provide communication and achieve
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one of the their primary goals, which is providing reliable communication

whenever and wherever needed [5].

• Cognitive radio units can always, even when there is no spectrum hole,

cooperate and share their radio-scene analysis information which results

in better and faster detection of spectrum holes [31–33].

• When a spectrum hole used by a link becomes unavailable, CR units

can negotiate through the feedback channel to find another common

spectrum hole and change their data channel momentarily.

As radio-scene analysis and transmit-power control are well understood and

well covered in the literature [34, 35], in this work, we focus on the dynamic

spectrum management (DSM) problem and propose a novel DSM scheme

based on self-organizing maps.

1.4 Self-Organizing Maps in the Human

Brain

Self-organizing maps (SOM)s are a special class of artificial neural networks

that is inspired by a distinct feature of the cortex in the human brain. Several

parts of the human brain are organized in a way that different sensory inputs

are represented by topologically ordered computational maps. In particular,

sensory inputs such as visual [42, 43], tactile [44] and acoustic [45] inputs are

mapped in a topologically ordered manner onto different areas of cerebral cor-
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Figure 1.2: Von der Malsburg model (reproduced from [1]).

tex. The SOM have become a popular tool for vector quantization, clustering

analysis, feature extraction and data visualization [46].

1.4.1 Historical Notes on SOM

All stages of brain organization more or less involve an element of self-

organization. The genes can not contain the tremendous amount of infor-

mation necessary to describe the brain. For example, celebral cortex, only

by itself, contains on the order of 1014 synapses [47] and it is impossible for

genes to carry the correct wiring of such complex system. Therefore, ontogeny

employs mechanisms of self-organization to correctly connect neurons to their
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targets . Many researches became fascinated with this property of human

brain and tried to come up with mathematical model for it. The first model

of map formation, introduced by von der Malsburg [48], was for a small patch

of retina stimulated with bars of different orientation. This model, illustrated

in Fig. 1.2, has two layers of neurons. The goal of the SOM algorithm is to

modify the connections between input and output layer so that each neuron

in output layer is connected to its spatially corresponding neuron in the input

layer.

Another SOM model that has gained attention in the literature is the Ko-

honen model [49, 50] which is not meant to explain neurobiological details.

Rather, this model captures the essential features of the map formation in the

brain while remains computationally tractable. The Kohonen model is capa-

ble of data compression (i.e. reduction of input dimensionality) [51,52].

Recent models of SOM [53] have formulated the mapping algorithm in

terms of an objective function EC , termed energy function, that must be opti-

mized. However, not all SOM models can be derived using an optimization of

energy function dynamics [54] and several models of SOM that can be derived

using energy function optimization dynamics are reviewed in [53]. Tsigankov

and Koulakov have proposed a energy function based SOM model for the

map formation in the superior colliculus [55] which was later validated by

Stryker [56].
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Figure 1.3: Structure of a neuron (Reproduced from [2]).

1.4.2 Neural Networks

The brain is an amazing information-processing system which performs

computation differently from conventional digital computers. It is a highly

complex, nonlinear and parallel computer that can organize its structural con-

stituents, called neuron and shown in Fig. 1.3, to perform certain computa-

tional tasks such as pattern recognition, perception and motor control much

faster than current digital computers. A neural network, in its most general

form, is a machine that is designed to model the way the brain performs a

particular task or function of interest. Haykin offers the following definition

for a neural network viewed as an adaptive machine [52]:

A neural network is a massively parallel distributed processor made
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up of simple processing units that has a natural propensity for

storing experiential knowledge and making it available for use. It

resembles the brain in two ways:

1. Knowledge is acquired by network from its environment through

a learning process.

2. Interneuron connection strengths, known as synaptic weights,

are used to store the acquired knowledge.

The building block of neural network is a neuron. Figure 1.4 illustrates a

general model of a nonlinear neuron. The relation between an input signal

vector

x(n) = [x1(n) x2(n) . . . xm(n)]

and the resulting output signal of neuron y(n) is described by:

y(n) = ϕ

(
m∑
i=1

wi(n)xi(n) + b

)
= ϕ

(
w(n)x(n)T + b

)
(1.1)

where b is the bias, ϕ() is the activation function and w(n) = [w1 w2 . . . wm]

are the synaptic weights.

In a self-organizing map, the neurons are nodes of a usually one- or two-

dimensional lattice and become selectively tuned to various input patterns or

classes of input patterns [1, 52]. In SOM, neurons act in parallel and process

pieces of information that originate from different regions in the input space

but are similar in nature. Each neuron gets tuned to the pattern in the input

signals it receives, therefore, the whole network becomes tuned to the patterns
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Figure 1.4: The model of a neuron.

in the entire input space. There are three fundamental elements for formation

of SOMs:

• self-amplification,

• competition,

• correlation (redundancy) in input signals.

A fundamental and very important property of SOMs is the fact that in SOMs

global order arises from local interactions.

1.5 Contributions of Thesis

This research focuses on resource allocation in cognitive radio networks in

which users access the available spectrum in an opportunistic manner. The

thesis introduces a novel decentralized dynamic spectrum management scheme

for cognitive radios termed self-organizing dynamic spectrum management

(SO-DSM) which for the first time, employs SOM technique to solve the DSM

problem in CR. Inspired by the human brain, this scheme learns the spec-

trum utilization patterns in the environment using the self-organizing maps
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technique proposed by Tsigankov and Koulakov [55] and establish CR links ac-

cording to the obtained knowledge. The SO-DSM adopts the SOM model for

a problem that is entirely different from how the brain does it. Furthermore,

a multi-agent software testbed is developed to study the emergent behaviour

of CR network using the proposed DSM scheme through large-scale computer

simulations.

The SO-DSM is a novel decentralized DSM scheme that solves the DSM

problem locally for CR units with low complexity. In SO-DSM, each CR unit

establishes a feedback channel on unlicensed bands with its neighbouring CR

units. Using this channel, CR units are always exchanging information and

coordinating for using available spectrum holes in an efficient manner. A form

of Hebbian learning rule [57] is employed which is essential for formation of self-

organizing map. The complexity of this learning rule is linear in the number of

neighbours and therefore, the average complexity of SO-DSM depends on the

average density of radio network, not the total number of units. Consequently,

the network size is scalable.

1.6 Thesis Organization

This thesis is organized as follows:

• Chapter 2 discusses dynamic spectrum management in cognitive radio

networks. Two possible ways of spectrum sharing are explained and

discussed. The mathematical equivalent of DSM problem in graph the-

ory is explained and the mathematical optimization problem of DSM
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is proposed. Two approaches, namely centralized and decentralized ap-

proaches, are presented along with advantages and disadvantages of each

approach.

• Chapter 3 studies Tsigankov-Koulakov (TK) model for self-organizing

maps. The theory of self-organizing maps is presented and TK SOM

model which in the basis for the proposed algorithm in this work is

explained. Hebbian learning, a learning rule essential to formation of

SOMs, is also presented and reviewed.

• Chapter 4 introduces self-organizing dynamic spectrum management

(SO-DSM) scheme for CR networks. The assumptions and system re-

quirements for the proposed architecture are explained. Furthermore,

the system architecture and design is proposed and system parameters

are studied and discussed.

• Simulation results are presented in Chapter 5. In this chapter, the soft-

ware testbed developed and used for simulations and the network model

of simulations are explained and large-scale network computer simulation

results are presented. In the simulations, three DSM schemes, namely

SO-DSM, a centralized DSM and a decentralized DSM based on minor-

ity game, were used and the results are presented and analyzed. More-

over, simulation results for various SO-DSM system parameters were

presented.

• Chapter 6 discusses the robustness of the SO-DSM scheme. The con-

cept of robustness is reviewed and its importance for designs concerning
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complex and large-scale systems such as cognitive radio networks is em-

phasized. Simulation results are presented to validate the robustness of

SO-DSM under perturbation of system parameters and initial state.

• The thesis concludes in Chapter 7 by reviewing the contributions of the

thesis to the literature.

• The Appendix provides the proof of the maximum eigenfilter theorem

along with explanation of minority game DSM and robust transmit-

power controller used in simulations.
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2

Dynamic Spectrum
Management

Dynamic spectrum management is one of the main challenges in cognitive

radio [5, 15]. The goal of DSM is to distribute the spectrum holes among

CR units to use them as long as they are not being used by any primary

user. When two CR units need to communicate and establish a link, the DSM

subsystem chooses one of the common spectrum holes between them and they

operate on that band as long as it is available. If during communication,

a primary user is detected on that band, the transmitter CR unit must stop

transmission immediately and they should find another common spectrum hole

to use. For example, Fig. 2.1 illustrates a simple example of the DSM at two

time instants. In the first time instant shown in Fig. 2.1(a), two spectrum

holes, CH2 and CH5, are available where CH2 is being used by a CR unit.

At the other time instant shown in Fig. 2.1(b), a primary user has started

operating on CH2; thus, the CR unit has stopped using CH2 and has moved

to the other spectrum hole CH5. Note that in the second time instant, CH1
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(a)

(b)

Figure 2.1: An example of spectrum set up at two time instants. The spectrum
holes are shown with white colour, spectrum bands used by CR, with grey
colour and unavailable spectrum bands are shown with black colour.

has changed to a spectrum hole assumed to be available.

There are several issues which make the DSM problem hard to solve:

1. The DSM problem is a highly dynamic problem because radio units

move, stop or start transmitting and change their spectrum utilization

pattern over time. Therefore, the problem constraints and parameters

change in time and providing robust and reliable communication be-

comes very challenging.

2. One of the main motivations behind CR is increasing the spectrum uti-

lization efficiency. Desirably the DSM of each link in the network must

result in an optimal channel assignment over the entire CR network.

Finding such optimal channel assignment is not easy due to large size

and dynamic nature of the problem.

3. One of the main constraints in CR problem is ideally avoiding collision
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with PUs or at least keeping the probability of collision with PUs below

an acceptable threshold. In practice, satisfying this constraint without

sacrificing too much efficiency is challenging because the RSA unit dis-

covers PUs after a time delay DRSA.

2.1 Spectrum Sharing

In order to increase the spectrum utilization efficiency, cognitive radio tries to

share the spectrum band with legacy users, naturally giving the legacy users

the highest priority to use the spectrum. There are two ways for sharing the

spectrum with primary users:

1. Price-based sharing of spectrum: [58–61] In this approach, primary

networks’ owners temporary sell their spectrum to CR units whenever

it is not used by their own users and CR units compete for buying these

spectrum holes. Thus, in this method, there is no need for performing dy-

namic spectrum management in cognitive radios because it is performed

by the primary network.

2. Opportunistic sharing of spectrum [5, 15, 62, 63]: In this alterna-

tive approach, the CR units utilize spectrum holes whenever they are

available in an opportunistic manner and without primary network’s

permission.

In the first method of spectrum-sharing, cognitive radios communicate with

the primary networks in the environment and lease the spectrum holes [64].

This method of spectrum-sharing has several advantages:
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• System design is simple because there is no need for spectrum sensing and

dynamic spectrum management. These challenging tasks are performed

by the primary network, and cognitive radios just negotiate with the

primary network to lease spectrum holes.

• The probability of collision between CR units and primary users is zero,

because dynamic spectrum management is performed by the primary

network and spectrum bands are offered to the CR units only when they

are not used by any primary user.

Implementation of price-based spectrum-sharing is easy, in actual fact, this

method is being used by cell phone networks currently and is termed roaming.

In roaming, a cell phone uses a wireless network other than its own service

provider’s network and pays some fees for using the spectrum. However, for

several reasons, the price-based method of spectrum-sharing is not suitable for

cognitive radio and can not always be used by CR units :

• Cognitive radios are required to be able to provide reliable communi-

cation wherever it is needed, but performing the price-based spectrum-

sharing requires the presence of a primary network which is willing to sell

its spectrum holes to CR units. Thus, using this method, CR units can-

not operate in locations where there is no such primary network present.

• Using price-based method, there is no need for radio scene analysis,

therefore, radios lack one of the essential elements of cognition which is

awareness of the surrounding environment.
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• Learning and adaptation are different from what is defined for cogni-

tive radio. In price-based spectrum sharing, the CR units should learn

the behaviour of other CR units around, which are their competitors,

and adapt to their behaviour by changing their own pricing strategy;

while cognitive radios are supposed to learn from the surrounding ra-

dio environment and adapt to statistical variations in the incoming RF

stimuli [15].

Although, price-based spectrum-sharing can not be used solely in cognitive

radio, it can be used as a complement to the opportunistic spectrum-sharing;

that is, when the primary network is willing to cooperate with the CR units,

and the CR units are willing to pay the price for using the spectrum. Cog-

nitive radios can use the price-based method to save battery and processing

power and decreasing the probability of collision with primary users to zero.

Opportunistic sharing of the spectrum is the other method for spectrum-

sharing, suggested for cognitive radios in the literature [5, 15, 62, 63]. In this

alternative method, the CR units try to use the spectrum holes in an oppor-

tunistic manner without any cooperation or communication with the primary

users. Therefore, CR units need to continuously monitor the environment to

detect the primary users and avoid collision with them. Using opportunistic

method, there is no need for any infrastructure and CR units can operate

everywhere. Furthermore, they do not pay any access fee to spectrum owner,

however:

• they have to perform dynamic spectrum management and radio-scene
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analysis by themselves;

• the probability of collision is not zero because RSA has a time delay in

discovering PUs and they have to make sure to decrease the probability

of collisions as much as possible.

In this work, a DSM scheme for opportunistic sharing of spectrum for CR

networks is proposed.

2.2 The DSM problem

Dynamic spectrum management is a time-varying and location-dependent op-

timization problem. The spectrum holes come and go in time and also they

change from one location to another. In a sense, the DSM problem is an

optimization problem that is equivalent to the graph-colouring problem in

graph theory [62]. Graph-colouring is a well-known optimization problem and

is known to be NP-hard and computationally challenging to solve [65, 66].

Therefore, finding the exact solution for the DSM optimization problem is not

practical most of the time.

Before proceeding to state the DSM problem in mathematical terms and ex-

plain the equivalent graph-colouring representation of the DSM, we first define

some necessary mathematical terms. Note that although in the DSM problem,

all the problem variables, parameters and constraints are time-dependent, we

have omitted t from them for the sake of formulation simplicity, in recognition
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of the assumption that the environment does not change during the time it

takes to solve the DSM problem.

2.2.1 Definitions

We divide the operational radio spectrum into Nch orthogonal sub-bands,

which may have different bandwidths, and assume there are M CR units

present in the environment. We refer to the ith spectrum sub-band as

bi : i = 1, 2, . . . , Nch

and the jth cognitive radio as

Cj : j = 1, 2, . . . ,M.

One of the important constraints in the DSM problem is interference with

other neighbouring CR units. If two CR units are in the interference range of

each other, they cannot use a common spectrum band at the same time. We

define the interference factor between Cn and Cm in spectrum sub-band bj as

f(n,m, j) =

 1, if Cn and Cm interfere on bj

0, otherwise.
.

We further denote the results of the radio-scene analysis for each CR unit Cj

is represented by hi,j where

hi,j =

 1, if bj is available for Ci

0, otherwise.
.
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In the CR network, CR units communicate with each other in pairs; therefore,

it is not possible to solve the DSM problem by considering the CR units

individually. When two CR units need to communicate, they should find a

common spectrum hole and start communication on it, which is a challenging

problem. Therefore, the DSM problem is assigning one of spectrum holes

to pairs of CR units, what we refer to as links. Thus, the DSM problem is

constrained by the active links in the network and in order to solve the DSM

problem, instead of considering CR units solely, we need to look at the active

links in the CR network.

Among the M CR units in the environment, we assume K CR units are active

at current time, i.e. they transmit or receive, where M ≥ K ≥ 0 and K may

change in time. These K radios form Nl links in the network where in ith link

represented as li = (Cn, Cm), Cn is transmitting and Cm is receiving, and

K − 1 ≥ Nl ≥ b
K

2
c

where bxc denotes the integer part of x.

A spectrum band is available for a link if it is available for both the trans-

mitter and receiver radios, and li and lj interfere on spectrum band bn if any

CR unit of li interferes with one or both CR units of lj on bn. We denote

available spectrum sub-bands for link li = (Cn, Cm) as

gi,j = hn,j ⊗ hm,j
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where symbol ⊗ is defined as

x⊗ y =

 1, x = y = 1

0, otherwise.
.

Similarly, the interference factor for li = (Cn, Cm) and lj = (Cs, Ct) on spec-

trum sub-band bq is denoted by

fl(i, j, q) = f(n, s, q)⊕ f(n, t, q)⊕ f(m, s, q)⊕ f(m, t, q)

where the new symbol ⊕ is defined as

x⊕ y =

 0, x = y = 0

1, otherwise.
.

In order to simplify the mathematical representation of problem constraints,

we incorporate the available spectrum bands of each link in the interference

constraints by defining

fl(i, i, j) = 1− gi,j. (2.1)

The reward that link li gains from using spectrum sub-band bj is denoted by

ri,j and the channel assignment in the network by ai,j, where

ai,j =

 1, bj is assigned to li

0, otherwise.
.

For a channel assignment in the CR network to be valid, it has to satisfy two
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properties:

1. For each link, a channel from its available channels is assigned.

2. When two links interfere on a sub-band bi, bi is not assigned to both of

them simultaneously.

In other words, the spectrum bands must be assigned to the CR links so

that CR links do not interfere with any primary user or other CR link. In

mathematical terms, a valid channel assignment is defined by

U = {ai,j| ∈ {0, 1}}

subject to

∀i, n < M, j < Nch ai,j· an,j = 0

if fl(i, n, j) = 1

Note that the first condition is satisfied implicitly by (2.2.1). We denote the

set of all valid channel assignments by Λ.

2.2.2 Traffic Model

As been used in several other works in the literature [67–70], the traffic

model used for both CR and primary networks is a Markov model (µ1, µ2) [71],

illustrated in Fig. 2.2. In this model, each transmitter has two states: idle or

active. At each time instance, if it is in the idle state, it goes to the TX state

with probability µ1 and if is in the TX state, it goes to the idle state with

probability µ2.
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idle active

μ
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2

Figure 2.2: Markov model for traffic.

2.2.3 The DSM optimization problem

Now that we have introduced the necessary terminology, we can define

the dynamic spectrum management optimization problem. This problem is

basically finding one of the optimum channel assignment U∗ among all valid

channel assignments Λ, which optimizes an objective function. Defining the

objective function is an important issue in the DSM problem, because being

based on different criteria such as bandwidth, network coverage or fairness,

different DSM problems can be defined. Employing each objective function

results in a different solution and CR network behaviour. For example, using

two different criteria defined in [62], two DSM optimization problems are as

follows:

1. Max-Sum-Bandwidth (MSB): The objective here is to maximize the over-

all spectrum utilization in the network. The optimization problem is

expressed by

max
U∈Λ

Nch∑
j=1

M∑
i=1

ai,j.ri,j

2. Max-Min-Bandwidth (MMB): The objective is to maximize the reward

(utilization) of the cognitive radio that has the minimum reward (uti-
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(a)

(b)

Figure 2.3: (a) An invalid graph-colouring. (b) A valid graph-colouring.

lization), and it is expressed by

max
U∈Λ

min
j<Nch

M∑
i=1

ai,j.ri,j

2.3 The DSM graph-colouring

Graph-colouring is the problem of colouring the vertices of a graph G with

a minimum number of colours. As stated previously, the DSM problem is

equivalent to the graph-colouring problem (GCP) in graph theory.

Definition. Consider the unidirectional graph G = (V,E) with V being the
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set of |V | = n vertices and E being the set of edges; we call a k − colouring

of G, a mapping φ : V → Γ, where Γ = {1, 2, . . . , k} is the set of |Γ| = k

integers, each representing one colour. A colouring is valid if

for all [u, v] ∈ E, φ(v) 6= φ(u),

otherwise, the colouring is called invalid.

In other words, in a valid graph colouring scenario, any two vertices con-

nected by an edge have different colours. For example, Fig. 2.3(a) illustrates

an invalid colouring, and Fig. 2.3(b) illustrates a valid graph-colouring. Note

that hereafter we represent colours by integer numbers.

Definition. The chromatic number χ(G) is the minimum number of colours

needed for a colouring of graph G. A graph G is k-chromatic, if χ(G) = k,

and G is k-colourable, if χ(G) ≤ k.

There are two problems in the context of graph colouring:

1. A decision-making problem: Is G k-colourable? which is a NP-complete

problem.

2. An optimization problem: Finding the chromatic number of G, which is

a NP-hard problem [65,66,72].

In order to convert a DSM problem to a graph-colouring problem, we build a

graph G by adding a vertex to the graph for each active link in the CR network

and connecting those vertices which their corresponding links interfere with

each other. For example, in Fig. 2.4 (a), a network of 11 CR units is shown.
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(a)

(b)

Figure 2.4: (a) A DSM problem scene with 11 CR units; the solid lines repre-
sent data links between CR units and dot lines represent interference between
two CR unit. (b) The graph representation of (a).

From these 11 units, 10 are active and create 5 links, which are shown by solid

lines and the CR units that interfere with each other are connected by dotted

lines. The equivalent graph of the network is shown in Fig. 2.4 (b) where we

must colour the 5 vertices using minimum number of colours. When graph G

is coloured, the corresponding spectrum sub-band to the colour of each ver-

tex is assigned to the corresponding link of that vertex. The equivalent GCP

problem of DSM problem is the optimization problem and is NP-hard.
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Figure 2.5: A list-colouring problem.

In a general GCP, it is assumed that all the vertices can be coloured from

a common list of available colours. However, in the DSM problem, the avail-

able channels for each link can be different due to PUs’ activities. Thus, by

considering the local available channels for links in DSM problem, the exact

equivalence of the DSM problem is a GCP with local restrictions on available

colours and is called list colouring.

Definition. A list-colouring problem (LCP) is a GCP in which Li, available

colours for each vertex vi, can be different [65, 73].

The list-colouring problem is harder to solve than the GCP and is also

known to be NP-hard [73]. Figure 2.5 illustrates an example of list-colouring,

where the available colour list for each vertex is shown next to it.

2.3.1 The GCP solutions

The graph-colouring problem is a well-known NP-hard problem and there

has been extensive research done on this problem. Several exact algorithms

such as specialized branch-and-bound algorithms [74,75] or approaches based

on general integer programming formulations of the GCP have been developed

to solve the GCP [76–78]. The Brélaz’ modification of Randall-Browns colour-
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begin
U=V
while U 6= ∅ do

assign the smallest legal colour to vi where vi is the vertex with highest
degree in U .
U = U − {vi}

end while
end

Figure 2.6: LDO algorithm for solving GCP.

ing algorithm [74] is known to be one of the best ones to solve the GCP [79].

However, exact algorithms suffer from high complexity, especially for large

graphs [78, 80]. Therefore, there have been many approximate algorithms

developed to achieve a satisfactory sub-optimum solution such as stochastic

local search (SLS) [79] and several heuristics based algorithms [81]. One of

the fastest sub-optimum algorithms to solve GCP, which is used in this work

as a frame of reference, is called Largest Degree Ordering (LDO).

2.3.2 Largest Degree Ordering Algorithm

Proposed by Welsh and Powel [82], LDO was one of the earliest ordering

strategies for solving GCP. In this algorithm, as shown in Fig. 2.6, vertices

are first ordered by the descending order of vertex degree. Then starting from

the vertex with highest degree, vertices are coloured one after another with

smallest legal colour. If there is no colour available for a vertex, it will be left

uncoloured.

2.3.2.1 LDO algorithm complexity analysis

This algorithm has two stages
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1. Sorting: Vertices has to be sorted in order of largest degree. This can

be accomplished by using a sorting algorithm such as quick sort which

has average complexity of O(Nl log(Nl)) and worst case complexity of

O(N2
l ) [83].

2. Colour assignment: Having the sorted list of vertices, the algorithm

needs to visit every vertex to colour it, therefore, this stage has com-

plexity of O(Nl).

The average complexity of the LDO algorithm is the larger of {O(Nl), O(log(Nl)Nl)}

which is O(Nl log(Nl)) and its worst case complexity is of O(N2
l ).

Due to high complexity of GCP, centralized solutions are simply not prac-

tical in some applications. Particularly, in distributed systems, decentralized

solutions are more desirable. Therefore, several decentralized algorithms have

been proposed to solve GCP [84–87]. As the DSM problem is equivalent to

GCP, centralized or decentralized approaches can be used to tackle it.

2.4 Centralized versus decentralized

approaches to the DSM

The dynamic spectrum management problem can be solved in either one of

two ways:

1. The centralized approach, in which the optimization problem is solved

globally for the whole network, considering the spectrum set-up data for

all the CR units in the network.
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Figure 2.7: The cognitive radio network set up using centralized DSM.

2. The decentralized or distributed approach, in which the optimization

problem is solved locally by each cognitive radio using the local data

available for that CR unit.

In the centralized approach, shown in Fig. 2.7, the information of all cognitive

radios’ spectrum scenes is sent to a centre (base station), where an optimiza-

tion problem is solved having the radio-scene analysis data. The result of

solving this optimization problem is an optimum channel assignment for the

whole network and once the optimum channel assignment has been computed,

it is sent back to all the cognitive radios. This approach may result in a global

optimum solution, but it suffers from several disadvantages:

• High complexity: Centralized approaches solve an NP-hard optimiza-

tion problem which is computationally expensive and practically impos-

sible to solve in real time for DSM problem.

• Wasteful use of resources: In the centralized approach, data need

to be exchanged repeatedly between the base station and all radio units

with any change in any part of the network set-up.
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• The system is not scalable: The centralized approach is feasible only

for a small number of radio units and is not scalable due to several

reasons:

1. The complexity of the optimization problem grows very fast; be-

cause it is an NP hard problem, it is infeasible to solve it for large

number of radio units.

2. The bandwidth of the base station is limited. As the number of

radio units increases, data may need to wait in a queue to get

transferred to/from the base station and thus, the system delay

increases.

3. In the centralized approach, the channel assignment for the whole

network must be recalculated with any change in the network. As

the number of radio units grows, the probability and frequency of

changes happening in the network increase in a corresponding way.

Therefore, as the number of radio units increases, the average fre-

quency of problem-solving increases. Considering the limited pro-

cessing power and bandwidth of the base station, the total number

of cognitive radio units cannot grow to any arbitrary number.

• Higher Vulnerability: In a centralized network, all radios are con-

trolled from the base station. Therefore, the whole network can be taken

down by attacking the base station. Furthermore, the CR network would

not be able to operate if base station stops working for any reason such

as power failure or natural disasters.
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Figure 2.8: The cognitive radio network set up using decentralized DSM.

In the decentralized approach, shown in Fig. 2.8, each two cognitive radios

in a link choose the best (optimum) channel from the available spectrum holes

in the environment, based only on the local data available to them.

The decentralized approach is more complicated to design and may not result

in a global optimum solution, but it has several advantages over centralized

approach that make it attractive and practical for solving the DSM problem:

• Lower complexity: A decentralized scheme attempts to solve the DSM

problem locally, based on the information available to the CR unit only

from its neighbours and aims to find a sub-optimum but satisfactory

solution. The decentralized DSM algorithms therefore, have lower com-

plexity than graph-colouring optimization problem in the centralized

schemes. Furthermore, the problem is solved only for the CR units in

the neighbourhood and thus, the dimensionality and complexity of the

problem are lower than the centralized case where the problem is solved

for the entire CR network.

• Robustness: In the decentralized approach, the CR units need to re-
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spond only to environmental changes in their neighbourhood through

appropriate changes in their respective channels. Therefore, network

changes due to environmental variations happen locally and remain in

or close to the neighbourhood in which that change has happened. On

the other hand, in centralized schemes, the network changes due to any

environmental change can propagate across the whole CR network, and

a small change in one location can cause changes in a large portion of

the network. Therefore, as the frequency of changes increases, the cen-

tralized network may become unstable and therefore, unable to respond

to all of the changes in a timely manner.

• Scalability: In the decentralized approach, the problem dimension de-

pends only on the number of the neighbours of each CR; thus, approx-

imately the density of the CR units in the network. Therefore, as the

size of network increases, assuming nearly constant density across the

network, the complexity of the problem remains essentially constant for

each CR unit and the network can grow to any arbitrary size without

increasing the problem complexity.

• No need for a base station: In the centralized approach, the process-

ing load is concentrated in a single unit: the base station. Therefore,

if the base station stops working or loses the communication with the

network, the whole CR network stops operating. Moreover, if there is

no infrastructure with a highly capable base station available, a CR

unit must handle all the processing and communication load of the base

station. This is not practical for mobile radio units with battery and
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processing-power limitations. On the other hand, in the decentralized

approach, the processing and communication loads are distributed over

the whole CR network uniformly, and each CR unit needs to handle only

a portion of the processing load. Furthermore, the CR network does not

depend on any specific radio unit and can continue to work with the

failure of any unit.

2.5 Summary

In this chapter, dynamic spectrum management which is one of the challenging

problems in cognitive radio was discussed. In order to increase the spectrum

efficiency, CR units try to share the licensed spectrum bands with legacy users.

Two forms of spectrum sharing, opportunistic or price-based, were explained

and discussed. It was shown that, mathematically, the DSM problem is equiv-

alent to list-colouring problem in graph theory. This problem is known to be

a NP-hard problem and practically impossible to solve in real time. There-

fore, a fast sub-optimum algorithm must be used for solving this problem in

CR networks. Two approaches, namely centralized and decentralized, were

explained and discussed for solving DSM problem in CR networks. Decen-

tralized schemes were identified as the method of choice for solving the DSM

problem in CR networks.
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3

Tsigankov-Koulakov Model for
Self-Organizing Maps

As explained in Sec. 1.4, in a self-organizing map, the neurons are nodes of a

usually one- or two-dimensional lattice and become selectively tuned to various

input patterns or classes of input patterns [1, 52]. In SOM, neurons act in

parallel and process pieces of information that originate from different regions

in the input space but are similar in nature. Each neuron gets tuned to the

pattern in the input signals it receives, therefore, the whole network becomes

tuned to the patterns in the entire input space. There are three fundamental

elements for formation of SOMs:

• Self-amplification

• Competition

• Redundancy (correlation) in input signals

3.0.1 Self-amplification

This principle states the following [52]:
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Modifications in the synaptic weights of a neuron tend to self-

amplify in accordance with Hebb’s postulate of learning, which is

made possible by synaptic plasticity.

Such modifications in a single neuron must be based on presynaptic and post-

synaptic signals available at local level. In fact, the requirements of self-

amplification and locality form a feedback mechanism in the neuron.

Hebb’s postulate of learning, named in honour of neuropsychologist Hebb,

is the oldest learning rule. It is stated in his book [57] as follows:

When an axon of cell A is near enough to excite a cell B and re-

peatedly or persistently takes part in firing it, some growth process

or metabolic changes take place in one or both cells such that A’s

efficiency as one of the cells firing B is increased.

By expanding and rephrasing Hebb’s postulate of learning as a two part rule

[88,89], we may define a Hebbian synapse as:

1. If two neurons on either side of a synapse (connection) are activated

simultaneously (i.e., synchronously), then the strength of that synapse

is selectively increased.

2. If two neurons on either side of a synapse are activated asynchronously,

then that synapse is selectively weakened or eliminated.

A more precise definition for Hebbian synapse by Haykin [52] states:

A synapse that uses a time-dependent, highly local, and strongly

interactive mechanism to increase synaptic efficiency as a function
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of the correlation between the presynaptic and postsynaptic activ-

ities.

Hebbian learning is characterized by the following four key mechanisms

(properties) [52]:

1. Time-dependent mechanism: The modifications in a Hebbian synapse

depend on the exact time of occurrence of input and output signals.

2. Local mechanism: A synapse, by its nature, is a transmission site where

synaptic signals are in spatiotemporal contiguity. In a Hebbian synapse,

modifications depend on these synaptic signals that represent ongoing

activities in the presynaptic and postsynaptic units.

3. Interactive mechanism: The modification depends on signals on both

sides of the synapse. Therefore, the Hebbian learning process depends

on interaction between presynaptic and postsynaptic signals in a sense

that learning modifications can not be calculated having only one side’s

signal.

4. Correlational or conjunctional mechanism: If we think of the interac-

tive mechanism of Hebbian learning in statistical terms, we find that

the correlation between presynaptic and postsynaptic signals over time

is responsible for synaptic changes. Therefore, a Hebbian synapse is

sometimes referred to as a correlational synapse. Another interpretation

of Hebb’s postulate of learning is that the conjunction of presynaptic

and postsynaptic signals is the condition for a synaptic modification.

According to this interpretation, the co-occurrence of presynaptic and
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postsynaptic signals over a short time interval is sufficient for producing

synaptic modification. Thus, the Hebbian synapse is also referred to as

conjunctional synapse.

3.0.2 Competition

This principle is made possible by synaptic plasticity and states that [52]:

The limitation of available resources, in one form or another, leads

to competition among the synapses of a single neuron or an assem-

bly of neurons, with the result that most vigorously growing (i.e.,

fittest) synapses, respectively, grow at the expense of the others’

decline.

In order for a neuron to stabilize, there must be competition among its synapses

for limited resources in a way that any increase in strength of some synapses

gets compensated for by a decrease in strength of other synapses.

3.0.3 Correlation or Redundancy

The last principle of self-organization states the following [52]:

The underlying order and structure that exist in an input sig-

nal represent redundant information, which is acquired by a self-

organizing system in the form of knowledge.

Correlation is indeed the basis of learning [90] and structural information or

correlation in the input data is a prerequisite to self-organized learning. If we

remove all the redundant information contained in a signal, what remains is

a completely random signal that is unpredictable. Self-organizing or unsuper-

vised learning can not function given such random signal. Note that unlike
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other principles of self-organization that are carried out within a neuron or

neural network, structural information is an inherent characteristic of input

signal.

Typically, SOM models use a form of Hebbian learning rule to extract

patterns or correlation from input data and modify the network organization

accordingly.

3.1 Mathematical Model of Hebbian

Learning

Hebbian learning is an iterative learning process. In each time step n of

the learning process, an appropriate adjustment, ∆wj(n), is applied to each

synaptic weight wj(n) and the learning process stores the knowledge gained

from the environment in the synaptic weights of the neuron. The general form

of the weight adjustment for Hebbian learning process is [52]:

∆wj(n) = F (y(n), xj(n)) (3.1)

where F (y(n), xj(n)) is a function of neuron output and jth input signal xj(n)

and satisfies the Hebbian postulate of learning. For example, one of the sim-

plest forms for this function is [52]:

F (y(n), xj(n)) = ηy(n)xj(n) (3.2)
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where η, the learning rate, is a positive constant. Using this learning rule,

there is a tendency for weights to grow without bounds which is unacceptable

and impractical. Therefore, some form of normalization is required to be

added to the learning rule. Adding normalization to the learning rule also has

the effect of introducing competition among the synapses of the neuron over

limited resources. This competition, as stated in the second principle of self-

organization, is necessary for stabilization. One possibility to bound weights

is to allow the weights grow until each reaches some limit [91] and clip the

weights once they passed upper limit w+ or lower limit w−. However, if all

weights end up in one of the limits, which certainly will happen using Eqn. 3.2,

the amount of information that weights can carry becomes very limited [92].

One mathematically convenient normalized form of Eqn. 3.2 is [93]:

wi(n+ 1) =
wi(n) + ηy(n)xi(n)(∑m

j=1(wj(n) + ηy(n)xj(n))2
)1/2

(3.3)

where y, the output signal is defined as:

y(n) =
m∑
j=1

xi(n)wi(n) = x(n)wT (n) (3.4)

This learning rule keeps the Euclidean norm of weights vector w(n) equal to

unity, i.e.:

||w(n + 1)||2 = 1.

Therefore, any increase in some weights would be compensated by propor-

tional reduction in the rest of them. Assuming η is small, we can expand the
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denominator of Eqn. 3.3 as a power series [52]:

(
m∑
j=1

(wj(n) + ηy(n)xj(n))2

)1/2

=

(
m∑
j=1

(wj2(n) + 2ηwj(n)y(n)xj(n))

)1/2

+O(η2)

=

(
m∑
j=1

wj2(n) + 2ηy(n)
m∑
j=1

wj(n)xj(n)

)1/2

+O(η2)

= (1 + 2ηy2(n))1/2 +O(η2)

= 1 + ηy2(n) +O(η2) (3.5)

In the last line, assuming small η, the following approximation was used:

(1 + 2ηy2(n))1/2 ≈ 1 + ηy2(n)

Now, we replace the denominator of Eqn. 3.3 with Eqn. 3.5 and again assuming

small η, we obtain:

wi(n+ 1) =
wi(n) + ηy(n)xi(n)))

1 + ηy2(n) +O(η2)

= (wi(n) + ηy(n)xi(n))))(1 + ηy2(n) +O(η2))−1

= (wi(n) + ηy(n)xi(n))(1− ηy2(n)) +O(η2))−1

= wi(n) + ηy(n)xi(n)− ηy2(n)wi(n) +O(η2)

Ignoring second order terms of η, we finally get:

wi(n+ 1) = wi(n) + ηy(n)(xi(n)− y(n)wi(n)) (3.6)
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The first term, y(n)xi(n), on the right-hand side of Eqn. 3.6, is the simple Heb-

bian modification of Eqn. 3.2 and accounts for the self-amplification which is

first principle of self-organization. The second term, −y2(n)wi(n), is nega-

tive and is responsible for stabilization in accordance with principle 2, which

requires competition for limited resources among synapses. We can define

effective input of ith synapse as:

x′i(n) = xi(n)− y(n)wi(n) (3.7)

and rewrite Eqn. 3.6 using Eqn. 3.7 as:

wi(n+ 1) = wi(n) + ηy(n)x′i(n) (3.8)

3.2 Maximum Eigenfilter

An interesting property of self-organizing learning is its capability of extracting

features or patterns from input data [52]. Let

R = E{x(n)xT (n)}

be the correlation matrix of x which therefore is symmetric and positive-

semidefinite. The eigenvalues of R are found by solving the following equation,

known as eigenvalue problem:

Rq = λq
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where the associated non-zero values of q are called eigenvectors. Assuming

distinct eigenvalues, the eigenvectors are unique up to scaling. Here the eigen-

vectors are tacitly assumed to be of unit length. Let the m eignenvalues of R,

arranged in decreasing order, be:

λ1 > λ2 > . . . > λm

and m corresponding eigenvectors be:

Q = [q1 q2 . . . qm ].

Then, the correlation matrix R can be expressed in terms of eigenvalues and

eigenvectors as shown by:

R =
m∑
i=1

λiqiq
T
i (3.9)

which is known as the spectral theorem.

Theorem 1. Using Eqn. 3.3, the weights would approach to the eigenvector

corresponding to the largest eigenvalue of input i.e:

w(n)→ q1 as n→∞

Therefore, a neuron governed by Eqn. 3.3 and illustrated in Fig. 3.1, has

an interesting property; it adaptively extracts the first principal component of

the input data and therefore is called a maximum eigenfilter.
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Figure 3.1: Diagram of a neural network governed by maximum eigenfilter
learning rule. The weights are adaptively adjusted according to Eqn. 3.3 and
based on input and output.

3.3 The Tsigankov-Koulakov Model

The SOM model of map formation in the superior colliculus (SC), explained

in [55], uses an energy function minimization approach to achieve map forma-

tion. Axons of retinal ganglion cells (RGC) establish orderly projections to

the superior colliculus of the midbrain. Axons of neighboring cells terminate

proximally in the superior colliculus thus forming a topographically precise

representation of the visual world.

In this model, there are two layers of neurons, each consisting of a N × N

lattice of neurons. As illustrated in Fig. 3.2(a), initially the neurons from

retina (input) layer are randomly connected to neurons in the collicular (out-

put) layer. The goal of the algorithm is to modify the neuron connections so

that, as shown in Fig. 3.2 (b), every neuron in the input layer is connected
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(a) (b)

Figure 3.2: A self-organizing map (a)initial state. (b) organized state.

to its spatially corresponding neuron in the output layer. Total retinal input

at point ~r in SC is determined by retino-collicular synaptic weights wi(~r) and

axonal activity ai through

~I(~r) =
∑
i

wi(~r)ai

Activity of a collicular cell at point ~r is

A(~r) =
∑
~r′

D(~r − ~r′)I(~r′) =
∑
j

vj(~r)aj

where D is dendritic form-factor and

vj(~r) =
∑
~r′

D(~r − ~r′)wj(~r′)

is the net weight from RGC axon j to the collicular cell at point ~r. The

weight is modified according to Hebbian rule and the change in this weight is

proportional to correlation between activities in this cell and the presynaptic
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cell:

∆vj(~r) = ηA(~r)aj = − ∂EC
∂vj(~r)

(3.10)

The last equation interprets the weight adjustment as a gradient descent in EC .

The map formation occurs through a stochastic minimization of EC by

repeating the following steps:

• Randomly select two not necessarily adjacent cells i, j from output layer.

• Switch the cells of input layer connected to cells i, j with probability

Pswitch =
1

1 + exp(∆EC)

In other words, during the minimization process, if switching two connections

decreases the energy of the network, they will be switched with higher prob-

ability, leading to stochastic minimization of energy function. According to

Eqn. 3.10, the energy function EC decreases more if the correlation between

input and output layer is higher. This happens if the spatial location of input

cell in the input layer is close the spatial location of output cell in the output

layer.

In the next chapter the self-organized DSM algorithm will be introduced by

following a manner similar to the TK model; in so doing, system organization

is found by assigning the sub-bands to CR units in the direction of the gradient

descent of the objective function defined by Eqn. 3.10.
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3.4 Summary

In this chapter Tsigankov-Koulakov model for self-organizing maps was stud-

ied and discussed. Three principles of map formation for SOMs, namely

self-amplification, competition and correlation, were explained and Hebbian

learning rule, the essential learning rule in SOM, was studied and discussed.

A form of normalized Hebbian learning rule, termed maximum eigenfilter,

was reviewed. This learning rule has several interesting properties and can

adaptively extract the maximum eigenvector of input data. Furthermore,

The Tsigankov-Koulakov model for self-organizing maps was explained. This

model was developed for the self-organization of the geometrically precise sort-

ing of retinal ganglion cell axons in superior colliculus in the brain. The

Tsigankov-Koulakov SOM models the SOM problem as an optimization prob-

lem which tries to minimize an energy function defined based on Hebbian

learning rule. In this model, the map formation process happens through a

stochastic minimization process. At each round, the randomly selected neu-

rons’ connections are changed in the direction of the gradient descent of energy

function.
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4

Self-Organizing Dynamic
Spectrum Management

The SOM has several interesting attributes that makes it a promising candi-

date for DSM in CR networks:

• The synaptic weights adapt to locally-generated temporal signals and

through performing local interactions between neurons and the environ-

ment, the network achieves a global order. In a similar manner, a decen-

tralized DSM scheme has to achieve a global order by local interactions

of CR units.

• The SOM network extracts the pattern in the environment and restruc-

ture itself to match this pattern. Similarly, in CR networks, the objective

is to find the pattern of spectrum utilization and distribute spectrum

holes according to that pattern.

• The DSM is based on the Hebbian learning rule which is computationally

simple and suitable for a decentralized DSM scheme where mobile units

have limited power and processing capabilities.
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The SO-DSM is a decentralized DSM scheme, in which each CR unit extracts

the wireless environment spectrum utilization patterns using a form of Heb-

bian learning rule, and stores the extracted knowledge in an array of weights.

These weights act as short-term memory and keep recent legacy network’s and

neighbouring CR units’ spectrum utilization patterns. Using the extracted

knowledge and a SOM technique similar to the one explained in Sec. 3.3, the

CR network reorganizes itself to the latest spectrum configuration of the en-

vironment.

As explained in Sec. 1.4.1, the prerequisite of forming a SOM is having

correlation or redundancy in the input data. For SO-DSM, this redundancy is

caused by the pattern of spectrum utilization of radio units in the environment.

The wireless communications depends on humans’ activities which are not ran-

dom and typically follow certain patterns. For example, in an office building,

wireless activities increase at office hours during week days and significantly

decrease during nights and weekends. Such a pattern for this environment

is due to the fact that people are present at that environment mostly during

office hours. Similarly, in a home environment, wireless activities increase dur-

ing times when people are at home and not sleeping i.e. weekday evenings and

weekends, and decrease at nights and weekdays during the day when typically

people leave home for school or work. Experimental measurements [3], shown

in Fig. 4.1 and 4.2, have confirmed this kind of patterns and have shown that

these patterns change with a relatively slow pace, in order of hours during the

day.
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Figure 4.1: Normalized load of three different cell sectors over three weeks.
We plot the moving average of each cell over 1 s. The cells show high load
(top), varying load (middle), and low load (bottom). (reproduced from [3])

We may therefore infer that wireless spectrum utilization has a pattern

that depends on location, and as Fig. 4.2 illustrates, may change slowly dur-

ing the day. Having a very fast radio scene analyzer, we can consider the

environment spectrum pattern to be pseudo-stationary, in which case Heb-

bian learning rule explained in Sec. 3.1 can be applied to extract the inherent

pattern of the data. A good candidate for such radio scene analyzer is the

MTM method proposed by Haykin et al. [94] and discussed in Sec. 1.3. The
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(a)

(b)0.7

Figure 4.2: (a) Distribution of system-wide average call arrival rates during
four different days. The arrival rates are averaged over 5-min slots. (b) Distri-
bution of average call duration over 5-min periods during four different days.
The large spikes during the mornings are due to small gaps in collection. (re-
produced from [3])
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presented results show that it is able to perform spectrum sensing in about

100 µs, which is relatively fast. Furthermore, by precomputing the Slepian

tapers and using the state-of-the-art fast Fourier transform (FFT) algorithm,

namely the fastest Fourier transform in the west (FFTW) [95], computation

of the MTM for spectrum sensing can be accomplished in a matter of 5 to 20

µs [94]. Even lower sensing time is expected to be achieved in near future as

as the speed and computation power of mobile device processors are increas-

ing very fast. Dual-core processors for mobile devices such as NVIDIA Tegra

2 [96] are already commercialized and quad core processor such as NVIDIA

Tegra 4 and Qualcomm Snapdragon S4 are coming in the market soon [97].

We may, therefore, assume that having such a fast radio scene analyzer, the

spectrum utilization pattern of environment is pseudo-stationary and Hebbian

learning rule can extract the patterns from the input data.

We accomplish the other two requirements of SOM, namely self-amplification

and competition, by using the Hebbian learning rule explained in Sec. 3.1 and

stated in Eqn. 3.3. As discussed in that section, the normalization rule of

this learning rule creates a competition among weights that stabilizes the al-

gorithm.

Finally, as SO-DSM is a decentralized CR network, the feedback channel

between neighbouring CR units is required to form the network. Clearly, as ex-

plained in Sec. 1.3, the feedback channel cannot be established using spectrum

holes in the licensed bands because they change fast and sometimes they may

not be available at all. Therefore, the low-bandwidth feedback channel must
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be established in unlicensed bands. For example, the feedback channel can be

formed using one of the several available ad hoc wireless network standards

operating on unlicensed bands such as Bluetooth or ad hoc 802.11 [98, 99].

Using such a feedback channel, the CR network is always operational and CR

units never lose synchronization and control. In this work, a feedback channel

between neighbouring CRs is assumed and CR units coordinate, negotiate and

share their RSA data through this channel. This information-sharing results

in improved primary user detection [31–33] and also improves the learning

process in SO-DSM.

4.1 SO-DSM

The proposed SO-DSM technique works as follows:

• Using the feedback channel on unlicensed band, the CR units form an ad

hoc network, get synchronized and start sharing RSA information with

neighbouring CR units.

• CR units continuously monitor their surrounding environment and save

the obtained information in a vector termed channel allocation priority

list (CAPL). This vector’s size is equal to the total sub-bands Nch, and

for each sub-band bi, CR units keep a weight wi in CAPL that represents

the quality of sub-band bi in the recent past and plays the role of short

term memory.

• After receiving each new set of RSA information, the weights are updated

using Eqn. 3.3.
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• Once two CR units need to establish a new link, sub-bands are allo-

cated to links in the direction of gradient ascent of cost function EC as

described in Sec. 3.3.

The above algorithm forms a SOM, based on spectrum utilization patterns of

PUs and CR units. However, it can not meet one important requirement of

CR units which is minimizing probability of collision with PUs because using

SOM model above, the memory for CR activities and PUs activities are mixed

and the weights show the relative quality of sub-bands. In other words, they

are sorted based on ” how better are they compared to each other” and we

can not bound probability of collision using such weights. To mitigate this

problem, we add an extra stage to the weights to separate the memory of

PUs activities from CR units activities. Initially, all the weights are set to

0 so that the CR units do not use any spectrum hole before gaining enough

knowledge about the environment and are considered unavailable as long as

are below 1. An unavailable sub-band will not be used for a CR link even if

it is momentarily free i.e. no PU is using it. The memory weights for CR Cm,

when they are in the unavailable stage, i.e. wi,m(n) < 1, are updated based

on the following rule:

wi,m(n+ 1) =

 wi,m(n) + η1,i,m, if bi is free

0, if PU on bi

(4.1)

where 1 > η1,i,m > 0 is the forgetting factor for sub-band bi and CR unit

Cm. When a weight reaches 1, its associated sub-band is considered available

and will be used for CR communications. Using this rule, at each round the
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weights for free sub-bands increase by η1,i,m and would exceed 1 if no PU uses

them for at least TG = b 1
η1,i,m
c consequent time steps where bxc denotes the

integer part of x. Once a PU is detected on bi, wi is set back to zero and bj

will not be used by the CR unit, even if it becomes free, until it has been free

for sufficient time to allow wi grow and reach 1.

After identifying the available sub-bands in the environment, the CR units

use Eqn. 3.3 to extract the spectrum utilization pattern of neighbouring CR

units and create temporal organization based on the obtained knowledge.

Therefore, Eqn. 3.3, is applied to the second stage of memory for updating the

weights of available sub-bands (wi,m(n) ≥ 1):

w′i,m(n+ 1) =
w′i(n) + η2,my(n)xi(n)(∑

j(w
′
j(n) + η2,my(n)xj(n))2

)1/2
(4.2)

where 1 > η2,m > 0 is the learning rate, and

w′(n) = w(n)− 1

and xi,m(n) is the quality signal of sub-band bi received from RSA unit at time

n and is defined as:

xi,m(n) =


1, if bi is used by Cm

β1, if bi is free

β2, if bi is used by Ck,k 6=m

(4.3)
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where β1 > β2 > 0 are quality levels for free sub-bands and sub-bands used

by neighbouring CRs.

Using the Hebbian learning rule of Eqn. 3.3, the cost function EC exists

[53] and similar to the Tsigankov-Koulakov SOM model used in Stryker’s

work [55, 56], we will follow the gradient ascent of the cost function ∇EC ,

when assigning sub-bands to CR links. The gradient ascent of cost function

EC can be derived from [53]:

∂EC
∂w′i,m

= ∆w′i,m (4.4)

and sub-bands are allocated to links in the direction of gradient ascent of cost

function EC . Define

Ua(k,m) = {bj | bj available for Ck and Cm} = {bj | wj,m, wj,k ≥ 1}

When a link between Cm and Ck is required, b∗j ∈ Ua(k,m) is selected that

maximizes gradient ascent of the cost function EC defined as:

∇EC(k,m, j) =

Nch∑
i=1

(
∂EC
∂w′i,m|j

+
∂EC
∂w′i,k|j

)

where w′i,m|j is the next value of w′i,m if bj gets assigned to the link between

Cm and Ck. Using Eqn. 4.4, we obtain:

∇EC(k,m, j) =

Nch∑
i=1

(
∆w′i,m|j + ∆w′i,k|j

)
(4.5)
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In order to calculate w′i,k|j for CR unit Ck, we use Eqn. 3.3. By choosing bj

for the link, as Eqn. 4.3 shows, only xj,k changes from β1 to 1 and the rest of

input signals remain the same as before, i.e.

xi,k|j =

 xi,k, if i 6= j

b′ + xi,k, if i = j
(4.6)

where b′ = 1− β1. Substituting xj,k in Eqn. 3.4, yk|j is calculated as

yk|j =

Nch∑
i=1

xi,k|j w
′
i,k = b′w′j,k +

Nch∑
i=1

xi,k w
′
i,k = b′w′j,k + yk (4.7)

Now, we can calculate w′i,k|j using Eqn. 3.3:

w′i,k|j =
w′i,k + η2,k yk|j xi,k|j(∑

l(w
′
l,k + η2,k yk|j xl,k|j)2

)1/2
(4.8)

we can expand the denominator of Eqn. 4.8 using Eqns. 4.7 and 4.6 as

∑
l

(w′l,k + η2,k yk|j xl,k|j)
2 =

∑
l

(w′l,k + η2,k (yk + w′j,k b
′)xl,k|j)

2

=
∑
l

((w′l,k + η2,k yk xl,k|j) + η2,k w
′
j,k b

′ xl,k|j)
2

=
∑
l

(w′l,k + η2,k yk xl,k|j)
2 + 2η2,k w

′
j,k b

′ xl,k|j (w′l,k + η2,k yk xl,k|j)

+ (η2,k w
′
j,kb
′ xl,k|j)

2 =
∑
l

(w′l,k + η2,k yk xl,k|j)
2 + 2 η2,k w

′
j,k b

′ xl,k|j w
′
l,k

+ 2η2
2,k w

′
j,k b

′ x2
l,k|j yk + η2

2,k w
′2
j,k b

′2 x2
l,k|j
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having η2,k << 1, b′ << 1 and w′j,k , xl,k|j , w
′
l,k < 1, we neglect last three

terms and obtain:

∑
l

(w′l,k + η2,k yk|j xl,k|j)
2 ≈

∑
l

(w′l,k + η2,k yk xl,k|j)
2 = D2 (4.9)

Therefore, we can rewrite Eqn. 4.8 as:

w′i,k|j =
w′i,k + η2,k (yk + w′j,k b

′)xi,k|j

D
=
w′i,k + η2,k yk xi,k|j + η2,k w

′
j,k b

′ xi,k|j

D
(4.10)

and

∆w′i,k|j =
w′i,k + η2,k yk xi,k|j + η2,k w

′
j,k b

′ xi,k|j

D
− w′i,k = Ci,k|j +

η2,k b
′ xi,k|j
D

w′j,k

(4.11)

where

Ci,k|j =
w′i,k + η2,k yk xi,k|j

D
− w′i,k

is the sum of terms in Eqn. 4.11 that do not depend on w′j,k. Using Eqn. 4.6,

we get

Ci,k|j =


w′i,k + η2,k yk xi,k

D
− w′i,k, if i 6= j

w′i,k + η2,k yk (xi,k + b′)

D
− w′i,k, if i = j

=

 Ci,k, if i 6= j

Ci,k +
η2,k yk b

′

D
, if i = j
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Now we can calculate ∇EC(k,m, j) using Eqn. 4.5 and 4.11:

∇EC(k,m, j) =

Nch∑
i=1

(
∆w′i,m|j + ∆w′i,k|j

)
=

Nch∑
i=1

(
Ci,k|j +

η2,k b
′ xi,k|j
D

w′j,k + Ci,m|j +
η2,m b

′ xi,m|j
D

w′j,m

)

=

Nch∑
i=1, 6=j

(
Ci,k +

η2,k b
′ xi,k
D

w′j,k + Ci,m +
η2,m b

′ xi,m
D

w′j,m

)
+ Cj,k +

η2,k yk b
′

D

+
η2,k b

′ (xj,k + b′)

D
w′j,k + Cj,m +

η2,m ym b
′

D
+
η2,m b

′ (xj,m + b′)

D
w′j,m

=

Nch∑
i=1

(
Ci,k +

η2,k b
′ xi,k
D

w′j,k + Ci,m +
η2,m b

′ xi,m
D

w′j,m

)
+

η2,k yk b
′

D
+
η2,k b

′2

D
w′j,k +

η2,m ym b
′

D
+
η2,m b

′2

D
w′j,m

=

Nch∑
i=1

(Ci,k + Ci,m) +
η2,k yk b

′

D
+
η2,m ym b

′

D

+
η2,k b

′

D
(b′ +

Nch∑
i=1

xi,k)w
′
j,k +

η2,m b
′

D
(b′ +

Nch∑
i=1

xi,m)w′j,m (4.12)

Defining

Sx,k =

Nch∑
i=1

xi,k

and

Tk =

Nch∑
i=1

Ci,k +
η2,k yk b

′

D

we rewrite Eqn 4.12 as:

∇EC(k,m, j) = Tk + Tm + η2,k b
′ Sx,k + b′

D
w′j,k + η2,m b

′ Sx,m + b′

D
w′j,m (4.13)
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Using Eqn. 4.13, the criteria to select b∗j as the sub-band for CR units Cm and

Ck is:

b∗j = argmax
j

(∇EC(k,m, j)) (4.14)

Equivalently, b∗j must satisfy the following equation:

∀ bi ∈ Ua(k,m) , i 6= j :

∇EC(k,m, j)−∇EC(k,m, i) ≥ 0

or

∀ bi ∈ Ua(k,m) , i 6= j :

b′

D
[
η2,k (Sx,k + b′)(w′j,k − w′i,k) + η2,m (Sx,m + b′)(w′j,m − w′i,m)

]
≥ 0

Assuming η2,m = η2,k = η2 and eliminating positive variables η2,D, b′ we

obtain:

∀ bi ∈ Ua(k,m) , i 6= j :

(Sx,k + b′)(w′j,k − w′i,k) + (Sx,m + b′)(w′j,m − w′i,m) ≥ 0 (4.15)

Using Eqn. 4.2, the weights approach the principal component of quality

signals of sub-bands in the recent past. At each step, if a sub-band is used

by the CR unit, its weight increases more than other sub-bands’ weights and

goes higher in CAPL. Therefore, it is more likely that it will be used by that

CR in the future. Similarly, weights of sub-bands that are being used by

other CRs would decrease; thus, they will go down in CAPL and therefore,
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less likely to be used. Figure 4.3 illustrates an example of weight dynamics

of a particular CR unit Cj with 4 sub-bands. Sub-bands b1 and b2 are being

used by neighbouring CRs and as can be seen in the figure, their weights have

decreased compared to b3 and b4. This CR unit has used b3 for its link time

to time during the simulation, consequently, its weight has increased and has

become the highest. The other sub-band, b4, has been free all the time and

its weight level is less than b3 and higher than b1 and b2. For this example,

when Cj requires to establish a new link, its first preference is b3, then b4 and

then b1 or b2, based on their momentary weight value. However, as Eqn. 4.15

shows, the link is selected based on the value of weights of both CR units of

the link, therefore, it is possible that the selected sub-band is not on the top

of the CAPL of one of the CR units.

4.2 Complexity Analysis

The SO-DSM algorithm has two parts:

• Learning : The learning part occurs after each round of performing ra-

dio scene analysis by applying Eqn. 4.2 to the available sub-bands and

Eqn. 4.1 to the unavailable sub-bands. Therefore, in general the com-

plexity of learning stage is of O(Nch). Furthermore, information sharing

among neighbouring CR units has complexity of O(Nneighbour) where

Nneighbour is number of neighbouring CR units. Thus, the complexity

of learning stage is max{O(Nneighbour), O(Nch)}. When the density (i.e.

number of CR units per unit area) of CR network is low compared to

the number of sub-bands, the complexity of learning part is O(Nch).
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Figure 4.3: An example of SO-DSM weight dynamics for one CR unit. b1 and
b2 are used by neighbouring CRs and b3 by the CR unit from n = 20 until
n = 70 . Simulation parameters used are: (µ1, µ2)=(0.1,0.1), β1=0.7, β2=0.1
and η2=0.05

However, if density of CR network increases, O(Nneighbour) becomes the

dominant term in the complexity of learning stage.

• Channel assignment : The second part occurs when a sub-band must

be assigned to a link between two CR units and requires searching among

all common available sub-bands between two CR units to find b∗j that

maximizes ∇EC(k,m, j). Thus, in the worst case, when all the sub-

bands are available for both CR units, the complexity of this channel

assignment part is O(Nch).

Unlike centralized approaches in which complexity depends on the total

number of CR links, and consequently total number of CR units, the SO-DSM
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algorithm is a decentralized DSM scheme and its algorithmic complexity does

not increase by expanding the network (as long density of the network does

not change or remain negligible compared to Nch).

4.3 Degrees of freedom

The SO-DSM algorithm have several parameters that affect performance and

emergent behaviour of the CR network.

4.3.1 Learning-rate Parameter η1

The learning rate η1 defines the CR network behaviour in its interaction

with legacy networks. A larger η1 results in faster forgetting PU activities,

thus, a more aggressive behaviour, while a smaller η1 results in remembering

PU activities for a longer time and therefore a more conservative behaviour.

By aggressive we mean they wait for a shorter time after a PU has stopped

using a sub-band to use that sub-band. A larger η1 would increase spectrum

utilization of CR network while increasing the probability of collision with

PUs. CR units should adjust the forgetting factor to maintain the probability

of collision at an acceptable level based on legacy network traffic. Let Ps,i(n)

denote the probability that a PU starts using bi exactly at time n:

Ps,i(n) = (1− µ1)n−1µ1.
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Then if a neighbouring CR unit Cj starts using bi at time TG for k time steps,

then the probability of collision Pcol,i,j is:

Pcol,i,j = DRSA ×
TG+k∑
TG

Ps,i(n)

where DRSA is the RSA time delay in discovering PUs. Note that Ps,i(n) is a

strictly decreasing function because:

dPs,i(n)

dn
=
µ1 ln(1− µ1)

(1− µ1)

which is always negative for 1 ≥ µ1 > 0. Therefore, it is possible to decrease

the probability of collision by decreasing η1, i.e. increasing TG. However,

decreasing η1 also decreases the spectrum utilization of CR network. In order

to use the spectrum holes efficiently, CRs need to have a good estimate of µ1.

They can obtain this information in two ways:

• Using a stored look-up table of forgetting-factor profiles based on time

and location and finding the best match for their current condition For

example: (university, daytime) or (home, night). As it was discussed

earlier, the wireless traffic is caused by human activities and has patterns

that can be predicted to some extend having the time and location.

• Adaptively refining the learning rate based on recent observations of the

environment. The traffic pattern of PU changes slowly, in order of hours,

during the day [3]. Therefore, a moving-average technique, such as Ex-

ponential moving average (EMA) algorithm, can be used to adaptively
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estimate the µ1,i from average observed idle time intervals τ̄i on each

sub-band. The EMA algorithm updates the estimate using the following

equations:

τ̄i(0) = τi,0

τ̄i(n) = ατi(n) + (1− α)τ̄i(n)

µ̄1(n) =
1

τ̄i(n)

where 1 > α > 0 is the smoothing factor and τi,0 is the initial estimate.

The EMA algorithm has been suggested for finding traffic parameters in

the literature [100–102] and is suitable for estimating time-variant nu-

merical series because in this algorithm, the weights decrease exponen-

tially, and therefore, recent observations have more effect in the average

than the older ones. Furthermore, it does not need extra memory to

store any old values. There have been also other methods suggested

for learning PUs traffic parameters such as autoregressive models [103]

which is discussed in appendix C1.

From a practical prospective, we suggest combining these two methods to

achieve a more precise estimation in a shorter time. First using a look-up

table, the CR units can obtain a rough estimation and then, they can refine

their estimation adaptively using the second method.

1 we can make it even more refined through the use of hidden Markov model (HMM) [104]

but the complexity becomes unmanageable and it could very well be out of practical

scope.

78



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,

McMaster Univ., Hamilton, Canada, 2012.

4.3.2 Learning-rate Parameter η2

The second learning rate η2 controls the sensitivity of the SOM algorithm

to CR network changes. A higher η2 would result in a more rapid response to a

similar input than a lower η2. If η2 is too small, on the other hand, barely any

learning or organization would happen and SO-DSM would basically assign

sub-bands in a random manner. For example, Fig. 4.4 shows the same weights
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Figure 4.4: Example of SO-DSM weight dynamics of Fig. 4.3, reproduced with
η2 = 0.005. The rate of weight changes is slower than Fig. 4.3 and the effect
of using the channel b3 is not completely cleared in this case.

as in Fig. 4.3 when η2 was changed from 0.05 to 0.005. By comparing the two

figures, we can see that decreasing η2 has also decreased the rate of learning.

On the other hand, too large a η2 would result in a very fast learning and

sensitive system which would lose organization due to unnecessary responses

to input data. Therefore, this parameter must be chosen according to the
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expected rate of changes in the environment.

4.3.3 Parameterization for Quality level signals β1 and β2

These two parameters are important in shaping the weight dynamics in

SO-DSM. In general, we would like to have a large β1, i.e. close to 1, and

a small β2, close to 0, to have more separation between signal levels for the

sub-bands used by other CRs and free sub-bands. Increased separation tends

to increase the self-amplification of the Hebbian learning and helps forming

the SOM. However, these parameters can not get too close to limits (e.g. 1

for β1 and 0 for β2).

The difference between β1 and 1, causes a bigger growth for the weights

of sub-bands that are used by the CR unit compared to available sub-bands.

Therefore, for the next links, a CR unit would use a previously used sub-band

with higher probability. A value for β1 closer to 1 would result in a smaller

weight difference between used sub-bands and available ones and also faster

forgetting of the history of sub-band utilization.

For example, Fig. 4.5 (a) and (b), show weights for a similar scenario with

two different values of β1. As can be seen in the figures, a smaller value of β1

in Fig. 4.5 (a) has resulted in more weight separation between b3 and b4 and

slower forgetting of sub-band utilization history.

Similarly, the weight dynamics for the case that all sub-bands are used by

neighbouring CRs is formed by β2. A smaller β2 results in slower forgetting

rate for such situation. For example, Fig. 4.6 (a) and (b) illustrate weights of
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Figure 4.5: An example of SO-DSM weight dynamics showing the effect of β1.
Sub-bands b1 and b2 were used by neighbouring CRs from n = 1 to n = 70.
Sub-band b3 was used by the CR unit from n = 20 to n = 70 and all sub-bands
were free after n = 70 (a)β1 = 0.5 (b) β1 = 0.8.
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Figure 4.6: An example of SO-DSM weight dynamics showing the effect of β2.
Sub-bands b1 and b2 were used by neighbouring CRs from n = 1 to n = 70.
Sub-band b3 was used by the CR unit from n = 20 to n = 70 and all sub-bands
were used by neighbouring CRs after n = 70 (a)β2 = 0.1 (b) β2 = 0.5.
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a CR unit for a such scenario with two different values of β2. As these

figures show, the smaller value of β2 in Fig. 4.6 (a) has resulted in slower

learning and updating the weights.

4.4 Summary

In this chapter, a novel DSM scheme for CR networks, termed self-organizing

DSM, is proposed and explained. This scheme is the first brain inspired DSM

scheme for cognitive radios. Empowered by self-organizing map formation in

the human brain, this scheme tries to find the patterns of spectrum utilization

of other radio units and modify the channel assignment of CR radios to match

that pattern. The obtained knowledge is stored in an array of weights that are

updated using a form of Hebbian learning. When a new link is required, using a

similar algorithm to TK-SOM model, a link that optimizes the energy function

of the system is selected i.e. a sub-band that minimizes the gradient of energy

function is selected. The mathematical equations of the gradient descent of

energy function for TK model were derived. The system architecture for a

CR ad hoc network employing SO-DSM was explained. Degrees of freedom

for SO-DSM system design were discussed and its complexity was analyzed.

The SO-DSM is a decentralized scheme, thus, its complexity depends on the

number of neighbours, thus the network density, and not the total number of

CRs. Furthermore, Hebbian learning rule is computationally simple and its

memory requirement is also relatively low.
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5

Simulation Results

In order to evaluate the emergent behaviour of CR network using the SO-

DSM technique, an agent-based software test-bed has been developed. This

testbed is implemented with C++ and is currently deployed on the Sharcnet

[105], a network of high performance computers. It is capable of simulating

a CR ad hoc network along with legacy network and users, and measures

the spectrum utilization efficiency, probability of collision and probability of

CR link interruption over the scope of simulation. The software test-bed is

also capable of simulating centralized DSM (CDSM) CR network using LDO

algorithm as described in Sec. 2.3.2 and minority game DSM (MG-DSM) CR

network described in Appendix A.

5.1 Simulations Setup

The primary network has two types of radios: base station and mobile units.

Similar to GSM systems, it is assumed that when mobile users are operating,

one sub-band is used for up-link and another one for the down-link and both
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are occupied as long as the mobile user is active.

In order to decrease the probability of collision and shadowing, RSA data

received from a neighbouring CR is relayed to other neighbouring CRs. The

spectrum is monitored through a grid of probes. At each time instance, each

probe counts the number of sub-bands occupied by radios that are in its inter-

ference range. The interference range is obtained by requiring at least 15 dB of

signal to noise and interference ratio (SINR) for the received signal, as in [106],

to be detectable. Define Scr(i, n) as the number of the sub-bands used by the

CR network at time n and ith probe Probi. Similarly, Sleg(i, n) is the num-

ber of the sub-bands occupied by the primary network; then, the spectrum

utilization efficiency at Probi is defined as:

γi(n) =
Scr(i, n) + Sleg(i, n)

Nch

After running the simulation for Ttot time-steps, êi, the average spectrum

utilization at Probi and γ̂network, average spectrum utilization over the whole

simulated area are calculated respectively from:

γ̂i =

∑Ttot
n=1 ei(n)

Ttot
, γ̂network =

∑Nprob

i=1 γ̂i
Nprob

Another metric that the software testbed measures is Pcol, probability of colli-

sion. Collision happens when a PU is operating on a sub-band and a CR unit

in the interference range of the PU also operates on that band. For the ith
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PU, Pcol,i is defined as:

Pcol,i =
Tcol,i
Tuse,i

where Tcol,i is total collisions happened in ith PR and Tuse,i is the total time-

sub-bands it has used during the simulation. Any CR network should ideally

have it equal to zero; however in practice due to RSA delay DRSA, Pcol is

always larger than zero. Thus, one of the objectives in the DSM design is to

minimize this probability.

Finally, define Pintr as the average number of interruptions during the CR

communications due to PUs starting to use the same band. In order to have a

more reliable communications in the CR network, we would like to have Pintr

as small as possible, ideally zero.

The simulated area, shown in Fig. 5.1, is a 700 × 700 m2 square with

four base stations covering approximately all the area. From the total of 30

sub-bands, 6 sub-bands are TV white spaces and are always available and 24

sub-bands are used by a cellular network that uses 3 sub-bands for up-link

and 3 sub-bands for down-link in each cell. The number of CR units, NCR,

was 300 and the number of PUs, NPU, was 30, 80, 130 and 180. The channel

noise level was set to -100 dBm, the maximum transmit power for transmitters

was 50 dBm and the channel model used was of degree 4, as in [106, 107]. A

robust transmit-power controller as described in [34,35] with 10% safety power

margin was used in the simulations. Each simulation was run for 1× 105 time

steps. As explained in Chp. 4, assuming a fast RSA unit such as the one in [94],
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Figure 5.1: The simulated area with four base stations.

Parameter Value
η1 0.05
η2 0.0005

DRSA 1
β1 0.7
β2 0.2

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 5.1: SO-DSM parameters used in simulations.

the algorithm is much faster than radio units’ movements and radio units are

considered to be still during the simulated time. In order to determine the

network behaviour for different set ups, each simulation was repeated at least

1000 rounds and in each round of simulation, CR units and PUs were randomly

placed in the simulated area. Each simulation was performed with two number

of CR units. One time low density where NCR = 50 and another time high

density where NCR = 300. The SO-DSM parameters used for simulations are

listed in Table 5.1
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5.2 Results

To evaluate our DSM scheme, we have used the testbed to simulate a wireless

network using SO-DSM versus a LDO centralized DSM network, as described

in Sec. 2.3.2, and a decentralized DSM method based on minority game (MG).

5.3 SO-DSM vs MG-DSM

In the first round of simulations, CR network is simulated using SO-DSM and

a MG-DSM (see appendix A) with memory length Lh = 200. The simulation

results are presented in Fig. 5.2 to 5.9.

5.3.1 Spectrum Utilization

Figure 5.2 shows γPU, the spectrum utilization of legacy network which is

equal for all simulations because the legacy network is independent of the CR

network. As NPUincreases from 30 to 180, γPUincreases, therefore, average

number and duration of spectrum hole decrease. Figure 5.3 demonstrates the

CR network spectrum efficiency γCR. For NPU = 30, γCRfor SO-DSM is about

50% lower than MG-DSM. As NPUincreases, spectrum holes vanish and the

difference between two scheme decreases. As Fig. 5.2 (a) shows, the SO-DSM

achieves slightly higher spectrum efficiency in the tough condition of high

density PU network when NPU = 180.
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DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 3.373E-02 3.293E-02 3.373E-02 3.291E-02
NPU=80 7.835E-02 7.641E-02 7.835E-02 7.642E-02
NPU=130 9.258E-02 9.140E-02 9.259E-02 9.148E-02
NPU=180 9.370E-02 9.257E-02 9.370E-02 9.268E-02

(a)

20 40 60 80 100 120 140 160

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Legacy network Spectrum efficiency

N
PU

γ
P

U

 

 

SO−DSM

MG−DSM

(b)

Figure 5.2: Legacy network spectrum utilization. (a) numerical results (b)
graphical plot. As the number of PUs increase, the spectrum utilization of
legacy network increases. The legacy network is independent of CR network,
thus, the results are approximately equal for all simulations.
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Figure 5.3: The CR network spectrum utilization. (a) NCR=50 (b) NCR=300.
γCR at worst case is about 50% lower for SO-DSM. As the number of PUs
increases, γCR decreases for both schemes due to vanishing of spectrum holes.
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DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 0.106 0.125 0.123 0.267
NPU=80 0.082 0.084 0.102 0.115
NPU=130 0.081 0.084 0.081 0.083
NPU=180 0.080 0.084 0.079 0.081

Table 5.2: The simulation results for SO-DSM and MG-DSM: The numerical
results for the average CR network spectrum utilization.

5.3.2 Probability of Collision and CR Link Interruption

Figure 5.4 shows the probability of collision for Pus. As can be seen in this

figure, the SO-DSM has significantly decreased this probability. At NPU = 30

where γCRfor SO-DSM is about half of γCRfor MG-DSM, Pcolis about 10 times

lower for SO-DSM when NCR = 50. and 33 times lower when NCR = 300.

As NPUincreases, for the low density CR network, Pcolremains approximately

equals for both cases of SO-DSM and MG-DSM. However, for high density

CR network where NCR = 300, the SO-DSM decreases Pcolsignificantly and

for NPU = 180, there is no collisions for SO-DSM.

Figure 5.5 shows the probability of CR link interruption for these two schemes.

Similar to Pcol, for low density CR network, the SO-DSM network has ex-

perienced about 10 times fewer interruptions for NPU = 30 and their as

NPUapproaches 180, Pintrbecomes approximately equal for both schemes. For

high density CR network, i.e. NCR = 300, Pintris lower about 10 times for

SO-DSM when NPU = 30. When NPU = 180, CR links using SO-DSM have

experienced 500 times fewer interruptions.
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Figure 5.4: Probability of collision for PUs. (a) NCR=50 (b) NCR=300. Pcolis
significantly lower for SO-DSM. SO-DSM imposes about 33 times less collisions
on PUs for NCR = 300 and NPU = 30; and at NPU = 180 there is no collisions
for SO-DSM with NCR = 300. 93
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Figure 5.5: Probability of CR link interruption. (a) NCR=50 (b) NCR=300.
The CR links experienced significantly fewer interruptions using SO-DSM. For
NPU = 30 Pintris about 10 times lower for SO-DSM while for NPU = 180 the
difference is even higher
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DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 4.035E-04 2.853E-04 4.601E-03 1.019E-02
NPU=80 1.972E-04 8.434E-07 2.547E-03 2.986E-03
NPU=130 1.937E-04 2.566E-09 3.971E-04 2.760E-04
NPU=180 1.891E-04 0.000E+00 1.636E-04 1.153E-05

Table 5.3: Numerical simulation results for SO-DSM and MG-DSM: Average
probability of collision for PUs.

DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 9.345E-04 1.176E-03 1.167E-02 1.420E-02
NPU=80 9.724E-05 5.786E-05 1.400E-02 1.728E-02
NPU=130 2.529E-05 1.968E-06 1.990E-03 2.423E-03
NPU=180 2.030E-05 2.876E-07 1.911E-04 1.229E-04

Table 5.4: Numerical simulation results for SO-DSM and MG-DSM: Average
probability of CR link interruption.

5.3.3 PU’s Received Interference

Figure 5.6 and 5.7 illustrate the received interference from CR by active

PUs during TX and RX (ITXand IRX). As shown in these figures, for low

number of PUs, the SO-DSM has imposed less interference on PUs. However,

for the high number of PUs, the average interference becomes higher for SO-

DSM because the SO-DSM has higher γCR, as shown in Fig. 5.5, and less

Pcol, as illustrated in Fig. 5.4. In other words, for NPU = 180, CRs have

successfully chosen sub-bands with no PU in their neighbourhood that resulted

in higher γCRand lower Pcol. As a result, PUs have received slightly higher

interference from CR for SO-DSM which is an acceptable price to have much

lower collisions.

95



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,
McMaster Univ., Hamilton, Canada, 2012.

20 40 60 80 100 120 140 160

0.5

1

1.5

2

2.5

x 10
−11 Avr interference during TX

N
PU

I T
X

 

 

SO−DSM

MG−DSM

(a)

20 40 60 80 100 120 140 160

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−11 Avr interference during TX

N
PU

I T
X

 

 

SO−DSM

MG−DSM

(b)

Figure 5.6: Average received interference by TX PUs. (a) NCR=50 (b)
NCR=300. For NPU = 30, ITX is about 10 times lower for SO-DSM. How-
ever, for NPU = 180 ITX is slightly higher for SO-DSM. This is due to slightly
higher γCRand much lower Pcol of SO-DSM in this case.
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Figure 5.7: Average received interference by RX PUs. (a) NCR=50 (b)
NCR=300. For NPU = 30, IRX is about 10 times lower for SO-DSM. How-
ever, for NPU = 180 IRX is slightly higher for SO-DSM. This is due to slightly
higher γCRand much lower Pcol of SO-DSM in this case.
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DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 3.755E-12 1.574E-12 7.924E-12 1.811E-11
NPU=80 1.761E-12 2.065E-13 3.943E-12 2.394E-12
NPU=130 1.926E-12 4.157E-13 1.459E-12 3.971E-13
NPU=180 1.943E-12 4.899E-13 1.273E-12 2.011E-13

Table 5.5: Numerical simulation results for SO-DSM and MG-DSM: Average
received interference by TX PUs.

DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 7.151E-12 2.880E-12 1.011E-11 2.398E-11
NPU=80 6.591E-12 1.195E-12 9.573E-12 7.867E-12
NPU=130 6.903E-12 1.345E-12 5.746E-12 1.538E-12
NPU=180 7.126E-12 1.385E-12 5.737E-12 1.118E-12

Table 5.6: Numerical simulation results for SO-DSM and MG-DSM: Average
received interference by RX PUs.

5.3.4 Mean and Variance of Sub-band Distribution

Figure 5.8 and 5.9 show the mean Msand variance Vsof sub-band assign-

ment distribution for these two schemes. Figure 5.8 illustrates the average

number of different sub-bands used by radio units. As this figure shows, using

SO-DSM radio units have used lower number of sub-bands which one indi-

cation of formation of a temporal organization in sub-band assignment. Fur-

thermore, the higher variance of sub-band distribution for SO-DSM, shown

in Fig. 5.9, as the second indication, confirms the formation of such temporal

organization formation using SO-DSM.
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Figure 5.8: Mean of CR sub-band utilization distribution. (a) NCR=50 (b)
NCR=300. The CRs have used lower number of sub-bands for SO-DSM which
is an indication of map formation in SO-DSM.
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Figure 5.9: Variance of CR sub-band utilization distribution. (a) NCR=50 (b)
NCR=300. Vsis higher for SO-DSM which demonstrates CRs have successfully
built temporal organization.
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DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 22.109 19.830 29.928 29.402
NPU=80 10.682 7.382 29.188 25.509
NPU=130 8.801 6.590 20.561 15.373
NPU=180 8.572 6.531 12.168 8.554

Table 5.7: Numerical simulation results for SO-DSM and MG-DSM: Mean of
CR sub-band utilization distribution.

DSM SO NCR=50 SO NCR=300 MG NCR=50 MG NCR=300
NPU=30 2.220E-03 2.585E-03 2.097E-04 1.984E-04
NPU=80 9.577E-03 1.416E-02 1.680E-03 2.079E-03
NPU=130 1.158E-02 1.553E-02 4.341E-03 6.630E-03
NPU=180 1.176E-02 1.560E-02 7.967E-03 1.243E-02

Table 5.8: Numerical simulation results for SO-DSM and MG-DSM: Variance
of CR sub-band utilization distribution.

These results show that using SO-DSM, the CR units are more robust and

provide more reliable communication links; and by extracting PU spectrum

utilization patterns and forming a temporal sub-band organization, they have

experienced fewer interruptions from PUs and imposed less interference on

PUs. The SO-DSM trades off a bit of spectrum efficiency to achieve signifi-

cantly less collisions with PUs and CR link interruptions. Interestingly, for the

tough condition of high density CR network and high density PU network, i.e.

NCR = 300 and NPU = 180, the SO-DSM achieves a slightly higher spectrum

efficiency while still decreases Pcoland Pintrsignificantly.

5.4 SO-DSM vs CDSM

Figures 5.10 to 5.15 show the simulation results for LDO centralized CR

network versus SO-DSM.
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DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 3.373E-02 3.293E-02 3.372E-02 3.305E-02
NPU=80 7.835E-02 7.641E-02 7.834E-02 7.672E-02
NPU=130 9.258E-02 9.140E-02 9.259E-02 9.154E-02
NPU=180 9.370E-02 9.257E-02 9.370E-02 9.271E-02

Table 5.9: Numerical simulation results for centralized DSM and SO-DSM.
Legacy network spectrum utilization.

5.4.1 Spectrum Utilization

Figure 5.10 and 5.11 show the spectrum utilization of legacy and CR net-

works. Naturally, γPU is approximately not changing using different DSM

schemes. Figure 5.11 demonstrates the CR network spectrum efficiency γCR.

Using centralized DSM, as it was expected, the spectrum utilization efficiency

of CR network is higher than SO-DSM and even MG-DSM. For NPU = 30,

γCR for SO-DSM is about 20% lower than CDSM when NCR = 50 and for

NCR = 300, it is 80% lower. The difference decreases when NPU increases to

180 and becomes 50% for NCR = 50 and 30% for NCR = 300.
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Figure 5.10: The simulation results for centralized DSM and SO-DSM. Legacy
network spectrum utilization. As the number of PUs increase, the spectrum
utilization of legacy network increases. The legacy network is independent of
CR network, thus, the results are approximately equal for all simulations.
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Figure 5.11: The CR network spectrum utilization. (a) NCR=50 (b) NCR=300.
γCRat worst case is about 80% lower for SO-DSM. As the number of PUs
increases, γCRdecreases for both schemes due to vanishing of spectrum holes.
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DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 0.106 0.125 0.120 0.591
NPU=80 0.082 0.084 0.125 0.434
NPU=130 0.081 0.084 0.110 0.310
NPU=180 0.080 0.084 0.121 0.225

Table 5.10: Numerical simulation results for centralized DSM and SO-DSM:
The CR network spectrum utilization.

5.4.2 Probability of Collision and Link Interruption

Figures 5.12 and 5.13 show probability of collision and probability of CR

link interruption for SO-DSM and CDSM. As Fig. 5.12 shows, the Pcolis higher

for CDSM, specially for high density CR network NCR = 300 the difference

is much more, at least 100 times. This is the price CDSM pays to achieve at

best 5 times higher spectrum efficiency.

Fig. 5.13 shows the probability of CR link interruption. As these results

demonstrate, Pintris significantly higher for CR link using CDSM. This is due

to the propagation of changes in the network using centralized approach. In

a centralized scheme, a change in one part of network can propagate to all

around the network. On the other hand, in a decentralized network, any

change is responded locally and can cause changes only in its neighbourhood.

Therefore, using a decentralized scheme, as shown in Fig. 5.13, link experience

much fewer interruptions.
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Figure 5.12: Probability of collision for PUs. (a) NCR=50 (b) NCR=300. Pcolis
significantly lower for SO-DSM. SO-DSM imposes about 33 times less collisions
on PUs for NCR = 300 and NPU = 30; and at NPU = 180 there is no collisions
for SO-DSM.
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Figure 5.13: Probability of CR link interruption. (a) NCR=50 (b) NCR=300.
The CR links experienced significantly fewer interruptions using SO-DSM. For
NPU = 30 Pintris about 10 times lower for SO-DSM while for NPU = 180 the
difference is even higher, as high as 500 times for NCR = 300.
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DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 4.035E-04 2.853E-04 1.126E-02 2.330E-02
NPU=80 1.972E-04 8.434E-07 8.916E-03 7.979E-03
NPU=130 1.937E-04 2.566E-09 6.467E-03 9.399E-04
NPU=180 1.891E-04 0.000E+00 6.822E-03 3.333E-04

Table 5.11: The simulation results for centralized DSM and SO-DSM: Proba-
bility of collision for PUs.

DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 9.345E-04 1.176E-03 2.433E-01 2.458E-01
NPU=80 9.724E-05 5.786E-05 6.946E-01 5.705E-01
NPU=130 2.529E-05 1.968E-06 9.340E-01 7.500E-01
NPU=180 2.030E-05 2.876E-07 9.755E-01 9.400E-01

Table 5.12: The simulation results for centralized DSM and SO-DSM: Proba-
bility of CR link interruption.

5.4.3 PU’s Received Interference

Figure 5.14 and 5.14 illustrate the received interference from CR by active

PUs during TX and RX. As shown in these figures, the SO-DSM has imposed

less interference on PUs. The main reason for significant lower imposed inter-

ference is the lower CR spectrum utilization using SO-DSM shown in Fig. 5.11.
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Figure 5.14: Average received interference by TX PUs. (a) NCR=50 (b)
NCR=300. For NPU = 30, ITX is about 10 times lower for SO-DSM. How-
ever, for NPU = 180 ITX is slightly higher for SO-DSM. This is due to slightly
higher γCRand much lower Pcolof SO-DSM scheme for this case.
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Figure 5.15: Average received interference by RX PUs. (a) NCR=50 (b)
NCR=300. Similar to ITX , for NPU = 30, IRX is about 10 times lower for
SO-DSM. However, for NPU = 180 IRX is slightly higher for SO-DSM. This is
due to slightly higher γCRand much lower Pcolof SO-DSM scheme for this case.
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DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 3.755E-12 1.574E-12 7.199E-11 2.693E-10
NPU=80 1.761E-12 2.065E-13 3.962E-11 9.918E-11
NPU=130 1.926E-12 4.157E-13 2.444E-11 4.674E-11
NPU=180 1.943E-12 4.899E-13 2.691E-11 3.295E-11

Table 5.13: Numerical simulation results for centralized DSM and SO-DSM:
Average received interference by TX PUs.

DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 7.151E-12 2.880E-12 1.154E-10 4.406E-10
NPU=80 6.591E-12 1.195E-12 1.561E-10 3.694E-10
NPU=130 6.903E-12 1.345E-12 1.798E-10 3.493E-10
NPU=180 7.126E-12 1.385E-12 2.163E-10 3.405E-10

Table 5.14: Numerical simulation results for centralized DSM and SO-DSM:
Average received interference by RX PUs.

5.4.4 Mean and Variance of Sub-band Distribution

Figures 5.16 and 5.17 illustrate the mean and variance of channel assign-

ment for SO-DSM and CDSM schemes. The SO-DSM has lower average num-

ber of used sub-bands. However, for the NCR = 300, the variance of sub-band

utilization distribution is higher than CDSM, while for NCR = 50, Vsis lower

than CDSM. These results show that the SO-DSM has successfully created

a temporal sub-band assignment organization while sub-band assignment in

CDSM is more random for NCR = 300. For NCR = 50, which is low density

CR network where more spectrum holes are available for CRs, the CDSM has

also resulted in a temporal organization in sub-band assignment demonstrated

by higher Vsof CDSM for this case.

111



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,
McMaster Univ., Hamilton, Canada, 2012.

20 40 60 80 100 120 140 160
5

10

15

20

25

Average num of channels

N
PU

n
u

m
b

e
r 

o
f 

C
h

 

 

SO−DSM

Centralized

(a)

20 40 60 80 100 120 140 160

8

10

12

14

16

18

20

22

24

26

28

30
Average num of channels

N
PU

n
u

m
b

e
r 

o
f 

C
h

 

 

SO−DSM

Centralized

(b)

Figure 5.16: Mean of CR sub-band utilization distribution. (a) NCR=50 (b)
NCR=300. The CRs have used lower number of sub-bands for SO-DSM which
is an indication of map formation in SO-DSM.
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Figure 5.17: Variance of CR sub-band utilization distribution. (a) NCR=50 (b)
NCR=300. Vsis higher for SO-DSM which demonstrates CRs have successfully
built temporal organization.

113



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,
McMaster Univ., Hamilton, Canada, 2012.

DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 22.109 19.830 19.409 29.462
NPU=80 10.682 7.382 25.333 29.319
NPU=130 8.801 6.590 18.047 24.169
NPU=180 8.572 6.531 9.666 16.556

Table 5.15: Numerical simulation results for centralized DSM and SO-DSM:
Mean of CR sub-band utilization distribution.

DSM SO NCR=50 SO NCR=300 C NCR=50 C NCR=300
NPU=30 2.220E-03 2.585E-03 5.894E-03 2.626E-04
NPU=80 9.577E-03 1.416E-02 5.677E-03 1.469E-03
NPU=130 1.158E-02 1.553E-02 2.110E-02 4.768E-03
NPU=180 1.176E-02 1.560E-02 7.886E-02 1.550E-02

Table 5.16: Numerical simulation results for centralized DSM and SO-DSM:
Variance of CR sub-band utilization distribution.

The simulation results for CDSM and SO-DSM CR networks confirmed

that as described in Sec. 2.4, the centralized schemes result in higher CR

spectrum utilization. However, this gain in γCRis achieved with paying a

significant price in terms of much higher collisions with PUs and much higher

interruptions in the CR links. Therefore, comparing CDSM and SO-DSM, the

SO-DSM trades off some spectrum efficiency to achieve significantly more gain

in collisions and link interruptions.
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5.5 SO-DSM parameters

The SO-DSM CR network was simulated with different values for η1 and η2 to

study the effect of these parameters on the emergent behaviour of the network.

5.5.0.1 Learning-rate Parameter η1

Figures 5.18 to 5.22 show the simulation results for SO-DSM CR network

simulated with different values of η1 and parameters listed in Table. 5.17. As

Parameter Value
NPU 80
η2 0.05

DRSA 1
β1 0.6
β2 0.1

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 5.17: SO-DSM parameters used in η1simulations.

Fig. 5.18 shows, as η1 increases CR units forget PUs’ activities faster and the

CR network spectrum utilization increases. However, by increasing η1, the CR

network becomes more aggressive and consequently, as Fig. 5.19 illustrates, the

probability of collision with PUs increases. Figure 5.20 shows the probability

of CR link interruption. Figures 5.21 and 5.22 show the mean and variance

of CR sub-band assignment distribution. As shown in these figures, as η1

increases, the temporal organization vanishes.

Similar to probability of collision, the probability of CR link interruption

increases as η1 increases. These figures show the trade off between optimality

and stability in this problem. If we increase η1, spectrum efficiency increases
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Figure 5.18: The simulation results for SO-DSM using different values of η1.
CR network spectrum utilization.

but at same time CR units will face more interruptions and PUs will experience

more collisions. The SO-DSM CR network can become more aggressive, i.e.

γCR, Pcoland Pintr, or more conservative, i.e. lower γCR, Pcoland Pintr, by tuning

η1.
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Figure 5.19: The simulation results for SO-DSM using different values of η1.
Probability of collision for PUs.
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Figure 5.20: Probability of CR link interruption for SO-DSM using different
values of η1. Probability of CR link interruption.
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Figure 5.21: The simulation results for SO-DSM using different values of η1.
Average number of sub-bands used by CRs.
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Figure 5.22: The simulation results for SO-DSM using different values of η1.
Average variance of CR sub-band utilization distribution.
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Parameter Value
NPU 80
η1 0.05

DRSA 1
β1 0.6
β2 0.1

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 5.18: SO-DSM parameters used in η2 simulations.

5.5.0.2 Learning-rate Parameter η2

The next set of simulations demonstrate how the emergent behaviour of CR

network changes by changing η2. The system parameters used in simulations

are listed in Table. 5.18.

Figures 5.23 and 5.25 show the CR network spectrum utilization efficiency,

probability of PU collision and probability of CR link interruption for vari-

ous values of η2. For a very small value of η2, the CR sub-band assignment

becomes more static and learns and evolves by time more slowly. Therefore,

it demonstrates an emergent behaviour close to a random selection of sub-

bands, i.e. higher spectrum efficiency and also, higher probability of collision

and interruption. Figures 5.26 and 5.27 show the mean and variance of the

sub-band distribution in the CR network. These figures demonstrate that by

increasing η2, the sub-band assignment organization becomes more dynamic

and variance slightly decreases while the average number of used sub-bands

approximately remains constant.
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Figure 5.23: The simulation results for SO-DSM using different values of η2.
CR network spectrum utilization.
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Figure 5.24: The simulation results for SO-DSM using different values of η2.
Probability of collision for PUs.
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Figure 5.25: Probability of CR link interruption for SO-DSM for different
values of η2. Probability of CR link interruption.
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Figure 5.26: The simulation results for SO-DSM using different values of η2.
Average number of sub-bands used by CRs.
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Figure 5.27: The simulation results for SO-DSM using different values of η2.
Average variance of CR sub-band utilization distribution.
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Parameter Value
NPU 80
η1 0.005
η2 0.05

DRSA 1
β2 0.1

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 5.19: SO-DSM parameters used in β1 simulations.

5.6 Quality Level Signal Parameters

In the last set of simulations, the SO-DSM CR network is simulated for various

values of β1 and β2.

5.6.1 Parameter β1

The CR network using SO-DSM is simulated for different values of β1.

The system parameters used in the simulations are listed in Table. 5.19. The

results are shown in Figs. 5.28- 5.32. As these figures show, increasing β1

results in increases spectrum utilization, however, simultaneously probability

of interruption and collision increases. As explained in Sec. 4.3.3, a more

separation between β1 and β2 increases the self-amplification of the Hebbian

learning and helps formation of the SOM. Figures 5.31 and 5.32 shows the

mean and variance of sub-band utilization distribution of SO-DSM. These

figures confirm that the formed SOM becomes more dynamic by increasing

β1.
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Figure 5.28: The simulation results for SO-DSM using different values of β1.
The CR network spectrum utilization.
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Figure 5.29: The simulation results for SO-DSM using different values of β1.
Probability of collision for PUs.
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Figure 5.30: Probability of CR link interruption for SO-DSM using different
values of β1.
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Figure 5.31: The simulation results for SO-DSM using different values of β1.
Average number of sub-bands used by CRs.
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Figure 5.32: The simulation results for SO-DSM using different values of β1.
Average variance of CR sub-band utilization distribution.
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Parameter Value
NPU 80
η1 0.005
η2 0.05

DRSA 1
β1 0.6

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 5.20: SO-DSM parameters used in β2 simulations.

5.6.2 Parameter β2

In the last round of simulations, the CR network is simulated with various

values of β2. The system parameters used in the simulations are listed in Ta-

ble. 5.20. The simulation results are illustrated in figures 5.33- 5.37. As shown

in the figures, these results also confirm that more separation between β1 and

β2 improves the dynamics of the SOM. As β2 increases, and therefore gets close

to β1, the spectrum utilization of the CR network decreases. Consequently,

the probability of collision with PUs and interruption in CR links decreases.

Figures 5.36 and 5.37 illustrates the mean and variance of sub-band distribu-

tion. As this figure shows, a smaller β2 results in a more dynamic system.
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Figure 5.33: The simulation results for SO-DSM using different values of β2.
The CR network spectrum utilization.
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Figure 5.34: The simulation results for SO-DSM using different values of β2.
Probability of collision for PUs.
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Figure 5.35: Probability of CR link interruption for SO-DSM using different
values of β2.
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Figure 5.36: The simulation results for SO-DSM using different values of β1.
Average number of sub-bands used by CRs.
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Figure 5.37: The simulation results for SO-DSM using different values of β2.
Average variance of CR sub-band utilization distribution.
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5.7 Summary

In this chapter, large scale simulations were conducted to study the emer-

gent behaviour of CR network and results where presented for CR network

using three different DSM schemes, namely SO-DSM, CDSM and MG-DSM.

The simulation setup having four cells for PUs was explained. All simulations

were performed for two cases of CR numbers, namely 50 that represents a

low density network and 300 that represents a high density CR network. The

simulation results confirmed that having more CRs in the network improves

the SO-DSM learning process and CRs can avoid collision with PUs more suc-

cessfully.

In the first set of simulations, the SO-DSM system was compared to a MG-

DSM system. The results showed that the SO-DSM achieves lower spectrum

efficiency. However, the probability of collision with PUs and CR link inter-

ruption are significantly lower in the SO-DSM case.

In the second set of simulations, a centralized DSM system was compared

to the SO-DSM. The results confirms that the centralized scheme achieves a

higher spectrum utilization than both SO-DSM and MG-DSM. However, us-

ing CDSM, the CR link experience a much higher interruption and collision

with PUs.

The results show that using SO-DSM, the CR network provides much more

reliable links for CR units. Furthermore, the main objective in designing CR

networks is minimizing (ideally avoiding) collisions with PUs and also mini-

mizing the imposed interference on PUs’ links. The SO-DSM achieves both

objective and decreases the received interference by PU links and probability

139



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,
McMaster Univ., Hamilton, Canada, 2012.

of collision with PUs significantly by trading off a relatively small amount of

spectrum efficiency.

The emergent behaviour of the CR network depends on the SO-DSM systems

parameters. Simulations results were presented to demonstrate the effect of

each parameter on the network’s emergent behaviour.
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6

Robustness

6.1 Robustness

Much too often in the literature, optimality is considered as the driving force

for obtaining the best performance possible. When considering small-scale ap-

plications or applications in a static environment, such an objective may well

work satisfactorily. However, when the application of interest is of a complex

or large-scale kind and/or the environment is highly dynamic, exemplified by

a cognitive radio network, we find ourselves confronted with a much more

pressing system requirement: robustness.

Most, if not all, control design strategies exemplified by dynamic spectrum

manager, are based on the selection of a model for the plant, a generic term

used to describe part of a dynamic system that is supposed to be controlled.

Selection of the model is influenced by mathematical tractability and prior

knowledge that we may have about the plant. Unfortunately, no matter how

hard we try and irrespective of all the prior knowledge we may have about
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the system, there will always be some discrepancy between the actual physical

behaviour of the plant and the corresponding behaviour of the hypothetical

model. The response produced at the output of the plant due to a prescribed

input signal is determined by the underlying physics of the plant. On the

other hand, when the corresponding behaviour of the plant is considered, the

response of the model due to the same input signal deviates invariably from

the actual response of the plant due to unavoidable model uncertainty. The

challenge in designing the controller is, regardless of all operating conditions

that are likely to arise in practice, to make sure that the errors are kept small

enough to be acceptable from an operational viewpoint.

6.1.1 Optimality-Robustness Dilemma

Due to uncertainties in the environment, achieving both robustness and

optimality in adaptive systems is usually impossible in practice. Therefore, in

designing adaptive systems, we face a dilemma between optimality and robust-

ness. If we make a system optimal, it may not be robust. On the other hand, if

we make it robust it is highly likely sub-optimal. This interplay between opti-

mality and robustness leads us to postulate the optimality-robustness dilemma

in adaptive systems. This postulate states [108]:

When working in a nonstationary environment, the optimality

of an adaptive system is achieved at the expense of robustness, and

vice versa.

From a practical perspective when there is a choice between optimality and

robustness, the decision should be made in favour of robustness for obvious

practical reasons.
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6.2 Robustness of SO-DSM

The SO-DSM is a decentralized DSM scheme that, as explained in Sec. 2.4

and validated by simulation results in Sec. 5.4, it achieves a sub-optimal solu-

tion. Thus, we have already accepted sub-optimality in the SO-DSM and in

the light of Optimality-Robustness Dilemma, it is highly likely to be robust.

Furthermore, the SO-DSM is based on the Tsigankov-Koulakov model [55].

The original model was based on the brain and was validated further by work

done by Stryker [56]. We know that the brain is very robust and can handle

uncertainty without becoming unstable, therefore, intuitively this model has

the elements of robustness.

Robustness is very hard to verify mathematically. There is a lot of liter-

ature on robustness, a lot of it is for linear systems [109, 110], but nonlinear

systems are hard to verify. What makes verifying the robustness of SO-DSM

even harder is the fact that the CR network is also very complex and is a

system of systems. In this problem we are dealing with a complex nonlinear

system which is a system of systems. Therefore, we can not take the analytical

approach to robustness for this problem. The most sensible way to justifying

it is to use Monte-Carlo simulations.

6.3 Simulation Results

In order to perform Monte-Carlo simulations for validating robustness of SO-

DSM, we perturb environment parameters and study the system behaviour. In
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order to have a robust system, a bounded perturbation in system parameters

must result in a bounded fluctuation in the system output. In the SO-DSM

system, there may be two sources of perturbations:

• initial state: The initial state of the radio units is not known to CR

units. Therefore, for a particular configuration of the wireless network,

the SO-DSM must result in consistent behaviour for any initial state.

• change in PUs’ parameters: Another source of perturbations in this

system is change of PU’s parameters. CR units may have a estimation

of PU’s parameters which can be inaccurate. Furthermore, as discussed

in Chp. 4, these parameters are changing slowly by time. Thus, the

SO-DSM must be robust against perturbations in PU’s parameters.

Two sets of simulations are performed for these two sources of perturbations.

In each simulation, the fluctuations in the system output are measured and

presented through two lines, one of which represents the minimum value mea-

sured and the other one represents the maximum value measured. The area

between these two lines in the fluctuations in the output as a result of pertur-

bations in the input.

6.3.1 Initial State

In the first round of simulations, the CR network is simulated using SO-

DSM for various different initial state of the system. The location of radio

units are the same in all simulations and the only difference between each

set is the different initial state. The system parameters used in simulations

are listed in Table. 6.1. Two sets of simulations were performed, in the first
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set 50 CR units were used and in the second set 300 CR units were used in

simulations.

The simulation results are presented in Fig. 6.1- 6.7. As these figures show,

perturbing the initial state has resulted in bounded fluctuations in the system

output. These results show a noticeable difference between fluctuations for

CR=50 case with CR=300 case. In all figures, we see more fluctuations in

the CR=50 case which is the result of less information obtained from the

environment. As it was discussed in Chp. 4, the information sharing of CR

units results in an improved learning process. These results confirms that

having more CR units in environment, CR units obtain a more precise image

of their environment and the CR network become more robust.

Parameter Value
η1 0.005
η2 0.05

DRSA 1
β1 0.6
β2 0.1

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 6.1: SO-DSM parameters used in random initial state simulations.
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Figure 6.1: The simulation results for random initial state. The CR network
spectrum utilization.
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Figure 6.2: The simulation results for random initial state. The Probability
of collision for PUs.
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Figure 6.3: The simulation results for random initial state. Probability of CR
link interruption.
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Figure 6.4: The simulation results for random initial state. Average received
interference by TX PUs.
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Figure 6.5: The simulation results for random initial state. Average received
interference by RX PUs.
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Figure 6.6: The simulation results for random initial state. Average number
of sub-bands used by CRs.
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Figure 6.7: The simulation results for random initial state. Average variance
of CR sub-band utilization distribution.
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6.3.2 Change of PUs Parameters

In the second round of simulations, the PUs’ traffic parameters, p1 and

p2, are perturbed at each time step by adding a normal distributed random

variable Xtr = N (0, 0.015) to them.

The simulation results are plotted in Fig. 6.8- 6.14. The results show that

the SO-DSM is also robust against perturbations in PUs’ parameters. Similar

to the results in the previous section, the fluctuations in the system output

is more in the case of CR=50. Therefore, these simulations also confirm that

having more CR units in the environment results in the improved learning

process and a more robust network.
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Parameter Value
η1 0.005
η2 0.05

DRSA 1
β1 0.6
β2 0.1

PUs (µ1, µ2) (0.01,0.05)
CRs (µ1, µ2) (0.1,0.1)

Table 6.2: SO-DSM parameters used in noisy PUs’ parameters simulations.

20 40 60 80 100 120 140 160

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

CR spectrum efficiency

N
PU

γ
C

R

 

 

CR=50

CR=300

Figure 6.8: The simulation results for noisy PUs’ parameters. The CR network
spectrum utilization.
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Figure 6.9: The simulation results for noisy PUs’ parameters. The Probability
of collision for PUs.
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Figure 6.10: The simulation results for noisy PUs’ parameters. Probability of
CR link interruption.
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Figure 6.11: The simulation results for noisy PUs’ parameters. Average re-
ceived interference by TX PUs.
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Figure 6.12: The simulation results for noisy PUs’ parameters. Average re-
ceived interference by RX PUs.
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Figure 6.13: The simulation results for noisy PUs’ parameters. Average num-
ber of sub-bands used by CRs.
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Figure 6.14: The simulation results for noisy PUs’ parameters. Average vari-
ance of CR sub-band utilization distribution.
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6.4 Summary

The concept of robustness and its formal definition were reviewed. Two sources

of perturbations in the CR network using SO-DSM were discussed. Large scale

simulation results were conducted for each source of perturbation. The results

confirm that the CR network using SO-DSM is robust and perturbations have

caused bounded fluctuations in the output of the system. Furthermore, the

results showed that having more CR units in the environment improves the

learning process in CR units by providing them with more information about

their environment. Therefore, the SO-DSM is more robust when more CR

units are participating in the network.
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7

Contributions to the Literature

Research in this thesis was focused on dynamic spectrum management prob-

lem in cognitive radio ad hoc networks. A novel decentralized method termed

self-organizing dynamic spectrum management was proposed which is the first

brain-inspired DSM scheme for cognitive radio. This method embodies an im-

portant element of cognition, namely memory and learning. It uses the same

learning rule that occurs in the brain and is known to be one of essences of

self-organizing maps. The SO-DSM adapts a SOM model developed by Tsi-

gankov and Koulakov [55]; however, our model is adopted for a problem that

is entirely different from how the brain does it. Using the SO-DSM scheme,

CR units extract the spectrum utilization pattern of PUs and neighbouring

CR units and choose sub-bands to match the extracted pattern.

The low complexity of the Hebbian learning rule used in this method and

decentralized nature of SO-DSM makes the CR network scalable, using the

SO-DSM. Unlike centralized schemes in which complexity of the DSM algo-

rithm depends on total number of radio units, the SO-DSM is a decentralized
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scheme and its complexity depends on the number of neighbouring CR units

and total number of sub-bands. The SO-DSM scheme only converges and

builds temporal organization of sub-bands assignments if the CR units are

equipped with fast spectrum analyzers that are able to perform radio scene

analysis much faster than the change rate of PUs’ traffic patterns and physical

movements. The MTM [94] method is an example of such a spectrum sensing

method that is able to perform spectrum sensing very fast and reliably.

In order to evaluate the SO-DSM scheme, a complex software test-bed

has been developed which can simulate a network of CR units along with

one or several primary networks. This test-bed measures various critical met-

rics of the emergent behaviour of a CR network such as spectrum utilization

efficiency and probability of collision with primary users. In addition to SO-

DSM, this test-bed is capable of simulating CR network having centralized

DSM and MG-DSM. Moreover, the test-bed is deployed on Sharcnet parallel

computing clusters to run large scale simulations, adding more insight into the

information-processing of the SO-DSM.

Simulations were performed using three DSM schemes, namely SO-DSM,

CDSM and MG-DSM. The results show that the SO-DSM scheme, using mem-

ory and Hebbian learning, was able to decrease the probability of collision

with primary users and also probability of CR link interruption compared to

CDSM and MG-DSM. The price paid to achieve more robust and stable com-

munications was a decrease in spectrum utilization. However, the decrease in

the spectrum utilization efficiency was much lower than the achieved decrease
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in probability of collision and interruption. The very important requirement

of opportunistic CR networks is minimizing (ideally avoiding) collision with

PUs. Using SO-DSM, the probability of collision with PUs was decreased sig-

nificantly.

Furthermore, in this work, the DSM problem in cognitive radio networks

was studied and a complete mathematical model of the problem based on graph

theory was proposed. Two different methods of spectrum sharing, namely

price based and opportunistic, were discussed and compared. Additionally,

two approaches, namely centralized and decentralized, were explained and

discussed for solving DSM problem in CR networks. Decentralized schemes

were identified as the method of choice for solving the DSM problem in CR

networks.

To conclude, as complexity is increasingly growing in technology and its

applications, self-organization has gained a lot of attention for solving chal-

lenging problems. In particular, a self-organized wireless network offers several

advantages:

• ease of installation,

• high reliability,

• and low cost,

• robustness.

165



Farhad Khozeimeh. Ph.D. thesis.
Dept. of Electrical and Computer Engineering,
McMaster Univ., Hamilton, Canada, 2012.

In this context, cognitive radios – a new frontier in wireless communications

– are required to provide reliable communications whenever and wherever

needed while decreasing the collision with PU network to ideally zero or at an

tolerable level. The SO-DSM is an attractive DSM scheme for CR networks

since it is robust, scalable and computationally simple, and can increase the

spectrum efficiency while decreasing the collision with primary network. With

these attributes in mind, CRs should be self-organized so as to operate in

infrastructure-free environments as described in this work.

7.1 Future Directions

Much has been written on cognitive radio as a novel idea for improved utiliza-

tion of the radio spectrum. Specifically, cognitive radio provides the means for

this improved utilization by making it possible for secondary (cognitive radio)

users to access sub-bands of the radio spectrum whenever and wherever the

primary (legacy) users are not utilizing their sub-bands. It is, therefore, not

surprising to find that papers written on cognitive radio have been growing

exponentially in number over the past ten years.

A distinctive characteristic of a traditional cognitive radio network is the

involvement of two kinds of users [111]:

• Legacy users, who have paid for the employment of specific sub-bands

and therefore have the right to use those sub-bands whenever and wher-

ever they are needed for their own use.

• Secondary users, who are opportunistic in the sense that they continually
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monitor the radio spectrum so as to identify underutilized sub-bands

whenever and wherever they become available.

Accordingly, the dynamics of a cognitive radio network may be viewed as a

double-layer system of systems [35]. Another way of viewing such an environ-

ment is that of a “master-slave” kind of relationship, where the legacy users

are the masters of the network and the secondary users are its slaves.

7.1.1 Beyond Traditional Cognitive Radio

Cognitive radio can increase spectrum utilization efficiency by exploiting

spectrum holes available in the environment and therefore, it can be inferred

that applicability of cognitive radio will be confined to localized areas through

short range communication links. Furthermore, as the availability of spectrum

holes is not always guaranteed, it should be used as a complementary tech-

nology to other systems to increase system capacity whenever spectrum holes

are available. We can therefore imagine two paths for cognitive radio to find

real world applications in future:

1. Cognitive short range ad hoc networks.

2. Cognitive femtocells.

7.1.1.1 Cognitive Ad Hoc Networks

There is a growing demand for high speed short range point to point com-

munication links. Several new electronic devices and applications now require

to connect to other devices and transfer high amount of data. For exam-

ple, users may want to play a high definition video clip from their iphone on
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the TV through a wireless link. The current 802.11 standard which operates

on unlicensed band may soon not be able to cater this demand due to low

efficiency and also increased traffic on this limited band. Therefore, one of

the potential applications of cognitive radio is high speed short range point

to point communications. Cognitive radios will use spectrum holes for such

short range links whenever possible. When no spectrum holes is available,

links will use only unlicensed band. This application of CR is very beneficiary

for consumers because will improve their communication links when spectrum

holes are available. On the other hand, service providers have no interest in

this application unless they provide a service that also uses unlicensed band.

This application of CR faces two challenges which needs to be addressed:

• requires fast and reliable spectrum sensing because legacy users are not

collaborating with CRs.

• fairness between CRs.

7.1.1.2 Cognitive Femtocell

For cognition to impact the world of wireless communications at the global

level, the principles of cognition will have to be applied to wireless networks

owned by service providers. As such, there will only be one common group

of users throughout the network. Indeed, it is here where cognitive principles

will be tested in terms of the difference that could be made to the improved

utilization of the radio spectrum.

Over and above the advantages to be gained from application of the princi-

ples of cognition, the new vision for the world of wireless communications will
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incorporate a new layer of femtocells dedicated to homes and small offices.

For users, femtocells will provide the following advantages:

• improved indoor reception,

• higher data rates, and

• low power consumption leading to improved battery life.

The network providers will also benefit from the deployment of femtocells

through improved spectrum utilization.

For cognitive femtocell networks, to function satisfactorily, we see the fol-

lowing requirements:

• scalability, which can be taken care of through network decentralization,

• stability, and

• heterogeneous coexistence community of different users.

Cognitive femtocells can operate very efficiently because there is no conflict

of interest with legacy users in this network. Radio units have the right to use

the spectrum and there is a high quality feedback channel through internet

between femtocells.
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Appendices
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A

Minority Game DSM

Minority game theory, originally proposed by Challet and Zhang [112], is a

branch of game theory for studying competition and self-imposed cooperation

in a non-cooperative game with limited resources. Players in this game usu-

ally play with binary strategy set and do not interact or negotiate with each

other directly regarding the strategy set. Classical Minority game or the El

Farol bar problem was first proposed in [112]. In the bar problem, a group

of n persons have to decide independently and at the same time if they want

to go to the El Farol bar on Friday night. At each step, a player has binary

strategy set: to go or not to go to the bar. Going to the bar is enjoyable only

if the bar is not too crowded. Now, if all n players decide not to go to the bar

thinking that the bar will be crowded then the bar will be empty. However, if

they all decide that the bar will be empty and decide to go, then the bar will

be overcrowded.

Minority game (MG) is a class of non-cooperative games [113]. In MG,

players are called agents and each agent selects one of two possible actions.
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When agents successfully select the minority side where the number of agents

selecting an action is less than the number of agents selecting another action,

those agents win the game. A number of studies have already applied minority

games to resource management in wireless communication systems [114–117].

The MG introduces self-organized behaviour in a decision-making process. It

models a situation where belonging to the minority group is desirable.

In MG-DSM, each CR unit keeps the history of each sub-band for the last

Lh time steps. When a link is required between two CRs, they select a sub-

band based on MG strategy, i.e. they choose the sub-band with lowest activity

in the last Lh time steps.
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B

Robust Transmit Power Control

There are two primary resources in a cognitive radio network; channel band-

width and transmit power. The operation of the transmit-power controller is

complicated by a phenomenon that is peculiar to cognitive radio communi-

cation, namely, the fact that spectrum holes come and go, depending on the

availability of sub-bands as permitted by licensed users. To deal with this

phenomenon and thereby provide the means for improved utilization of the

radio spectrum, a cognitive radio system must have the ability to fill the spec-

trum holes rapidly and efficiently. In other words, cognitive radios have to

be frequency-agile radios with flexible spectrum shaping abilities. The infor-

mation that transmitter receives through the feedback channel enables it to

adaptively adjust the transmitted signal and update its transmit power over

desired channels. A set of constraints must be imposed on each user’s transmit

power in each channel to maintain a limit on the interference produced.

The information capacity of sub-band k, a continuous channel of bandwidth

Bk Hz, perturbed by additive white Gaussian noise of power spectral density
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Nk
0 /2 and limited in bandwidth to Bk, is given by

Ck = Bk log2

(
1 +

Pk
BkNk

0

)
(B.1)

where Pk is the average transmitted power. However, received interference

from other radio units operating on the same band adds to the noise level.

Define I ik as the sum of received interference in sub-band k at receiver i:

I ik =
∑
j 6=i

αijpjk

where αij is the interference gain from transmitter j to receiver i on sub-band k

and pjk denotes user is transmit power on sub-band k. We the rewrite Eqn. B.1

to include interference as:

Ck = Bk log2

(
1 +

Pk
BkNk

0 + I ik

)
(B.2)

The ratio

Pk
BkNk

0 + I ik

is called signal to noise plus interference ratio (SNIR).

B.1 Iterative Waterfilling Controller (IWFC)

Several key attributes such as distributed implementation, low complexity,

and fast convergence to a reasonably good solution, provide an intuitively

satisfying framework for choosing and designing resource-allocation algorithms
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for cognitive radio. In a cognitive radio network, which is an infrastructure-less

network, a central scheduling does not exist and also synchronization between

the nodes is difficult. Therefore, users update their transmit powers in a

totally asynchronous manner. It is with this kind of framework in mind that

in [5, 15, 34], the IWFC has been proposed as a good candidate for finding a

Nash equilibrium solution for resource allocation in cognitive radio networks.

IWFC can be formulated in two ways:

• Rate-adaptive waterfilling in which the data rate is maximized subject

to a constraint on the maximum allowable transmit power.

• Margin-adaptive waterfilling in which the transmit power is minimized

subject to a constraint on the minimum acceptable data rate.

This way, the transmit power control problem is formulated as a game, where

each user acts greedily to optimize its own performance based on local in-

formation. In other words, each user adjusts its transmit power based on

the measured level of interference at its receiver, which is a measure of the

combined effect of all active users in the network plus the environment noise.

Hence, IWFC can be implemented without any knowledge about the num-

ber of active users in the network and the transmit power of individual users.

Therefore, users do not need to communicate with each other to establish co-

ordination between themselves. This tends to reduce the complexity.

When we consider the associated cognitive function of transmit-power con-

trol in the transmitter, the issue of prime interest is robustness versus optimal-

ity. Due to different uncertainty sources in a cognitive radio network, adjusting
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the transmit power of a cognitive radio requires solving an optimization prob-

lem under uncertainty.

B.2 Dominant Sources of Uncertainty

The dominant sources of uncertainty in a cognitive radio network are:

• Primary Users: In a cognitive radio network, spectrum holes come and

go, depending on the availability of idle sub-bands. Therefore, primary

users’ activities are the cause of supply-side risk. Communication pat-

terns of primary users determine the availability and the duration of

availability of resources. The availability of the spectrum holes deter-

mines the joint feasible set of the resource-allocation optimization prob-

lems that are solved by individual secondary users. In other words, it

determines the joint set of the action spaces of all secondary users in

the corresponding game. The availability duration of spectrum holes

determines the control horizon for the transmit-power controllers of sec-

ondary users. Depending on the sub-bands of interest and the dynamics

of activities of primary users in those sub-bands, two different cases are

observed:

a) The activities of the primary users and therefore, their occupancy

of the corresponding sub-bands are well-defined. A good example

for this case would be the use of TV bands for cognitive radios.

b) The activities of the primary users and therefore, the appearance

and disappearance of spectrum holes are more dynamic and far less
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predictable than the former case. A good example for this case

would be the use of cellular bands for cognitive radios.

• Secondary Users: Anytime users can leave the network and new users

can join the network in a stochastic manner. This is the cause of demand-

side risk in the network.

• Mobility: Users move all the time. Because of the mobility, the interfer-

ence that a user causes on other users and mutually the interference that

other users cause on that particular user in the network are time-varying.

• Noise: The ambient noise depends on different activities in the environ-

ment and is caused by both natural and man-made phenomena.

B.3 Dealing with Uncertainty

During the time intervals that the activity of primary users does not change

and the available spectrum holes are fixed, two approaches can be taken to deal

with the uncertainty caused by joining and leaving of other cognitive radios as

well as their mobility; stochastic optimization and robust optimization [118].

The pros and cons of these two approaches are discussed here.

If there is good knowledge about the probability distribution of the uncer-

tainty sources, then the uncertainty can be dealt with by means of probability

and related concepts. In this case, calculation of the expected value will not

be an obstacle and therefore, transmit-power control can be formulated as a
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stochastic optimization problem.

However, since in practice, little may be known about the probability distri-

bution, the stochastic optimization approach that utilizes the expected value is

not a suitable approach. In this case, robust optimization techniques that are

based on worst-case analysis, without involving probability theory, are more

appropriate, although such techniques may well be overly conservative in prac-

tice. Suboptimality in performance is, in effect, traded in favour of robustness.

Stochastic optimization guarantees some level of performance on average,

and sometimes the desired quality of service may not be achieved, which means

a lack of reliable communication. On the other hand, robust optimization

guarantees an acceptable level of performance under worst-case conditions. It

is a conservative approach because real-life systems are not always in their

worst behaviour, but it can provide seamless communication even in the worst

situations. Regarding the dynamic nature of the cognitive radio network, the

statistics of interference that is used by the transmitter to adjust its power may

not represent the real current situation of the network. In these cases, robust

optimization is equipped to prevent permissible interference power level viola-

tion by taking into account the worst-case uncertainty in the interference and

noise. Therefore, sacrificing optimality for robustness seems to be a reasonable

proposition. However, the use of a predictive model may make it possible for

the user to choose the uncertainty set adaptively according to environmental

conditions and therefore, may lead to less conservative designs.
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In order to take account of uncertainty in the IWFC formulation, the noise

plus interference term is considered as the summation of two components: a

nominal term, Ī, which is the measured value provided by the receiver, and

a perturbation term, ∆I. Then, the transmit power is adjusted based on the

worst-interference scenario for ∆I. Therefore, Eqn. B.2 is modified as

Ck = Bk log2

(
1 +

P̄k
BkNk

0 + Ī ik

)
(B.3)

Thus, for a fixed required data rate, transmitter spends more power than

calculated by Eqn. B.2 to mitigate the uncertainties. Safety power margin is

defined as :

Sp =
P̄k
Pk

(B.4)

which is the ratio of robust transmitter power obtained from Eqn. B.3 to the

power calculated from Eqn. B.2.
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C

Autoregressive Model (AR)

The autoregressive model is one of a group of linear prediction formulas that

tries to predict the output of a system based on the previous outputs. In recent

years, the autoregressive models (AR models) are widely used to predict the

fading channel state changes [103, 119]. Autoregressive models are commonly

used to approximate discrete-time random processes [119]. An AR process of

order p, noted by [AR− p], can be expressed by

X(K) = −
p∑
j=1

φkX[k − j] + ωk

where X(k) and ωk are the observed sample and noise values at the kth instant.

The autocorrelation matrix of X(k), Rxx, is defined as

Rxx =

 −
∑p

j=1 φkRxx[k − j], k ≥ 1

−
∑p

j=1 φkRxx[−j], k = 0
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And the estimation of Rxx is given by

R̂xx =

 Rxx[k], p ≥ k ≥ 1

−
∑p

j=1 φkR̂xx[k − j], k > p

Φ = R−1v

where

Φ = [φ1 φ2 . . . φp]
T

,

v = [Rxx(1) Rxx(2) . . . Rxx(p)]
T

and

R =



1 Rxx(1) Rxx(1) . . . Rxx(p− 2) Rxx(p− 1)

Rxx(1) 1 Rxx(1) . . . Rxx(p− 3) Rxx(p− 2)

...
...

Rxx(p− 2) Rxx(p− 3) Rxx(p− 4) . . . 1 Rxx(1)

Rxx(p− 1) Rxx(p− 2) Rxx(p− 3) . . . Rxx(1) 1
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D

Proof of Theorem 1

This is an outline of the proof for Theorem 1 of Sec. 3.2. Proof of this theo-

rem can be found in [52], Chapter 8. Essential outline of the proof is as follows.

The equation 3.6, can be written using vectors x(n) and w(n) as:

w(n+ 1) = w(n) + ηy(n)[x(n)− y(n)x(n)]

where

y(n) = xT (n)w(n) = wT (n)x(n)

thus

w(n+ 1) = w(n) + η[x(n)xT (n)w(n)−wT (n)(x(n)xT (n))w(n)w(n)] (D.1)

Thus, the characteristic matrix defined by

w(n+ 1) =Mw(n)
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for this algorithm is :

M = I + η[x(n)xT (n)−wT (n)(x(n)xT (n))w(n)I]

Provided η is small, using Kushner’s direct-averaging method, we can replace

the characteristic matrix by its expected value:

E{M} = I + η[R−wT (n)Rw(n)I]

where

R = Ex(n)xT (n)

The solution of the stochastic equation of Eqn. D.1 is close to the solution of

the deterministic difference equation:

w(n+ 1) = w(n) + η[R−wT (n)Rw(n)I]w(n) (D.2)

Let

∆w(n) = w(n+ 1)−w(n)

we may say:

dw(t)

dt
∝ ∆w(n) (D.3)

By eliminating the constant η and normalizing time, the evolution of the max-

imum eigenfilter over time can be described by ordinary nonlinear differential

equation

dw(t)

dt
= Rw(t)−

(
wT (t)Rw(t)

)
w(t) (D.4)
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We can expand w(t) in terms of the complete orthonormal set of eigenvectors

of R

w(t) =
m∑
k=1

θk(t)qk (D.5)

where qk is the kth normalized eigenvector of R, and the coefficient θk(t) is the

projection of the vector w(t) onto qk. Using basic definitions of eignevector

and eigenvalue

Rqk = λkqk

and

qk.Rqk = λk

where λk is the eigenvalue associated with qk, and substituting Eqn. D.5 in

Eqn. D.4 we get

m∑
k=1

dθk(t)

dt
qk =

m∑
k=1

λkθk(t)qk −

[
m∑
l=1

λlθ
2
l (t)

]
m∑
k=1

θk(t)qk (D.6)

which can be stated as

dθk(t)

dt
= λk θk(t)− θk(t)

[
m∑
l=1

λl θ
2(l)(t)

]
, k = 1, 2, . . . ,m (D.7)

This equation is a nonlinear modified form of the Langevin equation without

a driving force, and therefore, we expect that the maximum eigenfilter will be

absolutely convergent in an asymptotic sense.

We now consider two cases for the index k:

1. 1 < k ≤m
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Define (assuming θ1(t) 6= 0 )

αk(t) =
θk(t)

θ1(t)

then differentiating αk(t) we get

dαk(t)

dt
=

1

θ1(t)

dθk(t)

dt
− θk(t)

θ2
1(t)

dθ1(t)

dt

=
1

θ1(t)

dθk(t)

dt
− αk(t)

θ1(t)

dθ1(t)

dt
1 < k ≤ m (D.8)

now using Eqn. D.7 in Eqn. D.8, we obtain

dαk(t)

t
= −(λ1 − λk)αk(t), 1 < k ≤ m (D.9)

with the assumption of distinct eigenvalues of R and eigenvalues ar-

ranged in decreasing order we have

λ1 > λ2 > · · · > λm > 0

therefore, (λ1 − λk) is positive and for this case of k we have

αk(t)→ 0 as t→∞ for 1 < k ≤ m (D.10)
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2. k = 1

From Eqn. D.7

dθ1(t)

dt
= λ1 θ1(t)− θ1(t)

m∑
l=1

λl θ
2
l (t)

= λ1 θ1(t)− λ1 θ
3
1(t)− θ1(t)− θ1(t)

m∑
l=2

λl θ
2
l (t)

= λ1 θ1(t)− λ1 θ
3
1(t)− θ1(t)− θ3

1(t)
m∑
l=2

λl α
2
l (t) (D.11)

we know that for l 6= 1, as t→∞ αl(t)→ 0. Thus, the last term on the

right-hand side of Eqn. D.8 approaches zero as t approaches infinity. So

dθ1(t)

dt
= λ1 θ1(t)[1− θ2

1(t)] fort→∞ (D.12)

Equation D.12 represents an autonomous system i.e. a system with

no explicit time dependence. The stability of such a system can be

handled using a Lyapunov function. Let s denote the state vector of an

autonomous system and V (t) denote a Lyapunov function of the system.

An equilibrium state s̄ of the system is asymptotically stable if

d

dt
V (t) < 0 for s ∈ U − s̄ (D.13)

where U is a small neighbourhood around s̄. The autonomous system of

Eqn. D.12, has a Lyapunov function defined by

V (t) = [1− θ2
1(t)]2
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In order to validate this assertion, we should show that V (t) satisfies two

conditions:

1.
d

dt
V (t) < 0 for all t (D.14)

2. V (t) has a minimum (D.15)

Differentiating Eqn. D.12 with respect to time, and using Eqn. D.12 we

get

d

dt
V (t) = 4θ1(t)[θ1(t)− 1]

dθ1(t)

dt
(D.16)

= −4λ1θ
2
1(t)[θ2

1(t)− 1]2 as t→∞

Since λ1 is positive, the first condition stated in Eqn. D.15 is true for

t approaching infinity. Furthermore, from Eqn. D.16, we see that V (t)

has a minimum at θ1(t). Therefore, both conditions are met and we can

conclude that

|θ1(t)| → ±1 as t→∞

Also, having θ1(t) 6= 0, we can restate Eqn. D.10 as:

θk(t)→ 0 as t→∞ for 1 < k ≤ m

Hence, we can formally state that

w(t)→ q1, as t→∞
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