Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11387
Title: ON SOME INFERENTIAL ASPECTS FOR TYPE-II AND PROGRESSIVE TYPE-II CENSORING
Authors: Volterman, William D.
Advisor: Balakrishnan, Narayanaswamy
Department: Mathematics and Statistics
Keywords: Multiple independent samples;Type-II censoring;Pitman Closeness;Nonparametric;Optimal censoring scheme;population quantiles;Other Statistics and Probability;Statistical Methodology;Other Statistics and Probability
Publication Date: Oct-2011
Abstract: <p>This thesis investigates nonparametric inference under multiple independent samples with various modes of censoring, and also presents results concerning Pitman Closeness under Progressive Type-II right censoring. For the nonparametric inference with multiple independent samples, the case of Type-II right censoring is first considered. Two extensions to this are then discussed: doubly Type-II censoring, and Progressive Type-II right censoring. We consider confidence intervals for quantiles, prediction intervals for order statistics from a future sample, and tolerance intervals for a population proportion. Benefits of using multiple samples over one sample are discussed. For each of these scenarios, we consider simulation as an alternative to exact calculations. In each case we illustrate the results with data from the literature. Furthermore, we consider two problems concerning Pitman Closeness and Progressive Type-II right censoring. We derive simple explicit formulae for the Pitman Closeness probabilities of the order statistics to population quantiles. Various tables are given to illustrate these results. We then use the Pitman Closeness measure as a criterion for determining the optimal censoring scheme for samples drawn from the exponential distribution. A general result is conjectured, and demonstrated in special cases</p>
URI: http://hdl.handle.net/11375/11387
Identifier: opendissertations/6357
7406
2271195
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.75 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue