Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11269
Title: Formation of Bromate and Other Brominated Disinfection Byproducts during the Treatment of Waters Using a Hybrid Ozonation-Membrane Filtration System
Authors: Moslemi, Mohammadreza
Advisor: Masten, Susan J.
Department: Civil Engineering
Keywords: bromate;bromide;ceramic membrane;ozone;water;modeling;Environmental Engineering;Environmental Engineering
Publication Date: Oct-2011
Abstract: <p>In this research, ozone hydrodynamics and disinfection by-products formation in a novel hybrid ozonation-ceramic membrane filtration system was studied to minimize membrane fouling while also ensuring that the system meets regulatory criteria for disinfection by-products. The influence of important operating parameters including inlet ozone mass injection rate, initial bromide concentration, membrane molecular weight cut off (MWCO), membrane coating, hydroxyl radical scavenger (<em>t</em>-butanol), pH, and temperature on bromate concentration in the absence and presence of natural organic matter (NOM) was examined. Experiments were also conducted under various operating conditions to investigate the formation of total trihalomethanes (TTHMs) and halo-acetic acids (HAAs) in the water distribution system due to post chlorination. Moreover, variations in the TOC, UV<sub>254</sub>, color and turbidity with respect to operating parameters were monitored.</p> <p>Bromate and TTHMs formation increased with increasing ozone mass injection rate, and initial bromide concentration. An increase in the bromate concentration was observed with decreasing membrane MWCO. Less bromate and TTHM was formed with the coated membrane and <em>t</em>-butanol significantly reduced bromate and TTHM formation. Bromate formation decreased significantly with decreasing pH. Increasing the temperature resulted in enhanced bromate formation. NOM exerted a favorable effect on bromate formation as the bromate concentration was observed to decrease as the NOM content was increased.</p> <p>Experimental results indicated that ozonation can greatly reduce color and turbidity of water and can be used to overcome membrane fouling. Ensuring a minimum ozone residual in the system enables the continuous treatment of water at a relatively high permeate flux (up to 85% of the clean water flux) and eliminates the need for membrane cleaning procedures.</p> <p>An empirical model was developed to predict bromate formation in the hybrid ozone- membrane system (R<sup>2</sup>=0.903). Theoretical models were developed to estimate the rate of bromate formation and to describe the ozone mass transfer in a hybrid system. In all cases, good correlation between the model predictions and the experimental data was achieved.</p>
URI: http://hdl.handle.net/11375/11269
Identifier: opendissertations/6249
7294
2258915
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.39 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue