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ABSTRACT: This thesis investigates nonparametric inference under multiple inde-

pendent samples with various modes of censoring, and also presents results concerning

Pitman Closeness under Progressive Type-II right censoring. For the nonparametric

inference with multiple independent samples, the case of Type-II right censoring is

first considered. Two extensions to this are then discussed: doubly Type-II censor-

ing, and Progressive Type-II right censoring. We consider confidence intervals for

quantiles, prediction intervals for order statistics from a future sample, and tolerance

intervals for a population proportion. Benefits of using multiple samples over one

sample are discussed. For each of these scenarios, we consider simulation as an al-

ternative to exact calculations. In each case we illustrate the results with data from

the literature. Furthermore, we consider two problems concerning Pitman Closeness

and Progressive Type-II right censoring. We derive simple explicit formulae for the

Pitman Closeness probabilities of the order statistics to population quantiles. Various

tables are given to illustrate these results. We then use the Pitman Closeness measure

as a criterion for determining the optimal censoring scheme for samples drawn from

the exponential distribution. A general result is conjectured, and demonstrated in

special cases.

KEY WORDS: Multiple independent samples, Type-II right censoring, Doubly Type-

II censoring, Progressive Type-II right censoring, simulation, nonparametric, predic-

tion intervals, tolerance intervals, confidence intervals, Pitman Closeness, optimality,

Progressive censoring scheme, population quantiles
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Chapter 1

Introduction

In lifetime and reliability analysis we are concerned with obtaining results which allow

us to make inference about the processes or populations involved. Both cost and time

may be factors that place constraints on the types of experimental designs that can be

used. Thus, censoring can be used as a way to limit the time, cost, or a combination

of both. This leads to the question of which designs are best to make inference given

these constraints.

It can also be of interest to obtain more information from future independent

samples. The question that arises now, is how to incorporate this new information.

When we have multiple independent censored samples, one can always write the

likelihood explicitly. However, this is not the case for multiple independent samples

when we make no distributional assumptions.

With two independent samples it is known (see Balakrishnan et al., 2010b) how

1
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to make distribution free intervals for quantiles, tolerance intervals, and prediction

intervals when both samples are Type-II right censored or progressively Type-II cen-

sored. The authors show that there are gains in the maximum coverage probabilities

over the equivalent one sample scenario. Thus in some sense these designs are better.

Nonparametric inference for two independent samples of minimal repair systems is

considered in Beutner and Cramer (2010). They have shown how to make prediction

intervals for future samples conditional on surviving until some specified time. Again

there are gains in some sense, over equivalent one sample scenarios.

We may ask what schemes for one or more samples would be best. Determination

of optimal progressive censoring schemes has been considered for a variety of criteria

with varying assumptions.

1.1 Order Statistics

Consider observing n independent observations X1, X2, . . . , Xn. Placing the observa-

tions in ascending order, we have X1:n ≤ X2:n ≤ . . . ≤ Xn:n, where Xi:n is the i-th

order statistic (OS).

Typically the n observations come from some common underlying distribution. We

denote this common cumulative distribution function (CDF) as FX . If the distribution

is absolutely continuous, it has probability density function (PDF) fX .

In this i.i.d. case the joint and marginal distributions of the order statistics have

simple explicit formula involving the underlying distribution function and there exists
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a wide variety of literature on order statistics. Both Arnold et al. (1992) and David

and Nagaraja (2003) provide an introduction to the topic.

It is well known that the joint density of n order statistics is

fX1:n,...,Xn:n(x1, . . . , xn) = n!
n∏
j=1

f(xj), (1.1.1)

where ξ0 < x1 ≤ x2 ≤ · · · ≤ xn < ξ1. Here, ξ0 and ξ1 represent the lower and upper

endpoints of the distribution respectively; these may not be finite. For 1 ≤ j1 < j2 ≤

n, the joint distribution of two order statistics is

fXj1:n,Xj2:n(x1, x2) =
n!

(j1 − 1)!(j2 − j1 − 1)!(n− j2)!
(1.1.2)

× F (x1)
j1−1 [F (x2)− F (x1)]

j2−j1−1 [1− F (x2)]
n−j2 f(x1)f(x2),

when ξ0 < xj1 ≤ xj2 < ξ1. For 1 ≤ j ≤ n, the marginal PDF and CDF of Xj:n is

known to be

fXj:n(x) =
n!

(j − 1)!(n− j)!
F (x)j−1 [1− F (x)]n−j f(x), (1.1.3)

FXj:n(x) =
n∑
`=j

(
n

`

)
F (x)` [1− F (x)]n−` , (1.1.4)

respectively, where ξ0 < x < ξ1. Equation (1.1.4) applies when the underlying distri-

bution is continuous, whereas equations (1.1.1) to (1.1.3) require absolute continuity.

See Arnold et al. (1992) or David and Nagaraja (2003) for more about order statistics.
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Group 1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99
Group 2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60
Group 3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75
Group 4 0.02 0.06 0.50 0.70 1.17 2.80 3.57 3.72 3.82 3.87
Group 5 0.20 0.78 0.80 1.08 1.13 2.44 3.17 5.55 6.63 8.11
Group 6 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 7.21 8.71

Table 1.1: Time to breakdown of insulating fluids

1.1.1 Pooled Order Statistics

Suppose we have B independent samples, upon combining the B samples and or-

dering them we have what we call the pooled order statistics. We shall denote the

pooled order statistics as Z(i). Balakrishnan et al. (2010b) considered the pooled order

statistics for Type-II right censored and progressively Type-II censored samples.

For complete i.i.d. samples the pooled order statistics are equivalent to order

statistics from a large sample. This is of course the basis for taking a sample of size

n+ 1 by obtaining an independent sample of size one and appending it to an existing

sample of size n.

As it will become apparent later, under certain assumptions, these pooled order

statistics are related to the usual order statistics from the underlying distribution.

1.1.2 Motivating Examples

As a motivating example consider the time to insulating fluid breakdown originally

taken from Nelson (1982, Table 4.1, p. 462) as in Table 1.1.

This data set has been used repeatedly in the literature under various censoring
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schemes, particularly when the data is presumed to be exponentially distributed.

1.2 Types of censoring

Censoring of data can arise naturally due to the nature of the sampling or experi-

mental design, or inherent structure of the situation. However, sometimes censoring

can be exploited by experimenters as an efficient method of obtaining information

with regards to cost and time. There are a number of censoring methods available to

experimenters; below are a few of these which are commonly used in reliability and

life testing.

1.2.1 Type-I Censoring

Consider a sample where we observe outcomes only in some specified interval (TL, TU),

where TL < TU . Such an interval is to be known ahead of time. When an item fails in

the given interval its time is observed exactly; if the item fails in the interval (−∞, TL]

or [TU ,∞), then only the interval that it fails in is known.

X1:n X2:n X3:n · · · Xi:n

∣∣∣∣
TL

−→ Censored

Figure 1.1: Diagram of Type-I right censoring

In such a censoring scheme the number of observed failures is random. So if the

upper and lower censoring bands are set too narrow, then an insufficient number of
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observations may be made.

Without distributional assumptions, no information about the distribution can

be gleaned from such a Type-I sample outside the fixed interval. Thus unless one

wishes to either make distributional assumptions about the population, or restrict

their inference to the given region, Type-I censoring is not appropriate. However, it

is widely used because the amount of time on test is bounded, and thus the cost for

the experiment will be bounded.

1.2.2 Type-II Censoring

Type-II right censoring (herein referred to as Type-II censoring) is where the smallest

r of n independent observations are observed. The number of observations r, is fixed

before the experiment.

An experimenter would place n items on test, and after observing the first r

failures, stop the test and the remaining n− r items would be removed.

X1:n X2:n · · · Xr−1:n
↗n−r

Xr:n

Figure 1.2: Diagram of Type-II censoring

The advantage of such a scheme over Type-I censoring is that one knows exactly

how many failures will be observed ahead of time; however, the time to test possibly

unbounded, and could be on average much larger than in Type-I censoring.

Table 1.2 shows Type-II right censoring which had been introduced to the insu-
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lating fluid data in Table 1.1 by Balakrishnan et al. (2010b).

Group 1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 ∗
Group 2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 ∗
Group 3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 ∗
Group 4 0.02 0.06 0.50 0.70 1.17 2.80 3.57 3.72 3.82 ∗
Group 5 0.20 0.78 0.80 1.08 1.13 2.44 3.17 5.55 ∗ ∗
Group 6 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 ∗ ∗

Table 1.2: Insulating fluid data - Type-II censoring

Group 1 ∗ ∗ 1.54 1.70 1.82 1.89 2.17 2.24 4.03 ∗
Group 2 ∗ 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 ∗
Group 3 ∗ 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 ∗
Group 4 ∗ 0.06 0.50 0.70 1.17 2.80 3.57 3.72 3.82 ∗
Group 5 ∗ 0.78 0.80 1.08 1.13 2.44 3.17 5.55 ∗ ∗
Group 6 ∗ 1.49 1.56 2.10 2.12 3.83 3.97 5.13 ∗ ∗

Table 1.3: Insulating fluid data - doubly Type-II censoring

Doubly Type-II censoring occurs when the smallest rL, and largest rU items are

censored. In this case, the number of observed failures is r = n− rL − rU . It is clear

that Type-II censoring is a special case of doubly Type-II censoring when rL = 0 and

rU = n−r. Similarly, when rU = 0 and rL = n−r then this is Type-II left censoring.

Table 1.3 shows the insulating fluid data with doubly Type-II data as introduced

in Balakrishnan et al. (2004).

1.2.3 Progressive Type-II Right Censoring

Progressive Type-II right censoring (herein referred to as progressive Type-II censor-

ing), is an extension of the Type-II censoring scheme mentioned prior. Place n items
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on a test. After the first failure XR1:r:n, remove R1 items randomly from the remaining

n − 1 items and then continue the test. After the next failure XR2:r:n, remove R2

items randomly from the remaining n − 2 − R1 items and continue the test. One

would continue in this manner until observing the final failure XRr:r:n, and then the

remaining Rr items are removed. The i-th progressive Type-II order statistic (PCOS)

is denoted as XRi:r:n or Xi:r:n when the scheme which generates the order statistic is

unambiguous.

↗R1

X1:r:n

↗R2

X2:r:n · · ·
↗Rr

Xr:r:n

Figure 1.3: Diagram of progressive Type-II censoring

We call R = (R1, . . . , Rr), the progressive Type-II censoring scheme. Much like

Type-II right censoring, the censoring scheme R is fixed before the experiment.

It can be seen that Type-II censoring is a special case of progressive Type-II

censoring, where the scheme is R = (0, ..., 0, n − r). Expressions and inference for

Type-II censored samples are often much simpler than the more general progressive

Type-II censored samples.

Given a censoring scheme R we can further define the following constants. Define

γ1, . . . , γr as γ` =
∑r

i=`(Ri + 1) = n − (` − 1) −
∑`

i=1Ri for ` = 1, . . . , r. In this

context, γ` is the number of units remaining on test between the (`− 1)-th and `-th

failures. We further define the constants c`−1 =
∏`

i=1 γi and ai(`) =
∏`

k=1
k 6=i

1
γk−γi

.
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With this in hand we can obtain the joint distribution of the PCOS as

fX
R
1:r:n,...,X

R
r:r:n(x1, . . . , xr) = cr−1

r∏
`=1

{1− F (x`)}R`f(x`), (1.2.1)

where ξ0 < x1 ≤ x2 ≤ · · · ≤ xr < ξ1. For 1 ≤ `1 < `2 ≤ r, the joint distribution of

two PCOS is

fX
R
`1:r:n

,XR`2:r:n(x`1 , x`2) = c`2−1

`2∑
i=`1+1

(
a
(`1)
i (`2)

[
1− F (x`2)

1− F (x`1)

]γi)

×
`1∑
i=1

(
ai(`1)(1− F (x`1))

γi

)
f(x`1)

1− F (x`1)

f(x`2)

1− F (x`2)
, (1.2.2)

when ξ0 < x`1 ≤ x`2 < ξ1. For 1 ≤ ` ≤ r, the marginal PDF and CDF of XR`:r:n is

known to be

fX
R
`:r:n = c`−1

∑̀
i=1

ai(`){1− F (x)}γi−1f(x), (1.2.3)

FXR`:r:n = 1− c`−1
∑̀
i=1

ai(`)

γi
{1− F (x)}γi (1.2.4)

respectively, where ξ0 < x < ξ1.

Note that equations (1.2.2)–(1.2.4) do not collapse to those in Section 1.1 in the

special case of right censoring. However, these can be obtained from the previous

results by appropriate expansions. Thus, we typically can consider results obtained

with progressive censoring to provide alternate representations to those based on the
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usual order statistics.

For more general theory, and methods regarding progressive Type-II censoring,

see Balakrishnan and Aggarwala (2000). Optimal progressive censoring schemes are

discussed in Burkschat et al. (2006) and Burkschat (2007, 2008), for a general class

of location-scale models.

There are extensions to progressive censoring allowing the number of items re-

moved after the i-th failure, Ri, to be random. In one such extension from Cramer

and Iliopoulos (2010), known as adaptive progressive Type-II censoring, Ri is random

function of R1, . . . , Ri−1 and XR1:r:n, . . . , X
R
i−1:r:n.

For illustrative purposes, we have introduced progressive Type-II censoring to

the insulating fluid data. Table 1.4 is the insulating fluid data with the schemes

R1 = (2, 2, 3), R2 = (6, 1, 0), R3 = (0, 0, 7), and R4 = (4, 0, 3) applied to each of the

six samples. We include the censored items for comparisons sake.

1.3 Mixture Distributions

Mixture distributions naturally arise when a population can be divided into sub-

populations (components), possibly with different distributions. The number of such

components can be finite, countable, or uncountable. The idea of fitting mixture

distributions goes as far back as Pearson (1894) who fit two normal distributions to

a population of crabs; this provided evidence that there were two distinct subspecies

of crabs.
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Group 1 0.31 0.66 ∗ 1.70 ∗ ∗ ∗ ∗ ∗ ∗
Group 2 0.00 0.18 0.55 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 3 0.49 0.64 ∗ 0.93 ∗ ∗ ∗ ∗ ∗ ∗
Group 4 0.02 0.06 0.50 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 5 0.20 ∗ 0.80 ∗ ∗ 2.44 ∗ ∗ ∗ ∗
Group 6 1.34 1.49 1.56 ∗ ∗ ∗ ∗ ∗ ∗ ∗

(a) R1 = (2, 2, 3)

Group 1 0.31 ∗ 1.54 ∗ ∗ ∗ 2.17 ∗ ∗ ∗
Group 2 0.00 ∗ ∗ 0.66 ∗ 1.30 ∗ ∗ ∗ ∗
Group 3 0.49 ∗ ∗ ∗ 1.08 ∗ ∗ ∗ 2.57 ∗
Group 4 0.02 ∗ 0.50 ∗ ∗ ∗ ∗ ∗ ∗ 3.87
Group 5 0.20 ∗ 0.80 ∗ ∗ ∗ ∗ ∗ 6.63 ∗
Group 6 1.34 ∗ ∗ ∗ 2.12 ∗ ∗ ∗ 7.21 ∗

(b) R2 = (6, 1, 0)

Group 1 0.31 0.66 1.54 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 2 0.00 0.18 0.55 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 3 0.49 0.64 0.82 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 4 0.02 0.06 0.50 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 5 0.20 0.78 0.80 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 6 1.34 1.49 1.56 ∗ ∗ ∗ ∗ ∗ ∗ ∗

(c) R3 = (0, 0, 7)

Group 1 0.31 ∗ 1.54 ∗ ∗ 1.89 ∗ ∗ ∗ ∗
Group 2 0.00 0.18 0.55 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 3 0.49 ∗ 0.82 0.93 ∗ ∗ ∗ ∗ ∗ ∗
Group 4 0.02 0.06 0.50 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Group 5 0.20 ∗ ∗ 1.08 1.13 ∗ ∗ ∗ ∗ ∗
Group 6 1.34 1.49 1.56 ∗ ∗ ∗ ∗ ∗ ∗ ∗

(d) R4 = (4, 0, 3)

Table 1.4: Insulating fluid data - Progressive Type-II censoring

We consider a finite mixture model with D components Xi, distribution functions

Fi (1 ≤ i ≤ D), and mixing weights 0 < πi ≤ 1, subject to
∑
πi = 1. Mixtures with

such weights are known as convex mixtures. The mixture distribution is represented

as follows

X
d
=

D∑
i=1

Yi Xi, (1.3.1)
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where Y = (Y1, . . . , YD) is a multinomial random variable of size one, and with success

probabilities πi; Y is independent of the underlying Xi’s. Here
d
= is understood

to be equality in distribution. Marginally, Yi follows a Bernoulli distribution with

P (Yi = 1) = πi.

The cumulative distribution function FX(·) can be given as

F (t) =
D∑
i=1

πiFi(t), (1.3.2)

which is a weighted sum of the D component distribution functions with t ∈ <. The

mixing weight πi represents the proportion of the total population from component

i. If the random variables are absolutely continuous, then the mixture density exists

and

fX(t) =
D∑
i=1

πifi(t). (1.3.3)

It is easy to see that the distribution function FX(·) and density function fX(·) are

valid distribution and density functions respectively. Sampling from such a distri-

bution can be done in two stages. First generate one draw from the multinomial

distribution with success vector (π1, . . . , πD); then given that Yi = 1 (Yj = 0, j 6= i),

generate a single observation from the distribution of the i-th component Xi as xi.

Thus X = xi is the sampled value from X.

In some cases non-convex mixtures will still yield valid distributions, though in-

terpretation and simulation may prove more difficult. For a practical example see
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Jiang et al. (1999).

In Figures 1.4a and 1.4b, we can see the mixture/component densities and mix-

ture/component CDF’s. Here, there are two components, normally distributed, with

means 10 and 13, variances 3 and 4, and mixing proportions 0.6 and 0.4.

Mixture models can be useful as approximations to distributions as well. Ker-

nel density estimators are a special case of mixture models used to estimate some

population. In this case, the underlying component densities are usually identical up

to a location parameter, and the mixing proportions are equal. And while mixture

models naturally arise when there are known sub-populations, such models are useful

to model multi-modal distributions even when no underlying sub-populations exist.

Whether one uses a kernel density or some other mixture model, often mixtures

of normal distributions are used. For a more in depth discussion of mixture models,

see McLachlan and Peel (2000).

1.4 Pitman Closeness

Pitman closeness (also known as Pitman nearness or Pitman’s measure of closeness)

has been presented as an alternative criterion when one is not concerned with the size

of loss. The Pitman closeness (PC) probability is defined as follows.

Definition 1.4.1 Given two estimators T1 and T2, and a population parameter θ,
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the PC probability of T1 to θ relative to T2 is

πT1,T2(θ) = P (|T1 − θ| < |T2 − θ|)

When πT1,T2(θ) ≥ 0.5 we say T1 is Pitman closer to θ than T2.

Since θ is not usually known ahead of time, one may wish to determine which of T1

and T2 are better estimators for some θ ∈ Ω. Thus we have the following definition.

Definition 1.4.2 Given T1 and T2, we say that T1 is uniformly Pitman closer to θ

than T2 if ∀ θ ∈ Ω, πT1,T2(θ) ≥ 0.5, and πT1,T2(θ) > 0.5 for at least one θ ∈ Ω.

See Keating et al. (1993) for a comprehensive discussion on Pitman closeness.

These pairwise comparisons are typically how an estimator is chosen. However,

in certain circumstances, the Pitman closeness may not be transitive. To some this is

considered a severe issue. See Robert et al. (1993a) (with discussion in Blyth, 1993;

Casella and Wells, 1993; Ghosh et al., 1993; Peddada, 1993; Rao, 1993; Robert et al.,

1993b) for this and other criticisms.

Some of these considerations, such as transitivity are eliminated when considering

ordered estimators, such as using order statistics as point estimators of quantiles.

Much work has been done in this area recently (see for example Balakrishnan et al.,

2009). Ahmadi and Balakrishnan (2009), Ahmadi and Balakrishnan (2011), Ahmadi

and Balakrishnan (2010) consider a similar problem with record values, k-records,

and upper-lower records respectively.
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A further extension to the idea of Pitman closeness is the idea of simultaneous

closeness.

Definition 1.4.3 Given a class of estimators T of θ, then for every T ∈ T the

Simultaneous Closeness Probability (SCP) is defined as follows.

πT (θ) = P

(
|T − θ| < min

T ′∈T \T
|T ′ − θ|

)

The estimator chosen by the simultaneous closeness as in Definition 1.4.3 need not be

the same as chosen by Definition 1.4.1. However, in the case of ordered estimators,

with some conditions, they will be. Whether it is better to look at simultaneous

comparisons or pairwise comparisons depends on the context of the problem, and so

we do not discuss this issue in any detail.

1.5 Scope of Thesis

This thesis will investigate various inferential aspects for single and multiple samples

under Type-II, and progressively Type-II right censoring. Throughout this thesis

it will be assumed that the underlying distribution is continuous. Where specified,

absolute continuity may also be assumed.

In Chapter 2 we describe nonparametric inference for a single sample based upon

ordinary order statistics. Some methods for point estimation of quantiles are dis-

cussed; confidence intervals for quantiles, prediction intervals, and tolerance intervals
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are also mentioned. These nonparametric intervals will form the basis of the methods

used in Chapters 3-5.

In Chapter 3, mixture representations for the marginal distribution of the pooled

order statistics and joint distribution of two pooled order statistics are given. The

joint distribution is briefly discussed along with some miscellaneous asymptotic prop-

erties of the pooled order statistics. We describe how to construct exact nonparamet-

ric inference in the pooled setting. Specifically, we discuss how to calculate coverage

probabilities for confidence intervals for quantiles, prediction intervals, and tolerance

intervals based on the pooled order statistics. The improvement over the single sample

scenario is discussed, and the data in Table 1.2 is analyzed using these methods.

In Chapter 4, we extend the mixture representations from Chapter 3 to the case

where the samples are doubly Type-II censored. A simple algorithm to obtain the

necessary mixture weights is presented. We also provide comparisons of exact weights

to simulated weights in terms of absolute and relative accuracy for a simple censoring

scheme. The data in Table 1.3 is analyzed. In Chapter 5 we consider another ex-

tension to the Type-II censoring by considering progressively Type-II censoring. The

representations here are different than those given in Chapters 3 and 4. We again

consider simulation and analyze the data in Table 1.4.

In Chapter 6, we consider the Pitman closeness of a progressively censored order

statistic to a population quantile. Some distribution-free results are given. In Chapter

7 we consider use Pitman closeness as a criterion to find an optimal censoring scheme
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for the exponential distribution. An algorithm is given, some general results are

conjectured, and for some specific cases, demonstrated.

Finally in Chapter 8, we suggest directions for future research.



Chapter 2

Nonparametric Inference

The basis for nonparametric inference with multiple independent pooled samples, is

nonparametric inference for a single sample. So consider a single i.i.d sample of size

n from a continuous population with cumulative distribution function F . Intervals

in the form (Xk1:n, Xk2:n) where 1 ≤ k1 < k2 ≤ n, can be used as the basis for

distribution free inference in the single sample case. These intervals can be used

as confidence intervals for population quantiles, tolerance intervals, and prediction

intervals for future samples.

2.1 Quantile Estimation

For a continuous distribution F , the quantile ξp is defined as infx F (x) ≥ p. Fur-

thermore, all quantiles ξp for 0 < p < 1 exist, and ξp1 < ξp1 when 0 < p1 < p2 < 1.

Traditional point estimates for quantiles can be based on either a single order statistic

19
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such as k = [np], k = [(n+ 1)p], or k = [np] + 1. One may also use a linear combina-

tion of two order statistics such as gXk:n + (1− g)Xk+1:n, where k+ g = (n+ 1)p and

0 ≤ g < 1.

Davis and Harrell (1982) suggest an L-estimator based on the empirical distri-

bution function. The Davis & Harrell estimator is HDp =
∑n

i=1Wn,iXi:n, with the

weights Wn,i = Ii/n{p(n+ 1), (1−p)(n+ 1)}− I(i−1)/n{p(n+ 1), (1−p)(n+ 1)}. Here,

Ix{a, b} represents the incomplete beta function. Huang (2001) suggests a similar es-

timator that is based instead upon the modified level crossing empirical distribution

function. In many cases this modified HD estimator is more efficient than the original

estimator.

Zielinski (2006) compares all of the previous quantile estimators among others

and suggests using the local smoothing estimator. However, such an estimate is

not distribution free; in this case one would use a single order statistic to achieve

robustness. In this vein, Balakrishnan et al. (2010c) have looked at the best order

statistic to estimate a quantile in terms of Pitman closeness. This method however

is again not distribution free.

Distribution free interval estimation for quantiles is much simpler. It is clear that

the number of items from an i.i.d sample of size n falling below the p-th quantile ξp

is distributed as Binomial(n, p); so that

P (Xk1:n ≤ ξp ≤ Xk2:n) =

k2−1∑
i=k1

(
n

i

)
pi(1− p)n−i (2.1.1)
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We can similarly obtain one-sided intervals as

P (Xk:n ≤ ξp) =
n∑
i=k

(
n

i

)
pi(1− p)n−i (2.1.2)

P (ξp ≤ Xk:n) =
k−1∑
i=0

(
n

i

)
pi(1− p)n−i (2.1.3)

This of course follows from equation (1.1.4).

One can improve upon these interval estimates under the assumption of symmetry.

Breth (1982) suggests distribution free methods when the median is known or un-

known. In the former case the improvements over previous methods are substantial.

In the latter, gains may still be appreciable.

2.2 Tolerance Intervals

One may wish to have some interval that would contain at least some specified pro-

portion (γ) of the population. Given γ and a desired level of confidence then

P (F (Xk2:n)− F (Xk1:n) ≥ γ) =

k2−k1−1∑
i=0

(
n

i

)
γi(1− γ)n−i (2.2.1)

This is based upon the assumption that the underlying random variable is continuous,

so that F (X) ∼ Unif(0, 1). Hence F (Xk2:n) − F (Xk1:n)
d
= Uk2:n − Uk1:n

d
= Uk2−k1:n,

where Uk:n is the k-th order statistic of a sample of size n from a standard uniform

distribution. The latter distributional equality, is a property of uniform order statis-
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tics. The coverage probability of this interval depends only on the distance between

the two order statistics.

For one-sided tolerance intervals we have

P (1− F (Xk:n) ≥ γ) = P (Xk:n ≤ ξ1−γ) (2.2.2)

P (F (Xk:n) ≥ γ) = P (Xk:n ≥ ξγ) (2.2.3)

which is equivalent to a one-sided confidence interval for the p-th quantile.

2.3 Prediction Intervals

It is often desirable to make predictions of order statistics from future samples. We

may make prediction for either a specific order statistic, or at least a specified number

from a future independent sample.

One-sided prediction intervals for a single order statistic is equivalent to ex-

ceedances (see Balakrishnan and Ng, 2006; David and Nagaraja, 2003; Gastwirth,

1968). Given a sample of size n1, (Xi1:n1 ,∞) is a one-sided prediction interval for the

i2-th order statistic Wi2:n2 , from a future sample of size n2 with probability

gi1,i2 = P (Xi1:n1 < Wi2:n2) =
∑
i<i2−1

(
n2

i

)(
n1

i1+i2−i−1

)(
n1+n2

i1+i2−1

) (2.3.1)

The probability for two-sided prediction intervals (Xi1:n1 , Xi∗1:n1), is given by gi1,i2 −
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gi∗1,i2 .

For prediction of future progressively type-II order statistics, Guilbaud (2001)

expresses the marginal distribution of a progressively type-II censored order statistic

as a mixture of typical order statistics. This mixture representation combined with

(2.3.1) can be used to calculate prediction intervals for a specified order statistic

from a future progressively type-II censored sample. Exceedances can similarly be

obtained for the case of a usual order statistic and a PCOS directly (See Bairamov

and Eryilmaz, 2006; Ng and Balakrishnan, 2005).

To obtain the probability of at least λ > 0 values from a future complete sample

W, consider the following. For 1 ≤ i < j ≤ n2 and 1 ≤ k1 < k2 ≤ n1, we have

P (at least λ W ′s ∈ (Xk1:n1 , Xk2:n1))

=

n2∑
j=λ

n2−j∑
i=0

P (Wi:n2 < Xk1:n1 < Wi+1:n2 < Wi+j:n2 < Xk2:n1 < Wi+j+1:n2)

=

n2∑
j=λ

n2−j∑
i=0

(
i+k1−1

i

)(
j+k2−k1−1

j

)(
n1+n2−k2−i−j

n2−i−j

)(
n1+n2

n2

) (2.3.2)

To obtain the probabilities for a type-II censored sample we need only to modify

the indices in the sums. If the new sample has r observed failures, then the probability

need be separated into two sums reflecting whether the final observed value Wr:n2 falls
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below or above Xk2:n2 . The probability would be

P (at least λ W ′s ∈ (Xk1:n1 , Xk2:n1))

=
r−1∑
j=λ

r−j−1∑
i=0

P (Wi:n2 < Xk1:n1 < Wi+1:n2 < Wi+j:n2 < Xk2:n1 < Wi+j+1:n2)

+
r∑

j=λ

n2−r∑
c=0

P (Wr−j:n2 < Xk1:n1 < Wr−j+1:n2 < Wr+c:n2 < Xk2:n1 < Wr+c+1:n2)

=
r−1∑
j=λ

r−j−1∑
i=0

(
i+k1−1

i

)(
j+k2−k1−1

j

)(
n1+n2−k2−i−j

n2−i−j

)(
n1+n2

n2

)
+

r∑
j=λ

n2−r∑
c=0

(
r−j+k1−1

r−j

)(
j+c+k2−k1−1

j+c

)(
n1+n2−k2−r−c

n2−r−c

)(
n1+n2

n2

) (2.3.3)

If r = 1, then the first term collapses leaving the second.



Chapter 3

Multiple Type-II Censored

Samples

Consider estimating the p-th quantile ξp from a continuous distribution with the

interval (Xk1:n, Xk2:n). If we do not wish to assume anything further, we can then

find the coverage probability of this interval as in equation (2.1.1).

Suppose we take a sample of size n = 10. We can estimate the median with the

interval (X2:10, X9:10), which has coverage probability

P (X2:10 < ξ0.5 < X9:10) =
8∑
i=2

(
10

i

)[
1

2

]10
≈ 0.9785

If we wished to instead estimate an upper quantile, say ξ0.9, the largest interval

25
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(X1:10, X10:10) only has coverage probability

P (X1:10 < ξ0.9 < X10:10) =
9∑
i=1

(
10

i

)[
9

10

]i [
1

10

]n−i
≈ 0.6513

The median is the quantile which will have the highest coverage probability, and

this nearly requires the complete sample. The 90-% quantile requires the whole

range and can not achieve a reasonable coverage probability. It is evident that more

information is needed.

With a censored sample, the problem is exasperated. If there is 30% right censor-

ing, then the coverage probabilities for the quantiles ξ0.5 and ξ0.9, of the largest interval

(X1:10, X7:10) are 82.71% and 7.02% respectively. One may wish to take additional

future independent samples to obtain more favourable coverage probabilities.

However, this need not be the only reason one would wish to pool multiple type-II

samples. It may be that a machine stresses items to failure, but can only place a

certain number at a time. Multiple runs may then be done to fail a larger num-

ber of items. It will be shown later that it can be desirable to intentionally design

an experiment with pooling in order to obtain better estimates of upper quantiles.

Balakrishnan et al. (2010b) have considered inference for two independent type-II

samples. In this chapter we will extend these results to B independent type-II sam-

ples.

Consider B independent type-II samples, where Xb,k:nb is the k-th order statistic

from the b-th sample of size nb. We have the condition that 1 ≤ rb ≤ nb. When
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rb = nb the b-th sample is complete; and when rb < nb the sample is type-II censored.

Let Z(i) be the i-th (1 ≤ i ≤ ṙ) pooled order statistic from the pooled sample.

3.1 Distributional Representations

The multi-sample case is naturally more complex than its two-sample counterpart.

Consider the marginal distribution of a pooled order statistic.

In the two-sample case, when the i-th pooled order statistic is conditioned to be

from the first sample, then the number of observed items from the second sample

above or below it are fixed. This is not generally true with 3 or more samples, though

it can be in certain cases. In the multi-sample case, given some item from some

sample being the i-th pooled order statistic, we can freely fix the number of items

above and below the i-th pooled order statistic in at most B − 2 samples.

As a result, we can expect the representations given here to be much more complex

than in the two-sample case.

3.1.1 Marginal Distribution of a pooled OS

To obtain the marginal distribution of Z(i), we can partition the sample space to

obtain the following

P (Z(i) ≤ ξp) =
B∑
b=1

rb∑
k=1

P (Z(i) = Xb,k:nb ≤ ξp), (3.1.1)
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as the events, Z(i) = Xb,k:nb are exhaustive, and are mutually exclusive with proba-

bility 1.

For any permutation of the samples that gives Z(i) = Xb,k:nb , letA = {1, 2, . . . , B}\

b. Some sample bo ∈ A may have all of its observed values and some of the latent

unobserved values below Xb,k:nb . Namely Xbo,rbo+cj :nbo < Xb,k:nb < Xbo,rbo+cj+1:nbo , for

some 1 ≤ cj ≤ nbo − rbo . If this is the case, then for this permutation, bo ∈ {b′}.

Otherwise the latent unobserved values all lie above Xb,k:nb and the observed

values can be either above or below. Namely, Xbo,cj :nbo < Xb,k:nb < Xbo,cj+1:nbo for

some 0 ≤ cj ≤ rbo . Thus these samples bo are in {b′′}.

For any permutation of the samples giving Z(i) = Xb,k:nb , we have a partition of A

into {b′}, and {b′′}. This is a valid partition of A iff ṙb′+ ċb′′ = i−k. When ṙA < i−k

or when i < k, no partition leading to Z(i) = Xb,k:nb exist.

{b′′} can be further subdivided into {b′′β} and {b′′α}. The former being “large”

(rbo ≥ i− k − ṙb′) or complete samples, and the latter being the “small”, incomplete

samples. All samples in {b′′β} can be treated as one larger sample for computational

purposes, reducing the dimension of the sums involved.

We can now define a weight W , as

W{i},{h},{l},{j} =

(
i−1

h1,...,hd,i−1−
∑
h

)(
n−i

l1,...,ld,n−i−
∑
l

)(
n

j1,...,jd,n−
∑
j

) .

Thus, we have the following result.
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Theorem 3.1.1 For i = 1, 2, . . . , ṙ, and 0 ≤ p ≤ 1, we have

P (Z(i) ≤ p) =
B∑
b=1

rb∑
k=1

∑
σ{b′}

nj−rj∑
cj=1
j∈{b′}

rj∑
cj=0
j∈{b′′α}

∣∣∣∣U
Fi+ċb′ :n(p)

×W
i+ċb′ ,

{
k−1

{cj+rj},j∈{b′}
{cj},j∈{b′′α}

}
,

{
nb−k

{nj−rj−cj},j∈{b′}
{nj−cj},j∈{b′′α}

}
,

{ nb
{nj},j∈{b′}
{nj},j∈{b′′α}

},

where

U =


{cj |ċb′′α = i− k − ṙb′} if {b′′β} is empty

{cj |ċb′′α ≤ i− k − ṙb′} if {b′′β} is non-empty and if i− k − ṙj′ ≤ ṙb′′

{cj |i− k − ṙb′ ≥ ċb′′α ≥ i− k − ṙb′ − ṙb′′β} if {b′′β} is non-empty and if i− k − ṙj′ > ṙb′′ .

Here |U indicates that the multiple sum of cj’s in {b′′α} is restricted to the region given

by U .

Proof: For convenience, let us assume X ∼ Unif(0, 1), since otherwise a probability

integral transformation can be performed to bring the problem to uniform setting.

As a result, it is known that Xk:n ∼ Beta(k − 1, n− k).

We have that, P (Z(i) ≤ p) =
B∑
b=1

rb∑
k=1

P
(
Xb,k:nb = Z(i) ≤ p

)
. Let {b′} be some

subset of A. If i−k < ṙb′ then Xb,k:nb = Z(i) is impossible since there are more than i

observed values up to and including Xb,k:nb . If ṙA < i− k, then there are insufficient

observed items from the other B − 1 samples for Xb,k:nb to be the i-th pooled value.

Consequently, ṙb′ + ċb′′ = i − k is necessary and sufficient for the probability to be
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non-zero, and so we obtain

P (Z(i) ≤ p) =
B∑
b=1

rb∑
k=1

∑
σ{b′}

nj−rj∑
cj=1
j∈{b′}

∑
cj

j∈{b′′}
∣∣∣ċb′′=i−k−ṙb′0≤cj≤rj

P (Xb,k:nb = Z(i) ≤ p,∩jBb′ ,∩jCb′′),

where Bb′ = {Xj,rj+cj :nj < Xb,k:nb < Xj,rj+cj+1:nj} ∀j ∈ {b′}, and Cb′′ = {Xj,cj :nj <

Xb,k:nb < Xj,cj+1:nj} ∀j ∈ {b′′}.

Let us now consider P (Xb,k:nb = Z(i) ≤ p,∩jBj,∩jCj). Marginally, Xb,k:nb is

Beta(k − 1, nb − k), each other (complete) sample conditioned on X = x can be

viewed as a binomial event with success probability x and failure probability 1 − x.

So we then have,

P (Xb,k:nb = Z(i) ≤ p,∩jBj,∩jCj)

=

∫ p

0

nb!

(k − 1)!(nb − k)!
xk−1(1− x)nb−k

×
∏
j∈{b′}

(
nj

rj + cj

)
xrj+cj(1− x)nj−rj−cj

∏
j∈{b′′}

(
nj
cj

)
xcj(1− x)nj−cjdx

=

∫ p

0

xk−1+ċb′′+(ṙb′+ċb′ )(1− x)nb−k+(nb′′−ċb′′ )+(nb′−ṙb′−ċb′ )dx

× nb!

(k − 1)!(nb − k)!

∏
j∈{b′}

(
nj

rj + cj

) ∏
j∈{b′′}

(
nj
cj

)

= Fi+ċb′ :n(p)
(i− 1 + ċb′)!(n− i− ċb′)!nb!

n!(k − 1)!(nb − k)!

∏
j∈{b′}

(
nj

rj + cj

) ∏
j∈{b′′}

(
nj
cj

)

= Fi+ċb′ :n(p)

(
i−1+ċb′

k−1,{cj}j∈{b′′},{rj+cj}j∈{b′}

)(
n−i−ċb′

nb−k,{nj−cj}j∈{b′′},{nj−rj−cj}j∈{b′}

)(
n

nb,{nj}j∈{b′′},{nj}j∈{b′}

)
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= W
i+ċb′ ,

{
k−1

{cj+rj},j∈{b′}
{cj},j∈{b′′α}

}
,

{
nb−k

{nj−rj−cj},j∈{b′}
{nj−cj},j∈{b′′α}

}
,

{ nb
{nj},j∈{b′}
{nj},j∈{b′′α}

}Fi+ċb′ :n(p)

∏
j∈{b′′β}

(
nj
cj

)(n−nb−nb′−nb′′α
i−k−ṙb′−ċb′′α

) .
The final term above is a multivariate hypergeometric probability; see Johnson et al.

(1997) for relevant details on this distribution. We have three cases here to consider.

Firstly, if {b′′β} is empty, the final term is 1 and this is already in the form of Theorem

3.1.1. Secondly, if {b′′β} is non-empty and i − k − ṙb′ ≤ ṙb′′β , then the final term can

be summed out leaving the restriction ċb′′α ≤ i− k− ṙb′ . Finally, if {b′′β} is non-empty

but i− k − ṙb′ > ṙb′′β , then {b′′β} consists only of complete samples. In this case, they

can be summed out but the restriction becomes i− k − ṙb′ ≥ ċb′′α ≥ i− k − ṙb′ − ṙb′′β .

Hence, the Theorem.

Remark 3.1.2 If more than one sample is complete, then these samples can be com-

bined into one sample for computational purposes. The will increase the efficiency of

the calculations.

Remark 3.1.3 The pooled sample maximum Z(ṙ) has an alternate representation

based on the fact that Z(ṙ) = max1≤b≤BXb,rb:nb. The CDF can be given as

FZ(ṙ)
(t) =

B∏
b=1

Frb:nb(t),∀ t ∈ R (3.1.2)

Remark 3.1.4 The mixture weights are weighted hypergeometric probabilities, where

the weight nb/n is the probability that the (i+ ċb′)-th value came from sample b.
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Remark 3.1.5 Calculating the mixture probability for Xi:n should be avoided as this

is often the most computationally intensive portion.

Corollary 3.1.6 For 1 ≤ i ≤ minj rj, Z(i)
d
= Xi:n

Proof: Since i ≤ minj rj then for all b (1 ≤ b ≤ B) and k (1 ≤ k ≤ rb), i − k ≤

i − 1 < minj rj, so that σ{b′} = {{∅}}. Thus all samples bo (bo 6= b) are in {b′′β} as

rbo ≥ minj rj ≥ i− k = i− k − r{b′}. Furthermore P (Z(i) = Xb,k:nb) = 0 for all k > i.

Thus the mixture representation reduces to

P (Z(i) ≤ ξp) =
B∑
b=1

rb∑
k=1

Wi,k−1,nb−k,nbFi:n(ξp) = Fi:n(ξp)
B∑
b=1

i∑
k=1

(
i−1
k−1

)(
n−i
nb−k

)(
n
nb

)
= Fi:n(ξp)

B∑
b=1

i∑
k=1

nb
n

(
i−1
k−1

)(
n−i
nb−k

)(
n−1
nb−1

) = Fi:n(ξp)
B∑
b=1

nb
n

i∑
k=1

(
i−1
k−1

)(
n−i
nb−k

)(
n−1
nb−1

)
= Fi:n(ξp)

B∑
b=1

nb
n
· 1 = Fi:n(ξp).

Corollary 3.1.7 Given B independent type-II left censored samples, the marginal

distribution of Z(i) has the mixture representation

Z(i)
d
=

n∑
k=1

Q(ṙ−i+1)kXn−k+1:n

where Q is a multinomial random variable independent of the X’s and with success

vector (qik) as in Theorem 3.1.1, based on a type-II right censored sample with the

same censoring scheme.

Proof: Since {Xb,k:nb ; 1 ≤ b ≤ B, nb − rb + 1 ≤ k ≤ nb} is a collection of B left
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censored samples from FX(x), then for X̃ = −X, {X̃b,k:nb ; 1 ≤ b ≤ B, 1 ≤ k ≤ rb} is

a collection of right censored samples with distribution function FX̃(x) = 1−FX(−x).

Here the pooled order statistic have the property that Z̃(ṙ−i+1) = −Z(i) and so

P (Z(i) ≤ ξp) = P (Z̃(ṙ−i+1) ≥ −ξp)

=
n∑
k=1

q(ṙ−i+1)kP (X̃k:n ≥ −ξp) =
n∑
k=1

q(ṙ−i+1)kP (Xn−k+1:n ≤ ξp).

The second equality being the application of Theorem 3.1.1

We can similarly obtain results for type-II left censored samples, for the joint

distribution of two or more pooled order statistics (Theorem 3.1.8, Propositions 3.1.10,

3.1.12, and 3.1.14) as done in Corollary 3.1.7.

3.1.2 Joint Distribution of two pooled OS

To obtain the joint probability of P (Z(i1) ≤ p1, Z(i2) ≤ p2) for 1 ≤ i1 < i2 ≤ ṙ, we

proceed in a similar fashion as in Theorem 3.1.1. For p1 < p2, we are interested in

P (Z(i1) ≤ p1, Z(i2) ≤ p2) =
B∑
b=1

∑
1≤k1<k2≤rb

P (Xb,k1:nb = Z(i1) ≤ p1, Xb,k2:nb = Z(i2) ≤ p2)

+
∑
bo 6=b

B∑
b=1

rbo∑
k1=1

rb∑
k2=1

P (Xbo,k1:nbo = Z(i1) ≤ p1, Xb,k2:nb = Z(i2) ≤ p2), (3.1.3)

of which the two terms in either summand must be treated separately albeit in a

similar fashion. When p1 ≥ p2 then the joint distribution reduces to P (Z(i2) ≤ p2),
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the marginal distribution of Z(i2).

Again we introduce similar notation as used in the previous section. Here the

b-th sample, may or may not be the same as the bo-th sample, so A = {1, 2, . . . , B} \

{b
⋃
bo}. We define {b′} as samples in A such that all the observed and some unob-

served values from these samples are below Z(i2). Furthermore, we define a {b′1} as a

subset of {b′} such that all the observed values fall below Z(i1). Thus {b′2} = {b′}\{b′1}

has the final observed value between Z(i1) and Z(i2).

Similarly {b′′} is the complement of {b′} in A. {b′′β} is similarly defined as samples

b1 in {b′′} such that ṙb1 ≥ i− k − ṙb′ .

We again define σ{b′} as the collection of all valid {b′}. σ{b′1} is the collection of

valid {b′1} ∈ {b′}.

Again we define a weight W , as

W{i},{h},{m},{l},{j} =

(
i1−1

h1,...,hd,i1−1−
∑
h

)(
i2−i1−1

m1,...,md,i2−i1−1−
∑
m

)(
n−i2

l1,...,ld,n−i2−
∑
l

)(
n

j1,...,jd,n−
∑
j

) .

Then we have the following Theorem.

Theorem 3.1.8 For i1 = 1, 2, . . . , ṙ − 1, i1 < i2 ≤ ṙ, and 0 ≤ p1 < p2 ≤ 1, the first

term on the RHS of (3.1.3) is

∑
σ{b′}

∑
σ{b′1}

∑
{cj1 ,cj2}
j∈{b′1}

∑
{cj1 ,cj2}
j∈{b′2}

∑
{cj1 ,cj2}
j∈{b′′α}

∣∣∣∣U1

W{·,...,·}Fi1+ċj1,b′1 ,i2+ċj1,b′1+ċj2,b′1+ċj2,b′2 :n(p1, p2),
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where

{i} =
{

i1+ċj1,b′1
i2−i1+ċj2,b′1

+ċj2,b′2

}
,

{h} =

{
k1−1

{rj+cj1},j∈{b
′
1}

{cj1},j∈{b
′
2}

{cj1},j∈{b
′′
α}

}
, {m} =

{
k2−k1−1
{cj2},j∈{b

′
1}

{rj+cj2−cj1},j∈{b
′
2}

{cj2},j∈{b
′′
α}

}
,

{l} =

{
nb−k2

{nj−rj−cj1−cj2},j∈{b
′
1}

{nj−rj−cj2},j∈{b
′
2}

{nj−cj1−cj2},j∈{b
′′
α}

}
, {j} =

{
nb

{nj},j∈{b′1}
{nj},j∈{b′2}
{nj},j∈{b′′α}

}
;

and the second term on the RHS of (3.1.3) is

k2−1∑
cb=0

rbo−k1∑
cbo=0

∑
σ{b′}

∑
σ{b′1}

∑
{cj1 ,cj2}
j∈{b′1}

∑
{cj1 ,cj2}
j∈{b′2}

∑
{cj1 ,cj2}
j∈{b′′α}

∣∣∣∣U2

W1
{·,...,·}Fi1+ċj1,b′1 ,i2+ċj1,b′1+ċj2,b′1+ċj2,b′2 :n

(p1, p2)

+ 11≤nbo−rbo

k2−1∑
cb=0

nbo−rbo∑
cbo=1

∑
σ{b′}

∑
σ{b′1}

∑
{cj1 ,cj2}
j∈{b′1}

∑
{cj1 ,cj2}
j∈{b′2}

∑
{cj1 ,cj2}
j∈{b′′α}

∣∣∣∣U3

W2
{·,...,·}Fi1+ċj1,b′1 ,i2+cbo+ċj1,b′1+ċj2,b′1+ċj2,b′2 :n

(p1, p2),

where for W1, we have

{i} =
{

i1+ċj1,b′1
i2−i1+ċj2,b′1

+ċj2,b′2

}
,

{h} =


k1−1
cb

{rj+cj1},j∈{b
′
1}

{cj1},j∈{b
′
2}

{cj1},j∈{b
′′
α}

 , {m} =


cbo

k2−cb−1
{cj2},j∈{b

′
1}

{rj−cj1+cj2},j∈{b
′
2}

{cj2},j∈{b
′′
α}

 ,

{l} =


nbo−k1−cbo

nb−k2
{nj−rj−cj1−cj2},j∈{b

′
1}

{nj−rj−cj2},j∈{b
′
2}

{nj−cj1−cj2},j∈{b
′′
α}

 , {j} =


nbo
nb
nbo

{nj},j∈{b′1}
{nj},j∈{b′2}
{nj},j∈{b′′α}

 ,
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and for W2, we have

{i} =
{

i1+ċj1,b′1
i2−i1+cbo+ċj2,b′1

+ċj2,b′2

}
,

{h} =


k1−1
cb

{rj+cj1},j∈{b
′
1}

{cj1},j∈{b
′
2}

{cj1},j∈{b
′′
α}

 , {m} =


rbo+cbo−k1
k2−cb−1
{cj2},j∈{b

′
1}

{rj−cj1+cj2},j∈{b
′
2}

{cj2},j∈{b
′′
α}

 ,

{l} =


nbo−rbo−cbo

nb−k2
{nj−rj−cj1−cj2},j∈{b

′
1}

{nj−rj−cj2},j∈{b
′
2}

{nj−cj1−cj2},j∈{b
′′
α}

 , {j} =


nb
nbo

{nj},j∈{b′1}
{nj},j∈{b′2}
{nj},j∈{b′′α}

 .

In the above expressions,

U1 =



{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α = i1 − k1 − ṙb′1 − ċj1,b′2 , ċj2,b′′α = i2 − k2 − ṙb′2 + ċj1,b′2
− i1 + k1}

if {b′′β} is empty,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 , ċj2,b′′α ≤ i2 − k2 − ṙb′2 + ċj1,b′2
− i1 + k1}

if {b′′β} is non-empty with ṙb′′
β
≥ i2 − k2 − ṙb′ ,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 , ċj2,b′′α ≤ i2 − k2 − ṙb′2 + ċj1,b′2
− i1 + k1,

ċj1,b′′α + ċj2,b′′α ≥ i2 − k2 − ṙb′ − ṙb′′β }

if {b′′β} is non-empty with ṙb′′
β
< i2 − k2 − ṙb′ ,

U2 =



{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α = i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α = i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− cbo}

if {b′′β} is empty,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α ≤ i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− cbo}

if {b′′β} is non-empty with ṙb′′
β
≥ i2 − k2 − k1 − cbo − ṙb′ ,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α ≤ i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− cbo

cj1,b′′α + cj2,b′′α ≥ i2 − k2 − k1 − cbo − ṙb′}

if {b′′β} is non-empty with ṙb′′
β
< i2 − k2 − k1 − cbo − ṙb′ ,
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U3 =



{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α = i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α = i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− rbo + k1}

if {b′′β} is empty,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α ≤ i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− rbo + k1}

if {b′′β} is non-empty with ṙb′′
β
≥ i2 − k2 − rbo − ṙb′ ,

{(cj1,b′′α , cj2,b′′α )|ċj1,b′′α ≤ i1 − k1 − ṙb′1 − ċj1,b′2 − cb, ċj2,b′′α ≤ i2 − i1 − k2 + cb − ṙb′2 + ċj1,b′2
− rbo + k1

cj1,b′′α + cj2,b′′α ≥ i2 − k2 − rbo − ṙb′}

if {b′′β} is non-empty with ṙb′′
β
< i2 − k2 − rbo − ṙb′ .

Here |U1, |U2, and |U3 imply a constraint to the multiple sum of cj1 ’s and cj2 ’s in

{b′′α} to the described region.

Proof: We will restrict attention to the first summand in equation (3.1.3). The other

summand is done similarly.

Again we consider only the case where X ∼ Unif(0, 1) wlog. The joint dis-

tribution of two uniform OS is fXi1:n,Xi2:n(x1, x2) = n!
(i1−1)!(i2−i1−1)!(n−i2)!x

i1−1
1 [x2 −

x2]
i2−i1−1(1 − x2)

n−i2 for 0 < x1 < x2 < 1. We have P (Z(i1) ≤ p1, Z(i2) ≤ p2) =
B∑
b=1

∑
1≤k1<k2

P (Z(i1) = Xb,k1:nb ≤ p1, Z(i2) = Xb,k2:nb ≤ p2).

Clearly if i2−i1 < k2−k1 then Xb,k1:nb and Xb,k2:nb can not simultaneously be Z(i1)

and Z(i2) respectively as they are too far apart in terms of indices. We also require

that ṙA ≥ i2−k2 ≥ 0 as in Theorem 3.1.1. Thus necessary and sufficient condition for

P (Xb,k1:nb = Z(i1), Xb,k2:nb = Z(i2)) > 0 are 0 ≤ i2− k2 ≤ ṙA and 1 ≤ k2− k1 ≤ i2− i1,
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so we obtain the following,

P (Z(i1) ≤ p1,Z(i2) ≤ p2) =
B∑
b=1

∑
1≤k1<k2

∑
σ{b′}

∑
σ{b′1}

∑
{cj1 ,cj2}
j∈{b′1}

∑
{cj1 ,cj2}
j∈{b′2}

∑
{cj1 ,cj2}
j∈{b′′α}

∣∣∣∣U1

P (Z(i1) = Xb,k1:nb ≤ p1, Z(i2) = Xb,k2:nb ≤ p2,∩B{b′1},∩B{b′2},∩C{b′′}),

where

B{b′1} =


Xj,rj+cj1 :nj

< Xb,k1:nb < Xj,rj+cj1+1:nj

Xj,rj+cj1+cj2 :nj
< Xb,k2:nb < Xj,rj+cj1+cj2+1:nj

0 ≤ cj1 ≤ nj − rj 0 ≤ cj2 ≤ nj − rj − cj1 cj1 + cj2 ≥ 1

B{b′2} =


Xj,cj1 :nj

< Xb,k1:nb < Xj,cj1+1:nj

Xj,rj+cj2 :nj
< Xb,k2,:nb < Xj,rj ,cj2+1:nj

0 ≤ cj1 < rj 1 ≤ cj2 ≤ nj − rj

C{b′′} =


Xj,cj1 :nb

< Xb,k1:nb < Xj,cj1+1:nb

Xj,cj1+cj2 :nb
< Xb,k2:nb < Xj,cj1+cj2+1:nb

0 ≤ cj1 0 ≤ cj2 0 ≤ cj1 + cj2 ≤ r.

Concerning ourselves with the probability in the summand we have

P (Z(i1) = Xb,k1:nb ≤ p1, Z(i2) = Xb,k2:nb ≤ p2,∩B{b′1},∩B{b′2},∩C{b′′})

=

∫ p1

0

∫ p2

u

nb!

(k1 − 1)!(k2 − k1 − 1)!(nb − k2)!
uk1−1(v − u)k2−k1−1(1− v)nb−k2
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∏
j∈{b′1}

(
nj

rj + cj1 , cj2 , n− rj − cj1 − cj2

)
urj+cj1 (v − u)cj2 (1− v)n−rj−cj1−cj2

∏
j∈{b′2}

(
nj

cj1 , rj − cj1 + cj2 , n− rj − cj2

)
ucj1 (v − u)rj−cj1+cj2 (1− v)n−rj−cj2

∏
j∈{b′′}

(
nj

cj1 , cj2 , n− cj1 − cj2

)
ucj1 (v − u)cj2 (1− v)n−cj1−cj2dvdu

=
n!

(i1 − 1 + ċj1,{b′1})!(i2 − i1 − 1 + ċj2,{b′1} + ċj2,{b′2})!(n− i2 − ċj1,{b′1} − ċj2,{b′1} − ċj2,{b′2})!∫ p1

0

∫ p2

u

u
i1−1+ċj1,{b′1}(v − u)

i2−i1−1+ċj2,{b′1}
+ċj2,{b′2}(1− v)

n−i2−ċj1,{b′1}
−ċj2,{b′1}

−ċj2,{b′2}dvdu∏
j∈{b′′β}

(
nj

cj1 ,cj2 ,n−cj1−cj2

)(n−nb−n{b′}−n{b′′α}
i2−k2−ṙ{b′}−ċ{b′′α}

) × Constant,

wherein the integral is the joint CDF of two OS from a sample of size n. The

constant can be seen to be the weight W1, and with U1 being the same restriction as

in Theorem 3.1.1 which follows from the definition of {b′′β}.

Remark 3.1.9 The number of mixture terms required is strictly less than
(
n
2

)
, so the

number of terms required for storage is at most O(n2). There are a total of
(
ṙ
2

)
of

these. So the total storage to calculate all terms is O(n4). However this bound is not

sharp and in likely much lower.

3.1.3 Joint Distribution of pooled OS

There are many ways to obtain the mixture distribution of the joint pooled order

statistics. Firstly one can represent the joint distribution of the ṙ pooled order statis-

tics as a mixture of the joint distribution of ṙ order statistics from a sample of size
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n.

Proposition 3.1.10 The joint distribution of the pooled order statistics, can be rep-

resented as a mixture of joint distributions of size ṙ, of a subset of the usual order

statistics from a sample of size n. For all 0 < ξp1 < · · · < ξpṙ < 1 we have

FZ(1),...,Z(ṙ)
(ξp1 , . . . , ξpṙ) =

∑
1≤i1<i2<...<iṙ≤n

qk1,...,kṙFXi1:n,...,Xiṙ :n(ξp1 , . . . , ξpṙ).

Proof: Consider any one of the
(

n
n1,...,nB

)
permutations of the B samples, with respect

to both the observable items, and latent unobserved items. Label the observable

failures Xb,k:nb (1 ≤ b ≤ B and 1 ≤ k ≤ rb) as Z(1) through Z(ṙ). Count the number of

unobservable failures before the l-th pooled order statistic and call it j′l (1 ≤ l ≤ ṙ).

Then conditioned on this permutation, the i-th pooled order statistic is the i+ j′i-th

out of the n total items. This yields a vector (1 + j′1, . . . , i+ j′i, . . . , ṙ + j′ṙ) of strictly

increasing values, as the sequence of j-primes is non-decreasing by construction. Since

there are at most n−ṙ items unobserved, and since j′i ≥ 0 for all i, this is an increasing

subset of size ṙ, from {1, 2, . . . , B}.

We can then partition the outcome space into all possible combinations that yield

identical vectors (1 + j′1, . . . , i+ j′i, . . . , ṙ+ j′ṙ). Conditioned on being in this group of

permutations, then the observed pooled order statistics are always the 1 + j′1-st . . .

i+ j′i-th . . . and ṙ + j′ṙ)-th typical order statistics of a sample of size n.
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The mixture weight q is the number of unique permutations of all the observed

and unobserved items that yield the vector (1 + j′1, . . . , i+ j′i, . . . , ṙ + j′ṙ), divided by

the total number of permutations.

Remark 3.1.11 If the observed fraction ṙ
n
→ $ for some 0 ≤ $ < 1, then the

number of mixture terms required is at most
(
n
r

)
=
(

n
[n$]

)
≥
(

n
[n$]

)n$
∼
(

1
$

)n$
.

Similarly
(
n
r

)
≤
(

n
[n/2]

)
∼ 2n√

n
≥ 2n−δ for all δ > 0. So an upper bound for the number

of terms required for storage is between O
((

1
$$

)n)
and O(2n). Thus storage is at

most exponential growth.

The upper bound of O((2−δ)n) for all δ > 0 can be obtained. Consider B samples

of size 2, each with one observation so that n = 2B. To determine the number of

possible combinations we consider permutations, we consider two additional restric-

tions X1,1:2 < X2,1:2 < · · · < XB,1:2 and X1,2:2 < X2,2:2 < · · · < XB,2:2. That is both

the observed variables are ordered and the unobserved latent variables are similarly

ordered. The first is justified because the samples are identical. The second because

the ordering of the latent variables does not change the distribution, only the number

above or below an observed item.

It is clear that this is the number of Dyck words of length n = 2B. Thus the

possible number of orderings is the B-th Catalan number, CB = 1
B+1

(
2B
B

)
. Catalan

numbers satisfy the recurrence relation (B + 2)CB+1 = 2(2B + 1)CB, so that CB+1

CB
=

22B+1
B+2

→ 4 as B →∞. Thus for all δ > 0, the storage is O((4− δ)B), or equivalently

O((2− δ)n)).
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We can obtain a different representation based on the joint distribution of pro-

gressively type-II censored samples.

Proposition 3.1.12 The joint distribution of the pooled order statistics, can be rep-

resented as a mixture of progressively censored samples with number of observations

ṙ and total sample size n. For all 0 < ξp1 < · · · < ξpṙ < 1 we have

FZ(1),...,Z(ṙ)
(ξp1 , . . . , ξpṙ) =

∑
(j1,...,jB)∈
σ{1,...,B}

∑
0≤i2≤rj2+i3−1

...
0≤iB−1≤rjB−1

+iB−1
0≤iB≤rjB−1

qi1,...,iBj1,...,jB
F
~R
~T

(ξp1 , . . . , ξpṙ)

Where ~T
~R = {T1:ṙ:n, . . . , Tṙ:ṙ:n} are the ṙ observations from a progressively type-II

censored sample of size n. The censoring scheme ~R is

~R = (0, . . . , 0︸ ︷︷ ︸
rj1+i2−1 times

, nj1 − rj1 , 0, . . . , 0︸ ︷︷ ︸
rj2+i3−i2−1 times

, nj2 − rj2 , . . . , 0, . . . , 0︸ ︷︷ ︸
rjB−iB−1 times

, njB − rjB).

Proof: Consider any permutation of the observed items and latent unobserved items,

and label the observed items as the ṙ pooled order statistics.

Furthermore, given this permutation, (j1, . . . , jB) is some (not necessarily increas-

ing) permutation of {1, 2, . . . , B}, such thatXj1,rj1 :nj1
< Xj2,rj2 :nj2

< . . . < XjB ,rjB :njB
.

Let j′l (1 ≤ l ≤ B) be the number of observed values from all samples before the l-th

sample.
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Conditioning only on the events Xj1,rj1 :nj1
< Xj2,rj2 :nj2

< . . . < XjB ,rjB :njB
, and

the vector of j-primes, we consider sequentially the latent unobserved items. After

observing rj1 + j′1 failures we remove nj1− rj1 items. These will be selected uniformly,

and without replacement, amongst the remaining items due to independence amongst

samples, and that all (unordered) items not yet removed are conditionally i.i.d.

We continue recursively, so that after observing Xjl,rjl :nj1
we remove njl−rjl items

uniformly amongst the remaining items. We continue this until the last observed

failure Xjṙ , rjṙ :njṙ , where the final njṙ − rjṙ items are removed.

As described this is a progressively type-II censored sample. It is clear that the

collection of permutations of all items as described above is exactly the same as all

possible permutations that result from a progressively type-II censored sample by

construction. Thus the Theorem.

Consider the previous example with B samples, each with one observed value,

and one censored value. The representation in Proposition 3.1.12 is simply a single

progressively censored sample. The censoring scheme is ~R = (1, . . . , 1), which is of

length B.

In general if all samples have one observed failure, and R1 unobserved failures,

the joint distribution will be a single progressively censored sample with scheme

~R = (R1, . . . , R1). In this sense we can consider a progressively censored sample

with an identical number of removals at each step, to be a pooling of several type-II

censored samples.
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Given some ordering of the final observable failure in B samples we can determine

the number of unique progressive type-II schemes as in Proposition 3.1.12 recursively.

←−−−−−− Xj1,rj1 :nj1

←−−−−−−−−−−−− Xj2,rj2 :nj2

...
...

. . .

←−−−−−−−−−−−−−−−−−−−−− XjB ,rjB :njB

Given the ordering Xj1,rj1 :nj1
< Xj2,rj2 :nj2

< · · · < XjB ,rjB :njB
, we determine the

number of unique schemes recursively as follows. With one sample, there is trivially

one scheme only. With two samples, we can have i2 observed failures from the second

sample fall below Xj1,rj1 :nj1
(0 ≤ i2 ≤ rj2 − 1). So thus there are rj2 schemes. Given

B−1 samples we can add one sample and place ijB observed failures from that sample

in the B − 1-st group. Leading to the recursive sum

S
(
B, rj1 , . . . , rjB ,~jB

)
=

rjB−1∑
iB=0

rjB−1
−1+iB∑

iB−1=0

· · ·
rj3−1+i4∑
i3=0

rj2−1+i3∑
i2=0

1

=

rjB−1∑
iB=0

S
(
B − 1, rj1 , . . . , rjB−2

, rjB−1
+ iB,~jB−1

)
.

Remark 3.1.13 In the special case where rb = r1 and nb − rb = n1 − r1 > 0 for

all 1 ≤ b ≤ B we can solve the recursion exactly. In this case the number of unique

schemes is S(B, r) = 1
(r−1)B+1

(
Br
B

)
.
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We can also consider a more direct method of obtaining the joint distribution.

Firstly, consider the joint distribution of the un-pooled statistics. Under the indepen-

dence assumption between samples this is given as

f1,...,ṙ(x1,1, . . . , xb,rb) =
B∏
b=1

fXb,1:nb ,...,Xb,rb:nb (xb,1, . . . , xb,rb)

=
B∏
b=1

[1− FX(xb,rb)]
nb−rb

rb∏
j=1

fX(xb,j)

when xb,1 < · · · < xb,rb , b = 1, 2, . . . B. We then have the following proposition.

Proposition 3.1.14 The pooled order statistics have the joint distribution as

fZ(1),...,Z(ṙ)
(z1, . . . , zṙ) =

∑
π∈S

f1,...,ṙ(zπ(1), . . . , zπ(ṙ)), z1 < · · · < zṙ,

where S represents all permutations π on (1, 2, . . . , ṙ) that respect the ordering within

each independent sample.

As given, Proposition 3.1.14 is not a mixture distribution as the summand will not

integrate to 1. However, it is clear that each term in the summand is a distinct

permutation of the original data and thus Proposition 3.1.14 can be rewritten as a

mixture distribution, where the component distributions are the pooled distribution

given some particular ordering of the original data, and the weight is the probability

of that ordering.
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Given the representations in Propositions 3.1.10-3.1.14, we can obtain the joint

distribution of any number of pooled order statistics.

For two pooled order statistics, if we were to use Proposition 3.1.10, we would

obtain the same representation as Theorem 3.1.8. In the case of Proposition 3.1.12,

we would obtain a mixture representation involving the joint distribution of two

progressively censored order statistics. If one were to apply the results of Guilbaud

(2004), we could turn this representation into the same as one would obtain with

Proposition 3.1.10.

In the case of Proposition 3.1.14, to obtain the marginal or joint k-variate distri-

butions, one needs to integrate out the appropriate pooled OS. However, the distribu-

tion will not be in terms of order statistics, but more general distributions for which

the properties are not well known. Moreover, one needs all possible permutations

of which there are
(

ṙ
r1,...,rB

)
. Consequently, it does not seem reasonable to use this

representation for the inference as discussed in Section 3.2.

3.2 Inference

Given the distributional representations in the previous section, one is able to obtain

nonparametric confidence intervals for quantiles, tolerance, intervals, and prediction

intervals.

The marginal distribution of Z(i) as given in Theorem 3.1.1, will be used in con-

fidence intervals for quantiles, and one-sided tolerance and prediction intervals. Two
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sided tolerance or prediction intervals require pairwise joint distributions as given in

Theorem 3.1.8.

One can also use Propositions 3.1.10 or 3.1.12 to obtain the marginal or joint dis-

tributions. These have the advantage of being easily able to obtain multiple marginal

and pairwise joint distributions simultaneously. Whereas with the representation in

Theorems 3.1.1 and 3.1.8, one would need to obtain a mixture representation for each

marginal or pairwise joint distribution individually.

For smaller sample sizes, the representations from the Propositions 3.1.10 or 3.1.12

may be more desirable. However as seen before, the storage space grows exponentially.

In the case of Proposition 3.1.12, it may grow much faster than this. Storage is not

the only issue however. Equal computational precision must be used for all weights,

as they each will be used for different pairwise joint distribution. With only a modest

number of samples and small number of observed values, there can be hundreds of

thousands of necessary progressively type-II censored distributions.

So considering this, the representation in Theorem 3.1.8 may be best used when

there are 3 or more samples. And either the representation in Theorem 3.1.8 or

Proposition 3.1.12 in the two-sample case.

3.2.1 Confidence Intervals for Quantiles

One-sided coverage probabilities are very easily calculated combining the mixture

representation as in 3.1.1, and one-sided confidence intervals for an order statistic as



Chapter 3.2 - Inference 48

in equation (2.1.2). Thus, the one-sided coverage probability is calculated as

P (Z(i) ≤ ξp) =
n∑
k=0

qikP (Xk:n ≤ ξp)

=
n∑
k=0

qik

n∑
l=k

(
n

l

)
pl(1− p)n−l. (3.2.1)

The two-sided interval (Z(i1), Z(i2)), for 1 ≤ i1 < i2 ≤ ṙ, has coverage probability

P (Z(i1) ≤ ξp ≤ Z(i2)) = P (Z(i1) ≤ ξp)− P (Z(i2) ≤ ξp).

The two terms on the right hand side are one-sided coverage probabilities which can

be calculated as in equation (3.2.1).

To compare the coverage probabilities between various schemes, Balakrishnan

et al. (2010b) suggest the Standardized Maximum Coverage Probability (SCMP). We

define this as

SCMPσ;r,n =
P (Z(ṙ) > p)

EZ(ṙ)

.

Here σ represents the pooling design. The SCMP compares the highest possible

coverage probability for any quantile and accounts for the cost in terms of increase

time to test.

The alternate representation as in equation (3.1.2) can be used for any distribu-

tion without calculating the mixture distribution as in Theorem 3.1.1. However, for

simplicity, we will use the standard uniform distribution when making comparisons.



Chapter 3.2 - Inference 49

Results for different distributions will be similar.

Using the sampling design from Table 1.21, we consider the following two scenarios.

This censoring scheme will be referred to as the “Base” scheme.

First consider the gain in SCMP if we were to have observed an individual complete

sample. Samples 1-4, or samples 5-6 would yield the same results, so we only consider

sample 1, or sample 5 being complete. If we look at the first plot in Figure 3.1(a), we

see the SCMP for the three cases, higher is better. The second plot shows the gains

over the base case, in this regard, lower is better. Clearly there is a modest rise in

SCMP. Observing all failures in sample 5 is mildly better than sample 1. However,

this it because two more items are observed, as only the maximum observation in

each sample can affect the SCMP.

We can see that observing even one additional failure, can have appreciable gains

on the SCMP.

Next we consider the gain of the base case to the equivalent one-sample schemes2

and two-sample schemes3. Again the first plot in Figure 3.1(b) represents the SCMP

for all three schemes. Here the gains are very noticeable. In the second plot we can

see that the two-sample scheme has a marked improvement, but the base scheme has

a very large gain. Furthermore, the peak gain is at a higher level.

We can see in this specific case that there is a significant gain in the maximum

coverage probability after accounting for the expected time to test.

1~n = (10, 10, 10, 10, 10, 10), ~r = (9, 9, 9, 9, 8, 8)
2n = 60, r = 52
3~n = (30, 30), ~r = (26, 26)
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Figure 3.1: Gains in maximum coverage probabilities for upper quantiles

(a) SMCP for the original 6 sample (base) censoring scheme, SMCP for scheme with Sample 1 (or 2-4)
complete, SMCP for scheme with Sample 5 (or 6) complete, and of the difference of the base case over
each.
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(b) SMCP for equivalent proportion, one-sample scheme (r=52,n=60), two-sample scheme, base case, and
the difference of one-sample case over the base case and the one-sample case over the two-sample case.

0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Quantile

One sample scheme
Two sample scheme  
Base scheme

0.75 0.80 0.85 0.90 0.95 1.00

−
0.

6
−

0.
4

−
0.

2
0.

0

Quantile

One−sample − Base
One−sample − Two−sample     



Chapter 3.2 - Inference 51

Table 3.1 shows the MCP for various upper quantiles, and various censoring

schemes. The “pooled” censoring scheme is based on pooling the first two samples,

first three samples, and so on up to all six samples. The “normal” censoring scheme

is a single type-II censored sample with an equivalent amount of overall censoring as

the pooled sample. While all confidence levels are somewhat low (as compared to

the typical 95% desired), we can notice some interesting points. One can see that

n, ṙ type 0.70 0.75 0.80 0.85 0.90 0.95 0.975 0.99
20, 18 Normal 0.965 0.909 0.794 0.595 0.323 0.075 0.013 0.001

Pooled 0.978 0.940 0.859 0.704 0.458 0.165 0.049 0.009
30, 27 Normal 0.991 0.963 0.877 0.678 0.353 0.061 0.006 <0.001

Pooled 0.997 0.985 0.947 0.839 0.601 0.237 0.072 0.013
40, 36 Normal 0.997 0.984 0.924 0.737 0.371 0.048 0.003 <0.001

Pooled 0.999 0.996 0.980 0.912 0.706 0.303 0.095 0.017
50, 44 Normal 0.998 0.981 0.897 0.639 0.230 0.012 <0.001 <0.001

Pooled 0.999 0.998 0.986 0.928 0.727 0.311 0.096 0.017
60, 52 Normal 0.998 0.979 0.873 0.555 0.142 0.003 <0.001 <0.001

Pooled 0.999 0.999 0.991 0.941 0.746 0.318 0.098 0.017

Table 3.1: Coverage Probabilities of (−∞, Xṙ:n) vs. (−∞, Z(ṙ))

the MCP for the pooled scheme is higher as expected. Furthermore, we can notice

that the pooled sample MCP is monotonic in the number of samples. Clearly adding

an additional sample can not reduce the coverage probability. However in the one-

sample case, a larger sample reduces the variability of the sample maximum around

the limiting quantile (πb = lim rb/nb). So that the MCP goes to 1 if the quantile is

below πb, and 0 if the quantile is above πb.
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Minimal Width Confidence Intervals

Since we are working in a distribution free setting, we can not ascertain a priori the

minimal width interval (Z(i1), Z(i2)). However we can consider the shortest interval in

terms of indices, namely minimizing i2 − i1. The problem is to find indices i1 and i2

such that P (Z(i1) ≤ ξp ≤ Z(i2)) ≥ α and is of minimal width. Typically one would

choose α = 0.95; however, due to the discrete nature of the problem exactly 100α%

is likely impossible.

As the mixture representations can become computationally intensive for larger

sample sizes, or for a large number of samples, Balakrishnan et al. (2010a) suggest

a branching algorithm to reduce the number of computations necessary. Unless oth-

erwise stated, in this paper all confidence, prediction, and tolerance intervals are of

“minimal-width”.

3.2.2 Tolerance Intervals

As stated in Section 2.2, one-sided tolerance intervals are equivalent to confidence

intervals for a population quantile. So the intervals (−∞, Z(i)) and (Z(i),∞), which

have probability P (F (Z(i)) ≥ γ) and P (F (Z(i)) ≤ 1−γ) respectively, can be rewritten

as P (Z(i) ≥ ξγ) and P (Z(i) ≤ ξ1−γ).

For a two-sided tolerance interval of the form (Z(i1), Z(i2)), for 1 ≤ i1 < i2 ≤ ṙ
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such that we wish to contain 100γ% of the population, the coverage probability is

P (F (Z(i2))− F (Z(i1)) ≥ γ) =
∑
i1≤l1

∑
i2+i1−l1≤l2

qi2l2i1l1
P (F (Xl2:n)− F (Xl1:n) ≥ γ)

=
∑
i1≤l1

∑
i2+i1−l1≤l2

qi2l2i1l1
P (F (Xl2−l1:n) ≥ γ)

=
∑
i1≤l1

∑
i2+i1−l1≤l2

qi2l2i1l1

l2−l1−1∑
l=0

(
n

l

)
γl(1− γ)n−l.

Here, qi2l2i1l1
is the mixture weight from Theorem 3.1.8. The latter two equalities follow

from equation (2.2.1).

3.2.3 Prediction Intervals

We can consider nonparametric prediction intervals for failures from future indepen-

dent samples. We denote the future sample as W = {W1:l:T , . . . ,Wt:t:T}, and which

may be a complete sample, type-II censored sample, or progressively type-II censored

sample.

We can obtain the exceedance probability for a single order statistics Wl:t:T (1 ≤

l ≤ t), as

P (Z(i) ≤ Wl:t:T ) =
n∑
k=1

qikP (Xk:n ≤ Wl:t:T ).

Here, qik represents the mixture weights from Theorem 3.1.1.

In the case of a type-II censored sample or complete sample we can express this
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further as

P (Z(i) ≤ Wl:T ) =
n∑
k=1

qik
∑
κ≤l−1

(
T
κ

)(
n

k+l−κ−1

)(
n+T
k+l−1

) . (3.2.2)

When W is a progressively type-II censored sample we can use the mixture repre-

sentation from Guilbaud (2001) or Guilbaud (2004) to represent Wl:t:T as a mixture

of the usual order statistics. We then obtain the following.

P (Z(i) ≤ Wl:t:T ) =
n∑
k=1

qikP (Xk:n ≤ Wl:t:T )

=
n∑
k=1

qik

T∑
k′=0

q′k′lTP (Xk:n ≤ W ′
k′:T )

=
n∑
k=1

qik

T∑
k′=0

q′k′lT
∑

κ≤k′−1

(
T
κ

)(
n

k+k′−κ−1

)(
n+T

k+k′−1

) . (3.2.3)

Where q′k′lT are the mixture weights representing Wl:t:T as a mixture of the usual

order statistics. Rather than represent Wl:t:T as a mixture of regular order statistics,

the probability P (Xk:n ≤ Wl:t:T ) can alternatively be calculated for example, as an

exceedance probability between and order statistic and a progressive Type-II order

statistic (see Bairamov and Eryilmaz, 2006).

In a similar manner we can also calculate the following

P (Wl:t:T ≤ Z(i)) = 1− P (Z(i) ≤ Wl:t:T ),

P (Z(i1) ≤ Wl:t:T ≤ Z(i2)) = P (Z(i1) ≤ Wl:t:T )− P (Z(i2) ≤ Wl:t:T ).

For obtaining the probability of at least λ values from W fall in-between two
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pooled order statistics, let us consider the following. For 1 ≤ i1 < i2 ≤ ṙ and

1 ≤ l1 < l2 < T ,

P (at least λ W’s ∈ (Z(i1), Z(i2))) =
n−1∑
k1=1

n∑
k2=k1+1

qi2k2i1k1
P (at least λ W’s ∈ (Xk1:n, Xk2:n)).

When W is a complete sample, using equation (2.3.2), we can express this as

P (at least λ W’s ∈ (Z(i1), Z(i2))) =
ṙ−1∑
k1=1

ṙ∑
k2=k1+1

qi2k2i1k1
P (at least λ W’s ∈ (Xk1:n, Xk2:n))

=
ṙ−1∑
k1=1

ṙ∑
k2=k1+1

qi2k2i1k1

T∑
j=λ

m−j∑
i=0

(
i+k1−1

i

)(
j+k2−k1−1

j

)(
T+n−k2−i−j

T−i−j

)(
T+n
n

) . (3.2.4)

If one wishes a particular group of order statistics from W to be in this interval,

simply extract the appropriate portion from the inner summand.

When W is a type-II censored sample, using equation (2.3.3) instead of equation

(2.3.2) as above, will yield the desired results.

Finally, when W is a progressively type-II censored sample, we can express the

joint distribution of {Wi:t:T ,Wi+1:t:T ,Wi+j:t:T ,Wi+j+1:t:T} as a mixture of (1,2,3, or 4)

the usual order statistics depending on i and j. Alternatively one can use the results

of Ng and Balakrishnan (2005).
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3.2.4 Miscellaneous results

Here we present some results regarding the asymptotic nature of pooled order statis-

tics. However, we first need to define what we mean by asymptotic means as either

the sample sizes nb or the number of samples B, can become large.

The former case includes the typical one-sample scenario. We can obtain the

following result.

Proposition 3.2.1 Suppose that B is fixed, and let us define πb = limnb→∞
rb
nb

and

0 < π∗ = maxb πb < 1. Then as nb →∞, ∀j, we have

F (Z(ṙ))
p→ π∗.

Proof: For every sample, we note that Xrb:nb

p→ ξπb as nb → ∞. Thus for every

δ > 0 and ε > 0, ∃ an Nb which depends on ε and δ, such that when nb > Nb,

P (|Xrb:nb − ξπb| < δ) ≥ 1− ε.

We then consider the distribution of Z(ṙ). For all nb > maxbNb, we have

P (Z(ṙ) ≤ ξπ∗ + δ) =
B∏
b=1

P (Xb,rb:nb ≤ ξπ∗ + δ)

≥
B∏
b=1

P (|Xrb:nb − ξπb| < δ) ≥
B∏
b=1

(1− ε) = (1− ε)B.

Consider partitioning all B samples as follows, samples bo such that πbo = π∗, and
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all other samples ba such that πba < π∗. Then consider the following

P (Z(ṙ) ≤ ξπ∗ − δ) =
B∏
b=1

P (Xb,rb:nb ≤ ξπ∗ − δ)

=
∏
ba

P (Xba,rba :nba ≤ ξπ∗ − δ)
∏
bo

P (Xbo,rbo :nbo ≤ ξπ∗ − δ)

≤
∏
bo

P (Xbo,rbo :nbo ≤ ξπ∗ − δ) ≤
∏
bo

ε ≤ ε.

Finally we have that P (|Z(ṙ) − ξπ∗ | ≤ δ) ≥ (1− ε)B − ε. So F (Z(ṙ))
p→ π∗.

The theorem can easily be extended to the cases π∗ = 0 and π∗ = 1.

We are primarily interested with the case where the number of samples becomes

large. So we obtain a similar result.

Proposition 3.2.2 Given B samples with 1 ≤ nb ≤M <∞ for some M ≥ 1 for all

j, then as B →∞ we have

F (Z(ṙ))
p→ 1.

Proof: Define X∗ = maxbXb,1:nb . Clearly, Z(ṙ) ≥ X∗ surely, as the latter is a subset

of the observed values. Thus trivially, X∗ ≤st Z(ṙ) (where ≤st is a stochastic ordering

such that X ≤st Y ⇔ P (X > x) ≤ P (Y > x)).

Define X̃ as follows. For each sample b with size strictly smaller than M we

observe an additional M − nb items and append it to the b-th sample. Define X̃

as the minimum of the new samples. Thus X̃ ≤ X∗ surely by construction, then

X̃ ≤st X∗. Finally we have X̃ ≤st Z(ṙ) by transitivity. Now clearly X̃ is the minimum
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of B i.i.d., random variables with distribution function FX̃(x) = 1 − (1 − FX(x))M ,

with same support as X. Thus as B → ∞, F̃ (X̃)
p→ 1. So P (F̃ (X̃) > 1 − ε) ≤

P (F (Z(ṙ)) > 1 − ε) ≤ 1 and by the squeeze theorem P (F (Z(ṙ)) > 1 − ε) → 1 as

desired.

Remark 3.2.3 An alternate proof of Proposition 3.2.2 can be given, using the rep-

resentation of Z(ṙ) as in equation (3.1.2).

Proposition 3.2.2 suggests that additional samples will enable the estimation of

any quantile, with any desired precision, given that we are able to take enough samples

of bounded size. Whereas Proposition 3.2.1 suggests that in a fixed sample scenario

there is an upper limit to quantiles which we wish to estimate and obtain meaningful

confidence.

There is however a cost in terms of the intervals we make. Since pooling spreads

out the sample, at larger sizes (i.e., as n→∞) the confidence intervals for quantiles

may be narrower in the fixed sample case as opposed to the increasing sample case.

Another issue one needs to consider is that convergence in probability of the

pooled order statistics to a constant, which may not be guaranteed for some sampling

schemes. Consider the following example, we will also assume a uniform distribution

for simplicity as a probability integral transformation can give us the uniform distri-

bution. Observe B samples, and in the b-th sample, observe only the first failure of b

items. The distribution function for the maximum can be represented as in equation
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(3.1.2).

P (Z(ṙ) ≤ ε) = P (Z(B) ≤ ε) =
B∏
b=1

P (Xb,1:b ≤ ε) =
B∏
b=1

(1− P (Xb,1:b ≥ ε))

=
B∏
b=1

(1− (1− ε)b) B→∞−→
∞∏
b=1

(1− (1− ε)b) = (1− ε)∞

Where (q)∞ is the q-pochhammer function. See Andrews et al. (1999) for more

information on the q-pochhammer function.

Thus some care must be taken when designing experiments using multiple type-II

censored samples.

Bounding the sample size is sufficient though not a necessary condition to ensure

that Zṙ → 1 in probability.

3.3 Motivating Example Revisited

In this section we consider the motivating example from Table 1.2.

Using all six samples, the confidence interval for the 80% quantile is [2.75, 5.55],

which has 95.9% confidence. Given the original complete data as in Table 1.1, and

treating it as one sample with equivalent proportion of censoring the best possible

interval would include the whole range of the data. The interval would be [0, 4.75]

and with confidence level 87.3%. If we wished to obtain a 95% confidence interval for

this quantile under a one-sample scenario, we would have had to observe two more

additional failures of the total 60 units. The resultant confidence interval would be
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95% Pred. Int. Max 2-sided 1 width int. Max 1-sided 1 width int.
l L (i) U (j) L (i) U (i+ 1) Prob L (i) U (i+ 1) Prob
1 F−1(0) 0.82 (17) 0.00 (1) 0.02 (2) 0.124 F−1(0) 0.00 (1) 0.143
2 0.00 (1) 1.63 (28) 0.31 (6) 0.49 (7) 0.060
3 0.02 (2) 2.06 (33) 0.70 (13) 0.71 (14) 0.047
4 0.18 (4) 2.24 (39) 1.08 (20) 1.13 (21) 0.042
5 0.50 (8) 3.17 (44) 1.56 (27) 1.63 (28) 0.040
6 0.80 (16) 4.03 (50) 2.10 (34) 2.12 (35) 0.040
7 1.13 (21) 5.55 (52) 2.57 (41) 2.75 (42) 0.045
8 1.63 (28) F−1(1) 3.97 (49) 4.03 (50) 0.062
9 2.12 (35) F−1(1) 5.13 (51) 5.55 (52) 0.124 5.55 (52) F−1(1) 0.183

10 2.80 (43) F−1(1) 5.13 (51) 5.55 (52) 0.153 5.55 (52) F−1(1) 0.501

Table 3.2: Prediction intervals for individual order statistics Wl:10

[2.75, 5.55] and would have confidence of 95.8%. The total time to test would have

been the same, but we would have had to fail two more items with no additional

benefit.

This suggests that when the limiting issue is number of items failed, pooling

samples can be beneficial.

Balakrishnan et al. (2001) develops exact inference in the case or multiple progres-

sively type-II censored samples from the exponential distribution. It is well known

that the MLE of the scale parameter ϑ, is ϑ∗ = (1/ṙ)
∑B

b=1[
∑rb

k=1Xb,k:nb + (nb −

rb)Xb,rb:nb ]. Thus, the MLE of the quantile ξp is ξ̂p = −ϑ∗ ln(1− p). ϑ∗ is the sum of

independent increments which are exponential, so that the normalized sum, 2ṙϑ∗/ϑ

has χ2 distribution with 2ṙ degrees of freedom.

Thus using all six samples we can obtain a two-sided 95.9% confidence interval for

the 80% quantile as [3.01, 5.31]. The point estimate is 3.92. This is narrower than the

nonparametric confidence interval, as expected, but the difference is not immense.

In Table 3.2 we can see various prediction intervals for all order statistics from
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a future independent sample of size 10. The number in the parenthesis next to the

time to failure, represents which pooled order statistic it is.

The first part of the table gives the 95% prediction interval. In the cases of many

of the extreme order statistics, these are one-sided intervals.

The second part gives the two-sided interval of width one, that has the highest

confidence level, and its corresponding probability. One can note that the extreme

order statistics will likely be pushed towards the boundaries, so that the confidence

level is higher for the one-width interval.

The third part of the table gives the one-sided one-width interval with the highest

confidence when it is higher than the two-sided, one-width interval in the second part.

The corresponding probability is included as well. One can note that if we added a

complete sample of size 10, the largest value has greater than a 50% chance of being

the maximum as we have censored all the previous sample maximums. We can also

note that there are several one-sided intervals, particularly in the upper extremes. If

we wish to reduce this width, one would need to take additional samples.

The one-width prediction intervals are of interest for making point estimates. One

could use any point in the interval as a point estimate; a common choice would be the

mean. This can be done likewise for confidence intervals for quantile. Considering

Table 3.2, we could use 2.11 as a point estimate for the 6-th order statistic of a future

sample of size 10. The center of the 95% prediction interval is 2.41, much higher.



Chapter 4

Multiple Doubly Type-II Censored

Samples

In this chapter we consider a natural extension of the scenario considered in Chapter

3 to the case of multiple independent doubly Type-II censored samples. We denote

again nb the sample size of the b-th sample, where 1 ≤ b ≤ B, and rb to be the number

of observed failures. We denote rUb to be the number of right (or upper) censored

items, and rLb to be the number of left (or LOWER) censored items. These are all

non-negative integers and rUb + rb + rLb = nb.

When rLb = 0 for b = 1, . . . , B, then this becomes the case of Type-II right

censoring considered previously in Chapter 3. Given the mixture representations in

this chapter, inference for multiple doubly Type-II censored samples is the same as

given in Section 3.2.

62
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4.1 Distributional Representations

We first discuss the simpler case of two samples which was not considered in Balakr-

ishnan et al. (2010b). The representations are much simpler for the same reasons as

in Type-II right censoring. That is, given that one item is the i-th pooled OS, then

the number of observed failures from the other sample above and below Z(i) is fixed.

4.1.1 Two-Samples

Suppose we have two independent doubly Type-II censored samples. For simplicity,

we will order the samples by observed size, i.e., 1 ≤ r1 ≤ r2. Let us denote

wbi,k =

(
i−1
k−1

)(
n−i
nb−k

)(
n
nb

) =
nb
n

(
nb−1
k−1

)(
n−nb
i−k

)(
n−1
i−1

) ; (4.1.1)

here, b = 1, 2 indexes the samples. If b = 1, then the numerator of the first part counts

the number of orderings of all items such that X2,i−k:n2 < X1,k:n1 < X2,i−k+1:n2 . We

again use the convention that Xb,0:nb = ξ0 and Xb,nb+1:nb = ξ1.

Marginal Distribution of a pooled OS

Consider the marginal distribution P (Z(i) ≤ ξp), where ξp is the p-th population

quantile. Then, we have the following result.
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Proposition 4.1.1 For any 0 < p < 1 we have

P (Z(i) ≤ ξp) =
i∑

j=1

[
w1
i+rL1 +rL2 ,r

L
1 +j + w2

i+rL1 +rL2 ,r
L
2 +j

]
Fi+rL1 +rL2 :n(ξp)

+

rL2 −1∑
j=0

w1
i+rL1 +j,i+rL1

Fi+rL1 +j:n(ξp) +

rL1 −1∑
j=0

w2
i+rL2 +j,i+rL2

Fi+rL2 +j:n(ξp)

when 1 ≤ i ≤ r1,

P (Z(i) ≤ ξp) =

[
r1∑
j=1

w1
i+rL1 +rL2 ,r

L
1 +j +

i∑
j=i−r1

w2
i+rL1 +rL2 ,r

L
2 +j

]
Fi+rL1 +rL2 :n(ξp)

+

rU1∑
j=1

w2
i+rL1 +rL2 +j,i−r1+rL2

Fi+rL1 +rL2 +j:n(ξp) +

rL1 −1∑
j=0

w2
i+rL2 +j,i+rL2

Fi+rL2 +j:n(ξp)

when r1 < i ≤ r2, and

P (Z(i) ≤ ξp) =

[
r1∑

j=i−r2

w1
i+rL1 +rL2 ,r

L
1 +j +

r2∑
j=i−r1

w2
i+rL1 +rL2 ,r

L
2 +j

]
Fi+rL1 +rL2 :n(ξp)

+

rU2∑
j=1

w1
i+rL1 +rL2 +j,i−r2+rL1

Fi+rL1 +rL2 +j:n(ξp) +

rU1∑
j=1

w2
i+rL1 +rL2 +j,i−r1+rL2

Fi+rL1 +rL2 +j:n(ξp)

when r2 < i ≤ r1 + r2.

Contrasting Corollary 3.1.6, it is evident that there is no i such that the pooled

order statistic Z(i) is equal in distribution to a single order statistic when both samples

have left and right censoring.
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4.1.2 Multiple Samples

We now consider the case of multiple independent samples.

Marginal Distribution of a pooled OS

As with equation (3.1.1), we can write the distribution function of Z(i) as follows,

P (Z(i) ≤ ξp) =
B∑
b=1

rLb +r
b∑

k=rLb +1

P (Z(i) = Xb,k:nb ≤ ξp). (4.1.2)

For any permutation of all the items and from all samples such that Z(i) = Xb,k:nb ,

some samples will have all of the observed and some right censored items below

Z(i). For this permutation, we say that these samples are in {b′U}. Conversely, some

samples will have all observed and some left censored items above Z(i) (these samples

are in {b′L}). The remaining samples would be have all left/right censored samples

below/above Z(i) (these samples are in {b′′}).

In this way, we have assigned groups for each permutation of the n observed

and unobserved failure times, based on the position of the left/right censored items

relative to Z(i) = Xb,k:nb .

Let us define the weight function W as

Wb,k,{b′},C,` =
nb
n

(
nb−1
k−1

)(
n−1
`−1

) ∏
j∈{b′U}

(
nj

rLj + rj + cUj

) ∏
j∈{b′L}

(
nj
cLj

) ∏
j∈{b′′}

(
nj

rLj + cj

)
,

which in the appropriate context is a weighted multivariate hypergeometric probabil-
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ity and can be re-written so it appears in Section 3.1. This can be seen to collapse

to the same weight function as in Section 3.1 when rLb = 0 for all b.

Then, we have the following result.

Theorem 4.1.2 For any 1 ≤ i ≤ ṙ and 0 < p < 1, the marginal distribution of Z(i)

can be expressed as

P (Z(i) ≤ ξp) =
B∑
b=1

rLb +rb∑
k=rLb +1

∑
σ{b′}

∑
C

Wb,k,{b′},C,` F`:n(ξp)

where

` = i+ rLb + ṙL{b′U} + ċU{b′U} + ċL{b′L} + ṙL{b′′}

and

C=


(c1, . . . , cb−1, cb+1, . . . , cB) : ċ{b′′} = i− k + rLb − ṙ{b′U}

1 ≤ cj ≤ rUj ∀ j ∈ {b′U}, 0 ≤ cj ≤ rLj ∀j ∈ {b′L}, 0 ≤ cj ≤ rj ∀j ∈ {b′′}

 .

For proof we refer to the proof of Theorem 3.1.1. The Theorem follows from a similar

argument.

When considering the marginal distribution of Z(i), necessary and sufficient con-

ditions for {b′L} and {b′U} to be valid are that 0 ≤ i − k + rLb − ṙ{b′U} ≤ ṙ{b′′}. When

ṙA < i− k+ rLb , no valid partition of A will exist, and so P (Xb,k:nb = Z(i)) = 0 in this

case.
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Remark 4.1.3 Alternate simpler representations for Z(1), Z(ṙ) are as follows

P (Z(1) ≤ ξp) = 1−
B∏
b=1

(1− FrLb +1:nb
(ξp)) P (Z(ṙ) ≤ ξp) =

B∏
b=1

FrLb +rb:nb(ξp)

These alternate representations become useful when calculating the maximum

coverage probability for some given scheme.

Remark 4.1.4 Instead of Theorem 4.1.2, one can use the results of Theorem 3.1.1

(along with Corollary 3.1.7) when 1 ≤ i ≤ minb rb and ṙ −minb rb <≤ i ≤ ṙ, as the

sets {b′U} and {b′L} respectively will necessarily be empty.

It may be more practical for large i to obtain the mixture distribution of Z(i)

analogous to what is done in Corollary 3.1.7. Namely, reversing the schemes so that

left and right censoring switch, and considering the mixture distribution of Z(ṙ−i+1),

then reversing appropriately again. This should prove to be more efficient in terms of

computation. A similar idea will work with the joint distribution of two pooled OS.
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Joint Distribution of two pooled OS

To obtain a similar result for the bivariate distribution, we can again partition the

sample space (up to a set of measure 1) as

P (Z(i1) ≤ p1, Z(i2) ≤ p2) =
B∑
b=1

∑
rLb +1≤k1<k2≤rLb +rb

P (Xb,k1:nb = Z(i1) ≤ p1, Xb,k2:nb = Z(i2) ≤ p2)

+
∑
bo 6=b

B∑
b=1

rLbo+rbo∑
k1=rLbo+1

rLb +rb∑
k2=rLb +1

P (Xbo,k1:nbo = Z(i1) ≤ p1, Xb,k2:nb = Z(i2) ≤ p2)

for any 1 ≤ i1 < i2 ≤ ṙ and 0 < p1 < p2 < 1. When p1 ≥ p2 the bivariate distribution

reduces to the marginal distribution of Z(i2).

For any permutation of the items such that Z(i1) = Xbo,k1:nbo and Z(i2) = Xb,k2:nb ,

we can define {b′L}/{b′U} as in the marginal case using Z(i2)/Z(i1) as the cutoff in-

stead. We require extra condition that all right/left censored items fall above/below

Z(i1)/Z(i2). Then define {b′L1} and {b′U1} as the subsets of {b′L} and {b′U}, such that

the first/final observed value falls above/below Z(i1)/Z(i2).

Additionally, however, some samples may have left censored items above Z(i1) and

right censored items below Z(i2). So, these samples can be labeled as {b′UL}. The

remaining samples are again labeled as {b′′}.

For brevity, we define W as

W`1,`2,{h},{l},{m} =

(
`1−1

h1,...,hB

)(
`2−`1−1
l1,...,lB

)(
n−`2

m1,...,mB

)(
n

n1,...,nB

) .
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Then, we have the following result.

Theorem 4.1.5 For any 1 ≤ i1 < i2 ≤ ṙ and 0 < p1 < p2 < 1, we have the joint

distribution of Z(i1) and Z(i2) as follows:

P (Z(i1) ≤ ξp1 , Z(i2) ≤ ξp2) =
B∑
b=1

rLb +rb−1∑
k1=rLb +1

rLb +rb∑
k2=k1+1

∑
σ{b′}

∑
C1

W1
`11,`

1
2,...
Fl11,l12:n(ξp1 , ξp2)

+
B∑
b=1

∑
bo 6=b

rLbo+rbo∑
k1=rLbo+1

rLb +rb∑
k2=rLb +1

∑
σ{b′}

∑
C2

W2
`21,`

2
2,...
Fl12,l22:n(ξp1 , ξp2),

where

`11 = i1 + rLb + ṙL{b′U}
+ ċUj1,{b′U1}

+ ċLj1,{b′UL}
+ ṙL{b′L}

− ċLj1,{b′L1}
− ċLj2,{b′L} + ṙL{b′′},

`12 = i2 + rLb + ṙL{b′U}
+ ċUj1,{b′U1}

+ ċUj2,{b′U}
+ ṙL{b′UL}

+ ṙU{b′UL}
+ ċUj2,{b′UL}

+ ṙL{b′L}
− ċj1,{b′L} + ṙ{b′′},

`21 = `11 + rLbo + min(0, cb − rLb ),

`22 = `12 + max(rLbo , cbo − rbo + k1)

and the constraint for the sum is

C1 =



{(cj1 , cj2)}j 6=b : 0 ≤ cb ≤ k2 − 1, 0 ≤ cb ≤ nb − k1,

ċj1,{b′′} = i1 − (k1 − rLb )− ṙ{b′U1} − ċj1,{b′U2},

ċj2,{b′′} = (i2 − i1)− (k2 − k1)− ṙ{b′UL} − (ṙ{b′U2} − ċj1,{b′U2})− (ṙ{b′L2} − ċj1,{b′L2}),

. . .


,

C2 =



{(cj1 , cj2)}j 6=b,bo : 0 ≤ cb ≤ k2 − 1, 0 ≤ cbo ≤ nbo − k1

ċj1,{b′′} = i1 − (k1 − rLbo)−max(0, cb − rLb )− ṙ{b′U1} − ċj1,{b′U2},

ċj2,{b′′} = (i2 − i1)− [k2 − rLb −max(0, cb − rLb )]−min(cbo , rbo − k1 + rLbo)− ṙ{b′UL}

−(ṙ{b′U2} − ċj1,{b′U2})− (ṙ{b′L2} − ċj1,{b′L2}), . . .


,
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with the restrictions common to both C’s being

· · · =



0 ≤ cUj1 ≤ r
U
j , 0 ≤ cUj2 ≤ r

U
j , 1 ≤ cUj1 + cUj2 ≤ r

U
j ∀j ∈ {b′U1},

0 ≤ cj1 ≤ rj − 1, 1 ≤ cUj2 ≤ r
U
j ∀ j ∈ {b′U2},

0 ≤ cLj1 ≤ r
L
j , 0 ≤ cLj2 ≤ r

L
j , 1 ≤ cLj1 + cLj2 ≤ r

L
j ∀j ∈ {b′L1},

0 ≤ cj1 ≤ rj − 1, 1 ≤ cLj2 ≤ r
L
j ∀ j ∈ {b′L2},

0 ≤ cLj1 ≤ r
L
j − 1, 0 ≤ cUj,2 ≤ rUj − 1 ∀ j ∈ {b′UL}, 0 ≤ cj1 + cj2 ≤ rj ∀j ∈ {b′′}



.

The remaining arguments for W1
{...} are

{h} =



k1−1
{rLj +rj+c

U
j1
},j∈{b′U1}

{rLj +cj1},j∈{b
′
U2}

{cLj1},j∈{b
′
UL}

{rLj −c
L
j1
−cLj2},j∈{b

′
L1}

{rLj −c
L
j2
},j∈{b′L2}

{rLj +cj1},j∈{b
′′}


, {l} =



k2−k1−1
{cUj2},j∈{b

′
U1}

{rj−cj1+c
U
j2
},j∈{b′U2}

{nj−cLj1−c
U
j2
},j∈{b′UL}

{cLj2},j∈{b
′
L1}

{rj−cj1+c
L
j2
},j∈{b′L2}

{cj2},j∈{b
′′}


, {m} =



nb−k2
{rUj −c

U
j1
−cUj2},j∈{b

′
U1}

{rUj −c
U
j2
},j∈{b′U2}

{cUj2},j∈{b
′
UL}

{rj+rUj +cLj1
},j∈{b′L1}

{rUj +cj1},j∈{b
′
L2}

{rUj +rj−cj1−cj2},j∈{b
′′}


,

and for W2
{...}

{h} =



k1−1
cb

{rLj +rj+c
U
j1
},j∈{b′U1}

{rLj +cj1},j∈{b
′
U2}

{cLj1},j∈{b
′
UL}

{rLj −c
L
j1
−cLj2},j∈{b

′
L1}

{rLj −c
L
j2
},j∈{b′L2}

{rLj +cj1},j∈{b
′′}


, {l} =



cbo
k2−cb−1

{cUj2},j∈{b
′
U1}

{rj−cj1+c
U
j2
},j∈{b′U2}

{nj−cLj1−c
U
j2
},j∈{b′UL}

{cLj2},j∈{b
′
L1}

{rj−cj1+c
L
j2
},j∈{b′L2}

{cj2},j∈{b
′′}


, {m} =



nbo−k1−cbo
nb−k2

{rUj −c
U
j1
−cUj2},j∈{b

′
U1}

{rUj −c
U
j2
},j∈{b′U2}

{cUj2},j∈{b
′
UL}

{rj+rUj +cLj1
},j∈{b′L1}

{rUj +cj1},j∈{b
′
L2}

{rUj +rj−cj1−cj2},j∈{b
′′}


.

We again refer to Section 3 for the proof.

For the necessary and sufficient conditions for each partition to be valid, we need

to consider the cases bo = b and bo 6= b separately.

When b = bo, necessary and sufficient conditions for {b′L}, {b′L1}, {b′U}, {b′U1}, and



Chapter 4.1 - Distributional Representations 71

{b′UL} to be valid are as follows:

0 ≤ i1 − (k1 − rLb )− ṙ{b′U1} − CU2,

0 ≤ (i2 − i1)− (k2 − k1)− ṙ{b′UL} − (ṙ{b′U2} − CU2)− (ṙ{b′U2} − CL2),

ṙ{b′′} ≥ i2 − (k2 − rLb )− ṙ{b′U} − ṙ{b′UL} − (ṙ{b′U2} − CL2)

for some 0 ≤ CU2 ≤ ṙ{b′U2}− size{b′U2} and 0 ≤ CL2 ≤ ṙ{b′L2} - size{b′L2}. When

0 ≤ i1 − k1 + rLb , 0 ≤ (i2 − i1)− (k2 − k1), i2 − k2 + rLb ≤ ṙA,

such a partition is guaranteed to exist; if one of those conditions fail, then P (Z(i1) =

Xb,k1:nb , Z(i2) = Xb,k2:nb) = 0.

When b 6= bo, necessary and sufficient conditions for {b′L}, {b′L1}, {b′U}, {b′U1}, and

{b′UL} to be valid are as follows:

0 ≤ i1 − k1 + rLbo − Cb + rLb − ṙ{b′U1} − ṙ{b′U2} + CU2,

0 ≤ i2 − i1 − k2 + Cb − ṙ{b′UL} − CU2 − CL2,

ṙ{b′′} ≥ i2 − k2 − k1 + rLb + rLbo − ṙ{b′U} − ṙ{b′UL} − CL2

for some rLb ≤ Cb ≤ rLb + rb − 1, 0 ≤ CU2 ≤ ṙ{b′U2}− size{b′U2} and 0 ≤ CL2 ≤ ṙ{b′L2}−
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size{b′L2}. When

0 ≤ i1 − k1 + rLbo − Cb 0 ≤ (i2 − i1)− (k2 − rLb − Cb) i2 − k2 + rLb − rbo ≤ ṙA

for some 0 ≤ Cb ≤ k2 − rLb − 1, such a partition is guaranteed to exist; if one of these

conditions fail, then P (Z(i1) = Xbo,k1:nbo , Z(i2) = Xb,k2:nb) = 0.

Joint Distribution of pooled OS

The joint distribution of the pooled OS can be given as in Proposition 3.1.10 or

3.1.14, but not Proposition 3.1.12. These representations can also be used to obtain

the joint distribution of any number of pooled OS. However, this will typically not

be computationally feasible, except when pooling only a few samples.

4.2 Computational Algorithm

Here, we will present a basic algorithm for the calculation of the marginal mixture

weights and then demonstrate it with a simple example.

Figure 4.1 shows the simple algorithm. Here k++ and b++ indicate incrementing

by 1. First one sorts by increasing observation sizes (i.e., sort by rb), and then within

this by lower censoring, and then upper censoring. This groups identical samples and

allows terminating earlier without checking all possible {b′L} or {b′U}.

For the purpose of this algorithm, incrementing {b′U} means choosing its successor
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in any way such that ṙ{b′U,old} ≤ ṙ{b′U,new}, with equality necessary if there is some

other set of samples which have not been used, such that the previous equality holds.

Otherwise, choose any set of samples such that ṙ{b′U,new} is a minimum and the above

inequality holds. {b′L} is chosen in the same way from A \ {b′U}.

While not shown in Figure 4.1, one can reduce the number of iterations by weight-

ing. This is done by counting the number of exchangeable subsets. As an example,

assume B samples are identical. If the size of {b′U} is l, there are
(
B−1
l

)
exchangeable

subsets in σ{b′} that are exchangeable with size l. One would then need to calculate

only the weights with the first l samples in A, then multiply each weightW by
(
B−1
l

)
.

Other similar improvements can be made, but we describe only the simple algorithm

in Figure 4.1 for clarity.

4.2.1 An Example

Consider the following simple example. Suppose we have three identical doubly Type-

II censored samples with nb = 4, rLb = 1, rUb = 1, and rb = 2 for b = 1, 2, 3. Let us

consider the marginal distribution of the third pooled order statistic Z(3). Below, we

represent a censored item with ◦ for ease in notation.

Table 4.1 shows the partitions that would appear as in the algorithm applied

to this sample, along with the class of permutations. Although we could omit the

exchangeable samples by including extra weights, everything is shown for the sake of

clarity. The order statistic and the mixture probabilities corresponding to that group
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of permutations is given as well.

Since all samples are identical, we only need to consider b = 1 for the outermost

sum. Since 0 ≤ i− k + rL1 = 3− 2 + 1 = 2 ≤ ṙA, P (Z(3) = X1,2:4) > 0, we proceed as

in Table 4.1a.

Next, since 0 ≤ i− k+ rL1 = 3− 3 + 1 = 1 ≤ ṙA, P (Z(3) = X1,3:4) > 0, we proceed

as in Table 4.1b.

Finally, we add up the probabilities that the 3-rd pooled order statistic is the 5-th,

6-th, or 7-th out of 12 as given in the first and second columns; then we multiply

these by 3 since the samples have identical censoring schemes. In this way, the

mixture weights are finally found to be (0.18182, 0.76623, 0.05195), corresponding to

the mixture representation Z(3)
d
= 0.18182X5:12 + 0.76623X6:12 + 0.05195X7:12.

4.3 Simulation Results

A large number of samples, high censoring, or large samples, can lead to the computa-

tions being extremely computationally intensive and also demanding heavy memory

usage. Furthermore, when the samples are not exchangeable, then the computations

can not be simplified in any meaningful way. In such situations, one may instead

simulate the mixture weights. Obtaining the weights in this way has two advantages.

Direct simulation can allow the calculation of all mixture weights for all marginal

and bivariate distributions of interest simultaneously. Furthermore, when calculating

coverage probabilities, errors are dampened if an increase/decrease at the i-th weight
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Prob. OS {b′U} {b′L} ◦ X1,2:4 X1,3:4 ◦

0.03463 6:12

{∅}

{∅}

◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.07792 6:12
◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.03463 6:12
◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.01212 5:12 {2} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.01212 5:12 {3} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.00866 7:12
{2}

{∅} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.00216 6:12 {3} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.00866 7:12
{3}

{∅} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.00216 6:12 {2} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

(a) b = 1, k = 2, i.e., Z(3) = X1,2:4

Prob. OS {b′U} {b′L} ◦ X1,3:4 X1,3:4 ◦

0.05195 6:12

{∅}

{∅}

◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.05195 6:12
◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.01818 5:12 {2} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

0.01818 5:12 {3} ◦ X2,2:4 X2,3:4 ◦
◦ X3,2:4 X3,3:4 ◦

(b) b = 1, k = 3, i.e., Z(3) = X1,3:4

Table 4.1: Algorithm as applied to the example in Section 4.2.1
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is moved to a “nearby” weight.

In Figure 4.2, we compare the exact coverage probability for (−∞, Z(3)) for the

quantiles 0.2 < p < 0.8 to the mean of 1000 simulations where the coverage probability

is exact given estimated weights. The weights are estimated with a simulation size of

1000.

This is done for the following two schemes; nb = 4/8, rLb = 1/3, rUb = 1/3, and

rb = 2/2 for b = 1, 2, 3. Figures 4.2a and 4.2b show the exact coverage probabilities.

The first is the example from Section 4.2.1, and the second is the same but with

increased upper and lower censoring.

Figures 4.2c and 4.2d show the signed absolute error (SAE), while Figures 4.2e

and 4.2f show the signed relative error (SRE). The dashed lines in each plot con-

tains simulated 98% confidence bands, whereas the solid line is the exact coverage

probability. The mean line and 95% bands were indistinguishable from the exact line.

If we focus on Figures 4.2c and 4.2d, we can see that the SAE is small particularly

in the first scheme. In the second scheme, the SAE’s are larger, but still comparatively

small as evidenced by Figure 4.2b. Here, the solid line represents the difference

between the exact and mean estimated coverage probabilities. In each case, the bias

is found to be negligible.

From Figures 4.2e and 4.2f, we notice that the SRE’s can be larger; however,

this occurs primarily at upper quantiles where the cost of error is lower. Again, the

solid line represents the difference between the exact and mean estimated coverage
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probabilities.

4.4 Motivating Example Revisited

Consider Table 1.3, which gives the failure times of insulating fluid in minutes while

under high stress. These data have been analyzed by Balakrishnan et al. (2004)

and Balakrishnan and Lin (2005) by assuming an exponential distribution with and

without a threshold parameter. We provide these parametric results as a comparison

to the nonparametric methods given here.

We obtained the mixture weights from 100000 simulations. For each quantile pre-

sented in Table 4.2, we determine the two-sided minimal width interval as described

in Balakrishnan et al. (2010a). If more than one interval is of minimal width, the one

with the largest coverage probability is chosen. For all quantiles considered, first the

intervals chose are with confidence at least 94.75%. If none exist the level is brought

to 70%. Again if none exist the largest two-sided interval is chosen. These intervals

are then compared to 95% confidence intervals based on the BLUE and MLE of a one-

parameter exponential distribution. Note that while the nonparametric and BLUE

intervals are exact, the MLE interval is not. Since we are comparing to the exponen-

tial distribution, we also show the 1− 1/e-th quantile which is the scale parameter of

a single parameter exponential.

The BLUE and MLE of the scale parameter ϑ are ϑ∗ = 2.432 and ϑ̂ = 2.240,

respectively. Both these estimates interestingly fall inside the nonparametric interval
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Nonparametric Exponential
Multi Sample Single Sample BLUE MLE

p C.P. i1 i2 Z(i1) Z(i2) C.P. i1 i2 Xi1:n Xi2:n LOW UPP LOW UPP
0.05 0.369 1 45 0.06 5.55 0.010 8 52 0.50 4.75 0.097 0.167 0.084 0.146
0.10 0.798 1 45 0.06 5.55 0.248 8 52 0.50 4.75 0.199 0.343 0.172 0.300
0.15 0.951 1 10 0.06 0.80 0.695 8 52 0.50 4.75 0.306 0.529 0.265 0.463
0.20 0.967 1 12 0.06 0.93 0.933 8 52 0.50 4.75 0.421 0.727 0.364 0.636
0.25 0.954 3 15 0.50 1.13 0.949 9 22 0.55 1.17 0.542 0.937 0.469 0.820
0.30 0.948 5 18 0.64 1.49 0.951 12 26 0.66 1.54 0.673 1.162 0.581 1.016
0.35 0.951 8 22 0.71 1.70 0.959 14 29 0.71 1.70 0.812 1.403 0.702 1.227
0.40 0.957 10 25 0.80 1.99 0.953 17 32 0.82 1.99 0.963 1.664 0.833 1.455
0.45 0.952 13 28 1.08 2.12 0.949 20 35 1.08 2.12 1.127 1.947 0.974 1.703
0.50 0.951 16 31 1.17 2.17 0.948 23 38 1.30 2.17 1.307 2.258 1.130 1.975
0.55 0.953 19 34 1.54 2.57 0.949 26 41 1.54 2.57 1.506 2.601 1.301 2.275
0.60 0.959 22 37 1.70 3.17 0.953 29 44 1.70 3.17 1.728 2.985 1.493 2.610

1−1/e 0.950 24 38 1.89 3.57 0.956 31 46 1.89 3.72 1.885 3.257 1.630 2.849
0.65 0.954 25 39 1.99 3.72 0.959 32 47 1.99 3.82 1.979 3.419 1.711 2.991
0.70 0.953 28 41 2.12 3.83 0.951 35 49 2.12 3.87 2.270 3.922 1.962 3.430
0.75 0.959 31 43 2.17 4.03 0.949 39 52 2.24 4.75 2.614 4.515 2.259 3.949
0.80 0.959 35 45 2.75 5.55 0.873 8 52 0.50 4.75 3.035 5.242 2.623 4.585
0.85 0.941 1 45 0.06 5.55 0.555 8 52 0.50 4.75 3.577 6.179 3.092 5.405
0.90 0.746 1 45 0.06 5.55 0.142 8 52 0.50 4.75 4.341 7.500 3.753 6.560
0.95 0.319 1 45 0.06 5.55 0.003 8 52 0.50 4.75 5.648 9.758 4.883 8.535

Table 4.2: Two-sided confidence intervals for ξp, at various p, for the insulating fluid
data in Table 1.3

for ξ1−1/e. Though the BLUE and MLE intervals are shorter as one would expect,

they are not significantly shorter than the nonparametric intervals.

For the sake of comparison, we also show the equivalent censoring scheme for a

single doubly Type-II censored sample; that is n = 60, rL = 7, and rU = 8. The

intervals have comparable confidence levels at the central quantiles, but as in Chapter

3, the extreme quantiles have much lower coverage probabilities. Moreover the length

seems to be of comparable length. In terms of indices, the pooled intervals are the

same size or smaller. This seems to be compatible with the results of Ozturk and

Deshpande (2006).



Chapter 5

Multiple Progressively Type-II

Right Censored Samples

In this chapter we consider an extension to Chapter 3 for multiple independent pro-

gressively Type-II right censored samples. The representations here are distinct from

those given prior due to the different representation of PCOS. That is, in the case

of Type-II censoring, these representations do not collapse to those considered in

Chapter 3.

5.1 Distributional Representations

We consider here, various representations for the distributions of the pooled PCOS.

There are a variety of representations of which some are more practical to use than

others.

83
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5.1.1 Marginal Distribution of a pooled OS

As in Chapters 3 and 4 we can partition the sample space to obtain

P (Z(i) ≤ ξp) =
B∑
b=1

rb∑
kb=1

P (Z(i) = XR
(b)

kb:rb:nb
≤ ξp). (5.1.1)

For each probability on the right we can follow along the same lines as before and

obtain the following result.

Theorem 5.1.1 For any 1 ≤ i ≤ ṙ, and 0 < p < 1 the marginal distribution of Z(i)

is given by,

P (Z(i) ≤ ξp) =
B∑
b=1

∑
kb=1

∑
Kb,kb

∑
S∈P(β)

(−1)|S|
∑
L

A(L)C(L)P (XR
(L)

kb:rb:n(L) ≤ ξp)

Where,

Kb,kb =

{
(kj)

B
j=1
j 6=b

:
B∑
j=1

= kj = i, 0 ≤ kj ≤ rj

}
, n(L) = nb +

∑
j∈S

γ
(j)
`j

+
∑
j∈α

γ
(j)
`j
.

L =

(`j)j∈S⋃α :
1 ≤ `j ≤ kj + 1, j ∈ α

1 ≤ `j ≤ rj, j ∈ S

 , γ
(L)
`b

= γ
(b)
`b

+
∑
j∈S

γ
(j)
`j

+
∑
j∈α

γ
(j)
`j
,

A(L) =
∏
j∈α

a
(j)
`j

(kj + 1)
∏
j∈S

a
(j)
`j

(rj)

γ
(j)
`j

, C(L) =
c
(j)
kb−1

c
(L)
kb−1

∏
j∈α

c
(j)
kj−1

∏
j∈S

c
(j)
rj−1,

R(L) =
(
R

(b)
1 , R

(b)
2 , . . . , R

(b)
kb−1, γ

(L) − 1
)
,

and cL`−1, ` = 1, . . . , kb, is generated by R(L).
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Proof: We consider the uniform distribution wlog. Rewriting the probability again

conditioning on the pooled order statistic being any given PCOS from any sample we

have,

P (Z(i) ≤ p) =
B∑
b=1

rb∑
kb=1

P
(
Z(i) ≤ p, Z(i) = XR

(b)

kb:rb:nb

)
=

B∑
b=1

rb∑
kb=1

∑
Kb,kb

P

(
XR

(b)

kb:rb:nb
≤ p,

B⋂
j=1
j 6=b

{
XR

(j)

kj :rj :nj
< XR

(b)

kb:rb:nb
< XR

(j)

kj+1:rj :nj

})

=
B∑
b=1

rb∑
kb=1

∑
Kb,kb

∫ p

0

f
XR

(b)

kb:rb:nb (x)
B∏
j=1
j 6=b

[
F
XR

(j)

kj :rj :nj (x)− FXR
(j)

kj+1:rj :nj (x)

]
dx,

where Kb,kb is a partition of the event that XR
(b)

kb:rb:nb
= Z(i).

From Kamps and Cramer (2001) we have

F
XR

(j)

kj :rj :nj (x)− FXR
(j)

kj+1:rj :nj (x) =
1

γ
(j)
kj+1

f
XR

(j)

kj+1:rj :nj (x)
1− F (x)

f(x)
, f(x) 6= 0,

for kj = 1, . . . , rj − 1. When kj = 0 we have it to be true following the convention

that F
XR

(j)

0:rj :nj (x) = 1,∀ x > −∞. If kj = rj then F
XR

(j)

kj :rj :nj (x) − F
XR

(j)

kj+1:rj :nj (x) =

F
XR

(j)

kj :rj :nj (x) assuming the convention that F
XR

(j)

rj+1:rj :nj (x) = 0,∀ x <∞.

So for every partition in Kb,kb we have

P (Z(i) ≤ p) =
B∑
b=1

rb∑
kb=1

∑
Kb,kb

∫ p

0

f
XR

(b)

kb:rb:nb (x)



Chapter 5.1 - Distributional Representations 86

×
B∏
j=1
j 6=b


1

γ
(j)
kj+1

f
XR

(j)

kj+1:rj :nj (x)(1− x) if kj = 0, 1, . . . , rj − 1 (α)

F
XR

(j)
rj :rj :nj (x) if kj = rj (β)

dx

=
B∑
b=1

rb∑
kb=1

∑
Kb,kb

∫ p

0

(
c
(b)
kb−1

kb∑
`b=1

a
(b)
`b

(kb)(1− x)
γ
(b)
`b
−1

)

×
∏
j∈α

(1− x)

γ
(j)
kj+1

c
(j)
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kj+1∑
`j=1

a
(j)
`j

(kj)(1− x)
γ
(j)
`j
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∏
j∈β

1− c(j)rj−1
rj∑
`j=1

a
(j)
`j

(kj)

γ
(j)
`j

(1− x)
γ
(j)
`j


=

B∑
b=1

rb∑
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∑
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0

(
c
(b)
kb−1
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`b=1

a
(b)
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(kb)(1− x)
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(b)
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×
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a
(j)
`j

(kj)(1− x)
γ
(j)
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(−1)|S|
∏
j∈S

c(j)rj−1 rj∑
`j=1

a
(j)
`j

(rj)

γ
(j)
`j

(1− x)
γ
(j)
`j


=

B∑
b=1

rb∑
kb=1

∑
Kb,kb

∑
S∈P(β)

(−1)|S|
∑
L

C(L)A(L)
∫ p

0

c
(L)
kb−1

kb∑
`b=1

a
(b)
`b

(kb)(1− x)
γ
(L)
`b
−1
.

The last equality follows from collecting terms appropriately and expanding the

summations to form
∑
L

. The integral above is the CDF of XR
L

kb:rb:n(L) , so the theorem

follows.

Remark 5.1.2 It follows that the distribution of Z(1) is the minima of a sample of

size n, but for 1 < i ≤ ṙ, the mixtures may not be convex let alone have a simple

interpretation.

That is, unlike Chapters 3 and 4, the weights do not arise as counting marbles in

bins given by above and below Z(i).

Remark 5.1.3 The distribution of the maxima Z(ṙ) can be evaluated as in equation

(3.1.2), which will be significantly more convenient for maximal coverage probabilities.
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We can also obtain the marginal distribution of the pooled order statistics as a

mixture of regular OS, or a mixture of PCOS. The first could be obtained in theory

by expressing each sample as a mixture of regular OS and pooling them, and applying

ideas similar to those in Chapters 3 and 4. However, except for the smallest possible

sample sizes and number of samples, this is likely impossible. Simulation would be

direct and efficient however, and inference can thus be given simply in a similar

manner to Section 3.2.

Representing the marginal distribution as a mixture of PCOS, would also be

computationally difficult, and if desired, could be simulated. However, this will likely

be less efficient than the representations involving the usual OS.

5.1.2 Joint Distribution of pooled OS

The joint distribution can be represented in multiple ways as in Chapter 3.

Since the PCOS are themselves a mixture of regular OS, we can write the joint

distribution of the pooled PCOS as a mixture of regular OS. Namely, as subsets of

the regular OS of size ṙ from a sample of size n as in Proposition 3.1.10.

Similarly, we can write the joint distribution as a mixture of progressively censored

samples. In particular, given some ordering all ṙ observations, the censoring scheme

would be R̃ where R̃i = R
(b)
kb

if Z(i) = XR
(b)

kb:rb:nb
as in Proposition 3.1.12.

These have the same setbacks as mentioned in Chapters 3 and 4.
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5.2 Simulation

As mentioned in Section 4.3, when the number of observations or number of samples

are large, it may be more practical to obtain the mixture weights by simulation; there

are various ways this can be done.

As discussed earlier, one can represent the joint distribution of the pooled PCOS

as a mixture of regular OS. Given this, it is clear that we can represent the marginal

distribution of the pooled OS as a mixture of the usual OS. Simulating these weights

is trivial.

The marginal distribution can also be simulated by marginal PCOS. This is quite

simple to simulate as well, but is substantially more work as i increases. This is a

consequence of the discussion of storage space in Section 3.1.3. In particular when

R
(b)
1 = · · · = R

(b)
r−1 6= R

(b)
r is a common scheme for all samples, then Remark 3.1.13

gives the exact number of component distributions for i = ṙ. For any 1 ≤ i < ṙ, the

number of component distributions would be a subset of that case. For the censoring

scheme as applied to the Nelson data in Table 1.4, there are 1428 schemes, which is

quite large considering how small ṙ is.

However, if one wishes to obtain the mixture weights as given in Theorem 5.1.1

through simulation, it is not clear how to do this.
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5.3 Motivating Example Revisited

We consider the insulating fluid data as in Table 1.4 where we introduced progressive

Type-II censoring. In Table 5.1 we can see the coverage probability for all schemes

considered. For comparison, an exponential interval based on the BLUE is given

which has the same confidence level. The results of this are not too surprising.

Progressive Type-II censoring tends to favour sampling the smallest order statistics.

This becomes more pronounced when censoring is primarily right censoring. Scheme

R3 is the extreme example of this. Schemes with moderate left censoring, R2 and

R4 fare the best. If we compare these results to the ones in Table 3.1, we can see

that scheme R2 improves on the coverage probability even when the Type-II has 52

observed failures. The primary difference between the Type-II example from Chapter

3 and the example considered here, would be expected length of the resulting intervals.

One would expect both of these to improve had we observed 52 items instead of the

18 considered.

In Table 5.2 we then consider the expected length of the nonparametric interval

assuming a standard exponential, uniform(0, 1), and standard logistic distribution.

We note for lower quantiles, the schemes with more right censoring have shorter

lengths. The increase in coverage probability for left censoring is thus countered by

the increase in expected length.
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5.4 Miscellaneous comments

Table 5.2 compares the coverage probabilities and expected lengths for the pooled

scheme and single sample scheme which is generated by appending the 6 schemes

in the pooled scheme. Unlike Chapter 3, there seems to be no guarantee that the

maximal coverage probability for the pooled scheme is higher than the single sample

(see 5.2b and 5.2c). Furthermore, there is no consistent relationship in terms of

expected length.

However, there are many one sample schemes that could be considered as alterna-

tives to a given multiple sample scheme, particularly when the censoring schemes for

each sample are unique. As a result, we can not make any general conclusion with

regards to expected length of the intervals or coverage probability.

We may however look at extreme scenarios for each such as left censoring. Con-

sider R5 = R(b)
5 = (7, 0, 0) for the (balanced size) pooled scenario, and Rs

5 =

(42, 0, . . . , 0) for the single sample scenario. In such a case then ZR5
18 ≤st Z

Rs5
18 , and

so the maximal coverage probability for Rs
5 will be better than for R5. The opposite

extreme is that of Chapter 3, for which the stochastic ordering was reversed. This

would suggest that pooling will be best in terms of coverage probability when there

tends to be more right censoring, and worse when there is more left censoring.

In Section 3.2.4 we discussed some issues with regards to convergence of the max-

imal OS, in particular Proposition 3.2.2. For any given censoring scheme R, we have

XSi:r:n ≤st XRi:r:n, where S is the right censoring scheme with the same number of units
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and observed failures as R. Thus, bounding the number of items on test is a sufficient

condition for the maximum to to converge to the upper end point of the distribution

when pooling multiple progressively Type-II censored samples.
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R1 = (2, 2, 3) R2 = (6, 1, 0)
Nonparametric Exponential Nonparametric Exponential

p C.P. i1 i2 Z(i1) Z(i2) LOW UPP C.P. i1 i2 Z(i1) Z(i2) LOW UPP
0.05 0.9497 1 8 0.00 0.50 0.058 0.220 0.9497 1 7 0.00 0.66 0.034 0.130
0.10 0.9612 2 10 0.02 0.64 0.115 0.475 0.9479 2 8 0.02 0.80 0.070 0.265
0.15 0.9651 4 13 0.18 0.93 0.175 0.746 0.9702 3 10 0.20 1.30 0.101 0.452
0.20 0.9616 6 15 0.31 1.49 0.243 1.007 0.9632 4 11 0.31 1.34 0.143 0.597
0.25 0.9674 7 16 0.49 1.56 0.308 1.336 0.9626 6 13 0.50 2.12 0.184 0.768
0.30 0.9580 9 17 0.55 1.70 0.393 1.584 0.9622 6 13 0.50 2.12 0.229 0.951
0.35 0.9544 11 18 0.66 2.44 0.479 1.885 0.9665 7 14 0.66 2.17 0.272 1.173
0.40 0.9478 9 18 0.55 2.44 0.577 2.181 0.9700 8 15 0.80 2.57 0.319 1.418
0.45 0.8742 1 18 0.00 2.44 0.758 2.153 0.9701 9 16 1.08 3.87 0.373 1.660
0.50 0.7566 1 18 0.00 2.44 0.977 2.161 0.9681 9 16 1.08 3.87 0.436 1.903
0.55 0.6049 1 18 0.00 2.44 1.239 2.207 0.9778 10 17 1.30 6.63 0.484 2.333
0.60 0.4413 1 18 0.00 2.44 1.545 2.297 0.9540 11 17 1.34 6.63 0.600 2.358

1−1/e 0.3415 1 18 0.00 2.44 1.765 2.382 0.9527 12 18 1.54 7.21 0.657 2.560
0.65 0.2904 1 18 0.00 2.44 1.896 2.439 0.9625 12 18 1.54 7.21 0.672 2.802
0.70 0.1699 1 18 0.00 2.44 2.289 2.647 0.9707 12 18 1.54 7.21 0.750 3.355
0.75 0.0863 1 18 0.00 2.44 2.731 2.939 0.9534 12 18 1.54 7.21 0.910 3.559
0.80 0.0364 1 18 0.00 2.44 3.238 3.339 0.9076 1 18 0.00 7.21 1.150 3.632
0.85 0.0117 1 18 0.00 2.44 3.856 3.895 0.8186 1 18 0.00 7.21 1.498 3.722
0.90 0.0023 1 18 0.00 2.44 4.699 4.709 0.6635 1 18 0.00 7.21 2.034 3.907
0.95 0.0002 1 18 0.00 2.44 6.120 6.120 0.4067 1 18 0.00 7.21 3.024 4.343

R3 = (0, 0, 7) R4 = (4, 0, 3)
Nonparametric Exponential Nonparametric Exponential

p C.P. i1 i2 Z(i1) Z(i2) LOW UPP C.P. i1 i2 Z(i1) Z(i2) LOW UPP
0.05 0.9515 1 9 0.00 0.55 0.065 0.253 0.9516 1 8 0.00 0.50 0.047 0.183
0.10 0.9620 2 11 0.02 0.66 0.131 0.543 0.9720 2 10 0.02 0.82 0.091 0.413
0.15 0.9618 4 14 0.18 0.82 0.202 0.837 0.9525 4 12 0.18 1.08 0.149 0.580
0.20 0.9593 6 16 0.31 1.49 0.279 1.136 0.9707 5 14 0.20 1.34 0.194 0.868
0.25 0.9593 9 18 0.55 1.56 0.360 1.465 0.9646 7 16 0.49 1.54 0.255 1.083
0.30 0.9447 1 18 0.00 1.56 0.462 1.718 0.9738 8 17 0.50 1.56 0.307 1.415
0.35 0.8378 1 18 0.00 1.56 0.647 1.677 0.9585 10 18 0.82 1.89 0.389 1.576
0.40 0.6664 1 18 0.00 1.56 0.872 1.682 0.9500 11 18 0.93 1.89 0.472 1.808
0.45 0.4668 1 18 0.00 1.56 1.136 1.733 0.9322 1 18 0.00 1.89 0.573 1.999
0.50 0.2863 1 18 0.00 1.56 1.430 1.833 0.8503 1 18 0.00 1.89 0.741 1.979
0.55 0.1535 1 18 0.00 1.56 1.743 1.988 0.7260 1 18 0.00 1.89 0.946 1.990
0.60 0.0715 1 18 0.00 1.56 2.071 2.201 0.5702 1 18 0.00 1.89 1.191 2.035

1−1/e 0.0404 1 18 0.00 1.56 2.290 2.370 0.4635 1 18 0.00 1.89 1.372 2.086
0.65 0.0286 1 18 0.00 1.56 2.416 2.476 0.4050 1 18 0.00 1.89 1.481 2.123
0.70 0.0095 1 18 0.00 1.56 2.793 2.816 0.2555 1 18 0.00 1.89 1.815 2.263
0.75 0.0025 1 18 0.00 1.56 3.226 3.233 0.1394 1 18 0.00 1.89 2.195 2.472
0.80 0.0005 1 18 0.00 1.56 3.749 3.750 0.0629 1 18 0.00 1.89 2.632 2.777
0.85 0.0001 1 18 0.00 1.56 4.419 4.420 0.0215 1 18 0.00 1.89 3.157 3.216
0.90 0.0000 1 18 0.00 1.56 5.364 5.364 0.0045 1 18 0.00 1.89 3.860 3.875
0.95 0.0000 1 18 0.00 1.56 6.979 6.979 0.0003 1 18 0.00 1.89 5.031 5.032

Table 5.1: Two-sided confidence intervals for ξp, at various p, for the insulating fluid
data in Table 1.4
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Multiple Samples (R1) Single Sample (Rs1)
p C.P. i1 i2 Exp Unif Log C.P. i1 i2 Exp Unif Log

0.05 0.9497 1 8 0.149 0.134 2.882 0.9501 1 8 0.152 0.137 2.904
0.10 0.9612 2 10 0.190 0.166 2.196 0.9649 2 10 0.197 0.171 2.230
0.15 0.9651 4 13 0.270 0.218 1.784 0.9680 4 13 0.287 0.229 1.836
0.20 0.9616 6 15 0.346 0.257 1.615 0.9641 5 14 0.325 0.249 1.727
0.25 0.9674 7 16 0.409 0.286 1.620 0.9736 7 16 0.449 0.307 1.699
0.30 0.9580 9 17 0.483 0.307 1.526 0.9638 9 17 0.535 0.330 1.612
0.35 0.9544 11 18 0.667 0.360 1.637 0.9491 11 18 0.715 0.374 1.691
0.40 0.9478 9 18 0.733 0.411 1.972 0.9570 11 18 0.715 0.374 1.691
0.45 0.8742 1 18 0.909 0.569 5.033 0.9104 1 18 0.967 0.590 5.128
0.50 0.7566 1 18 0.909 0.569 5.033 0.8141 1 18 0.967 0.590 5.128
0.55 0.6049 1 18 0.909 0.569 5.033 0.6780 1 18 0.967 0.590 5.128
0.60 0.4413 1 18 0.909 0.569 5.033 0.5175 1 18 0.967 0.590 5.128
0.65 0.2904 1 18 0.909 0.569 5.033 0.3565 1 18 0.967 0.590 5.128
0.70 0.1699 1 18 0.909 0.569 5.033 0.2177 1 18 0.967 0.590 5.128
0.75 0.0863 1 18 0.909 0.569 5.033 0.1148 1 18 0.967 0.590 5.128
0.80 0.0364 1 18 0.909 0.569 5.033 0.0499 1 18 0.967 0.590 5.128
0.85 0.0117 1 18 0.909 0.569 5.033 0.0163 1 18 0.967 0.590 5.128
0.90 0.0023 1 18 0.909 0.569 5.033 0.0032 1 18 0.967 0.590 5.128
0.95 0.0002 1 18 0.909 0.569 5.033 0.0002 1 18 0.967 0.590 5.128

(a) Schemes R1 = (2, 2, 3) and Rs1 = (2, 2, 3, . . . , 2, 2, 3)

Multiple Samples (R2) Single Sample (Rs2)
p C.P. i1 i2 Exp Unif Log C.P. i1 i2 Exp Unif Log

0.05 0.9497 1 7 0.174 0.155 3.022 0.9511 1 8 0.161 0.145 2.963
0.10 0.9479 2 8 0.208 0.178 2.227 0.9667 2 10 0.208 0.179 2.250
0.15 0.9702 3 10 0.328 0.258 2.190 0.9526 4 12 0.260 0.209 1.713
0.20 0.9632 4 11 0.396 0.293 2.039 0.9725 5 14 0.363 0.271 1.797
0.25 0.9626 6 13 0.584 0.369 1.952 0.9567 7 15 0.405 0.281 1.565
0.30 0.9622 6 13 0.584 0.369 1.952 0.9605 9 17 0.776 0.415 1.967
0.35 0.9665 7 14 0.718 0.408 1.981 0.9630 10 17 0.743 0.389 1.797
0.40 0.9700 8 15 0.897 0.445 2.067 0.9794 11 18 1.700 0.555 2.900
0.45 0.9701 9 16 1.154 0.481 2.239 0.9757 12 18 1.652 0.521 2.718
0.50 0.9681 9 16 1.154 0.481 2.239 0.9647 13 18 1.602 0.486 2.549
0.55 0.9778 10 17 1.570 0.513 2.577 0.9477 13 18 1.602 0.486 2.549
0.60 0.9540 11 17 1.476 0.455 2.306 0.9074 1 18 1.971 0.785 6.413
0.65 0.9625 12 18 2.364 0.478 3.134 0.8462 1 18 1.971 0.785 6.413
0.70 0.9707 12 18 2.364 0.478 3.134 0.7659 1 18 1.971 0.785 6.413
0.75 0.9534 12 18 2.364 0.478 3.134 0.6675 1 18 1.971 0.785 6.413
0.80 0.9076 1 18 2.939 0.897 7.524 0.5534 1 18 1.971 0.785 6.413
0.85 0.8186 1 18 2.939 0.897 7.524 0.4264 1 18 1.971 0.785 6.413
0.90 0.6635 1 18 2.939 0.897 7.524 0.2898 1 18 1.971 0.785 6.413
0.95 0.4067 1 18 2.939 0.897 7.524 0.1467 1 18 1.971 0.785 6.413

(b) Schemes R2 = (6, 1, 0) and Rs2 = (6, 1, 0, . . . , 6, 1, 0)

Table 5.2: Comparison of expected length and coverage probability for multiple sam-
ples (R) and a single sample (Rs)
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Multiple Samples (R3) Single Sample (Rs3)
p C.P. i1 i2 Exp Unif Log C.P. i1 i2 Exp Unif Log

0.05 0.9515 1 9 0.150 0.136 2.897 0.9492 1 8 0.146 0.132 2.865
0.10 0.9620 2 11 0.181 0.159 2.168 0.9610 2 10 0.189 0.165 2.203
0.15 0.9618 4 14 0.241 0.197 1.722 0.9672 4 13 0.272 0.219 1.804
0.20 0.9593 6 16 0.302 0.231 1.558 0.9648 6 15 0.339 0.253 1.616
0.25 0.9593 9 18 0.445 0.296 1.549 0.9681 7 16 0.414 0.289 1.643
0.30 0.9447 1 18 0.595 0.431 4.446 0.9580 9 17 0.473 0.304 1.523
0.35 0.8378 1 18 0.595 0.431 4.446 0.9602 10 18 0.565 0.336 1.582
0.40 0.6664 1 18 0.595 0.431 4.446 0.9061 1 18 0.770 0.517 4.802
0.45 0.4668 1 18 0.595 0.431 4.446 0.7877 1 18 0.770 0.517 4.802
0.50 0.2863 1 18 0.595 0.431 4.446 0.6188 1 18 0.770 0.517 4.802
0.55 0.1535 1 18 0.595 0.431 4.446 0.4286 1 18 0.770 0.517 4.802
0.60 0.0715 1 18 0.595 0.431 4.446 0.2561 1 18 0.770 0.517 4.802
0.65 0.0286 1 18 0.595 0.431 4.446 0.1286 1 18 0.770 0.517 4.802
0.70 0.0095 1 18 0.595 0.431 4.446 0.0525 1 18 0.770 0.517 4.802
0.75 0.0025 1 18 0.595 0.431 4.446 0.0164 1 18 0.770 0.517 4.802
0.80 0.0005 1 18 0.595 0.431 4.446 0.0036 1 18 0.770 0.517 4.802
0.85 0.0001 1 18 0.595 0.431 4.446 0.0005 1 18 0.770 0.517 4.802
0.90 0.0000 1 18 0.595 0.431 4.446 0.0000 1 18 0.770 0.517 4.802
0.95 0.0000 1 18 0.595 0.431 4.446 0.0000 1 18 0.770 0.517 4.802

(c) Schemes R3 = (0, 0, 7) and Rs3 = (0, 0, 7, . . . , 0, 0, 7)

Multiple Samples (R4) Single Sample (Rs4)
p C.P. i1 i2 Exp Unif Log C.P. i1 i2 Exp Unif Log

0.05 0.9516 1 8 0.169 0.151 3.006 0.9505 1 8 0.155 0.140 2.924
0.10 0.9720 2 10 0.222 0.190 2.328 0.9648 2 10 0.200 0.173 2.227
0.15 0.9525 4 12 0.268 0.215 1.730 0.9483 4 12 0.243 0.198 1.672
0.20 0.9707 5 14 0.360 0.269 1.776 0.9675 5 14 0.337 0.256 1.749
0.25 0.9646 7 16 0.479 0.319 1.701 0.9744 7 16 0.461 0.313 1.717
0.30 0.9738 8 17 0.590 0.360 1.773 0.9658 9 17 0.603 0.357 1.721
0.35 0.9585 10 18 0.769 0.398 1.815 0.9475 10 17 0.570 0.331 1.545
0.40 0.9500 11 18 0.728 0.367 1.639 0.9650 11 18 0.780 0.393 1.775
0.45 0.9322 1 18 1.009 0.605 5.196 0.9350 1 18 1.038 0.614 5.237
0.50 0.8503 1 18 1.009 0.605 5.196 0.8587 1 18 1.038 0.614 5.237
0.55 0.7260 1 18 1.009 0.605 5.196 0.7433 1 18 1.038 0.614 5.237
0.60 0.5702 1 18 1.009 0.605 5.196 0.5969 1 18 1.038 0.614 5.237
0.65 0.4050 1 18 1.009 0.605 5.196 0.4376 1 18 1.038 0.614 5.237
0.70 0.2555 1 18 1.009 0.605 5.196 0.2874 1 18 1.038 0.614 5.237
0.75 0.1394 1 18 1.009 0.605 5.196 0.1645 1 18 1.038 0.614 5.237
0.80 0.0629 1 18 1.009 0.605 5.196 0.0782 1 18 1.038 0.614 5.237
0.85 0.0215 1 18 1.009 0.605 5.196 0.0282 1 18 1.038 0.614 5.237
0.90 0.0045 1 18 1.009 0.605 5.196 0.0063 1 18 1.038 0.614 5.237
0.95 0.0003 1 18 1.009 0.605 5.196 0.0004 1 18 1.038 0.614 5.237

(d) Schemes R4 = (4, 0, 3) and Rs4 = (4, 0, 3, . . . , 4, 0, 3)

Table 5.2: Comparison of expected length and coverage probability for multiple sam-
ples (R) and a single sample (Rs)



Chapter 6

Pitman Closeness of PCOS to

Quantiles

In this chapter we consider the problem of choosing a best estimator of a popula-

tion quantile ξp, among the PCOS from a progressively Type-II censored sample,

XR1:r:n, . . . , X
R
r:r:n. We are interested in obtaining the SCP for the various PCOS as

it encapsulates all the relevant information in the pairwise comparisons between all

PCOS.

6.1 Simultaneous Closeness

We can define the SCP for the `-th PCOS as follows.

Definition 6.1.1 For a Progressively Type-II censored sample, XR1:r:n, . . . , X
R
r:r:n the

95
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SCP πR` (ξp) is defined as

πR` (ξp) = P

(
|XR`:r:n − ξp| < min

1≤j≤r,j 6=`
|XRj:r:n − ξp|

)
.

This region can be collapsed into simpler regions. Let us define the PC probability

between two PCOS as follows.

Definition 6.1.2 For a Progressively Type-II censored sample, XR1:r:n, . . . , X
R
r:r:n the

pairwise PC probability πR`1,`2(ξp) where `1 6= `2, is defined as

πR`1,`2(ξp) = P
(
|XR`1:r:n − ξp| < |X

R
`2:r:n

− ξp|
)
.

However, as it will be shown later, it is sufficient to consider consecutive order

statistics. To obtain the pairwise PC probability of consecutive PCOS we need the

joint distribution of successive PCOS. From equation (1.2.2), we can see that this is

given by

fX
R
`:r:n,X

R
`+1:r:n(x`, x`+1) = (6.1.1)[

c`
∑̀
i=1

ai(`){1− F (x`)}γi−γ`+1−1f(x`)

]
f(x`+1){1− F (x`+1)}γ`+1−1,

when ξ0 < x` ≤ x`+1 < ξ1. We thus have the following Lemma.

Lemma 6.1.3 Given a Progressively Type-II censored sample from an absolutely con-

tinuous distribution with PDF f(x) and CDF F (x), then for ` = 1, 2, . . . , r − 1 and
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any fixed quantile ξp (0 < p < 1), the probability that XR`+1:r:n is Pitman closer to ξp

than XR`:r:n is given by

πR`+1,`(ξp) = FXR`:r:n(ξp)−c`−1
∑̀
i=1

ai(`)

∫ p

0

(1−u)γi−γ`+1−1[1−F (min[ξ1, 2ξp−ξu])]γ`+1du.

Proof: We are interested in the region where |XR`+1:r:n − ξp| < |XR`:r:n − ξp|. Squaring

both sides, expanding, and factoring we obtain the following:

|XR`+1:r:n − ξp| < |XR`:r:n − ξp|

⇔ (XR`+1:r:n)2 − 2ξpX
R
`+1:r:n + ξ2p < (XR`:r:n)2 − 2ξpX

R
`:r:n + ξ2p

⇔ (XR`+1:r:n)2 − (XR`:r:n)2 − 2ξpX
R
`+1:r:n + 2ξpX

R
`:r:n < 0

⇔ (XR`+1:r:n −XR`:r:n)(XR`+1:r:n +XR`:r:n − 2ξp) < 0.

Since the first term is always non-negative, the second term must be negative.

We also note that if XR`:r:n ≥ ξp then 0 ≤ 2XR`:r:n − 2ξp ≤ XR`+1:r:n + XR`:r:n − 2ξp.

Thus we require XR`:r:n < ξp.

Finally, we can obtain the probability πR`+1,`(ξp) by integrating the joint density

as in equation (6.1.1) over the regions XR`+1:r:n +XR`:r:n − 2ξp < 0 and XR`:r:n < ξp.

πR`+1,`(ξp) =

∫ ξp

ξ0

∫ min(ξ1,2ξp−x)

x

fX
R
`:r:n,X

R
`+1:r:n(x, y)dy dx

= c`
∑̀
i=1

ai(`)

∫ ξp

ξ0

{1− F (x)}γi−γ`+1−1f(x)

[∫ min(ξ1,2ξp−x)

x

f(y){1− F (y)}γ`+1−1dy

]
dx
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= c`
∑̀
i=1

ai(`)

∫ ξp

ξ0

{1− F (x)}γi−γ`+1−1f(x)

[
−1

γ`+1

{1− F (y)}γ`+1

∣∣∣min(ξ1,2ξp−x)

y=x

]
dx

= c`−1
∑̀
i=1

ai(`)

∫ ξp

ξ0

{1− F (x)}γi−1f(x) dx

− c`−1
∑̀
i=1

ai(`)

∫ ξp

ξ0

{1− F (x)}γi−γ`+1−1[1− F (min[ξ1, 2ξp − x])]γ`+1f(x)dx

It is clear from equation (1.2.3), that the first term in the last expression is FXR`:r:n(ξp).

Upon making the transformation u = F (x) in the second expression, we then obtain

the Lemma.

It can be noted that the while the upper bound of the distribution ξ1 appears in

Lemma 6.1.3, the lower bound ξ0 does not. Had we obtained πR`,`+1(ξp) in a similar

manner, the reverse would be true.

Theorem 6.1.4 Given a Progressively Type-II censored sample from an absolutely

continuous distribution with PDF f(x) and CDF F (x), then for ` = 1, 2, . . . , r and

any fixed quantile ξp (0 < p < 1), the probability that XR`+1:r:n is simultaneously

Pitman closer to ξp than all other PCOS, is given by

πR` (ξp) =


1− πR2,1(ξp) if ` = 1

πR`,`−1(ξp)− πR`+1,`(ξp) if ` = 2, . . . , r − 1

πRr,r−1(ξp) if ` = r

.

Proof: If ` = 1 then πR1 (ξp) = P (|XR1:r:n−ξp| < minj>1 |XRj:r:n−ξp|) = P (|XR1:r:n−ξp| <

|XR2:r:n − ξp|) = πR1,2(ξp) = 1− πR2,1(ξp). Similarly for ` = r, πRr (ξp) = P (|XRr:r:n − ξp| <
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minj<r |XRj:r:n − ξp|) = P (|XRr:r:n − ξp| < |XRr−1:r:n − ξp|) = πRr,r−1(ξp).

Consider now ` = 2, . . . , r − 1. Then we have that

πR` (ξp) = P (|XR`:r:n − ξp| < min
1≤j≤r,j 6=`

|XRj:r:n − ξp|)

= P (|XR`:r:n − ξp| < min
j=`−1,`+1

|XRj:r:n − ξp|)

= P
(
{|XR`:r:n − ξp| < |XR`−1:r:n − ξp|}

⋂{
|XR`:r:n − ξp| < |XR`+1:r:n − ξp|

})
= P

(
{|XR`:r:n − ξp| < |XR`−1:r:n − ξp|}

⋂{
|XR`+1:r:n − ξp| < |XR`:r:n − ξp|

}C)
= P

(
|XR`:r:n − ξp| < |XR`−1:r:n − ξp|

)
− P

(
{|XR`:r:n − ξp| < |XR`−1:r:n − ξp|}

⋂{
|XR`+1:r:n − ξp| < |XR`:r:n − ξp|

})
= πR`,`−1(ξp)

− P
(
XR`−1:r:n < XR`:r:n < ξp ≤ XR`+1:r:n, X

R
`+1:r:n is closer to ξp than XR`−1:r:n

)
= πR`,`−1(ξp)− πR`+1,`(ξp)

Where EC denotes the complement of the event E.

Corollary 6.1.5 For any symmetric distribution F , for the population median ξ0.5,

the pairwise PC probabilities in Lemma 6.1.3 and SCPs in Theorem 6.1.4 are distri-

bution free. The expression in the lemma reduces to

πR`+1,`(ξ0.5) = FXR`:r:n(ξ0.5)− c`−1
∑̀
i=1

ai(`)B(0.5; γ`+1 + 1, γi − γ`+1),

where B(x;α, β) =
∫ x
0
uα−1(1− u)β−1du is the incomplete beta function.
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Proof: Firstly we note that for all continuous distributions F , and all 0 < p < 1,

FXR`:r:n(ξp) = GR`:r:n(p) where GR`:r:n is the uniform CDF under the same censoring

scheme. Thus this probability is always distribution free.

Since F is symmetric, then for all 0 < u < 1, 2ξ0.5 − ξu = ξ1−u. Considering the

integral we have

∫ 0.5

0

(1− u)γi−γ`+1−1[1− F (min[ξ1, 2ξ0.5 − ξu])]γ`+1du

=

∫ 0.5

0

(1− u)γi−γ`+1−1[1− F (min[ξ1, ξ1−u])]
γ`+1du =

∫ 0.5

0

uγ`+1(1− u)γi−γ`+1−1,

as desired.

If we consider extreme quantiles, namely as p → 0, or p → 1, we obtain the

following result.

Corollary 6.1.6 For all censoring schemes R we have

πR` (ξp)
p→0−→


1 if ` = 1

0 otherwise

πR` (ξp)
p→1−→


1 if ` = r

0 otherwise

Proof: For the first case, we consider limp→0 π`+1,`. Clearly FXR`:r:n(ξp)→ 0 as p→ 0

for all ` = 1, . . . , r. The integrand in Lemma 6.1.3 is non-negative and bounded by

1, so as p→ 0, the integral must go to 0. So limp→0 π`+1,` → 0 as p→ 0.

For the second case we again consider limp→1 π`+1,`. Again, FXR`:r:n(ξp) → 1 as

p→ 1 for all ` = 1, . . . , r. For the integrand in Lemma 6.1.3, we can see that for fixed
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u ∈ (0, 1), limp→1(1− u)γi−γ`+1−1[1− F (min[ξ1, 2ξp − ξu])]γ`+1 = 0 as F (min[ξ1, 2ξp −

ξu]) ≥ F (2ξp − ξu) ≥ F (ξp) = p when p ≥ u. So we have pointwise convergence of

the integrand to 0 (though not necessarily uniformly) as p→ 1 for 0 < u < 1. Since

the integrand is uniformly bounded for all u ∈ (0, 1) we may exchange the outer limit

and integral so that the term goes to 0. So limp→1 π`+1,` → 1 as p→ 1.

The corollary then follows from application of Theorem 6.1.4.

An alternative proof of Corollary 6.1.6 could be given by observing the definition

of πR` (ξp) directly. That is, πR`1,`2 converges to P (XR`1:r:n < XR`2:r:n)[P (XR`1:r:n > XR`2:r:n)]

when p→ 0[1].

Proposition 6.1.7 For a location-scale family with location µ and scale σ, the SCP

is free of µ and σ.

Proof: Let Z = X−µ
σ

be the standardized distribution. Consider the pairwise PC

probabilities πR`1,`2 , we have for `1 6= `2

πXR`1:r:n,X
R
`2:r:n

(ξp) = P
(
|XR`1:r:n − ξp| < |X

R
`2:r:n

− ξp|
)

= P

(∣∣∣∣XR`1:r:n − µσ
− ξp − µ

σ

∣∣∣∣ < ∣∣∣∣XR`2:r:n − µσ
− ξp − µ

σ

∣∣∣∣)
= P

(
|ZR`1:r:n − ξ

Z
p | < |ZR`2:r:n − ξ

Z
p |
)

= πZR`1:r:n,Z
R
`2:r:n

(ξZp ),

where ξZp is the quantile function of the standard distribution Z which does not

depend on µ or σ. Since the pairwise PC probabilities of Lemma 6.1.3 do not depend

on µ or σ, neither do the SCPs of Theorem 6.1.4.
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Thus when we consider special cases of location-scale families, it suffices to con-

sider the standard distribution.

6.2 Special Cases

In this section we obtain simple explicit results for the standard uniform(0, 1) and

standard exponential distributions. For brevity we present expressions for the pair-

wise PC probabilities πR`+1,`(ξp) rather than the SCPs πR` (ξp). One thing that should

be noted, is that due to the alternate representation of PCOS, the representations

here are much simpler than those in Balakrishnan et al. (2010c). That is, there is no

recursion necessary in the calculations. However, the representations may not be as

stable numerically, so use for ordinary order statistics of large sizes may be less than

ideal.

6.2.1 Exponential Distribution

For the standard exponential distribution we have the quantile function ξp = − log(1−

p) for 0 ≤ p < 1, CDF F (x) = 1 − e−x for 0 ≤ x, and lower/upper bounds as

ξ0 = 0/ξ1 =∞. It follows that 1− F (2ξp − ξu) = (1− p)2/(1− u) for 0 ≤ u < p.

We first evaluate the integral of Lemma 6.1.3, i.e.,

∫ p

0

(1− u)γi−γ`+1−1
[

(1− p)2

1− u

]γ`+1

du = (1− p)2γ`+1

∫ p

0

(1− u)γi−2γ`+1−1du,
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so that

πR`+1,`(ξp) = FXR`:r:n(ξp)− c`−1(1− 2)2γ`+1

∑̀
i=1

ai(`)K(p; γi, γ`+1), (6.2.1)

where

K(p; γi, γ`+1) =


1

γi−2γ`+1
[1− (1− p)γi−2γ`+1 ] if γi − 2γ`+1 6= 0

− ln(1− p) if γi − 2γ`+1 = 0

.

6.2.2 Uniform Distribution

For the uniform distribution we have the quantile function ξp = p, CDF F (x) = x

for 0 ≤ x ≤ 1, and lower/upper bounds as ξ0 = 0/ξ1 = 1. Thus for 0 ≤ u ≤ p,

F (min[1, 2ξp − ξu]) = F (min[1, 2p− u]). Again we need to evaluate the integral as in

Lemma 6.1.3.

We consider the two cases 0 < p < 0.5 and 0.5 ≤ p < 1 separately. For the former,

min[1, 2p− u] = 2p− u so with the substitution v = 1− (1− u)/((2(1− p)) we get,

∫ p

0

(1− u)γi−γ`+1−1{1− (2p− u)}γ`+1du = [2(1− p)]γi
∫ 1/2

1− 1
2(1−p)

(1− v)γi−γ`+1−1vγ`+1dv

= [2(1− p)]γi
{
B

(
1

2
; γ`+1 + 1, γi − γ`+1

)
−B

(
1− 1

2(1− p)
; γ`+1 + 1, γi − γ`+1

)}
.

For the case 0.5 ≤ p < 1 we have min[1, 2p − u] is 1 if u ≤ 2p − 1 and 2p − u if
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u > 2p− 1. So with the same substitution as above we get,

∫ p

2p−1
(1− u)γi−γ`+1−1{1− (2p− u)}γ`+1du

= [2(1− p)]γi
∫ 1/2

0

(1− v)γi−γ`+1−1vγ`+1dv = [2(1− p)]γiB
(

1

2
; γ`+1 + 1, γi − γ`+1

)
.

Combining the two cases yields the following expression for the pairwise PC prob-

ability as

πR`+1,`(ξp) = FXR`:r:n(ξp)− c`−1(1− 2)2γ`+1

∑̀
i=1

ai(`)[2(1− p)]γi (6.2.2)

×
{
B

(
1

2
; γ`+1 + 1, γi − γ`+1

)
−B

(
max

(
0, 1− 1

2(1− p)

)
; γ`+1 + 1, γi − γ`+1

)}
.

6.2.3 Other Distributions

For most distributions Lemma 6.1.3 will not yield elementary functions. We consider

the standard cauchy, normal, and skew normal distributions, all of which do not yield

simple explicit representations. As a result we obtain the PC probabilities in Section

6.3 for these distributions with numerical integration.

6.3 Numerical Illustration

We consider a numerical example to illustrate the methods presented in this section.

The SCPs πR` (ξp) for the standard exponential, uniform, normal, cauchy, and skew
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normal distributions are presented in Tables 6.1-6.6 respectively for the following

censoring schemes,

R1 = (20, 0, 0, 0, 0, 0, 0, 0, 0, 0), R2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 20),

R3 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2), R4 = (5, 5, 0, 0, 0, 0, 0, 0, 5, 5),

R5 = (0, 0, 0, 0, 20, 0, 0, 0, 0, 0), R6 = (0, 0, 0, 0, 10, 10, 0, 0, 0, 0),

R7 = (4, 4, 4, 4, 4, 0, 0, 0, 0, 0), R8 = (0, 0, 0, 0, 0, 4, 4, 4, 4, 4).

In the above schemes we have n = 30 and m = 10. For the skew normal distribution

we take the shape parameter α to be 1 and −1.

We can notice that across the distributions the probabilities for the central quan-

tiles do not vary significantly, and in fact many vary by less than 0.001. Thus, when

choosing an optimal order statistic for a given scheme R, the different distributions

will typically choose the same order statistic except for some small regions of p where

the preference changes from the `-th to ` + 1-th PCOS. However, there are some

notably large differences at the extremes, both for small/large p, and particularly

for the largest and smallest order statistics. The most notable of these are XR1
10:10:30

for p = 0.95 which varies from 0.7250 for the cauchy distribution to 0.8657 for the

uniform distribution, and XR1
1:10:30 for p = 0.05 which varies from 0.3554 for the cauchy

distribution to 0.6711 for the exponential distribution.

We can notice that for schemes with right censoring (R2,R4,R8), then XR10:10:30
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is closest to most upper quantiles. However, it may be closest by virtue of being the

largest item much lower than the quantile. So to get a better idea of the spread of

this item one could modify the scheme as follows: R = (R1, . . . , Rr−1, Rr) → R∗ =

(R1, . . . , Rr−1, 1, Rr − 1). Namely, we imagine that we had observed the next failure

which would give a better idea of which quantiles XRr:r:n is closest to in the Pitman

sense.

On a similar note however, schemes with right censoring appear to be more robust

to the difference in distribution. InR2,R4, andR8 there is little variation between the

distributions. This is most notable for right censoring. However, due to asymptotic

nature of order statistics, this is an unsurprising fact.
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Chapter 7

Pitman Closeness as a Criterion

for Optimal Censoring Schemes

When designing a life-testing experiment, the experimenter would fix the sample size

and allowable number of failures, and would like to obtain the highest amount of

“information” possible. This typically means minimizing the mean square error or

variance for some plausible class of distributions. The exponential distribution is one

such distribution assumed in life testing.

For a single parameter exponential distribution with scale parameter θ, the Best

Linear Unbiased Estimator (BLUE) of θ based on a progressively censored sample

with censoring scheme R is θ∗ =
1

r

r∑
i=1

(Ri+1)XRi:r:n However, it is a well known prop-

erty of the exponential distribution that
rθ∗

m
∼ χ2

2r (See Balakrishnan and Aggarwala,

2000; Viveros and Balakrishnan, 1994). The marginal distribution of the BLUE is

119
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free of the censoring scheme, so no determination of optimality can be determined

that uses only the marginal distributions of the BLUE for various censoring schemes.

In this chapter we provide a method for comparing the BLUE of the exponen-

tial distribution, across possible censoring schemes. We will make use of the Pitman

Criterion for comparing the BLUE, in particular, we will make use of the joint dis-

tribution of the BLUE for two censoring schemes applied to the same hypothetical

sample. An experimenter will typically run the experiment once, so it stands to rea-

son that they should choose the scheme that will be closest that one particular time.

Pitman’s measure of closeness is well suited to answer the question when viewed in

this light.

We further conjecture that right censoring is optimal generally. However, we only

demonstrate this in specific cases, and leave a general proof as an open problem.

7.1 Comparison of Censoring Schemes

Consider two progressive censoring schemes R1 and R2. An experimenter will place n

items on failure. If the items are left until all n have failed, we will obtain X1, . . . , Xn

which will all be finite with probability 1. The progressive censoring schemes R1 and

R2 are applied to the hypothetical data and the BLUEs θ∗R1
and θ∗R2

are obtained

respectively. Since the BLUEs are generated from the same underlying data, they

will be dependent.

Definition 7.1.1 For two given progressive censoring schemes R1 and R2 we define
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the PC probability between the two schemes as

π
(
θ∗R1

, θ∗R2

)
= P (|θ∗R1

− θ| < |θ∗R2
− θ|),

where the dependence structure is generated as above.

If θ∗R1
is uniformly closer to θ than θ∗R2

, we say that R1 is better than R2 in the sense

of Pitman closeness.

Lemma 7.1.2 If π
(
θ∗R1

, θ∗R2

∣∣ θ = 1
)

= q, then π
(
θ∗R1

, θ∗R2

∣∣ θ) = π
(
θ∗R1

, θ∗R2

)
=

q,∀ θ > 0.

Proof: For any θ > 0, we have

π
(
θ∗R1

, θ∗R2

∣∣ θ) = P
(
|θ∗R1
− θ| < |θ∗R2

− θ|
)

= P
(
|θ∗R1

/θ − 1| < |θ∗R2
/θ − 1|

)
= π

(
θ∗R1

, θ∗R2

∣∣ θ = 1
)

The last equality follows from the fact that XR1:r:n/θ, . . . , X
R
r:r:n/θ is equal in distri-

bution to a progressively Type-II censored sample from the standard exponential

distribution.

Consequently we can write the PC probability as π
(
θ∗R1

, θ∗R2

∣∣ θ) = π
(
θ∗R1

, θ∗R2

)
,

since it free of θ. Furthermore, we can restrict ourselves to the standard exponential

for simplicity, as we will now assume unless otherwise stated.
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Following along the lines of the proof of Lemma 6.1.3 we can find the region

that θ∗R1
is closer to θ than θ∗R2

as
(
θ∗R1
− θ∗R2

) (
θ∗R1

+ θ∗R2
− 2
)

= ab < 0. Here

a =
(
θ∗R1
− θ∗R2

)
and b =

(
θ∗R1

+ θ∗R2
− 2
)
.

The BLUE θ∗R1
is Pitman closer to θ than θ∗R2

if either (a > 0, b < 0) or (a <

0, b > 0).

Obtaining the BLUE from the n complete observations is equivalent to expressing

the joint distribution of XR1:r:n, . . . , X
R
r:r:n as a mixture of the usual order statistics

from the complete sample. Thus (XR1:r:n, . . . , X
R
r:r:n) = (Xi1:n, . . . , Xir:n) for some

1 ≤ i1 < · · · < ir ≤ n depending on which items are removed in the sampling and

where (Xi1:n, . . . , Xir:n) is a component in the mixture distribution.

To simplify the matter, we can use the independent spacing properties of the

exponential distribution (See Balakrishnan and Aggarwala, 2000). Namely, the order

statistics from a complete sample can be written as Xi:n =
i∑

k=1

1

n− k + 1
Zk, where

Z1, . . . , Zn are i.i.d standard exponential.

Finally we can obtain the PC probability conditional on the two component mix-

tures by integration over <n+ subject to the above linear constraints set in terms of

Z1, . . . , Zn. We describe this in detail in the next section.

7.1.1 A General Algorithm

Here we describe in detail general algorithm to obtain the PC probabilities to compare

any two progressively censored schemes as discussed in Section 7.1.
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Given two potential censoring schemes R1 and R2, we can obtain the PC proba-

bility π(θ∗R1
, θ∗R2

) for any r and n as follows.

1. Express the Type-II progressively censored samples as a mixture of the usual

order statistics (see Guilbaud, 2004), given by

fR
X̃

(x1, . . . , xr) =
∑

1≤iR1 ,...,iRr ≤n

wRiR1 ,...,iRr
fXi1:n,...,Xir :n(x1, . . . , xr); (7.1.1)

2. Based on each mixture component vector (Xi1:n, . . . , Xir:n), obtain the estimator

θ∗R(iR1 , . . . , i
R
r ), as θ∗R, conditioned on (XR1:r:n, . . . , X

R
r:r:n) = (Xi1:n, . . . , Xir:n),

given by

θ∗R(iR1 , . . . , i
R
r ) =

1

r

r∑
j=1

(Ri + 1)Xij :n; (7.1.2)

which yields the final mixture form for the estimator θ∗R as

θ∗R =
∑

1≤iR1 ,...,iRr ≤n

wRiR1 ,...,iRr
θ∗R(iR1 , . . . , i

R
r ). (7.1.3)

3. Using the independent spacing property of the order statistics from the expo-

nential distribution, express the usual order statistics as Xj:n =
∑j

k=1
1

n−k+1
Zk,

where Z1, . . . , Zn are i.i.d. exponential with mean 1;

4. For each pairwise combination between the component distributions of θ∗R1
and

θ∗R2
, obtain the two linear constraints as described previously (a and b);

5. Integrate the joint density of the independent exponential random variables,
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Z1, . . . , Zn over Rn+ subject to the above two linear constraints. This gives the

conditional PC probability π
(
θ∗R1

(iR1
1 , . . . , iR1

r ), θ∗R2
(iR2

1 , . . . , iR2
r )
)
. It should be

mentioned that the two linear constraints can be turned into affine constraints

with the simple algorithm as considered in Schechter (1998);

6. The PC probability π(θ∗R1
, θ∗R2

) can be finally computed as the weighted sum

of the above conditional probabilities. Namely,

π(θ∗R1
, θ∗R2

) =
∑

1≤iR1
1 ,...,i

R1
r ≤n

1≤iR2
1 ,...,i

R2
r ≤n

wR1

i
R1
1 ,...,i

R1
r

wR2

i
R2
1 ,...,i

R2
r

π
(
θ∗R1

(iR1
1 , . . . , iR1

r ), θ∗R2
(iR2

1 , . . . , iR2
r )
)
.

7.1.2 Some Special Cases

We demonstrate parts of the algorithm for the cases n = 3, m = 2, and n = 4,m = 3.

In particular we compare right censoring to all other schemes.

For the case n = 3, m = 2, there are only two possible censoring schemes, S =

(0, 1) and R1 = (1, 0). For these cases we can write the BLUEs as a mixture of the

usual order statistics as follows:

θ∗1 =
1

2
X1:3 +X2:3 (7.1.4)

θ∗2 =


X1:3 + 1

2
X2:3 with probability 1/2

X1:3 + 1
2
X3:3 with probability 1/2

. (7.1.5)
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Expressing the usual order statistics by means of the exponential spacings, we obtain

θ∗1 =
1

2
z1 +

1

2
z2, (7.1.6)

θ∗2 =


1
2
z1 + 1

4
z2 with probability 1/2

1
2
z1 + 1

4
z2 + 1

2
z3 with probability 1/2

. (7.1.7)

Table 7.1 gives the PC probability between θ∗S and θ∗R1
. For each component

of the mixture distribution in (7.1.6) and (7.1.7), the unconditional conditional PC

probability subject to the constraints a > 0(< 0), and b < 0(> 0) are shown explicitly

in Column 3, with a decimal equivalent in Column 4. Combining these results, we

readily obtain π
(
θ∗S , θ

∗
R1

)
= 0.5657, and thus right censoring is optimal in the case of

n = 3, m = 2.

Constraints Conditions Cond. Prob. Value

a = 1
4
z2 a > 0, b < 0 1− 4e−2 + 3e−

8
3 0.3336

b = z1 + 3
4
z2 − 2 a < 0, b > 0 0 0

a = 1
4
z2 − 1

2
z3 a > 0, b < 0 1

3
− 16

3
e−3 + 9e−

8
3 − 4e−2 0.0759

b = z1 + 3
4
z2 + 1

2
z3 − 2 a < 0, b > 0 4e−2 − 16

3
e−3 + 2e−4 0.1562

0.5657

Table 7.1: PC probability π
(
θ∗S , θ

∗
R1

)
for n=3, r=2

When n = 4 and m = 3 there are 3 possible censoring schemes S = (0, 0, 1),

R1 = (0, 1, 0) and R2 = (1, 0, 0). Again we can write the BLUEs as a mixture of the
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usual order statistics as follows.

θ∗S =
1

3
X1:4 +

1

3
X2:4 +

2

3
X3:4, (7.1.8)

θ∗R1
=


1
3
X1:4 + 2

3
X2:4 + 1

3
X3:4 with probability 1/2

1
3
X1:4 + 2

3
X2:4 + 1

3
X4:4 with probability 1/2

, (7.1.9)

θ∗R2
=



2
3
X1:4 + 1

3
X2:4 + 1

3
X3:4 with probability 1/3

2
3
X1:4 + 1

3
X2:4 + 1

3
X4:4 with probability 1/3

2
3
X1:4 + 1

3
X3:4 + 1

3
X4:4 with probability 1/3

. (7.1.10)

Once again, expressing now the usual order statistics by means of the exponential

spacings, we obtain

θ∗S =
1

3
z1 +

1

3
z2 +

1

3
z3, (7.1.11)

θ∗R1
=


1
3
z1 + 1

3
z2 + 1

6
z3 with probability 1/2

1
3
z1 + 1

3
z2 + 1

6
z3 + 1

3
z4 with probability 1/2

, (7.1.12)

θ∗R2
=



1
3
z1 + 2

9
z2 + 1

6
z3 with probability 1/3

1
3
z1 + 2

9
z2 + 1

6
z3 + 1

3
z4 with probability 1/3

1
3
z1 + 2

9
z2 + 1

3
z3 + 1

3
z4 with probability 1/3

. (7.1.13)

For each component of the mixture forms in (7.1.12) and (7.1.13), the conditional

PC probability subject to the constraints a > 0 (< 0) and b < 0 (> 0) are shown
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explicitly in Column 3 while the unconditional decimal equivalents are in Column

4 of Table 7.2. Combining these results suitably, we find in Table 7.2 the values of

π
(
θ∗S , θ

∗
R1

)
and π

(
θ∗S , θ

∗
R2

)
to be 0.5526 and 0.5363, respectively. These readily imply

once again that the right censoring case is the optimal one in the sense of Pitman

closeness.

We can notice that in each case, the first mixture component seems to contribute

the largest probability that θ∗RS is closer than the alternative. This corresponds to

the highest observations being censored. As a result, the BLUE under right censoring

is surely no less than the other BLUE, and as a result the other censoring schemes

tend to underestimate θ.

We have obtained the PC probabilities in this section for the cases n = 3 and

n = 4, but as the sample size increases, the number of component distributions for

the mixture representations grows rapidly. Thus the algorithm presented in here may

not be feasible for computation. In these cases, Monte Carlo simulations may be

preferable.

7.2 Simulation Study

In Tables 7.3-7.8, we present the PC probabilities comparing right censoring to other

progressive censoring schemes for various sample sizes and proportion of censoring.

Where possible we present all possible comparisons (n = 5, 6, 7), otherwise we present

a broad selection of comparisons. All simulated probabilities were obtained with
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1,000,000 Monte Carlo simulations.

We denote S = (0, 0, . . . , 0, n − r) as the usual Type-II right censoring scheme,

and R as the alternative. The results for all tables seem to confirm the conjecture

that right censoring is optimal in the Pitman closeness sense.

It is also of interest to note, that the near extremal scheme T = (0, . . . , 0, 1, n−r),

for fixed n and r, has the highest PC probability amongst all of the comparisons

considered.

We can also note that when the sample size n is fixed, the PC probabilities tend to

increase as the censoring proportion increases. For a fixed number of censored items

and an increasing number of failures, the PC probabilities tend to decrease but not

rapidly. So for even moderate sample sizes, there are schemes that S is moderately

better than, and seemingly none that it is worse than.
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Chapter 8

Conclusions and Further Work

In this thesis we have discussed inference under Type-II (right and doubly) and pro-

gressive Type-II censoring.

In Chapters 3 to 5 we have demonstrated how to obtain mixture representations for

pooled order statistics based on multiple independent samples. We have shown how

the marginal and bivariate representations can be used for nonparametric inference

in the way of confidence intervals for quantiles, tolerance intervals, and prediction

intervals. However, these mixture representations can be used efficiently wherever

the results for regular order statistics is previously studied. In the case of Type-

II censoring we have shown that there are significant gains in terms of coverage

probability over the one-sample case. This gain is not clearly evident in progressive

censoring.

However, the mixture distributions presented can be taxing in terms of compu-

tational power. As a result we suggested simulating the mixture weights. In the

example considered in Chapter 4 we have shown that even with a small number of
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simulations, the absolute and relative errors in the final estimated probabilities are

very small. Since one is typically interested in large probabilities, then the absolute

and relative errors are negligible. Thus, we suggest that this is an ideal method of ob-

taining the mixture weights for the representations in terms of regular order statistics

when the number of samples, and/or the number of censored items is large. However,

simulation is not always easy. The mixture representation in Theorem 5.1.1 is a non-

convex mixture of progressively censored samples. In some cases these correspond to

an outcome in terms of the pooling of the samples. In others however, there is no

clear interpretation of the component distributions in terms of the ordering of the

complete or censored data.

We have briefly considered asymptotic results in Section 3.2.4. In particular we

have shown that when the sample size is bounded uniformly, FZ(ṙ)
→ 1 as B → ∞

regardless of the amount of censoring in each sample. This also applies to doubly

Type-II censored samples in regards to Z(1) and Z(ṙ). This result immediately applies

to the progressively Type-II censoring case. However, in the progressive censoring

scenario, there may not be any gain over the one sample case depending on the

censoring schemes considered.

In Chapter 6 we have given some results concerning quantile estimation with

PCOS, using Pitman’s measure of closeness as an optimality criterion. We gave a

symmetry result for the median, and for some special distributions gave explicit re-

sults. We considered numerical results with many censoring schemes and distributions
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and noted that the Pitman’s criterion is quite robust, with regards to the distribution,

for central order quantiles. This is most notable for symmetric distributions.

Progressive censoring schemes are the focus of Chapter 7. In this chapter we

discuss how one can use Pitman’s measure of closeness to determine an optimal cen-

soring scheme for determining the scale parameter of a single parameter exponential

distribution. Since the marginal distribution of the BLUE in this case is free of the

censoring scheme, one must consider other methods. We demonstrate how to obtain

the PC probability comparing two schemes and do exact calculations, and simulate

values for larger sample sizes. The results support the conjecture that right censoring

is the scheme that produces a BLUE that is Pitman Closer than the BLUE generated

by any other censoring scheme.

8.1 Further Work

There are many problems which have presented themselves for future consideration.

While the nonparametric methods in Chapters 3 to 5 cover a variety of situations,

one may ask how to include more information. For example, if we know that the

underlying distribution is symmetric, are there simple ways of including this into the

nonparametric intervals? How can one include information of covariates, perhaps

concomitants?

In Section 3.2.4 we showed that the sample maximum from the pooled samples

may have a non-degenerate distribution on the support of the underlying distribution.

In such a case some subsequence either converges in probability to the lower endpoint



Chapter 8.1 - Further Work 138

of the distribution, or has a non-degenerate distribution on the entire support. It

is natural to ask what are necessary and/or sufficient conditions for the maximum

to converge to the upper endpoint. Furthermore, can we normalize the maximum or

central order statistics to obtain non-degenerate limiting distributions as with regular

order statistics?

It also seems natural to consider an empirical type distribution based on the pooled

data. A possible way to do this would be as F̂ (x) = n+1
n
EZ(i)

for x ∈ [z(i), z(i+1)),

i = 1, 2, . . . ṙ − 1 and F̂ (x) = 1 for x ≥ z(ṙ). In the case of a complete sample this

would be the standard empirical distribution function. Perhaps this can be used to

obtain Kolmogorov-Smirnov type tests.

In Chapter 5 we consider a non-convex mixture distribution. There seems to be

no clear way to sample from such a distribution. One would need to simulate as to

provide an estimate which is a valid probability distribution function.

We leave one clear open problem in Chapter 7. That is, we have conjectured that

right censoring produces a Pitman best scheme (and left censoring Pitman worst),

can this be formalized?

We leave these questions open and look forward to the forthcoming answers, and

questions yet to come.



Appendix A

Code for Chapter 3

function: qpxkn, qpziu, qpzi2
input

q The probability for the q-th quantile, ξq
k/l Lower/Upper bounds in terms of OS indices
n(N) The overall sample size
ii An integer vector of OS indices
weights A double vector of mixture probabilities (corresponding to ii)

ii1/ii2, and weights1/weights2 correspond to Z(i1) and Z(i2)

respectively

output

Returns a double of P (Xk:n < ξq < Xl:n)/P (ξq < Z(i))/P (Z(i1) < ξq < Z(i2))

1 qpxkn<−function (q , k , l , n ) {sum(dbinom( k : ( l −1) ,n ,q) ) }

1 qpziu<−function ( i i , weights ,N,q) {sum(weights∗sapply ( i i , qpxkn ,q=q , k=0,n=N)
) }

1 qpz i2<−function ( i i 1 , i i 2 , weights1 , weights2 ,N,q) {qpziu ( i i 2 , weights2 ,N,q)−
qpziu ( i i 1 , weights1 ,N,q) }

139
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function: samp2
input

m/n Sample sizes
s/r Number of observations (corresponding to n/m)
i Index for i-th pooled OS Z(i)

output

Returns a matrix with 2 columns. The first column stores the index of an order
statistic Xj:m+n. The second column stores the mixture weight wij = P (Z(i) =
Xj:m+n)

1 samp2<−function (m, n , s , r , i ) {
2 wik l<−function ( i , k , l , n ) {choose ( i −1,k−1)∗choose (sum(n)−i , l−k )/choose (sum(

n) ,n [ 1 ] ) }
3 i f ( r<s ) {q<−c (m, n , s , r ) ;m<−q [ 2 ] ; n<−q [ 1 ] ; s<−q [ 4 ] ; r<−q [ 3 ] }
4 i f (1<= i&i<=min( r , s ) ) {return (matrix (c ( i , 1 ) ,ncol=2) ) }
5 i f ( i<=max( r , s ) ) {out<−cbind ( i : ( i+m−s ) , rep (0 ,m−s+1) )
6 for ( l in ( s+1) :m) {out [ l−s +1 ,2]<−wik l ( i−s+l , l +1,m+1,c (m, n) ) }
7 out [ 1 , 2 ]<−1−sum( out [ , 2 ] ) ; return (matrix ( out , ncol=2) )
8 }
9 i f ( i<=r+s ) {

10 top<−max(m−s , n−r )
11 out<−cbind ( i : ( i+top ) , rep (0 , top+1) )
12 for ( l in ( s+1) :m) {out [ l−s +1 ,2]<−wik l ( i−s+l , l +1,m+1,c (m, n) ) }
13 for ( l in ( r+1) : n) {out [ l−r +1 ,2]<−out [ l−r +1,2]+ wik l ( i−r+l , l +1,n+1,c (m, n) ) }
14 out [ 1 , 2 ]<−1−sum( out [ , 2 ] )
15 return (matrix ( out , ncol=2) )
16 }
17 stop ( ” i not v a l i d ” )
18 }
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function: wiklj
input

i The index such that Z(j) = Xi:ṙ

k/l Vector containing the number of observed and unobserved items
from each sample that fall below/above Z(j)

j Vector of sample sizes
N Overall sample size

output

Returns a double with the weights W{i},{k},{l},{j} as in Chapter 3

1 w i k l j<−function ( i , k , l , j ,N) {
2 i f ( i<sum( k ) |N−i<sum( l ) ) {return (0 ) }
3 exp(lgamma( i )+lgamma(N−i +1)−sum(lgamma( k+1) )−sum(lgamma( l +1) )−lgamma( i−

sum( k ) )−lgamma(N−i−sum( l ) +1)−lgamma(N+1)+sum(lgamma( j +1) )+lgamma(N−
sum( j )+1) )

4 }

function: sampkall
input

n Vector of sample sizes
r Vector of number of observations in each sample
i Index for i-th pooled OS Z(i)

output

Returns a matrix with 2 columns. The first column stores the index of an order
statistic Xj:ṙ. The second column stores the mixture weight wij = P (Z(i) = Xj:ṙ).
This program is ONLY used for the case where nb = n, rb = r, b = 1, 2, . . . , B.

1 sampkal l<−function (n , r , i ) {
2 B<−length (n) ;N<−sum(n) ;R<−sum( r ) ; nmr<−n−r
3 # Ca lcu l a t e combinat ions f o r sigmabprime
4 tempsbp<−vector ( ” l i s t ” ,B−1) ; for ( yy in 1 : (B−1) ) {tempsbp [ [ yy ] ]<−combn ( 1 : (B

−1) , yy ) }
5 # Ca lcu l a t e combinat ions f o r b ’ and b ’ ’ a lpha
6 tempnmr<−vector ( ” l i s t ” ,B) ; for ( yy in 1 :B) {tempnmr [ [ yy ] ]<−1 : ( n [ yy]− r [ yy ] ) }
7 tempr<−vector ( ” l i s t ” ,B) ; for ( yy in 1 :B) {tempr [ [ yy ] ]<−0 : r [ yy ]}
8 # Main Loop
9 out<−cbind ( i :N, 0 ) ; b<−1

10 for ( k in 1 : r [ 1 ] ) {
11 bdim<−1
12 while (bdim<B&&sum( r [−b ] [ 1 : bdim ] )<=i−k ) {
13 j<−1
14 bweight<−B∗choose (B−1,bdim )
15 imkmRjp<−i−k−sum( r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] )
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16 i f ( imkmRjp>=0&&i−k<=R−r [ b ] ) { # Permutation b ’ s a t i s f i e s
cond i t i on

17 tempind<−which( r [−b][− tempsbp [ [ bdim ] ] [ , j ] ]< imkmRjp)
18 i f ( length ( tempind )==0){# Case wi th b ’ ’ a lpha empty
19 i f ( bdim==B−1&&imkmRjp==0){ # b ’ ’ a lpha empty b ’ ’ be ta

empty
20 xx<−as . matrix (expand . grid ( tempnmr[−b ] ) ,ncol=bdim )
21 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {out [1+sum( xx [ yy , ] ) , 2 ]<−out

[1+sum( xx [ yy , ] ) ,2]+ bweight∗w i k l j ( i+sum( xx [ yy , ] ) ,
c (k−1, r [−b]+xx [ yy , ] ) ,c (n [ b]−k , nmr[−b]−xx [ yy , ] ) ,n
,N) }

22 }
23 i f (bdim<B−1){ # b ’ ’ a lpha empty b ’ ’ be ta non−empty
24 xx<−as . matrix (expand . grid ( tempnmr[−b ] [ tempsbp [ [ bdim

] ] [ , j ] ] ) )
25 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {out [1+sum( xx [ yy , ] ) , 2 ]<−out

[1+sum( xx [ yy , ] ) ,2]+ bweight∗w i k l j ( i+sum( xx [ yy , ] ) ,
c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]+ xx [ yy , ] ) ,c (n [ b
]−k , nmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]−xx [ yy , ] ) ,c (n [ b
] , n[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ) ,N) }

26 }
27 } else { # b ’ ’ a lpha non−empty and b ’ ’ be ta empty
28 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp [ [ bdim

] ] [ , j ] ] , tempr[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
29 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )

]==imkmRjp) , ] , ncol=bdim+1)}
30 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 :

bdim ) ] , 1 ,sum)==imkmRjp) , ] , ncol=bdim+length ( tempind ) )
}

31 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−
out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+ bweight∗w i k l j ( i+sum( xx [
yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]+ xx [ yy
, 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp [ [ bdim ] ] [ ,
j ] ] [ tempind]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,

N) }
32 }
33 }
34 bdim<−bdim+1
35 }
36 }
37 out [ 1 , 2 ]<−1−sum( out [ , 2 ] )
38 i f (any( out [ ,2 ] <0) ) {print ( ” Error has occurred some mixing p r o b a b i l i t y i s

negat ive ” ) }
39 return (matrix ( out [which( out [ ,2 ] >0) , ] , ncol=2 ,) )
40 }
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function: sampk
input

n Vector of sample sizes
r Vector of number of observations in each sample
i Index for i-th pooled OS Z(i)

output

Returns a matrix with 2 columns. The first column stores the index of an order
statistic Xj:m+n. The second column stores the mixture weight wij = P (Z(i) =
Xj:ṙ). This program will call sampkall or samp2 where appropriate

1 sampk<−function (n , r , i ) {
2
3 i f ( i−f loor ( i ) !=0) {cat ( ” i not an in t ege r , i s e t to ” , f loor ( i ) , ”\n” ) ; i<−

f loor ( i ) }
4 i f (any(n−f loor (n) !=0) ) {cat ( ”some n i s not an in t ege r , n s e t to ” , f loor (n

) , ”\n” ) ; n<−f loor (n) }
5 i f (any( r−f loor ( r ) !=0) ) {cat ( ”some r i s not an in t ege r , r s e t to ” , f loor ( r

) , ”\n” ) ; r<−f loor ( r ) }
6
7 B<−length (n) ;N<−sum(n) ;R<−sum( r )
8
9 # Terminating Condi t ions

10 i f (B!=length ( r ) ) {stop ( ”n and r not o f same length ” ) }
11 i f (any(n<r ) ) {stop ( ”Some r value i s l e s s than i t s cor re spond ing n” ) }
12 i f (any( r<1) ) {stop ( ”Some r value i s l e s s than 1” ) }
13 i f ( i <1){stop ( ” i n v a l i d i , must be i n t e g e r from 1 to sum of r ” ) }
14 i f ( i>R) {stop ( ” i too l a r g e must be l e s s than sum of r ” ) }
15
16 # Sort n and r , f i r s t by r then wi th in each r by n
17 temp1<−cbind (n , r )
18 temp1<−temp1 [ order ( temp1 [ , 2 ] , temp1 [ , 1 ] ) , ]
19 n<−temp1 [ , 1 ] ; r<−temp1 [ , 2 ]
20
21 # Merge complete samples in t o 1 sample and append as the l a s t sample
22 mflag<−0
23 i f (any(n==r ) ) {
24 temp3<−which(n==r )
25 r<−c ( r [−temp3 ] ,sum( r [ temp3 ] ) )
26 n<−c (n[−temp3 ] ,sum(n [ temp3 ] ) )
27 Borig<−B;B<−length ( r ) ; mflag<−1
28 }
29 nmr<−n−r
30
31 # Spec i a l Cases
32 i f (B==1){return (matrix (c ( i , 1 ) ,ncol=2) ) }
33 i f (B==2){return ( samp2 (n [ 1 ] , n [ 2 ] , r [ 1 ] , r [ 2 ] , i ) ) }
34 i f ( length (unique ( r ) )==1&length (unique (n) )==1){return ( sampkal l (n , r , i ) ) }
35
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36 # Condit ion 1 − t r i v i a l
37 i f (1<= i&i<=r [ 1 ] ) {return (matrix (c ( i , 1 ) ,ncol=2) ) }
38
39 # Ca lcu l a t e we i gh t s f o r Repe t i t i on s o f (n j , r j )
40 nr<−rbind (n , r ) ; weights<−rep (1 ,B)
41 for ( yy in 1 : (B−1) ) {
42 i f (weights [ yy ] !=0) {
43 for ( zz in ( yy+1) :B) { i f ( a l l ( nr [ , zz]==nr [ , yy ] ) ) {weights [ c ( yy , zz ) ]

<−c (weights [ yy ]+1 ,0) }}
44 }
45 }
46
47 # Ca lcu l a t e combinat ions f o r sigmabprime
48 tempsbp<−vector ( ” l i s t ” ,B−1−mflag ) ; for ( yy in 1 : (B−1−mflag ) ) {tempsbp [ [ yy ] ]

<−combn ( 1 : (B−1−mflag ) , yy ) }
49 i f ( mflag==1){tempsbp1<−vector ( ” l i s t ” ,B−1)
50 for ( yy in 1 : (B−1) ) {tempsbp1 [ [ yy ] ]<−combn ( 1 : (B−1) , yy ) }}
51
52 # Ca lcu l a t e combinat ions f o r b ’ and b ’ ’ a lpha
53 tempnmr<−vector ( ” l i s t ” ,B) ; for ( yy in 1 :B) {tempnmr [ [ yy ] ]<−1 : ( n [ yy]− r [ yy ] ) }
54 tempr<−vector ( ” l i s t ” ,B) ; for ( yy in 1 :B) {tempr [ [ yy ] ]<−0 : r [ yy ]}
55
56 # Main Loop
57 out<−cbind ( i :N, 0 )
58
59 i f ( mflag==1){ # When 1 ( or more) complete sample ( s ) ( i . e . , mf lag = 1)
60 for (b in 1 : (B−1) ) {# Going over b where the b th sample i s not complete
61 i f (weights [ b ] !=0) {
62 for ( k in 1 : r [ b ] ) {
63 bdim<−1
64 while (bdim<(B−1)&&sum( r [−b ] [ 1 : bdim ] )<=i−k ) {
65 for ( j in 1 : choose (B−2,bdim ) ) {
66 imkmRjp<−i−k−sum( r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] )
67 i f ( imkmRjp>=0&&i−k<=R−r [ b ] ) { # Permutation b ’ s a t i s f i e s

cond i t i on
68 tempind<−which( r [−c (b ,B) ][− tempsbp [ [ bdim ] ] [ , j ] ]< imkmRjp)
69 i f ( length ( tempind )==0){ # Case wi th b ’ ’ a lpha empty
70 ##### b ’ ’ a lpha empty b ’ ’ be ta non−empty
71 xx<−as . matrix (expand . grid ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ) )
72 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
73 out [1+sum( xx [ yy , ] ) , 2 ]<−out [1+sum( xx [ yy , ] ) ,2]+weights [ b ] ∗w i k l j ( i+

sum( xx [ yy , ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]+ xx [ yy , ] ) ,c (n [ b
]−k , nmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]−xx [ yy , ] ) ,c (n [ b ] , n[−b ] [
tempsbp [ [ bdim ] ] [ , j ] ] ) ,N)

74 }
75 }
76
77 else { # Case wi th b ’ ’ a lpha non−empty
78
79 i f ( bdim+1+length ( tempind )<B) { ##### b ’ ’ a lpha non−empty and b ’ ’

be ta non−empty



Chapter A - Code for Chapter 3 145

80
81 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ,

tempr[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
82 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]<=

imkmRjp) , ] , ncol=bdim+1)}
83 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim )

] , 1 ,sum)<=imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }
84 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
85 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights

[ b ] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ ,
j ] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [
tempind]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp [ [ bdim ] ] [ , j
] ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

86 }
87 }
88
89 else { ##### b ’ ’ a lpha non−empty and b ’ ’ be ta empty
90 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ,

tempr[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
91 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]==

imkmRjp) , ] , ncol=bdim+1)}
92 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim )

] , 1 ,sum)==imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }
93 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
94 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights

[ b ] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ ,
j ] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [
tempind]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp [ [ bdim ] ] [ , j
] ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

95 }
96 }
97 }
98 }
99 }

100 bdim<−bdim+1
101 }
102 }
103 }
104 }
105
106 b<−B # Going over b = B where the sample i s complete
107 for ( k in 1 : r [ b ] ) {
108 bdim<−1
109 while (bdim<B&&sum( r [−b ] [ 1 : bdim ] )<=i−k ) {
110 for ( j in 1 : choose (B−1,bdim ) ) {
111 imkmRjp<−i−k−sum( r [−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] )
112 i f ( imkmRjp>=0&&i−k<=R−r [ b ] ) { # Permutation b ’ s a t i s f i e s cond i t i on
113 tempind<−which( r [−b][− tempsbp1 [ [ bdim ] ] [ , j ] ]< imkmRjp)
114 i f ( length ( tempind )==0){ # Case wi th b ’ ’ a lpha empty
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115
116 i f ( bdim==B−1&&imkmRjp==0){ ##### b ’ ’ a lpha empty b ’ ’ be ta empty
117
118 xx<−as . matrix (expand . grid ( tempnmr[−b ] ) ,ncol=bdim )
119 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
120 out [1+sum( xx [ yy , ] ) , 2 ]<−out [1+sum( xx [ yy , ] ) ,2]+weights [ b ] ∗w i k l j ( i+

sum( xx [ yy , ] ) ,c (k−1, r [−b]+xx [ yy , ] ) ,c (n [ b]−k , nmr[−b]−xx [ yy , ] ) ,n ,
N)

121 }
122 }
123
124 i f (bdim<B−1){ ##### b ’ ’ a lpha empty b ’ ’ be ta non−empty
125
126 xx<−as . matrix (expand . grid ( tempnmr[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] ) )
127 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
128 out [1+sum( xx [ yy , ] ) , 2 ]<−out [1+sum( xx [ yy , ] ) ,2]+weights [ b ] ∗w i k l j ( i+

sum( xx [ yy , ] ) ,c (k−1, r [−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ]+ xx [ yy , ] ) ,c (n [ b
]−k , nmr[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ]−xx [ yy , ] ) ,c (n [ b ] , n[−b ] [
tempsbp1 [ [ bdim ] ] [ , j ] ] ) ,N)

129 }
130 }
131 }
132 else { # Case wi th b ’ ’ a lpha non−empty
133
134 i f ( bdim+1+length ( tempind )<B) { ##### b ’ ’ a lpha non−empty and b ’ ’ be ta

non−empty
135
136 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] , tempr

[−b][− tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
137 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]<=imkmRjp)

, ] , ncol=bdim+1)}
138 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim ) ] , 1 ,

sum)<=imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }
139 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
140 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights [ b

] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp1 [ [ bdim ] ] [ , j
] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp1 [ [
bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind
]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] , n[−b][−
tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

141 }
142 }
143
144 else { ##### b ’ ’ a lpha non−empty and b ’ ’ be ta empty
145
146 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] , tempr

[−b][− tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
147 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]==imkmRjp)

, ] , ncol=bdim+1)}
148 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim ) ] , 1 ,

sum)==imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }
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149 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
150 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights [ b

] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp1 [ [ bdim ] ] [ , j
] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp1 [ [
bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind
]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp1 [ [ bdim ] ] [ , j ] ] , n[−b][−
tempsbp1 [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

151 }
152 }
153 }
154 }
155 }
156 bdim<−bdim+1
157 }
158 }
159 }
160
161 i f ( mflag !=1) { # When a l l samples have censor ing )
162 for (b in 1 :B) {
163 i f (weights [ b ] !=0) {
164 for ( k in 1 : r [ b ] ) {
165 bdim<−1
166 while (bdim<B&&sum( r [−b ] [ 1 : bdim ] )<=i−k ) {
167 for ( j in 1 : choose (B−1,bdim ) ) {
168 imkmRjp<−i−k−sum( r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] )
169 i f ( imkmRjp>=0&&i−k<=R−r [ b ] ) { # Permutation b ’ s a t i s f i e s

cond i t i on
170 tempind<−which( r [−b][− tempsbp [ [ bdim ] ] [ , j ] ]< imkmRjp)
171 i f ( length ( tempind )==0){ # Case wi th b ’ ’ a lpha empty
172
173 i f ( bdim==B−1&&imkmRjp==0){ ##### b ’ ’ a lpha empty b ’ ’ be ta empty
174 xx<−as . matrix (expand . grid ( tempnmr[−b ] ) ,ncol=bdim )
175 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
176 out [1+sum( xx [ yy , ] ) , 2 ]<−out [1+sum( xx [ yy , ] ) ,2]+weights [ b ] ∗w i k l j ( i+

sum( xx [ yy , ] ) ,c (k−1, r [−b]+xx [ yy , ] ) ,c (n [ b]−k , nmr[−b]−xx [ yy , ] ) ,
n ,N)

177 }
178 }
179
180 i f (bdim<B−1){ ##### b ’ ’ a lpha empty b ’ ’ be ta non−empty
181 xx<−as . matrix (expand . grid ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ) )
182 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
183 out [1+sum( xx [ yy , ] ) , 2 ]<−out [1+sum( xx [ yy , ] ) ,2]+weights [ b ] ∗w i k l j ( i+

sum( xx [ yy , ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]+ xx [ yy , ] ) ,c (n [ b
]−k , nmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ]−xx [ yy , ] ) ,c (n [ b ] , n[−b ] [
tempsbp [ [ bdim ] ] [ , j ] ] ) ,N)

184 }
185 }
186 }
187 else { # Case wi th b ’ ’ a lpha non−empty
188
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189 i f ( bdim+1+length ( tempind )<B) { ##### b ’ ’ a lpha non−empty and b ’ ’
be ta non−empty

190 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ,
tempr[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )

191 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]<=
imkmRjp) , ] , ncol=bdim+1)}

192 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim )
] , 1 ,sum)<=imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }

193 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
194 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights

[ b ] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ ,
j ] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [
tempind]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp [ [ bdim ] ] [ , j
] ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

195 }
196 }
197
198 else { ##### b ’ ’ a lpha non−empty and b ’ ’ be ta empty
199 xx<−as . matrix (expand . grid (c ( tempnmr[−b ] [ tempsbp [ [ bdim ] ] [ , j ] ] ,

tempr[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ) )
200 i f ( length ( tempind )==1){xx<−matrix ( xx [which( xx [ , − (1 : bdim )]==

imkmRjp) , ] , ncol=bdim+1)}
201 i f ( length ( tempind )>1){xx<−matrix ( xx [which(apply ( xx [ , − (1 : bdim )

] , 1 ,sum)==imkmRjp) , ] , ncol=bdim+length ( tempind ) ) }
202 for ( yy in 1 : (dim( xx ) [ 1 ] ) ) {
203 out [1+sum( xx [ yy , 1 : bdim ] ) , 2 ]<−out [1+sum( xx [ yy , 1 : bdim ] ) ,2]+weights

[ b ] ∗w i k l j ( i+sum( xx [ yy , 1 : bdim ] ) ,c (k−1, r [−b ] [ tempsbp [ [ bdim ] ] [ ,
j ] ]+ xx [ yy , 1 : bdim ] , xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b]−k , nmr[−b ] [ tempsbp
[ [ bdim ] ] [ , j ] ]−xx [ yy , 1 : bdim ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [
tempind]−xx [ yy ,−(1 : bdim ) ] ) ,c (n [ b ] , n[−b ] [ tempsbp [ [ bdim ] ] [ , j
] ] , n[−b][− tempsbp [ [ bdim ] ] [ , j ] ] [ tempind ] ) ,N)

204 }
205 }
206 }
207 } else {break ( ) }
208 }
209 bdim<−bdim+1
210 }
211 }
212 }
213 }
214 }
215 out [ 1 , 2 ]<−1−sum( out [ , 2 ] ) ; out<−matrix ( out [which( out [ ,2 ] >0) , ] , ncol=2 ,)
216 i f (any( out [ ,2 ] <0) ) {print ( ” Error has occurred some mixing p r o b a b i l i t y i s

negat ive ” ) }
217 return ( out )
218 }



Appendix B

Code for Chapter 4

function: simdtiiw
input

iter The number of iterations to estimate the mixture weights
n A vector of sample sizes
rL/rU A vector of the number of Lower/Upper censored items
i Vector of indices for the i-th pooled OS SZ(i)

p A vector of quantiles for the uniform distribution
alpha A value for confidence bands of a 100(1−α)% confidence interval

output

A list of length equal to the length of i. In each list is a vector containing (i, wij).
The names of the vector are (”i”,”j”), where j is the index of the order statistic
Xj:ṙ and wij = P (Z(i) = Xj:ṙ)

1 s imdt i iw<−function ( i t e r , n , rL , rU , i ) {
2
3 wdsim1<−function ( ) { # Simulat ion func t i on f o r when l en g t h ( i ) = 1
4 temp<− c (NULL,NULL)
5 for ( j in 1 :B) {temp<−rbind ( temp , cbind ( sort ( runif (n [ j ] ) ) ,c ( i f ( rL [ j ]>0){rep

(0 , rL [ j ] ) } , rep (1 , n [ j ]−rL [ j ]−rU [ j ] ) , i f ( rU [ j ]>0){rep (0 , rU [ j ] ) }) ) ) }
6 temp<−temp [ order ( temp [ , 1 ] ) , ]
7 which(cumsum( temp [ , 2 ] )==i ) [ 1 ]
8 }
9

10 wdsim1p<−function ( ) { # Simulat ion func t i on f o r when l en g t h ( i ) > 1
11 temp<− c (NULL,NULL)
12 for ( j in 1 :B) {temp<−rbind ( temp , cbind ( sort ( runif (n [ j ] ) ) ,c ( i f ( rL [ j ]>0){rep

(0 , rL [ j ] ) } , rep (1 , n [ j ]−rL [ j ]−rU [ j ] ) , i f ( rU [ j ]>0){rep (0 , rU [ j ] ) }) ) ) }
13 temp<−temp [ order ( temp [ , 1 ] ) , ]
14 out<−NULL
15 for ( j in 1 : length ( i ) ) {out<−c ( out ,which(cumsum( temp [ , 2 ] )==j ) [ 1 ] ) }
16 return ( out )

149
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17 }
18
19 # Various
20
21 B<−length (n) ; i<−sort (unique ( i ) )
22
23 # San i t i z e input
24
25 i f (any( i−f loor ( i ) !=0) ) {cat ( ”some i i s not an in t ege r , i s e t to ” , sort (

unique ( f loor ( i ) ) ) , ”\n” ) ; i<−f loor ( i ) }
26 i f (any(n−f loor (n) !=0) ) {cat ( ”some n i s not an in t ege r , n s e t to ” , f loor (n

) , ”\n” ) ; n<−f loor (n) }
27 i f (any( rL−f loor ( rL ) !=0) ) {cat ( ”some rL i s not an in t ege r , rL s e t to ” ,

f loor ( rL ) , ”\n” ) ; rL<−f loor ( rL ) }
28 i f (any( rU−f loor ( rU) !=0) ) {cat ( ”some rU i s not an in t ege r , rU s e t to ” ,

f loor ( rU) , ”\n” ) ; rU<−f loor ( rU) }
29
30 # Terminating cond i t i on s ( i . e . , i n v a l i d input )
31
32 i f (B!=length ( rL ) ) {stop ( ”n and rL not o f same length ” ) }
33 i f (B!=length ( rU) ) {stop ( ”n and rU not o f same length ” ) }
34 i f (any(n<=rL+rU) ) {stop ( ”Some sample has no observed va lue s (n<=rL+rU) ” ) }
35 i f (any( rL<0) ) {stop ( ”Some rL value i s l e s s than 0” ) }
36 i f (any( rU<0) ) {stop ( ”Some rU value i s l e s s than 0” ) }
37 i f (any( i <1) ) {stop ( ”Some i i s i nva l i d , must be i n t e g e r from 1 to number

o f observed va lue s ” ) }
38 i f (any( i>sum(n−rL−rU) ) ) {stop ( ”Some i i s too la rge , must be no more than

number o f observed va lues ” ) }
39
40 # output
41
42 i f ( length ( i )==1){
43 y<−i ;names( y )<−” i ” ; out<−vector ( ” l i s t ” ,1 )
44 out [ [ 1 ] ]<−c (y , table ( r e p l i c a t e ( i t e r , wdsim1 ( ) ) )/ i t e r )
45 return ( out )
46 }
47 i f ( length ( i )>1){
48 dat<−r e p l i c a t e ( i t e r , wdsim1p ( ) ) ; out<−vector ( ” l i s t ” , length ( i ) )
49 for ( j in 1 : length ( i ) ) {y<−i [ j ] ; names( y )<−” i ” ; out [ [ j ] ]<−c (y , table ( dat [

j , ] ) / i t e r ) }
50 return ( out )
51 }
52 }
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function: simdtiip
input

outeriter The number of outer iterations repeating the estimation
iter The number of iterations to estimate the mixture weights
n A vector of sample sizes
rL/rU A vector of the number of Lower/Upper censored items
i Index for i-th pooled OS Z(i)

p A vector of quantiles for the uniform distribution
alpha A value in (0,0.5) for confidence bands of a 100(1 − α)% confi-

dence interval

output

A matrix with dimension length(p) x 3. The first/third columns give the lower/up-
per confidence bands and the second column gives the mean estimated probability

of ̂FZ(i)
(ξp)

1 s imdt i i p<−function ( o u t e r i t e r , i t e r , n , rL , rU , i , p=seq ( 0 . 0 1 , 0 . 9 9 ,by=0.01) ,
alpha =0.002){

2
3 wdsim1<−function ( ) { # Simulat ion func t i on f o r when l en g t h ( i ) = 1
4 temp<− c (NULL,NULL)
5 for ( j in 1 :B) {temp<−rbind ( temp , cbind ( sort ( runif (n [ j ] ) ) ,c ( i f ( rL [ j ]>0){rep

(0 , rL [ j ] ) } , rep (1 , n [ j ]−rL [ j ]−rU [ j ] ) , i f ( rU [ j ]>0){rep (0 , rU [ j ] ) }) ) ) }
6 temp<−temp [ order ( temp [ , 1 ] ) , ] ; return (which(cumsum( temp [ , 2 ] )==i ) [ 1 ] )
7 }
8
9 wdsim1p<−function ( ) { # Simulat ion func t i on f o r when l en g t h ( i ) > 1

10 temp<− c (NULL,NULL)
11 for ( j in 1 :B) {temp<−rbind ( temp , cbind ( sort ( runif (n [ j ] ) ) ,c ( i f ( rL [ j ]>0){rep

(0 , rL [ j ] ) } , rep (1 , n [ j ]−rL [ j ]−rU [ j ] ) , i f ( rU [ j ]>0){rep (0 , rU [ j ] ) }) ) ) }
12 temp<−temp [ order ( temp [ , 1 ] ) , ] ; out<−NULL; for ( j in 1 : length ( i ) ) {out<−c ( out ,

which(cumsum( temp [ , 2 ] )==j ) [ 1 ] ) }
13 return ( out ) }
14
15 s imdt i iw1<−function ( i t e r , n , rL , rU , i ) { # Inner s imu la t i on func t i on
16 i f ( length ( i )==1){y<−i ;names( y )<−” i ” ; return (c (y , table ( r e p l i c a t e ( i t e r ,

wdsim1 ( ) ) )/ i t e r ) ) }
17 i f ( length ( i )>1){
18 dat<−r e p l i c a t e ( i t e r , wdsim1p ( ) )
19 out<−l i s t ( )
20 for ( j in 1 : length ( i ) ) {y<−i [ j ] ; names( y )<−” i ” ; out [ [ j ] ]<−c (y , table ( dat [ j , ] )

/ i t e r ) }
21 return ( out ) }
22 }
23
24 getp<−function ( ) { # Simulat ion sub func t i on − re turns es t imated

q u an t i l e s P∗ 1 , . . .P∗ P
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25 datw<−s imdt i iw1 ( i t e r , n , rL , rU , i ) [−1]
26 da t i<−as .numeric (names( datw ) )
27 out<−NULL
28 for ( j in 1 :P) {out<−c ( out , qpziu ( dat i , datw ,N, p [ j ] ) ) }
29 return ( out )
30 }
31
32 # San i t i z e input
33
34 i f ( i−f loor ( i ) !=0) {cat ( ” i i s not an in t ege r , i s e t to ” , f loor ( i ) , ”\n” ) ; i

<−f loor ( i ) }
35 i f (any(n−f loor (n) !=0) ) {cat ( ”Some n i s not an in t ege r , n s e t to ” , f loor (n

) , ”\n” ) ; n<−f loor (n) }
36 i f (any( rL−f loor ( rL ) !=0) ) {cat ( ”Some rL i s not an in t ege r , rL s e t to ” ,

f loor ( rL ) , ”\n” ) ; rL<−f loor ( rL ) }
37 i f (any( rU−f loor ( rU) !=0) ) {cat ( ”Some rU i s not an in t ege r , rU s e t to ” ,

f loor ( rU) , ”\n” ) ; rU<−f loor ( rU) }
38 i f (any(p<0) |any(p>1) ) {cat ( ”Some p < 0 or p > 1 , the se p were removed” , ”

\n” ) ; p<−p [which(0<p&p<1) ]}
39
40 # Various
41
42 B<−length (n) ;N<−sum(n)
43
44 # Terminating cond i t i on s ( i . e . , i n v a l i d input )
45
46 i f ( length (p)==0){stop ( ”No v a l i d p , i n c lude at l e a s t one q u a n t i l e between

0 and 1” ) } else {p<−sort (unique (p) ) ;P<−length (p) }
47 i f (B!=length ( rL ) ) {stop ( ”n and rL not o f same length ” ) }
48 i f (B!=length ( rU) ) {stop ( ”n and rU not o f same length ” ) }
49 i f (any(n<=rL+rU) ) {stop ( ”Some sample has no observed va lue s (n<=rL+rU) ” ) }
50 i f (any( rL<0) ) {stop ( ”Some rL value i s l e s s than 0” ) }
51 i f (any( rU<0) ) {stop ( ”Some rU value i s l e s s than 0” ) }
52 i f ( i <1){stop ( ” i i s i nva l i d , must be i n t e g e r from 1 to number o f observed

va lue s ” ) }
53 i f ( i>sum(n−rL−rU) ) {stop ( ” i i s too la rge , must be no more than number o f

observed va lue s ” ) }
54 i f ( alpha<=0|alpha>=0.5){stop ( ” alpha must be a number between 0 and 0 .5 ” )

}
55
56 # Output
57
58 tempout<−r e p l i c a t e ( o u t e r i t e r , getp ( ) )
59 out<−matrix (0 , ncol=3,nrow=P)
60 out [ , 1 ]<−apply ( tempout , 1 , quantile , probs=alpha/2 , type=4)
61 out [ , 2 ]<−apply ( tempout , 1 ,mean)
62 out [ , 3 ]<−apply ( tempout , 1 , quantile , probs=1−alpha/2 , type=4)
63 out
64 }



Appendix C

Code for Chapter 5

The following function is also useful for Chapter 7.

function: prosch
input

R The number of censored items
r The number of observed failures

output

A matrix where the rows are all possible censoring schemes given the number of
observed and censored items. The number of columns is r.

1 prosch<−function (R, r ) {
2 i f (R==0){return (matrix (0 , ncol=r ,nrow=1) ) }
3 i f ( r==1){return (matrix (R, ncol=1,nrow=1) ) }
4 out<−NULL; for ( i in R: 0 ) {out<−rbind ( out , cbind ( i , prosch (R−i , r−1) ) ) }
5 return ( out )
6 }
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function: ksprogsimos
input

i Vector of indices for i-th pooled OS Z(i)

R List of censoring schemes
iter The number of iterations to estimate the mixture weights

output

A list of length equal to the length of i. In each list is a vector containing (i, wij).
The names of the vector are (”i”,”j”), where j is the index of the order statistic
Xj:ṙ and wij = P (Z(i) = Xj:ṙ)

1 ksprogs imos<−function ( i ,R, i t e r =1000000){
2
3 wdsim<−function ( ) {
4 temp<−c (NULL,NULL)
5 for ( j in 1 :B) {
6 tdat<−sort ( runif (n [ j ] ) ) ; qdat<−tdat ; datx<−double ( r [ j ] )
7
8 i f ( r [ j ]>1){
9 for ( j j in 1 : ( r [ j ]−1) ) {

10 datx [ j j ]<−tdat [ 1 ] ; tdat<−tdat [ −1 ] ; i f (R [ [ j ] ] [ j j ]>0){ tdat<−tdat [−sample
( 1 : length ( tdat ) ,R [ [ j ] ] [ j j ] ) ]}

11 }
12 }
13 datx [ r [ j ] ]<−tdat [ 1 ]
14
15 t index<−match( datx , qdat )
16 zo<−rep (0 , n [ j ] ) ; zo [ t index ]<−1
17 temp<−rbind ( temp , cbind ( qdat , zo ) )
18 }
19 temp<−temp [ order ( temp [ , 1 ] ) , ]
20 return (match( i ,cumsum( temp [ , 2 ] ) ) )
21 }
22
23 # Get number o f schemes , s a n i t i z e input
24 B<−length (R)
25 for ( j in 1 :B) { i f (any(R [ [ j ] ] !=floor (R [ [ j ] ] ) ) ) {cat ( ”Some censo r ing amount

i s not an in t ege r , R s e t to f l o o r (R) ” , ”\n” ) ;R [ [ j ] ]<−f loor (R [ [ j ] ] )
}}

26
27 # Extrac t in format ion from schemes
28 r<−sapply (R, length ) ; nmr<−sapply (R,sum) ; n<−r+nmr
29
30 # Merge complete samples
31 temp<−which(nmr==0)
32 i f ( length ( temp )>1){
33 R<−append(R[−temp ] , l i s t ( rep (0 ,sum( r [ temp ] ) ) ) )
34 r<−sapply (R, length ) ; nmr<−sapply (R,sum) ; n<−r+nmr ;B<−length (R)
35 }
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36
37 # Make out
38 out<−matrix (0 , ncol=2,nrow=sum(n) ) ; out [ , 1 ]<−1 :sum(n) ; colnames ( out )<−c ( ” j :

n” , ”w j ” )
39
40 # Ca l l s
41 i f ( length ( i )==1){out<−l i s t ( table ( r e p l i c a t e ( i t e r , wdsim ( ) ) ) ) }
42 i f ( length ( i )>1){out<−apply ( r e p l i c a t e ( i t e r , wdsim ( ) ) ,1 , table ) }
43 for ( j in 1 : length ( i ) ) {out [ [ j ] ]<−out [ [ j ] ] / i t e r ; out [ [ j ] ]<−c ( i [ j ] , out [ [ j ] ] )

;names( out [ [ j ] ] ) [ 1 ]<−” i ”}
44 return ( out )
45 }

function: elenexp, elenunif, elenlog
input

ini1/ini2 The output of ksprogsimos for i1 and i2
n The overall sample size

output

A double of the expected length for the interval (Z(i1), Z(i2)) for the standard ex-
ponential/Uniform(0,1)/standard logistic distribution

1 e lenexp<−function ( in i 1 , i n i 2 , n=60){
2 ex j<−cumsum(1/ (n−1:n+1) )
3 return (sum( i n i 2 [−1]∗ ex j [ as .numeric ( as .numeric (names( i n i 2 ) [−1]) ) ] )−sum(

i n i 1 [−1]∗ ex j [ as .numeric ( as .numeric (names( i n i 1 ) [−1]) ) ] ) )
4 }

1 e l e n u n i f<−function ( in i 1 , i n i 2 , n=60){
2 uxj<−1 : n/ (n+1)
3 return (sum( i n i 2 [−1]∗uxj [ as .numeric ( as .numeric (names( i n i 2 ) [−1]) ) ] )−sum(

i n i 1 [−1]∗uxj [ as .numeric ( as .numeric (names( i n i 1 ) [−1]) ) ] ) )
4 }

1 e l e n l o g<−function ( in i 1 , i n i 2 , n=60){
2 l x j<−digamma( 1 : n )−digamma(n−1:n+1)
3 return (sum( i n i 2 [−1]∗ l x j [ as .numeric ( as .numeric (names( i n i 2 ) [−1]) ) ] )−sum(

i n i 1 [−1]∗ l x j [ as .numeric ( as .numeric (names( i n i 1 ) [−1]) ) ] ) )
4 }
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function: ksprogsimpc
input

i Index for i-th pooled OS Z(i)

R List of censoring schemes
out All possible permutations of progressive censoring schemes given

by R
Of length (1+i). First column is 0 (for weights)
Generated as a subset from prosch

iter The number of iterations to estimate the mixture weights

output

The same matrix “out” (that is input) with the estimated mixture weights in
column 1

1 ksprogsimpc<−function ( i ,R, out , i t e r =1000000){
2
3 wdsim<−function ( ) {
4 a l l d a t<−NULL
5 for ( j in 1 :B) {
6 tdat<−sort ( runif (n [ j ] ) ) ; qdat<−tdat ; datx<−double ( r [ j ] )
7
8 i f ( r [ j ]>1){
9 for ( j j in 1 : ( r [ j ]−1) ) {

10 datx [ j j ]<−tdat [ 1 ] ; tdat<−tdat [ −1 ] ; i f (R [ [ j ] ] [ j j ]>0){ tdat<−tdat [−sample
( 1 : length ( tdat ) ,R [ [ j ] ] [ j j ] ) ]}

11 }
12 }
13 datx [ r [ j ] ]<−tdat [ 1 ]
14 a l l d a t<−cbind ( a l l da t , rbind ( datx ,R [ [ j ] ] ) )
15 }
16 a l l d a t<−a l l d a t [ , order ( a l l d a t [ 1 , ] ) ]
17 a l l d a t<−a l l d a t [ 2 , 1 : i ]
18 for ( j in 1 : Lout ) { i f ( a l l ( a l l d a t==out [ j , 2 : ( i +1) ] ) ) {return ( j ) }}
19 print ( a l l d a t )
20 }
21
22 # Out only up to i
23 out<−unique ( out [ , 1 : ( i +1) ] )
24
25 # Get number o f schemes , s a n i t i z e input
26 B<−length (R)
27 for ( j in 1 :B) { i f (any(R [ [ j ] ] !=floor (R [ [ j ] ] ) ) ) {cat ( ”Some censo r ing amount

i s not an in t ege r , R s e t to f l o o r (R) ” , ”\n” ) ;R [ [ j ] ]<−f loor (R [ [ j ] ] )
}}

28
29 # Extrac t in format ion from schemes
30 r<−sapply (R, length ) ; nmr<−sapply (R,sum) ; n<−r+nmr ; Lout<−dim( out ) [ [ 1 ] ]
31 temp<−factor ( r e p l i c a t e ( i t e r , wdsim ( ) ) , levels =1:(dim( out ) [ [ 1 ] ] ) )
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32 out [ , 1 ]<−table ( temp )/ i t e r
33 return ( out )
34 }



Appendix D

Code for Chapter 6

The following code is written for Generalized Order Statistics (GOS) when γj 6= −1,
for which progressive Type-II censoring is a special case. See Kamps and Cramer
(2001) for a general overview of GOS, or Volterman et al. (2011) for a specific appli-
cation in this case.

function: pitgosexp, pitgosunif, pitgosnorm, pitgoscauchy, pitgosskewn
input

i The index of the PCOS (XRi:r:n)
m The censoring scheme portion (R1, ..., Rr−1)
k The final number of item removals plus 1, Rr + 1
p The probability for the p-th quantile, ξp
tol Tolerance for integration (cauchy and skew-norm only)
alpha Skewness parameter (skew-norm only)

output

Returns a double of the SCP probability πi:r:n

1 p i tgosexp<−function ( i ,m, k , p) {
2
3 Fxmki<−function ( i ){1−cjm1 [ i ] ∗sum( a j i [ i , 1 : i ] /gam [ 1 : i ] ∗(1−p) ˆgam [ 1 : i ] ) }
4
5 Aip1<−function ( i ) {temp<−Fxmki ( i )
6 for ( j in 1 : i ) {
7 i f (gam [ j ]==2∗gam [ i ] ) {temp<−temp−cjm1 [ i ] ∗(1−p) ˆ(2∗gam [ i ] ) ∗ a j i [ i , j ] ∗log

(1−p)
8 } else {temp<−temp+cjm1 [ i ] ∗(1−p) ˆ(2∗gam [ i ] ) ∗ a j i [ i , j ] / (gam [ j ]−2∗gam [ i ] ) ∗

(1−(1−p) ˆ(gam [ j ]−2∗gam [ i ] ) ) }}
9 return ( temp ) }

10
11 n<−length (m)+1
12 gam<−c ( k+n−1:(n−1)+rev (cumsum( rev (m) ) ) , k )
13 cjm1<−cumprod(gam)
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14 a j i<−matrix (1 , ncol=n ,nrow=n)
15 for ( j in 1 : n ) { for ( j j in 1 : n ) { a j i [ j j , j ]<−i f ( j j<j ) {1/prod (gam [ 1 : j j ]−gam [ j

] ) } else {1/prod (gam [ 1 : j j ] [− j ]−gam [ j ] ) }}}
16
17 i f ( i ==1){return(1−Aip1 (2 ) ) } else { i f ( i==n) {return ( Aip1 (n) ) } else {return (

Aip1 ( i )−Aip1 ( i +1) ) }}
18 }

1 p i t g o s u n i f<−function ( i ,m, k , p) {
2
3 Fxmki<−function ( i ){1−cjm1 [ i ] ∗sum( a j i [ i , 1 : i ] /gam [ 1 : i ] ∗(1−p) ˆgam [ 1 : i ] ) }
4
5 Aip1<−function ( i ) {
6 i f (p<0.5){ return (Fxmki ( i −1)−cjm1 [ i −1]∗sum( (2∗(1−p) ) ˆ(gam [ 1 : ( i −1) ] ) ∗ a j i [

i −1 ,1 :( i −1) ] ∗beta (gam [ 1 : ( i −1)]−gam [ i ] , gam [ i ]+1)∗ (pbeta ( 0 . 5 , gam [ i ]+1 ,
gam [ 1 : ( i −1)]−gam [ i ] )−pbeta(1−0.5/(1−p) ,gam [ i ]+1 ,gam [ 1 : ( i −1)]−gam [ i ] )
) ) ) }

7 i f (p>=0.5){return (Fxmki ( i −1)−cjm1 [ i −1]∗sum( (2∗(1−p) ) ˆ(gam [ 1 : ( i −1) ] ) ∗ a j i [
i −1 ,1 :( i −1) ] ∗beta (gam [ 1 : ( i −1)]−gam [ i ] , gam [ i ]+1)∗ (pbeta ( 0 . 5 , gam [ i ]+1 ,
gam [ 1 : ( i −1)]−gam [ i ] ) ) ) ) }

8 }
9

10 n<−length (m)+1
11 gam<−c ( k+n−1:(n−1)+rev (cumsum( rev (m) ) ) , k )
12 cjm1<−cumprod(gam)
13 a j i<−matrix (1 , ncol=n ,nrow=n)
14 for ( j in 1 : n ) { for ( j j in 1 : n ) { a j i [ j j , j ]<−i f ( j j<j ) {1/prod (gam [ 1 : j j ]−gam [ j

] ) } else {1/prod (gam [ 1 : j j ] [− j ]−gam [ j ] ) }}}
15
16 i f ( i ==1){return(1−Aip1 (2 ) ) } else { i f ( i==n) {return ( Aip1 (n) ) } else { return

( Aip1 ( i )−Aip1 ( i +1) ) }}
17 }

1 pitgosnorm<−function ( i ,m, k , p) {
2
3 chip<−qnorm(p)
4
5 Fxmki<−function ( i ){1−cjm1 [ i ] ∗sum( a j i [ i , 1 : i ] /gam [ 1 : i ] ∗(1−p) ˆgam [ 1 : i ] ) }
6 f p i n t<−function (u , j l ) { j<− j l [ 1 ] ; l<− j l [ 2 ] ; ( 1 −u) ˆ(gam [ j ]−gam [ l ]−1)∗(1−pnorm

(2∗chip−qnorm(u) ) ) ˆ(gam [ l ] ) }
7
8 Aip1<−function ( i ) {
9 p int<−NULL; for ( j in 1 : ( i −1) ) { pint<−c ( pint , i n t e g r a t e ( fp in t , 0 , p ,

s u b d i v i s i o n s =10000 , j l=c ( j , i ) )$value ) }
10 return (Fxmki ( i −1)−cjm1 [ i −1]∗sum( a j i [ i −1 ,1 :( i −1) ] ∗pint [ 1 : ( i −1) ] ) ) }
11
12 n<−length (m)+1
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13 gam<−c ( k+n−1:(n−1)+rev (cumsum( rev (m) ) ) , k )
14 cjm1<−cumprod(gam)
15 a j i<−matrix (1 , ncol=n ,nrow=n)
16 for ( j in 1 : n ) { for ( j j in 1 : n ) { a j i [ j j , j ]<−i f ( j j<j ) {1/prod (gam [ 1 : j j ]−gam [ j

] ) } else {1/prod (gam [ 1 : j j ] [− j ]−gam [ j ] ) }}}
17
18 i f ( i ==1){return(1−Aip1 (2 ) ) } else { i f ( i==n) {return ( Aip1 (n) ) } else { return

( Aip1 ( i )−Aip1 ( i +1) ) }}
19 }

1 pi tgoscauchy<−function ( i ,m, k , p , t o l=1e−10){
2
3 chip<−qcauchy (p)
4
5 Fxmki<−function ( i ){1−cjm1 [ i ] ∗sum( a j i [ i , 1 : i ] /gam [ 1 : i ] ∗(1−p) ˆgam [ 1 : i ] ) }
6 f p i n t<−function (u , j l ) { j<− j l [ 1 ] ; l<− j l [ 2 ] ; ( 1 −u) ˆ(gam [ j ]−gam [ l ]−1)∗(1−

pcauchy(2∗chip−qcauchy (u) ) ) ˆ(gam [ l ] ) }
7
8 Aip1<−function ( i ) {
9 p int<−NULL; for ( j in 1 : ( i −1) ) { pint<−c ( pint , i n t e g r a t e ( fp in t , 0 , p ,

s u b d i v i s i o n s =1000 , r e l . t o l=to l , j l=c ( j , i ) )$value ) }
10 return (Fxmki ( i −1)−cjm1 [ i −1]∗sum( a j i [ i −1 ,1 :( i −1) ] ∗pint [ 1 : ( i −1) ] ) ) }
11
12 n<−length (m)+1
13 gam<−c ( k+n−1:(n−1)+rev (cumsum( rev (m) ) ) , k )
14 cjm1<−cumprod(gam)
15 a j i<−matrix (1 , ncol=n ,nrow=n)
16 for ( j in 1 : n ) { for ( j j in 1 : n ) { a j i [ j j , j ]<−i f ( j j<j ) {1/prod (gam [ 1 : j j ]−gam [ j

] ) } else {1/prod (gam [ 1 : j j ] [− j ]−gam [ j ] ) }}}
17
18 i f ( i ==1){return(1−Aip1 (2 ) ) } else { i f ( i==n) {return ( Aip1 (n) ) } else { return

( Aip1 ( i )−Aip1 ( i +1) ) }}
19 }

1 pitgosskewn<−function ( i ,m, k , p , alpha , t o l=1e−10){
2
3 require ( sn , q u i e t l y=TRUE)
4 chip<−qsn (p , shape=alpha , t o l=t o l )
5
6 Fxmki<−function ( i ){1−cjm1 [ i ] ∗sum( a j i [ i , 1 : i ] /gam [ 1 : i ] ∗(1−p) ˆgam [ 1 : i ] ) }
7 f p i n t<−function (u , j l ) { j<− j l [ 1 ] ; l<− j l [ 2 ] ; ( 1 −u) ˆ(gam [ j ]−gam [ l ]−1)∗(1−psn (2

∗chip−qsn (u , shape=alpha , t o l=t o l ) , shape=alpha ) ) ˆ(gam [ l ] ) }
8
9 Aip1<−function ( i ) {

10 p int<−NULL; for ( j in 1 : ( i −1) ) { pint<−c ( pint , i n t e g r a t e ( fp in t , 0 , p ,
s u b d i v i s i o n s =1000 , r e l . t o l=to l , j l=c ( j , i ) )$value ) }

11 return (Fxmki ( i −1)−cjm1 [ i −1]∗sum( a j i [ i −1 ,1 :( i −1) ] ∗pint [ 1 : ( i −1) ] ) ) }
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12
13 n<−length (m)+1
14 gam<−c ( k+n−1:(n−1)+rev (cumsum( rev (m) ) ) , k )
15 cjm1<−cumprod(gam)
16 a j i<−matrix (1 , ncol=n ,nrow=n)
17 for ( j in 1 : n ) { for ( j j in 1 : n ) { a j i [ j j , j ]<−i f ( j j<j ) {1/prod (gam [ 1 : j j ]−gam [ j

] ) } else {1/prod (gam [ 1 : j j ] [− j ]−gam [ j ] ) }}}
18
19 i f ( i ==1){return(1−Aip1 (2 ) ) } else { i f ( i==n) {return ( Aip1 (n) ) } else { return

( Aip1 ( i )−Aip1 ( i +1) ) }}
20 }



Appendix E

Code for Chapter 7

function: psen
input

N Number of iterations for simulation
R1,R2 The two censoring schemes to be compared

output

Double vector of length 2 containing an estimate of π(θ∗R1, θ
∗
R2) and π(θ∗R2, θ

∗
R1)

1 psen<−function (N, R1 , R2) {
2 i f ( length (R1) !=length (R2) |sum(R1) !=sum(R2) ) {stop ( ”R’ s must be o f same

length and sum” ) }
3 m<−length (R1) ; n<−sum(R1)+m
4 count<−0
5 i t e r<−0
6 while ( i t e r<N) {
7 tdat<−sort (rexp (n) ) ; tdat1<−tdat ; tdat2<−tdat
8 dat1<−rep (0 ,m) ; dat2<−rep (0 ,m) ; dat1 [ 1 ]<−tdat [ 1 ] ; dat2 [ 1 ]<−tdat [ 1 ]
9 tdat1<−tdat1 [ −1 ] ; i f (R1[1 ]>0) { tdat1<−tdat1 [−sample ( 1 : ( n−1) ,R1 [ 1 ] ) ]}

10 tdat2<−tdat2 [ −1 ] ; i f (R2[1 ]>0) { tdat2<−tdat2 [−sample ( 1 : ( n−1) ,R2 [ 1 ] ) ]}
11 i f (m>2){ for ( j in 2 : (m−1) ) {
12 dat1 [ j ]<−tdat1 [ 1 ] ; tdat1<−tdat1 [ −1 ] ; i f (R1 [ j ]>0){ tdat1<−tdat1 [−

sample ( 1 : length ( tdat1 ) ,R1 [ j ] ) ]}
13 dat2 [ j ]<−tdat2 [ 1 ] ; tdat2<−tdat2 [ −1 ] ; i f (R2 [ j ]>0){ tdat2<−tdat2 [−

sample ( 1 : length ( tdat2 ) ,R2 [ j ] ) ]}
14 }}
15 dat1 [m]<−tdat1 [ 1 ] ; dat2 [m]<−tdat2 [ 1 ]
16 xt1<−sum( dat1∗ (R1+1) )/m; xt2<−sum( dat2∗ (R2+1) )/m
17 i f (abs ( xt1−1)<abs ( xt2−1) ) {count<−count+1}
18 i t e r<− i t e r +1
19 }
20 return (c (count ,N−count )/N)
21 }
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Appendix F

Glossary Chapters 3–5

ξp the p-th quantile
B number of independent samples
rb, ṙ the number of observed failures in the b-th sample/all B samples
nb, n sample size of the b-th sample (nb = rLb + rb+ rUb )/all B samples
R(b) The censoring scheme for the b-th sample

XR
(b)

b,k:nb
the k-th PCOS from the b-th sample.

Z(i) the i-th order statistic from the pooled sample (1 ≤ i ≤ ṙ ≤ n)

γ
(b)
` , a

(b)
i (`), c

(b)
`−1 as defined in Section 1.2.3 for the b-th sample

P(S), |S| The powerset/cardinality of a set S
α a set of indices such that sample j ∈ α if for some kj = 0, ..., rj−1

then XR
(j)

kj :rj :nj
< Z(i) < XR

(j)

kb+1:rb:nb

β a set of indices such that sample j ∈ β if XR
(j)

rj :rj :nj
< Z(i)

Table F.1: Notation for Chapter 5
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ξp the p-th quantile
B number of independent samples
rb, ṙ the number of observed failures in the b-th sample/all B samples
rLb , ṙL the number of items left censored in the b-th sample/all B samples
rUb , ṙU the number of items right censored in the b-th sample/all B samples
nb, n sample size of the b-th sample (nb = rLb + rb + rUb )/all B samples
Xb,k:nb the k-th order statistic from the b-th sample. This is the k − rLb -th

observed item in the b-th sample
Z(i) the i-th order statistic from the pooled sample (1 ≤ i ≤ ṙ ≤ n)
A the set of indices excluding those corresponding to samples conditioned

to be a specific pooled order statistic
(when Z(i) = Xb,k:nb then A = {1, 2, ..., B} \ {b})

{b′L} a subset of A, such that some left censored items fall above Z(i) (Z(i1))
{b′L1},{b′L2} a subset of {b′L}, such that the first observed failure is above/below

Z(i2)

{b′U} a subset of A, such that some right censored items fall below Z(i) (Z(i2))
{b′U1},{b′U2} a subset of {b′U}, such that the last observed failure is below/above Z(i1)

{b′UL} a subset of A, such that both left/right censored items fall above/below
Z(i1)/Z(i2) simultaneously.

{b′′} the complement of all {b′U}, {b′U1}, {b′UL}, {b′L}, and {b′L1} in A. All of
the left/right censored items are below/above Z(i) (Z(i1)/Z(i2)).

σ{b′} All possible valid combinations of {b′U} and {b′L} ({b′U}, {b′U1},
{b′UL}, {b′L}, and {b′L1}). A combination σ{b′} is valid if P (Z(i) =
Xb,k:nb|σ{b′}) > 0

cj, c
L
j , c

U
j the number of observed/left censored/right censored failures below Z(i)

ṙS, ċS the sum of r’s or c’s restricted to the set of samples S (ṙS = ċS = 0)

Table F.2: Notation for Chapter 4
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B number of independent samples
nb sample size of the b-th sample
rb the number of observed failures for the b-th Type-II right censored

sample (1 ≤ rb ≤ nb)
n the total sample size of all B samples
ṙ the total number of observed failures from all B samples
Xb,k:nb the k-th order statistic from the b-th sample
Z(i) the i-th order statistic from the pooled sample (1 ≤ i ≤ ṙ ≤ n)
A the set of indices excluding those corresponding to samples condi-

tioned to be a specific pooled order statistic
(when Z(i) = Xb,k:nb then A = {1, 2, ..., B} \ {b})

{b′} a subset of A where at least one censored value from these samples
fall below Z(i) (or Z(i2) when two pooled order statistics are specified)

{b′1}, {b′2} {b′1} is a subset of {b′} such that the final observed value of the samples
is below Z(i1), and {b′2} is the compliment of {b′1} ∈ {b′}, where the
final observed value falls between Z(i1) and Z(i2)

{b′′} the complement of {b′} in A where none of the censored values from
these samples fall below Z(i)

{b′′α}, {b′′β} {b′′β} is the subset of {b′′} such that the samples within are either
complete (rj = nj) or rj ≥ i− k − ṙ{b′}, and {b′′α} is the complement
of {b′′β} ∈ {b′′}

σ{b′} the collection of all valid sets {b′}. a set {b′} is valid if
P (Z(i) = Xb,k:nb|Xj,rj :nj < Xb,k:nb , j ∈ {b′}) > 0

σ{b′1} the collection of all valid subsets {b′1} ∈ {b′}
given a valid set {b′}, a set {b′1} ⊂ {b′} is valid if
P (Z(i1) = Xbo,k1:nbo

, Z(i2) = Xb,k2,nb | {b′} is valid, Xj1,rj1 :nj1
<

Xbo,k1:nbo
< Xj2,rj2 :nj2

< Xb,k2:nb , j1 ∈ {b′1}, j2 ∈ {b′2}) > 0
(where 1 ≤ k1 < k2 ≤ nb if bo = b)

cj the number of censored values (j ∈ {b′}) or observed failures (j ∈
{b′′}) below Z(i) from sample j

cj1 , cj2 the number of censored values (j ∈ {b′}) or observed failures (j ∈
{b′′}) below Z(i1) and between Z(i1) and Z(i2), respectively, from sample
j

ṙS, ċS the sum of rb’s and cj’s restricted over the set of indices S
(where ṙ∅ = ċ∅ = 0)

Table F.3: Notation for Chapter 3
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