Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11597
Title: The Effect of Goblet Cell Metaplasia On Airway Barrier Integrity
Authors: Dalle, Ave J Christopher
Advisor: Inman, Mark D
Janssen, Luke
Jordana, Manel
Department: Medical Sciences (Division of Physiology/Pharmacology)
Keywords: epithelial barrier;IL-13;asthma;Biological Phenomena, Cell Phenomena, and Immunity;Circulatory and Respiratory Physiology;Biological Phenomena, Cell Phenomena, and Immunity
Publication Date: Apr-2012
Abstract: <p><strong>Introduction</strong></p> <p>The airway epithelium, which acts as a protective barrier, is impaired in asthmatic patients and may contribute to abnormal airway function. Chronic inflammation, a feature of asthma, is associated with structural changes in the airway epithelium including the transformation of columnar epithelial cells into mucin secreting goblet cells. Human epithelial cells exposed to Interleukin-13 (IL-13) <em>in vitro</em> resulted in goblet cell metaplasia and a significant drop in transepithelial resistance, indicating that barrier function is impaired.</p> <p><strong>Aim</strong></p> <p>We sought to determine whether goblet cell metaplasia alone is sufficient to impair airway epithelial barrier function <em>in vivo</em>.</p> <p><strong>Methods</strong></p> <p>Female BALB/c mice were infected with an adenovirus to overexpress IL-13, a control adenovirus, or no virus. Barrier integrity was assessed via single-photon emission computed tomography (SPECT) imaging by measuring the dispersion of technetium-labeled diethylene triamine pentaacetic acid (<sup>99m</sup>Tc-DTPA) out of the lungs over time. Lung sections were stained by Periodic acid-Schiff to detect the presence of mucin-containing goblet cells.</p> <p><strong>Results</strong></p> <p>IL-13 exposure resulted in goblet cell metaplasia and associated airway hyperresponsiveness to methacholine. However, there was no significant increase in dispersion of <sup>99m</sup>Tc-DTPA over time from the airways in IL-13 overexpressed mice compared to control mice.</p> <p><strong>Conclusion</strong></p> <p>IL-13 induced goblet cell metaplasia did not impair the airway epithelial barrier to <sup>99m</sup>Tc-DTPA in our <em>in vivo</em> mouse model. Therefore, we conclude that epithelial dysfunction to DTPA observed in human asthmatics and in animal models of asthma are not due to IL-13 induced goblet cell metaplasia.</p>
URI: http://hdl.handle.net/11375/11597
Identifier: opendissertations/6554
7523
2345943
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
887.77 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue